c09048984a277f9ff90486d7c0c224d5f0c4e15b
[platform/kernel/linux-starfive.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 struct nvme_ns_info {
35         struct nvme_ns_ids ids;
36         u32 nsid;
37         __le32 anagrpid;
38         bool is_shared;
39         bool is_readonly;
40         bool is_ready;
41         bool is_removed;
42 };
43
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65                  "max power saving latency for new devices; use PM QOS to change per device");
66
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74         "primary APST timeout in ms");
75
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79         "secondary APST timeout in ms");
80
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84         "primary APST latency tolerance in us");
85
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89         "secondary APST latency tolerance in us");
90
91 /*
92  * nvme_wq - hosts nvme related works that are not reset or delete
93  * nvme_reset_wq - hosts nvme reset works
94  * nvme_delete_wq - hosts nvme delete works
95  *
96  * nvme_wq will host works such as scan, aen handling, fw activation,
97  * keep-alive, periodic reconnects etc. nvme_reset_wq
98  * runs reset works which also flush works hosted on nvme_wq for
99  * serialization purposes. nvme_delete_wq host controller deletion
100  * works which flush reset works for serialization.
101  */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125                                            unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127                                    struct nvme_command *cmd);
128
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131         /*
132          * Only new queue scan work when admin and IO queues are both alive
133          */
134         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135                 queue_work(nvme_wq, &ctrl->scan_work);
136 }
137
138 /*
139  * Use this function to proceed with scheduling reset_work for a controller
140  * that had previously been set to the resetting state. This is intended for
141  * code paths that can't be interrupted by other reset attempts. A hot removal
142  * may prevent this from succeeding.
143  */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146         if (ctrl->state != NVME_CTRL_RESETTING)
147                 return -EBUSY;
148         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149                 return -EBUSY;
150         return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157                         struct nvme_ctrl, failfast_work);
158
159         if (ctrl->state != NVME_CTRL_CONNECTING)
160                 return;
161
162         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163         dev_info(ctrl->device, "failfast expired\n");
164         nvme_kick_requeue_lists(ctrl);
165 }
166
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170                 return;
171
172         schedule_delayed_work(&ctrl->failfast_work,
173                               ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178         if (!ctrl->opts)
179                 return;
180
181         cancel_delayed_work_sync(&ctrl->failfast_work);
182         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184
185
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189                 return -EBUSY;
190         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191                 return -EBUSY;
192         return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198         int ret;
199
200         ret = nvme_reset_ctrl(ctrl);
201         if (!ret) {
202                 flush_work(&ctrl->reset_work);
203                 if (ctrl->state != NVME_CTRL_LIVE)
204                         ret = -ENETRESET;
205         }
206
207         return ret;
208 }
209
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212         dev_info(ctrl->device,
213                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214
215         flush_work(&ctrl->reset_work);
216         nvme_stop_ctrl(ctrl);
217         nvme_remove_namespaces(ctrl);
218         ctrl->ops->delete_ctrl(ctrl);
219         nvme_uninit_ctrl(ctrl);
220 }
221
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224         struct nvme_ctrl *ctrl =
225                 container_of(work, struct nvme_ctrl, delete_work);
226
227         nvme_do_delete_ctrl(ctrl);
228 }
229
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233                 return -EBUSY;
234         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235                 return -EBUSY;
236         return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239
240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242         /*
243          * Keep a reference until nvme_do_delete_ctrl() complete,
244          * since ->delete_ctrl can free the controller.
245          */
246         nvme_get_ctrl(ctrl);
247         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248                 nvme_do_delete_ctrl(ctrl);
249         nvme_put_ctrl(ctrl);
250 }
251
252 static blk_status_t nvme_error_status(u16 status)
253 {
254         switch (status & 0x7ff) {
255         case NVME_SC_SUCCESS:
256                 return BLK_STS_OK;
257         case NVME_SC_CAP_EXCEEDED:
258                 return BLK_STS_NOSPC;
259         case NVME_SC_LBA_RANGE:
260         case NVME_SC_CMD_INTERRUPTED:
261         case NVME_SC_NS_NOT_READY:
262                 return BLK_STS_TARGET;
263         case NVME_SC_BAD_ATTRIBUTES:
264         case NVME_SC_ONCS_NOT_SUPPORTED:
265         case NVME_SC_INVALID_OPCODE:
266         case NVME_SC_INVALID_FIELD:
267         case NVME_SC_INVALID_NS:
268                 return BLK_STS_NOTSUPP;
269         case NVME_SC_WRITE_FAULT:
270         case NVME_SC_READ_ERROR:
271         case NVME_SC_UNWRITTEN_BLOCK:
272         case NVME_SC_ACCESS_DENIED:
273         case NVME_SC_READ_ONLY:
274         case NVME_SC_COMPARE_FAILED:
275                 return BLK_STS_MEDIUM;
276         case NVME_SC_GUARD_CHECK:
277         case NVME_SC_APPTAG_CHECK:
278         case NVME_SC_REFTAG_CHECK:
279         case NVME_SC_INVALID_PI:
280                 return BLK_STS_PROTECTION;
281         case NVME_SC_RESERVATION_CONFLICT:
282                 return BLK_STS_RESV_CONFLICT;
283         case NVME_SC_HOST_PATH_ERROR:
284                 return BLK_STS_TRANSPORT;
285         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
287         case NVME_SC_ZONE_TOO_MANY_OPEN:
288                 return BLK_STS_ZONE_OPEN_RESOURCE;
289         default:
290                 return BLK_STS_IOERR;
291         }
292 }
293
294 static void nvme_retry_req(struct request *req)
295 {
296         unsigned long delay = 0;
297         u16 crd;
298
299         /* The mask and shift result must be <= 3 */
300         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301         if (crd)
302                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303
304         nvme_req(req)->retries++;
305         blk_mq_requeue_request(req, false);
306         blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308
309 static void nvme_log_error(struct request *req)
310 {
311         struct nvme_ns *ns = req->q->queuedata;
312         struct nvme_request *nr = nvme_req(req);
313
314         if (ns) {
315                 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316                        ns->disk ? ns->disk->disk_name : "?",
317                        nvme_get_opcode_str(nr->cmd->common.opcode),
318                        nr->cmd->common.opcode,
319                        (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320                        (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321                        nvme_get_error_status_str(nr->status),
322                        nr->status >> 8 & 7,     /* Status Code Type */
323                        nr->status & 0xff,       /* Status Code */
324                        nr->status & NVME_SC_MORE ? "MORE " : "",
325                        nr->status & NVME_SC_DNR  ? "DNR "  : "");
326                 return;
327         }
328
329         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330                            dev_name(nr->ctrl->device),
331                            nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332                            nr->cmd->common.opcode,
333                            nvme_get_error_status_str(nr->status),
334                            nr->status >> 8 & 7, /* Status Code Type */
335                            nr->status & 0xff,   /* Status Code */
336                            nr->status & NVME_SC_MORE ? "MORE " : "",
337                            nr->status & NVME_SC_DNR  ? "DNR "  : "");
338 }
339
340 enum nvme_disposition {
341         COMPLETE,
342         RETRY,
343         FAILOVER,
344         AUTHENTICATE,
345 };
346
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349         if (likely(nvme_req(req)->status == 0))
350                 return COMPLETE;
351
352         if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353                 return AUTHENTICATE;
354
355         if (blk_noretry_request(req) ||
356             (nvme_req(req)->status & NVME_SC_DNR) ||
357             nvme_req(req)->retries >= nvme_max_retries)
358                 return COMPLETE;
359
360         if (req->cmd_flags & REQ_NVME_MPATH) {
361                 if (nvme_is_path_error(nvme_req(req)->status) ||
362                     blk_queue_dying(req->q))
363                         return FAILOVER;
364         } else {
365                 if (blk_queue_dying(req->q))
366                         return COMPLETE;
367         }
368
369         return RETRY;
370 }
371
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375             req_op(req) == REQ_OP_ZONE_APPEND)
376                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
377                         le64_to_cpu(nvme_req(req)->result.u64));
378 }
379
380 static inline void nvme_end_req(struct request *req)
381 {
382         blk_status_t status = nvme_error_status(nvme_req(req)->status);
383
384         if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385                 nvme_log_error(req);
386         nvme_end_req_zoned(req);
387         nvme_trace_bio_complete(req);
388         if (req->cmd_flags & REQ_NVME_MPATH)
389                 nvme_mpath_end_request(req);
390         blk_mq_end_request(req, status);
391 }
392
393 void nvme_complete_rq(struct request *req)
394 {
395         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396
397         trace_nvme_complete_rq(req);
398         nvme_cleanup_cmd(req);
399
400         /*
401          * Completions of long-running commands should not be able to
402          * defer sending of periodic keep alives, since the controller
403          * may have completed processing such commands a long time ago
404          * (arbitrarily close to command submission time).
405          * req->deadline - req->timeout is the command submission time
406          * in jiffies.
407          */
408         if (ctrl->kas &&
409             req->deadline - req->timeout >= ctrl->ka_last_check_time)
410                 ctrl->comp_seen = true;
411
412         switch (nvme_decide_disposition(req)) {
413         case COMPLETE:
414                 nvme_end_req(req);
415                 return;
416         case RETRY:
417                 nvme_retry_req(req);
418                 return;
419         case FAILOVER:
420                 nvme_failover_req(req);
421                 return;
422         case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424                 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425                 nvme_retry_req(req);
426 #else
427                 nvme_end_req(req);
428 #endif
429                 return;
430         }
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433
434 void nvme_complete_batch_req(struct request *req)
435 {
436         trace_nvme_complete_rq(req);
437         nvme_cleanup_cmd(req);
438         nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441
442 /*
443  * Called to unwind from ->queue_rq on a failed command submission so that the
444  * multipathing code gets called to potentially failover to another path.
445  * The caller needs to unwind all transport specific resource allocations and
446  * must return propagate the return value.
447  */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451         blk_mq_set_request_complete(req);
452         nvme_complete_rq(req);
453         return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460                                 "Cancelling I/O %d", req->tag);
461
462         /* don't abort one completed or idle request */
463         if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464                 return true;
465
466         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468         blk_mq_complete_request(req);
469         return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475         if (ctrl->tagset) {
476                 blk_mq_tagset_busy_iter(ctrl->tagset,
477                                 nvme_cancel_request, ctrl);
478                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
479         }
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485         if (ctrl->admin_tagset) {
486                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487                                 nvme_cancel_request, ctrl);
488                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489         }
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494                 enum nvme_ctrl_state new_state)
495 {
496         enum nvme_ctrl_state old_state;
497         unsigned long flags;
498         bool changed = false;
499
500         spin_lock_irqsave(&ctrl->lock, flags);
501
502         old_state = ctrl->state;
503         switch (new_state) {
504         case NVME_CTRL_LIVE:
505                 switch (old_state) {
506                 case NVME_CTRL_NEW:
507                 case NVME_CTRL_RESETTING:
508                 case NVME_CTRL_CONNECTING:
509                         changed = true;
510                         fallthrough;
511                 default:
512                         break;
513                 }
514                 break;
515         case NVME_CTRL_RESETTING:
516                 switch (old_state) {
517                 case NVME_CTRL_NEW:
518                 case NVME_CTRL_LIVE:
519                         changed = true;
520                         fallthrough;
521                 default:
522                         break;
523                 }
524                 break;
525         case NVME_CTRL_CONNECTING:
526                 switch (old_state) {
527                 case NVME_CTRL_NEW:
528                 case NVME_CTRL_RESETTING:
529                         changed = true;
530                         fallthrough;
531                 default:
532                         break;
533                 }
534                 break;
535         case NVME_CTRL_DELETING:
536                 switch (old_state) {
537                 case NVME_CTRL_LIVE:
538                 case NVME_CTRL_RESETTING:
539                 case NVME_CTRL_CONNECTING:
540                         changed = true;
541                         fallthrough;
542                 default:
543                         break;
544                 }
545                 break;
546         case NVME_CTRL_DELETING_NOIO:
547                 switch (old_state) {
548                 case NVME_CTRL_DELETING:
549                 case NVME_CTRL_DEAD:
550                         changed = true;
551                         fallthrough;
552                 default:
553                         break;
554                 }
555                 break;
556         case NVME_CTRL_DEAD:
557                 switch (old_state) {
558                 case NVME_CTRL_DELETING:
559                         changed = true;
560                         fallthrough;
561                 default:
562                         break;
563                 }
564                 break;
565         default:
566                 break;
567         }
568
569         if (changed) {
570                 ctrl->state = new_state;
571                 wake_up_all(&ctrl->state_wq);
572         }
573
574         spin_unlock_irqrestore(&ctrl->lock, flags);
575         if (!changed)
576                 return false;
577
578         if (ctrl->state == NVME_CTRL_LIVE) {
579                 if (old_state == NVME_CTRL_CONNECTING)
580                         nvme_stop_failfast_work(ctrl);
581                 nvme_kick_requeue_lists(ctrl);
582         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
583                 old_state == NVME_CTRL_RESETTING) {
584                 nvme_start_failfast_work(ctrl);
585         }
586         return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589
590 /*
591  * Returns true for sink states that can't ever transition back to live.
592  */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595         switch (ctrl->state) {
596         case NVME_CTRL_NEW:
597         case NVME_CTRL_LIVE:
598         case NVME_CTRL_RESETTING:
599         case NVME_CTRL_CONNECTING:
600                 return false;
601         case NVME_CTRL_DELETING:
602         case NVME_CTRL_DELETING_NOIO:
603         case NVME_CTRL_DEAD:
604                 return true;
605         default:
606                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607                 return true;
608         }
609 }
610
611 /*
612  * Waits for the controller state to be resetting, or returns false if it is
613  * not possible to ever transition to that state.
614  */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617         wait_event(ctrl->state_wq,
618                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619                    nvme_state_terminal(ctrl));
620         return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626         struct nvme_ns_head *head =
627                 container_of(ref, struct nvme_ns_head, ref);
628
629         nvme_mpath_remove_disk(head);
630         ida_free(&head->subsys->ns_ida, head->instance);
631         cleanup_srcu_struct(&head->srcu);
632         nvme_put_subsystem(head->subsys);
633         kfree(head);
634 }
635
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638         return kref_get_unless_zero(&head->ref);
639 }
640
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643         kref_put(&head->ref, nvme_free_ns_head);
644 }
645
646 static void nvme_free_ns(struct kref *kref)
647 {
648         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649
650         put_disk(ns->disk);
651         nvme_put_ns_head(ns->head);
652         nvme_put_ctrl(ns->ctrl);
653         kfree(ns);
654 }
655
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658         return kref_get_unless_zero(&ns->kref);
659 }
660
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663         kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669         nvme_req(req)->status = 0;
670         nvme_req(req)->retries = 0;
671         nvme_req(req)->flags = 0;
672         req->rq_flags |= RQF_DONTPREP;
673 }
674
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678         if (req->q->queuedata)
679                 req->timeout = NVME_IO_TIMEOUT;
680         else /* no queuedata implies admin queue */
681                 req->timeout = NVME_ADMIN_TIMEOUT;
682
683         /* passthru commands should let the driver set the SGL flags */
684         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685
686         req->cmd_flags |= REQ_FAILFAST_DRIVER;
687         if (req->mq_hctx->type == HCTX_TYPE_POLL)
688                 req->cmd_flags |= REQ_POLLED;
689         nvme_clear_nvme_request(req);
690         req->rq_flags |= RQF_QUIET;
691         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694
695 /*
696  * For something we're not in a state to send to the device the default action
697  * is to busy it and retry it after the controller state is recovered.  However,
698  * if the controller is deleting or if anything is marked for failfast or
699  * nvme multipath it is immediately failed.
700  *
701  * Note: commands used to initialize the controller will be marked for failfast.
702  * Note: nvme cli/ioctl commands are marked for failfast.
703  */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705                 struct request *rq)
706 {
707         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708             ctrl->state != NVME_CTRL_DELETING &&
709             ctrl->state != NVME_CTRL_DEAD &&
710             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712                 return BLK_STS_RESOURCE;
713         return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718                 bool queue_live)
719 {
720         struct nvme_request *req = nvme_req(rq);
721
722         /*
723          * currently we have a problem sending passthru commands
724          * on the admin_q if the controller is not LIVE because we can't
725          * make sure that they are going out after the admin connect,
726          * controller enable and/or other commands in the initialization
727          * sequence. until the controller will be LIVE, fail with
728          * BLK_STS_RESOURCE so that they will be rescheduled.
729          */
730         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731                 return false;
732
733         if (ctrl->ops->flags & NVME_F_FABRICS) {
734                 /*
735                  * Only allow commands on a live queue, except for the connect
736                  * command, which is require to set the queue live in the
737                  * appropinquate states.
738                  */
739                 switch (ctrl->state) {
740                 case NVME_CTRL_CONNECTING:
741                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742                             (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745                                 return true;
746                         break;
747                 default:
748                         break;
749                 case NVME_CTRL_DEAD:
750                         return false;
751                 }
752         }
753
754         return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759                 struct nvme_command *cmnd)
760 {
761         memset(cmnd, 0, sizeof(*cmnd));
762         cmnd->common.opcode = nvme_cmd_flush;
763         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767                 struct nvme_command *cmnd)
768 {
769         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770         struct nvme_dsm_range *range;
771         struct bio *bio;
772
773         /*
774          * Some devices do not consider the DSM 'Number of Ranges' field when
775          * determining how much data to DMA. Always allocate memory for maximum
776          * number of segments to prevent device reading beyond end of buffer.
777          */
778         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779
780         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781         if (!range) {
782                 /*
783                  * If we fail allocation our range, fallback to the controller
784                  * discard page. If that's also busy, it's safe to return
785                  * busy, as we know we can make progress once that's freed.
786                  */
787                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788                         return BLK_STS_RESOURCE;
789
790                 range = page_address(ns->ctrl->discard_page);
791         }
792
793         if (queue_max_discard_segments(req->q) == 1) {
794                 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795                 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796
797                 range[0].cattr = cpu_to_le32(0);
798                 range[0].nlb = cpu_to_le32(nlb);
799                 range[0].slba = cpu_to_le64(slba);
800                 n = 1;
801         } else {
802                 __rq_for_each_bio(bio, req) {
803                         u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804                         u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805
806                         if (n < segments) {
807                                 range[n].cattr = cpu_to_le32(0);
808                                 range[n].nlb = cpu_to_le32(nlb);
809                                 range[n].slba = cpu_to_le64(slba);
810                         }
811                         n++;
812                 }
813         }
814
815         if (WARN_ON_ONCE(n != segments)) {
816                 if (virt_to_page(range) == ns->ctrl->discard_page)
817                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818                 else
819                         kfree(range);
820                 return BLK_STS_IOERR;
821         }
822
823         memset(cmnd, 0, sizeof(*cmnd));
824         cmnd->dsm.opcode = nvme_cmd_dsm;
825         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826         cmnd->dsm.nr = cpu_to_le32(segments - 1);
827         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828
829         bvec_set_virt(&req->special_vec, range, alloc_size);
830         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831
832         return BLK_STS_OK;
833 }
834
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836                               struct request *req)
837 {
838         u32 upper, lower;
839         u64 ref48;
840
841         /* both rw and write zeroes share the same reftag format */
842         switch (ns->guard_type) {
843         case NVME_NVM_NS_16B_GUARD:
844                 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845                 break;
846         case NVME_NVM_NS_64B_GUARD:
847                 ref48 = ext_pi_ref_tag(req);
848                 lower = lower_32_bits(ref48);
849                 upper = upper_32_bits(ref48);
850
851                 cmnd->rw.reftag = cpu_to_le32(lower);
852                 cmnd->rw.cdw3 = cpu_to_le32(upper);
853                 break;
854         default:
855                 break;
856         }
857 }
858
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860                 struct request *req, struct nvme_command *cmnd)
861 {
862         memset(cmnd, 0, sizeof(*cmnd));
863
864         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865                 return nvme_setup_discard(ns, req, cmnd);
866
867         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869         cmnd->write_zeroes.slba =
870                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871         cmnd->write_zeroes.length =
872                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873
874         if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876
877         if (nvme_ns_has_pi(ns)) {
878                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879
880                 switch (ns->pi_type) {
881                 case NVME_NS_DPS_PI_TYPE1:
882                 case NVME_NS_DPS_PI_TYPE2:
883                         nvme_set_ref_tag(ns, cmnd, req);
884                         break;
885                 }
886         }
887
888         return BLK_STS_OK;
889 }
890
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892                 struct request *req, struct nvme_command *cmnd,
893                 enum nvme_opcode op)
894 {
895         u16 control = 0;
896         u32 dsmgmt = 0;
897
898         if (req->cmd_flags & REQ_FUA)
899                 control |= NVME_RW_FUA;
900         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901                 control |= NVME_RW_LR;
902
903         if (req->cmd_flags & REQ_RAHEAD)
904                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905
906         cmnd->rw.opcode = op;
907         cmnd->rw.flags = 0;
908         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909         cmnd->rw.cdw2 = 0;
910         cmnd->rw.cdw3 = 0;
911         cmnd->rw.metadata = 0;
912         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914         cmnd->rw.reftag = 0;
915         cmnd->rw.apptag = 0;
916         cmnd->rw.appmask = 0;
917
918         if (ns->ms) {
919                 /*
920                  * If formated with metadata, the block layer always provides a
921                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
922                  * we enable the PRACT bit for protection information or set the
923                  * namespace capacity to zero to prevent any I/O.
924                  */
925                 if (!blk_integrity_rq(req)) {
926                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927                                 return BLK_STS_NOTSUPP;
928                         control |= NVME_RW_PRINFO_PRACT;
929                 }
930
931                 switch (ns->pi_type) {
932                 case NVME_NS_DPS_PI_TYPE3:
933                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
934                         break;
935                 case NVME_NS_DPS_PI_TYPE1:
936                 case NVME_NS_DPS_PI_TYPE2:
937                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
938                                         NVME_RW_PRINFO_PRCHK_REF;
939                         if (op == nvme_cmd_zone_append)
940                                 control |= NVME_RW_APPEND_PIREMAP;
941                         nvme_set_ref_tag(ns, cmnd, req);
942                         break;
943                 }
944         }
945
946         cmnd->rw.control = cpu_to_le16(control);
947         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948         return 0;
949 }
950
951 void nvme_cleanup_cmd(struct request *req)
952 {
953         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955
956                 if (req->special_vec.bv_page == ctrl->discard_page)
957                         clear_bit_unlock(0, &ctrl->discard_page_busy);
958                 else
959                         kfree(bvec_virt(&req->special_vec));
960         }
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966         struct nvme_command *cmd = nvme_req(req)->cmd;
967         blk_status_t ret = BLK_STS_OK;
968
969         if (!(req->rq_flags & RQF_DONTPREP))
970                 nvme_clear_nvme_request(req);
971
972         switch (req_op(req)) {
973         case REQ_OP_DRV_IN:
974         case REQ_OP_DRV_OUT:
975                 /* these are setup prior to execution in nvme_init_request() */
976                 break;
977         case REQ_OP_FLUSH:
978                 nvme_setup_flush(ns, cmd);
979                 break;
980         case REQ_OP_ZONE_RESET_ALL:
981         case REQ_OP_ZONE_RESET:
982                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983                 break;
984         case REQ_OP_ZONE_OPEN:
985                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986                 break;
987         case REQ_OP_ZONE_CLOSE:
988                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989                 break;
990         case REQ_OP_ZONE_FINISH:
991                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992                 break;
993         case REQ_OP_WRITE_ZEROES:
994                 ret = nvme_setup_write_zeroes(ns, req, cmd);
995                 break;
996         case REQ_OP_DISCARD:
997                 ret = nvme_setup_discard(ns, req, cmd);
998                 break;
999         case REQ_OP_READ:
1000                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001                 break;
1002         case REQ_OP_WRITE:
1003                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004                 break;
1005         case REQ_OP_ZONE_APPEND:
1006                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007                 break;
1008         default:
1009                 WARN_ON_ONCE(1);
1010                 return BLK_STS_IOERR;
1011         }
1012
1013         cmd->common.command_id = nvme_cid(req);
1014         trace_nvme_setup_cmd(req, cmd);
1015         return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018
1019 /*
1020  * Return values:
1021  * 0:  success
1022  * >0: nvme controller's cqe status response
1023  * <0: kernel error in lieu of controller response
1024  */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027         blk_status_t status;
1028
1029         status = blk_execute_rq(rq, at_head);
1030         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031                 return -EINTR;
1032         if (nvme_req(rq)->status)
1033                 return nvme_req(rq)->status;
1034         return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037
1038 /*
1039  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1040  * if the result is positive, it's an NVM Express status code
1041  */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043                 union nvme_result *result, void *buffer, unsigned bufflen,
1044                 int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046         struct request *req;
1047         int ret;
1048
1049         if (qid == NVME_QID_ANY)
1050                 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051         else
1052                 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053                                                 qid - 1);
1054
1055         if (IS_ERR(req))
1056                 return PTR_ERR(req);
1057         nvme_init_request(req, cmd);
1058
1059         if (buffer && bufflen) {
1060                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061                 if (ret)
1062                         goto out;
1063         }
1064
1065         ret = nvme_execute_rq(req, at_head);
1066         if (result && ret >= 0)
1067                 *result = nvme_req(req)->result;
1068  out:
1069         blk_mq_free_request(req);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075                 void *buffer, unsigned bufflen)
1076 {
1077         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078                         NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084         u32 effects = 0;
1085
1086         if (ns) {
1087                 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089                         dev_warn_once(ctrl->device,
1090                                 "IO command:%02x has unusual effects:%08x\n",
1091                                 opcode, effects);
1092
1093                 /*
1094                  * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095                  * which would deadlock when done on an I/O command.  Note that
1096                  * We already warn about an unusual effect above.
1097                  */
1098                 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099         } else {
1100                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101         }
1102
1103         return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110
1111         /*
1112          * For simplicity, IO to all namespaces is quiesced even if the command
1113          * effects say only one namespace is affected.
1114          */
1115         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116                 mutex_lock(&ctrl->scan_lock);
1117                 mutex_lock(&ctrl->subsys->lock);
1118                 nvme_mpath_start_freeze(ctrl->subsys);
1119                 nvme_mpath_wait_freeze(ctrl->subsys);
1120                 nvme_start_freeze(ctrl);
1121                 nvme_wait_freeze(ctrl);
1122         }
1123         return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128                        struct nvme_command *cmd, int status)
1129 {
1130         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131                 nvme_unfreeze(ctrl);
1132                 nvme_mpath_unfreeze(ctrl->subsys);
1133                 mutex_unlock(&ctrl->subsys->lock);
1134                 mutex_unlock(&ctrl->scan_lock);
1135         }
1136         if (effects & NVME_CMD_EFFECTS_CCC) {
1137                 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1138                                       &ctrl->flags)) {
1139                         dev_info(ctrl->device,
1140 "controller capabilities changed, reset may be required to take effect.\n");
1141                 }
1142         }
1143         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1144                 nvme_queue_scan(ctrl);
1145                 flush_work(&ctrl->scan_work);
1146         }
1147         if (ns)
1148                 return;
1149
1150         switch (cmd->common.opcode) {
1151         case nvme_admin_set_features:
1152                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1153                 case NVME_FEAT_KATO:
1154                         /*
1155                          * Keep alive commands interval on the host should be
1156                          * updated when KATO is modified by Set Features
1157                          * commands.
1158                          */
1159                         if (!status)
1160                                 nvme_update_keep_alive(ctrl, cmd);
1161                         break;
1162                 default:
1163                         break;
1164                 }
1165                 break;
1166         default:
1167                 break;
1168         }
1169 }
1170 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1171
1172 /*
1173  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1174  * 
1175  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1176  *   accounting for transport roundtrip times [..].
1177  */
1178 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1179 {
1180         unsigned long delay = ctrl->kato * HZ / 2;
1181
1182         /*
1183          * When using Traffic Based Keep Alive, we need to run
1184          * nvme_keep_alive_work at twice the normal frequency, as one
1185          * command completion can postpone sending a keep alive command
1186          * by up to twice the delay between runs.
1187          */
1188         if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1189                 delay /= 2;
1190         return delay;
1191 }
1192
1193 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1194 {
1195         queue_delayed_work(nvme_wq, &ctrl->ka_work,
1196                            nvme_keep_alive_work_period(ctrl));
1197 }
1198
1199 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1200                                                  blk_status_t status)
1201 {
1202         struct nvme_ctrl *ctrl = rq->end_io_data;
1203         unsigned long flags;
1204         bool startka = false;
1205         unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1206         unsigned long delay = nvme_keep_alive_work_period(ctrl);
1207
1208         /*
1209          * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1210          * at the desired frequency.
1211          */
1212         if (rtt <= delay) {
1213                 delay -= rtt;
1214         } else {
1215                 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1216                          jiffies_to_msecs(rtt));
1217                 delay = 0;
1218         }
1219
1220         blk_mq_free_request(rq);
1221
1222         if (status) {
1223                 dev_err(ctrl->device,
1224                         "failed nvme_keep_alive_end_io error=%d\n",
1225                                 status);
1226                 return RQ_END_IO_NONE;
1227         }
1228
1229         ctrl->ka_last_check_time = jiffies;
1230         ctrl->comp_seen = false;
1231         spin_lock_irqsave(&ctrl->lock, flags);
1232         if (ctrl->state == NVME_CTRL_LIVE ||
1233             ctrl->state == NVME_CTRL_CONNECTING)
1234                 startka = true;
1235         spin_unlock_irqrestore(&ctrl->lock, flags);
1236         if (startka)
1237                 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1238         return RQ_END_IO_NONE;
1239 }
1240
1241 static void nvme_keep_alive_work(struct work_struct *work)
1242 {
1243         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1244                         struct nvme_ctrl, ka_work);
1245         bool comp_seen = ctrl->comp_seen;
1246         struct request *rq;
1247
1248         ctrl->ka_last_check_time = jiffies;
1249
1250         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1251                 dev_dbg(ctrl->device,
1252                         "reschedule traffic based keep-alive timer\n");
1253                 ctrl->comp_seen = false;
1254                 nvme_queue_keep_alive_work(ctrl);
1255                 return;
1256         }
1257
1258         rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1259                                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1260         if (IS_ERR(rq)) {
1261                 /* allocation failure, reset the controller */
1262                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1263                 nvme_reset_ctrl(ctrl);
1264                 return;
1265         }
1266         nvme_init_request(rq, &ctrl->ka_cmd);
1267
1268         rq->timeout = ctrl->kato * HZ;
1269         rq->end_io = nvme_keep_alive_end_io;
1270         rq->end_io_data = ctrl;
1271         blk_execute_rq_nowait(rq, false);
1272 }
1273
1274 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1275 {
1276         if (unlikely(ctrl->kato == 0))
1277                 return;
1278
1279         nvme_queue_keep_alive_work(ctrl);
1280 }
1281
1282 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1283 {
1284         if (unlikely(ctrl->kato == 0))
1285                 return;
1286
1287         cancel_delayed_work_sync(&ctrl->ka_work);
1288 }
1289 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1290
1291 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1292                                    struct nvme_command *cmd)
1293 {
1294         unsigned int new_kato =
1295                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1296
1297         dev_info(ctrl->device,
1298                  "keep alive interval updated from %u ms to %u ms\n",
1299                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1300
1301         nvme_stop_keep_alive(ctrl);
1302         ctrl->kato = new_kato;
1303         nvme_start_keep_alive(ctrl);
1304 }
1305
1306 /*
1307  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1308  * flag, thus sending any new CNS opcodes has a big chance of not working.
1309  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1310  * (but not for any later version).
1311  */
1312 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1313 {
1314         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1315                 return ctrl->vs < NVME_VS(1, 2, 0);
1316         return ctrl->vs < NVME_VS(1, 1, 0);
1317 }
1318
1319 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1320 {
1321         struct nvme_command c = { };
1322         int error;
1323
1324         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1325         c.identify.opcode = nvme_admin_identify;
1326         c.identify.cns = NVME_ID_CNS_CTRL;
1327
1328         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1329         if (!*id)
1330                 return -ENOMEM;
1331
1332         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1333                         sizeof(struct nvme_id_ctrl));
1334         if (error)
1335                 kfree(*id);
1336         return error;
1337 }
1338
1339 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1340                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1341 {
1342         const char *warn_str = "ctrl returned bogus length:";
1343         void *data = cur;
1344
1345         switch (cur->nidt) {
1346         case NVME_NIDT_EUI64:
1347                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1348                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1349                                  warn_str, cur->nidl);
1350                         return -1;
1351                 }
1352                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1353                         return NVME_NIDT_EUI64_LEN;
1354                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1355                 return NVME_NIDT_EUI64_LEN;
1356         case NVME_NIDT_NGUID:
1357                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1358                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1359                                  warn_str, cur->nidl);
1360                         return -1;
1361                 }
1362                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1363                         return NVME_NIDT_NGUID_LEN;
1364                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1365                 return NVME_NIDT_NGUID_LEN;
1366         case NVME_NIDT_UUID:
1367                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1368                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1369                                  warn_str, cur->nidl);
1370                         return -1;
1371                 }
1372                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1373                         return NVME_NIDT_UUID_LEN;
1374                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1375                 return NVME_NIDT_UUID_LEN;
1376         case NVME_NIDT_CSI:
1377                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1378                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1379                                  warn_str, cur->nidl);
1380                         return -1;
1381                 }
1382                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1383                 *csi_seen = true;
1384                 return NVME_NIDT_CSI_LEN;
1385         default:
1386                 /* Skip unknown types */
1387                 return cur->nidl;
1388         }
1389 }
1390
1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1392                 struct nvme_ns_info *info)
1393 {
1394         struct nvme_command c = { };
1395         bool csi_seen = false;
1396         int status, pos, len;
1397         void *data;
1398
1399         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1400                 return 0;
1401         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1402                 return 0;
1403
1404         c.identify.opcode = nvme_admin_identify;
1405         c.identify.nsid = cpu_to_le32(info->nsid);
1406         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1407
1408         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1409         if (!data)
1410                 return -ENOMEM;
1411
1412         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1413                                       NVME_IDENTIFY_DATA_SIZE);
1414         if (status) {
1415                 dev_warn(ctrl->device,
1416                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1417                         info->nsid, status);
1418                 goto free_data;
1419         }
1420
1421         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1422                 struct nvme_ns_id_desc *cur = data + pos;
1423
1424                 if (cur->nidl == 0)
1425                         break;
1426
1427                 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1428                 if (len < 0)
1429                         break;
1430
1431                 len += sizeof(*cur);
1432         }
1433
1434         if (nvme_multi_css(ctrl) && !csi_seen) {
1435                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1436                          info->nsid);
1437                 status = -EINVAL;
1438         }
1439
1440 free_data:
1441         kfree(data);
1442         return status;
1443 }
1444
1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1446                         struct nvme_id_ns **id)
1447 {
1448         struct nvme_command c = { };
1449         int error;
1450
1451         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1452         c.identify.opcode = nvme_admin_identify;
1453         c.identify.nsid = cpu_to_le32(nsid);
1454         c.identify.cns = NVME_ID_CNS_NS;
1455
1456         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1457         if (!*id)
1458                 return -ENOMEM;
1459
1460         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1461         if (error) {
1462                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1463                 kfree(*id);
1464         }
1465         return error;
1466 }
1467
1468 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1469                 struct nvme_ns_info *info)
1470 {
1471         struct nvme_ns_ids *ids = &info->ids;
1472         struct nvme_id_ns *id;
1473         int ret;
1474
1475         ret = nvme_identify_ns(ctrl, info->nsid, &id);
1476         if (ret)
1477                 return ret;
1478
1479         if (id->ncap == 0) {
1480                 /* namespace not allocated or attached */
1481                 info->is_removed = true;
1482                 return -ENODEV;
1483         }
1484
1485         info->anagrpid = id->anagrpid;
1486         info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487         info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488         info->is_ready = true;
1489         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1490                 dev_info(ctrl->device,
1491                          "Ignoring bogus Namespace Identifiers\n");
1492         } else {
1493                 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1494                     !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1495                         memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1496                 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1497                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1498                         memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1499         }
1500         kfree(id);
1501         return 0;
1502 }
1503
1504 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1505                 struct nvme_ns_info *info)
1506 {
1507         struct nvme_id_ns_cs_indep *id;
1508         struct nvme_command c = {
1509                 .identify.opcode        = nvme_admin_identify,
1510                 .identify.nsid          = cpu_to_le32(info->nsid),
1511                 .identify.cns           = NVME_ID_CNS_NS_CS_INDEP,
1512         };
1513         int ret;
1514
1515         id = kmalloc(sizeof(*id), GFP_KERNEL);
1516         if (!id)
1517                 return -ENOMEM;
1518
1519         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1520         if (!ret) {
1521                 info->anagrpid = id->anagrpid;
1522                 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1523                 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1524                 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1525         }
1526         kfree(id);
1527         return ret;
1528 }
1529
1530 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1531                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1532 {
1533         union nvme_result res = { 0 };
1534         struct nvme_command c = { };
1535         int ret;
1536
1537         c.features.opcode = op;
1538         c.features.fid = cpu_to_le32(fid);
1539         c.features.dword11 = cpu_to_le32(dword11);
1540
1541         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1542                         buffer, buflen, NVME_QID_ANY, 0, 0);
1543         if (ret >= 0 && result)
1544                 *result = le32_to_cpu(res.u32);
1545         return ret;
1546 }
1547
1548 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1549                       unsigned int dword11, void *buffer, size_t buflen,
1550                       u32 *result)
1551 {
1552         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1553                              buflen, result);
1554 }
1555 EXPORT_SYMBOL_GPL(nvme_set_features);
1556
1557 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1558                       unsigned int dword11, void *buffer, size_t buflen,
1559                       u32 *result)
1560 {
1561         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1562                              buflen, result);
1563 }
1564 EXPORT_SYMBOL_GPL(nvme_get_features);
1565
1566 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1567 {
1568         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1569         u32 result;
1570         int status, nr_io_queues;
1571
1572         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1573                         &result);
1574         if (status < 0)
1575                 return status;
1576
1577         /*
1578          * Degraded controllers might return an error when setting the queue
1579          * count.  We still want to be able to bring them online and offer
1580          * access to the admin queue, as that might be only way to fix them up.
1581          */
1582         if (status > 0) {
1583                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1584                 *count = 0;
1585         } else {
1586                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1587                 *count = min(*count, nr_io_queues);
1588         }
1589
1590         return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1593
1594 #define NVME_AEN_SUPPORTED \
1595         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1596          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1597
1598 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1599 {
1600         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1601         int status;
1602
1603         if (!supported_aens)
1604                 return;
1605
1606         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1607                         NULL, 0, &result);
1608         if (status)
1609                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1610                          supported_aens);
1611
1612         queue_work(nvme_wq, &ctrl->async_event_work);
1613 }
1614
1615 static int nvme_ns_open(struct nvme_ns *ns)
1616 {
1617
1618         /* should never be called due to GENHD_FL_HIDDEN */
1619         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1620                 goto fail;
1621         if (!nvme_get_ns(ns))
1622                 goto fail;
1623         if (!try_module_get(ns->ctrl->ops->module))
1624                 goto fail_put_ns;
1625
1626         return 0;
1627
1628 fail_put_ns:
1629         nvme_put_ns(ns);
1630 fail:
1631         return -ENXIO;
1632 }
1633
1634 static void nvme_ns_release(struct nvme_ns *ns)
1635 {
1636
1637         module_put(ns->ctrl->ops->module);
1638         nvme_put_ns(ns);
1639 }
1640
1641 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1642 {
1643         return nvme_ns_open(disk->private_data);
1644 }
1645
1646 static void nvme_release(struct gendisk *disk)
1647 {
1648         nvme_ns_release(disk->private_data);
1649 }
1650
1651 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1652 {
1653         /* some standard values */
1654         geo->heads = 1 << 6;
1655         geo->sectors = 1 << 5;
1656         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1657         return 0;
1658 }
1659
1660 #ifdef CONFIG_BLK_DEV_INTEGRITY
1661 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1662                                 u32 max_integrity_segments)
1663 {
1664         struct blk_integrity integrity = { };
1665
1666         switch (ns->pi_type) {
1667         case NVME_NS_DPS_PI_TYPE3:
1668                 switch (ns->guard_type) {
1669                 case NVME_NVM_NS_16B_GUARD:
1670                         integrity.profile = &t10_pi_type3_crc;
1671                         integrity.tag_size = sizeof(u16) + sizeof(u32);
1672                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673                         break;
1674                 case NVME_NVM_NS_64B_GUARD:
1675                         integrity.profile = &ext_pi_type3_crc64;
1676                         integrity.tag_size = sizeof(u16) + 6;
1677                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1678                         break;
1679                 default:
1680                         integrity.profile = NULL;
1681                         break;
1682                 }
1683                 break;
1684         case NVME_NS_DPS_PI_TYPE1:
1685         case NVME_NS_DPS_PI_TYPE2:
1686                 switch (ns->guard_type) {
1687                 case NVME_NVM_NS_16B_GUARD:
1688                         integrity.profile = &t10_pi_type1_crc;
1689                         integrity.tag_size = sizeof(u16);
1690                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1691                         break;
1692                 case NVME_NVM_NS_64B_GUARD:
1693                         integrity.profile = &ext_pi_type1_crc64;
1694                         integrity.tag_size = sizeof(u16);
1695                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1696                         break;
1697                 default:
1698                         integrity.profile = NULL;
1699                         break;
1700                 }
1701                 break;
1702         default:
1703                 integrity.profile = NULL;
1704                 break;
1705         }
1706
1707         integrity.tuple_size = ns->ms;
1708         blk_integrity_register(disk, &integrity);
1709         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1710 }
1711 #else
1712 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1713                                 u32 max_integrity_segments)
1714 {
1715 }
1716 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1717
1718 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1719 {
1720         struct nvme_ctrl *ctrl = ns->ctrl;
1721         struct request_queue *queue = disk->queue;
1722         u32 size = queue_logical_block_size(queue);
1723
1724         if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1725                 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1726
1727         if (ctrl->max_discard_sectors == 0) {
1728                 blk_queue_max_discard_sectors(queue, 0);
1729                 return;
1730         }
1731
1732         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1733                         NVME_DSM_MAX_RANGES);
1734
1735         queue->limits.discard_granularity = size;
1736
1737         /* If discard is already enabled, don't reset queue limits */
1738         if (queue->limits.max_discard_sectors)
1739                 return;
1740
1741         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1742         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1743
1744         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1745                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1746 }
1747
1748 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1749 {
1750         return uuid_equal(&a->uuid, &b->uuid) &&
1751                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1752                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1753                 a->csi == b->csi;
1754 }
1755
1756 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1757 {
1758         bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1759         unsigned lbaf = nvme_lbaf_index(id->flbas);
1760         struct nvme_ctrl *ctrl = ns->ctrl;
1761         struct nvme_command c = { };
1762         struct nvme_id_ns_nvm *nvm;
1763         int ret = 0;
1764         u32 elbaf;
1765
1766         ns->pi_size = 0;
1767         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1768         if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1769                 ns->pi_size = sizeof(struct t10_pi_tuple);
1770                 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1771                 goto set_pi;
1772         }
1773
1774         nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1775         if (!nvm)
1776                 return -ENOMEM;
1777
1778         c.identify.opcode = nvme_admin_identify;
1779         c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1780         c.identify.cns = NVME_ID_CNS_CS_NS;
1781         c.identify.csi = NVME_CSI_NVM;
1782
1783         ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1784         if (ret)
1785                 goto free_data;
1786
1787         elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1788
1789         /* no support for storage tag formats right now */
1790         if (nvme_elbaf_sts(elbaf))
1791                 goto free_data;
1792
1793         ns->guard_type = nvme_elbaf_guard_type(elbaf);
1794         switch (ns->guard_type) {
1795         case NVME_NVM_NS_64B_GUARD:
1796                 ns->pi_size = sizeof(struct crc64_pi_tuple);
1797                 break;
1798         case NVME_NVM_NS_16B_GUARD:
1799                 ns->pi_size = sizeof(struct t10_pi_tuple);
1800                 break;
1801         default:
1802                 break;
1803         }
1804
1805 free_data:
1806         kfree(nvm);
1807 set_pi:
1808         if (ns->pi_size && (first || ns->ms == ns->pi_size))
1809                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1810         else
1811                 ns->pi_type = 0;
1812
1813         return ret;
1814 }
1815
1816 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1817 {
1818         struct nvme_ctrl *ctrl = ns->ctrl;
1819
1820         if (nvme_init_ms(ns, id))
1821                 return;
1822
1823         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1824         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1825                 return;
1826
1827         if (ctrl->ops->flags & NVME_F_FABRICS) {
1828                 /*
1829                  * The NVMe over Fabrics specification only supports metadata as
1830                  * part of the extended data LBA.  We rely on HCA/HBA support to
1831                  * remap the separate metadata buffer from the block layer.
1832                  */
1833                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1834                         return;
1835
1836                 ns->features |= NVME_NS_EXT_LBAS;
1837
1838                 /*
1839                  * The current fabrics transport drivers support namespace
1840                  * metadata formats only if nvme_ns_has_pi() returns true.
1841                  * Suppress support for all other formats so the namespace will
1842                  * have a 0 capacity and not be usable through the block stack.
1843                  *
1844                  * Note, this check will need to be modified if any drivers
1845                  * gain the ability to use other metadata formats.
1846                  */
1847                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1848                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1849         } else {
1850                 /*
1851                  * For PCIe controllers, we can't easily remap the separate
1852                  * metadata buffer from the block layer and thus require a
1853                  * separate metadata buffer for block layer metadata/PI support.
1854                  * We allow extended LBAs for the passthrough interface, though.
1855                  */
1856                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1857                         ns->features |= NVME_NS_EXT_LBAS;
1858                 else
1859                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1860         }
1861 }
1862
1863 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1864                 struct request_queue *q)
1865 {
1866         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1867
1868         if (ctrl->max_hw_sectors) {
1869                 u32 max_segments =
1870                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1871
1872                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1873                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1874                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1875         }
1876         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1877         blk_queue_dma_alignment(q, 3);
1878         blk_queue_write_cache(q, vwc, vwc);
1879 }
1880
1881 static void nvme_update_disk_info(struct gendisk *disk,
1882                 struct nvme_ns *ns, struct nvme_id_ns *id)
1883 {
1884         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1885         u32 bs = 1U << ns->lba_shift;
1886         u32 atomic_bs, phys_bs, io_opt = 0;
1887
1888         /*
1889          * The block layer can't support LBA sizes larger than the page size
1890          * yet, so catch this early and don't allow block I/O.
1891          */
1892         if (ns->lba_shift > PAGE_SHIFT) {
1893                 capacity = 0;
1894                 bs = (1 << 9);
1895         }
1896
1897         blk_integrity_unregister(disk);
1898
1899         atomic_bs = phys_bs = bs;
1900         if (id->nabo == 0) {
1901                 /*
1902                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1903                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1904                  * 0 then AWUPF must be used instead.
1905                  */
1906                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1907                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1908                 else
1909                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1910         }
1911
1912         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1913                 /* NPWG = Namespace Preferred Write Granularity */
1914                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1915                 /* NOWS = Namespace Optimal Write Size */
1916                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1917         }
1918
1919         blk_queue_logical_block_size(disk->queue, bs);
1920         /*
1921          * Linux filesystems assume writing a single physical block is
1922          * an atomic operation. Hence limit the physical block size to the
1923          * value of the Atomic Write Unit Power Fail parameter.
1924          */
1925         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1926         blk_queue_io_min(disk->queue, phys_bs);
1927         blk_queue_io_opt(disk->queue, io_opt);
1928
1929         /*
1930          * Register a metadata profile for PI, or the plain non-integrity NVMe
1931          * metadata masquerading as Type 0 if supported, otherwise reject block
1932          * I/O to namespaces with metadata except when the namespace supports
1933          * PI, as it can strip/insert in that case.
1934          */
1935         if (ns->ms) {
1936                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1937                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1938                         nvme_init_integrity(disk, ns,
1939                                             ns->ctrl->max_integrity_segments);
1940                 else if (!nvme_ns_has_pi(ns))
1941                         capacity = 0;
1942         }
1943
1944         set_capacity_and_notify(disk, capacity);
1945
1946         nvme_config_discard(disk, ns);
1947         blk_queue_max_write_zeroes_sectors(disk->queue,
1948                                            ns->ctrl->max_zeroes_sectors);
1949 }
1950
1951 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1952 {
1953         return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1954 }
1955
1956 static inline bool nvme_first_scan(struct gendisk *disk)
1957 {
1958         /* nvme_alloc_ns() scans the disk prior to adding it */
1959         return !disk_live(disk);
1960 }
1961
1962 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1963 {
1964         struct nvme_ctrl *ctrl = ns->ctrl;
1965         u32 iob;
1966
1967         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1968             is_power_of_2(ctrl->max_hw_sectors))
1969                 iob = ctrl->max_hw_sectors;
1970         else
1971                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1972
1973         if (!iob)
1974                 return;
1975
1976         if (!is_power_of_2(iob)) {
1977                 if (nvme_first_scan(ns->disk))
1978                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1979                                 ns->disk->disk_name, iob);
1980                 return;
1981         }
1982
1983         if (blk_queue_is_zoned(ns->disk->queue)) {
1984                 if (nvme_first_scan(ns->disk))
1985                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1986                                 ns->disk->disk_name);
1987                 return;
1988         }
1989
1990         blk_queue_chunk_sectors(ns->queue, iob);
1991 }
1992
1993 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1994                 struct nvme_ns_info *info)
1995 {
1996         blk_mq_freeze_queue(ns->disk->queue);
1997         nvme_set_queue_limits(ns->ctrl, ns->queue);
1998         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1999         blk_mq_unfreeze_queue(ns->disk->queue);
2000
2001         if (nvme_ns_head_multipath(ns->head)) {
2002                 blk_mq_freeze_queue(ns->head->disk->queue);
2003                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2004                 nvme_mpath_revalidate_paths(ns);
2005                 blk_stack_limits(&ns->head->disk->queue->limits,
2006                                  &ns->queue->limits, 0);
2007                 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2008                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2009         }
2010
2011         /* Hide the block-interface for these devices */
2012         ns->disk->flags |= GENHD_FL_HIDDEN;
2013         set_bit(NVME_NS_READY, &ns->flags);
2014
2015         return 0;
2016 }
2017
2018 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2019                 struct nvme_ns_info *info)
2020 {
2021         struct nvme_id_ns *id;
2022         unsigned lbaf;
2023         int ret;
2024
2025         ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2026         if (ret)
2027                 return ret;
2028
2029         if (id->ncap == 0) {
2030                 /* namespace not allocated or attached */
2031                 info->is_removed = true;
2032                 ret = -ENODEV;
2033                 goto error;
2034         }
2035
2036         blk_mq_freeze_queue(ns->disk->queue);
2037         lbaf = nvme_lbaf_index(id->flbas);
2038         ns->lba_shift = id->lbaf[lbaf].ds;
2039         nvme_set_queue_limits(ns->ctrl, ns->queue);
2040
2041         nvme_configure_metadata(ns, id);
2042         nvme_set_chunk_sectors(ns, id);
2043         nvme_update_disk_info(ns->disk, ns, id);
2044
2045         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2046                 ret = nvme_update_zone_info(ns, lbaf);
2047                 if (ret) {
2048                         blk_mq_unfreeze_queue(ns->disk->queue);
2049                         goto out;
2050                 }
2051         }
2052
2053         /*
2054          * Only set the DEAC bit if the device guarantees that reads from
2055          * deallocated data return zeroes.  While the DEAC bit does not
2056          * require that, it must be a no-op if reads from deallocated data
2057          * do not return zeroes.
2058          */
2059         if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2060                 ns->features |= NVME_NS_DEAC;
2061         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2062         set_bit(NVME_NS_READY, &ns->flags);
2063         blk_mq_unfreeze_queue(ns->disk->queue);
2064
2065         if (blk_queue_is_zoned(ns->queue)) {
2066                 ret = nvme_revalidate_zones(ns);
2067                 if (ret && !nvme_first_scan(ns->disk))
2068                         goto out;
2069         }
2070
2071         if (nvme_ns_head_multipath(ns->head)) {
2072                 blk_mq_freeze_queue(ns->head->disk->queue);
2073                 nvme_update_disk_info(ns->head->disk, ns, id);
2074                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2075                 nvme_mpath_revalidate_paths(ns);
2076                 blk_stack_limits(&ns->head->disk->queue->limits,
2077                                  &ns->queue->limits, 0);
2078                 disk_update_readahead(ns->head->disk);
2079                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2080         }
2081
2082         ret = 0;
2083 out:
2084         /*
2085          * If probing fails due an unsupported feature, hide the block device,
2086          * but still allow other access.
2087          */
2088         if (ret == -ENODEV) {
2089                 ns->disk->flags |= GENHD_FL_HIDDEN;
2090                 set_bit(NVME_NS_READY, &ns->flags);
2091                 ret = 0;
2092         }
2093
2094 error:
2095         kfree(id);
2096         return ret;
2097 }
2098
2099 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2100 {
2101         switch (info->ids.csi) {
2102         case NVME_CSI_ZNS:
2103                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2104                         dev_info(ns->ctrl->device,
2105         "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2106                                 info->nsid);
2107                         return nvme_update_ns_info_generic(ns, info);
2108                 }
2109                 return nvme_update_ns_info_block(ns, info);
2110         case NVME_CSI_NVM:
2111                 return nvme_update_ns_info_block(ns, info);
2112         default:
2113                 dev_info(ns->ctrl->device,
2114                         "block device for nsid %u not supported (csi %u)\n",
2115                         info->nsid, info->ids.csi);
2116                 return nvme_update_ns_info_generic(ns, info);
2117         }
2118 }
2119
2120 #ifdef CONFIG_BLK_SED_OPAL
2121 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2122                 bool send)
2123 {
2124         struct nvme_ctrl *ctrl = data;
2125         struct nvme_command cmd = { };
2126
2127         if (send)
2128                 cmd.common.opcode = nvme_admin_security_send;
2129         else
2130                 cmd.common.opcode = nvme_admin_security_recv;
2131         cmd.common.nsid = 0;
2132         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2133         cmd.common.cdw11 = cpu_to_le32(len);
2134
2135         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2136                         NVME_QID_ANY, 1, 0);
2137 }
2138
2139 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2140 {
2141         if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2142                 if (!ctrl->opal_dev)
2143                         ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2144                 else if (was_suspended)
2145                         opal_unlock_from_suspend(ctrl->opal_dev);
2146         } else {
2147                 free_opal_dev(ctrl->opal_dev);
2148                 ctrl->opal_dev = NULL;
2149         }
2150 }
2151 #else
2152 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2153 {
2154 }
2155 #endif /* CONFIG_BLK_SED_OPAL */
2156
2157 #ifdef CONFIG_BLK_DEV_ZONED
2158 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2159                 unsigned int nr_zones, report_zones_cb cb, void *data)
2160 {
2161         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2162                         data);
2163 }
2164 #else
2165 #define nvme_report_zones       NULL
2166 #endif /* CONFIG_BLK_DEV_ZONED */
2167
2168 const struct block_device_operations nvme_bdev_ops = {
2169         .owner          = THIS_MODULE,
2170         .ioctl          = nvme_ioctl,
2171         .compat_ioctl   = blkdev_compat_ptr_ioctl,
2172         .open           = nvme_open,
2173         .release        = nvme_release,
2174         .getgeo         = nvme_getgeo,
2175         .report_zones   = nvme_report_zones,
2176         .pr_ops         = &nvme_pr_ops,
2177 };
2178
2179 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2180                 u32 timeout, const char *op)
2181 {
2182         unsigned long timeout_jiffies = jiffies + timeout * HZ;
2183         u32 csts;
2184         int ret;
2185
2186         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2187                 if (csts == ~0)
2188                         return -ENODEV;
2189                 if ((csts & mask) == val)
2190                         break;
2191
2192                 usleep_range(1000, 2000);
2193                 if (fatal_signal_pending(current))
2194                         return -EINTR;
2195                 if (time_after(jiffies, timeout_jiffies)) {
2196                         dev_err(ctrl->device,
2197                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2198                                 op, csts);
2199                         return -ENODEV;
2200                 }
2201         }
2202
2203         return ret;
2204 }
2205
2206 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2207 {
2208         int ret;
2209
2210         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2211         if (shutdown)
2212                 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2213         else
2214                 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2215
2216         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2217         if (ret)
2218                 return ret;
2219
2220         if (shutdown) {
2221                 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2222                                        NVME_CSTS_SHST_CMPLT,
2223                                        ctrl->shutdown_timeout, "shutdown");
2224         }
2225         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2226                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2227         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2228                                (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2229 }
2230 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2231
2232 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2233 {
2234         unsigned dev_page_min;
2235         u32 timeout;
2236         int ret;
2237
2238         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2239         if (ret) {
2240                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2241                 return ret;
2242         }
2243         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2244
2245         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2246                 dev_err(ctrl->device,
2247                         "Minimum device page size %u too large for host (%u)\n",
2248                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2249                 return -ENODEV;
2250         }
2251
2252         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2253                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2254         else
2255                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2256
2257         if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2258                 ctrl->ctrl_config |= NVME_CC_CRIME;
2259
2260         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2261         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2262         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2263         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2264         if (ret)
2265                 return ret;
2266
2267         /* Flush write to device (required if transport is PCI) */
2268         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2269         if (ret)
2270                 return ret;
2271
2272         /* CAP value may change after initial CC write */
2273         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2274         if (ret)
2275                 return ret;
2276
2277         timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2278         if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2279                 u32 crto, ready_timeout;
2280
2281                 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2282                 if (ret) {
2283                         dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2284                                 ret);
2285                         return ret;
2286                 }
2287
2288                 /*
2289                  * CRTO should always be greater or equal to CAP.TO, but some
2290                  * devices are known to get this wrong. Use the larger of the
2291                  * two values.
2292                  */
2293                 if (ctrl->ctrl_config & NVME_CC_CRIME)
2294                         ready_timeout = NVME_CRTO_CRIMT(crto);
2295                 else
2296                         ready_timeout = NVME_CRTO_CRWMT(crto);
2297
2298                 if (ready_timeout < timeout)
2299                         dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2300                                       crto, ctrl->cap);
2301                 else
2302                         timeout = ready_timeout;
2303         }
2304
2305         ctrl->ctrl_config |= NVME_CC_ENABLE;
2306         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2307         if (ret)
2308                 return ret;
2309         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2310                                (timeout + 1) / 2, "initialisation");
2311 }
2312 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2313
2314 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2315 {
2316         __le64 ts;
2317         int ret;
2318
2319         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2320                 return 0;
2321
2322         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2323         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2324                         NULL);
2325         if (ret)
2326                 dev_warn_once(ctrl->device,
2327                         "could not set timestamp (%d)\n", ret);
2328         return ret;
2329 }
2330
2331 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2332 {
2333         struct nvme_feat_host_behavior *host;
2334         u8 acre = 0, lbafee = 0;
2335         int ret;
2336
2337         /* Don't bother enabling the feature if retry delay is not reported */
2338         if (ctrl->crdt[0])
2339                 acre = NVME_ENABLE_ACRE;
2340         if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2341                 lbafee = NVME_ENABLE_LBAFEE;
2342
2343         if (!acre && !lbafee)
2344                 return 0;
2345
2346         host = kzalloc(sizeof(*host), GFP_KERNEL);
2347         if (!host)
2348                 return 0;
2349
2350         host->acre = acre;
2351         host->lbafee = lbafee;
2352         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2353                                 host, sizeof(*host), NULL);
2354         kfree(host);
2355         return ret;
2356 }
2357
2358 /*
2359  * The function checks whether the given total (exlat + enlat) latency of
2360  * a power state allows the latter to be used as an APST transition target.
2361  * It does so by comparing the latency to the primary and secondary latency
2362  * tolerances defined by module params. If there's a match, the corresponding
2363  * timeout value is returned and the matching tolerance index (1 or 2) is
2364  * reported.
2365  */
2366 static bool nvme_apst_get_transition_time(u64 total_latency,
2367                 u64 *transition_time, unsigned *last_index)
2368 {
2369         if (total_latency <= apst_primary_latency_tol_us) {
2370                 if (*last_index == 1)
2371                         return false;
2372                 *last_index = 1;
2373                 *transition_time = apst_primary_timeout_ms;
2374                 return true;
2375         }
2376         if (apst_secondary_timeout_ms &&
2377                 total_latency <= apst_secondary_latency_tol_us) {
2378                 if (*last_index <= 2)
2379                         return false;
2380                 *last_index = 2;
2381                 *transition_time = apst_secondary_timeout_ms;
2382                 return true;
2383         }
2384         return false;
2385 }
2386
2387 /*
2388  * APST (Autonomous Power State Transition) lets us program a table of power
2389  * state transitions that the controller will perform automatically.
2390  *
2391  * Depending on module params, one of the two supported techniques will be used:
2392  *
2393  * - If the parameters provide explicit timeouts and tolerances, they will be
2394  *   used to build a table with up to 2 non-operational states to transition to.
2395  *   The default parameter values were selected based on the values used by
2396  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2397  *   regeneration of the APST table in the event of switching between external
2398  *   and battery power, the timeouts and tolerances reflect a compromise
2399  *   between values used by Microsoft for AC and battery scenarios.
2400  * - If not, we'll configure the table with a simple heuristic: we are willing
2401  *   to spend at most 2% of the time transitioning between power states.
2402  *   Therefore, when running in any given state, we will enter the next
2403  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2404  *   microseconds, as long as that state's exit latency is under the requested
2405  *   maximum latency.
2406  *
2407  * We will not autonomously enter any non-operational state for which the total
2408  * latency exceeds ps_max_latency_us.
2409  *
2410  * Users can set ps_max_latency_us to zero to turn off APST.
2411  */
2412 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2413 {
2414         struct nvme_feat_auto_pst *table;
2415         unsigned apste = 0;
2416         u64 max_lat_us = 0;
2417         __le64 target = 0;
2418         int max_ps = -1;
2419         int state;
2420         int ret;
2421         unsigned last_lt_index = UINT_MAX;
2422
2423         /*
2424          * If APST isn't supported or if we haven't been initialized yet,
2425          * then don't do anything.
2426          */
2427         if (!ctrl->apsta)
2428                 return 0;
2429
2430         if (ctrl->npss > 31) {
2431                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2432                 return 0;
2433         }
2434
2435         table = kzalloc(sizeof(*table), GFP_KERNEL);
2436         if (!table)
2437                 return 0;
2438
2439         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2440                 /* Turn off APST. */
2441                 dev_dbg(ctrl->device, "APST disabled\n");
2442                 goto done;
2443         }
2444
2445         /*
2446          * Walk through all states from lowest- to highest-power.
2447          * According to the spec, lower-numbered states use more power.  NPSS,
2448          * despite the name, is the index of the lowest-power state, not the
2449          * number of states.
2450          */
2451         for (state = (int)ctrl->npss; state >= 0; state--) {
2452                 u64 total_latency_us, exit_latency_us, transition_ms;
2453
2454                 if (target)
2455                         table->entries[state] = target;
2456
2457                 /*
2458                  * Don't allow transitions to the deepest state if it's quirked
2459                  * off.
2460                  */
2461                 if (state == ctrl->npss &&
2462                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2463                         continue;
2464
2465                 /*
2466                  * Is this state a useful non-operational state for higher-power
2467                  * states to autonomously transition to?
2468                  */
2469                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2470                         continue;
2471
2472                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2473                 if (exit_latency_us > ctrl->ps_max_latency_us)
2474                         continue;
2475
2476                 total_latency_us = exit_latency_us +
2477                         le32_to_cpu(ctrl->psd[state].entry_lat);
2478
2479                 /*
2480                  * This state is good. It can be used as the APST idle target
2481                  * for higher power states.
2482                  */
2483                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2484                         if (!nvme_apst_get_transition_time(total_latency_us,
2485                                         &transition_ms, &last_lt_index))
2486                                 continue;
2487                 } else {
2488                         transition_ms = total_latency_us + 19;
2489                         do_div(transition_ms, 20);
2490                         if (transition_ms > (1 << 24) - 1)
2491                                 transition_ms = (1 << 24) - 1;
2492                 }
2493
2494                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2495                 if (max_ps == -1)
2496                         max_ps = state;
2497                 if (total_latency_us > max_lat_us)
2498                         max_lat_us = total_latency_us;
2499         }
2500
2501         if (max_ps == -1)
2502                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2503         else
2504                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2505                         max_ps, max_lat_us, (int)sizeof(*table), table);
2506         apste = 1;
2507
2508 done:
2509         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2510                                 table, sizeof(*table), NULL);
2511         if (ret)
2512                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2513         kfree(table);
2514         return ret;
2515 }
2516
2517 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2518 {
2519         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2520         u64 latency;
2521
2522         switch (val) {
2523         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2524         case PM_QOS_LATENCY_ANY:
2525                 latency = U64_MAX;
2526                 break;
2527
2528         default:
2529                 latency = val;
2530         }
2531
2532         if (ctrl->ps_max_latency_us != latency) {
2533                 ctrl->ps_max_latency_us = latency;
2534                 if (ctrl->state == NVME_CTRL_LIVE)
2535                         nvme_configure_apst(ctrl);
2536         }
2537 }
2538
2539 struct nvme_core_quirk_entry {
2540         /*
2541          * NVMe model and firmware strings are padded with spaces.  For
2542          * simplicity, strings in the quirk table are padded with NULLs
2543          * instead.
2544          */
2545         u16 vid;
2546         const char *mn;
2547         const char *fr;
2548         unsigned long quirks;
2549 };
2550
2551 static const struct nvme_core_quirk_entry core_quirks[] = {
2552         {
2553                 /*
2554                  * This Toshiba device seems to die using any APST states.  See:
2555                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2556                  */
2557                 .vid = 0x1179,
2558                 .mn = "THNSF5256GPUK TOSHIBA",
2559                 .quirks = NVME_QUIRK_NO_APST,
2560         },
2561         {
2562                 /*
2563                  * This LiteON CL1-3D*-Q11 firmware version has a race
2564                  * condition associated with actions related to suspend to idle
2565                  * LiteON has resolved the problem in future firmware
2566                  */
2567                 .vid = 0x14a4,
2568                 .fr = "22301111",
2569                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2570         },
2571         {
2572                 /*
2573                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2574                  * aborts I/O during any load, but more easily reproducible
2575                  * with discards (fstrim).
2576                  *
2577                  * The device is left in a state where it is also not possible
2578                  * to use "nvme set-feature" to disable APST, but booting with
2579                  * nvme_core.default_ps_max_latency=0 works.
2580                  */
2581                 .vid = 0x1e0f,
2582                 .mn = "KCD6XVUL6T40",
2583                 .quirks = NVME_QUIRK_NO_APST,
2584         },
2585         {
2586                 /*
2587                  * The external Samsung X5 SSD fails initialization without a
2588                  * delay before checking if it is ready and has a whole set of
2589                  * other problems.  To make this even more interesting, it
2590                  * shares the PCI ID with internal Samsung 970 Evo Plus that
2591                  * does not need or want these quirks.
2592                  */
2593                 .vid = 0x144d,
2594                 .mn = "Samsung Portable SSD X5",
2595                 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2596                           NVME_QUIRK_NO_DEEPEST_PS |
2597                           NVME_QUIRK_IGNORE_DEV_SUBNQN,
2598         }
2599 };
2600
2601 /* match is null-terminated but idstr is space-padded. */
2602 static bool string_matches(const char *idstr, const char *match, size_t len)
2603 {
2604         size_t matchlen;
2605
2606         if (!match)
2607                 return true;
2608
2609         matchlen = strlen(match);
2610         WARN_ON_ONCE(matchlen > len);
2611
2612         if (memcmp(idstr, match, matchlen))
2613                 return false;
2614
2615         for (; matchlen < len; matchlen++)
2616                 if (idstr[matchlen] != ' ')
2617                         return false;
2618
2619         return true;
2620 }
2621
2622 static bool quirk_matches(const struct nvme_id_ctrl *id,
2623                           const struct nvme_core_quirk_entry *q)
2624 {
2625         return q->vid == le16_to_cpu(id->vid) &&
2626                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2627                 string_matches(id->fr, q->fr, sizeof(id->fr));
2628 }
2629
2630 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2631                 struct nvme_id_ctrl *id)
2632 {
2633         size_t nqnlen;
2634         int off;
2635
2636         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2637                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2638                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2639                         strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2640                         return;
2641                 }
2642
2643                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2644                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2645         }
2646
2647         /*
2648          * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2649          * Base Specification 2.0.  It is slightly different from the format
2650          * specified there due to historic reasons, and we can't change it now.
2651          */
2652         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2653                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2654                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2655         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2656         off += sizeof(id->sn);
2657         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2658         off += sizeof(id->mn);
2659         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2660 }
2661
2662 static void nvme_release_subsystem(struct device *dev)
2663 {
2664         struct nvme_subsystem *subsys =
2665                 container_of(dev, struct nvme_subsystem, dev);
2666
2667         if (subsys->instance >= 0)
2668                 ida_free(&nvme_instance_ida, subsys->instance);
2669         kfree(subsys);
2670 }
2671
2672 static void nvme_destroy_subsystem(struct kref *ref)
2673 {
2674         struct nvme_subsystem *subsys =
2675                         container_of(ref, struct nvme_subsystem, ref);
2676
2677         mutex_lock(&nvme_subsystems_lock);
2678         list_del(&subsys->entry);
2679         mutex_unlock(&nvme_subsystems_lock);
2680
2681         ida_destroy(&subsys->ns_ida);
2682         device_del(&subsys->dev);
2683         put_device(&subsys->dev);
2684 }
2685
2686 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2687 {
2688         kref_put(&subsys->ref, nvme_destroy_subsystem);
2689 }
2690
2691 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2692 {
2693         struct nvme_subsystem *subsys;
2694
2695         lockdep_assert_held(&nvme_subsystems_lock);
2696
2697         /*
2698          * Fail matches for discovery subsystems. This results
2699          * in each discovery controller bound to a unique subsystem.
2700          * This avoids issues with validating controller values
2701          * that can only be true when there is a single unique subsystem.
2702          * There may be multiple and completely independent entities
2703          * that provide discovery controllers.
2704          */
2705         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2706                 return NULL;
2707
2708         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2709                 if (strcmp(subsys->subnqn, subsysnqn))
2710                         continue;
2711                 if (!kref_get_unless_zero(&subsys->ref))
2712                         continue;
2713                 return subsys;
2714         }
2715
2716         return NULL;
2717 }
2718
2719 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2720 {
2721         return ctrl->opts && ctrl->opts->discovery_nqn;
2722 }
2723
2724 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2725                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2726 {
2727         struct nvme_ctrl *tmp;
2728
2729         lockdep_assert_held(&nvme_subsystems_lock);
2730
2731         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2732                 if (nvme_state_terminal(tmp))
2733                         continue;
2734
2735                 if (tmp->cntlid == ctrl->cntlid) {
2736                         dev_err(ctrl->device,
2737                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2738                                 ctrl->cntlid, dev_name(tmp->device),
2739                                 subsys->subnqn);
2740                         return false;
2741                 }
2742
2743                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2744                     nvme_discovery_ctrl(ctrl))
2745                         continue;
2746
2747                 dev_err(ctrl->device,
2748                         "Subsystem does not support multiple controllers\n");
2749                 return false;
2750         }
2751
2752         return true;
2753 }
2754
2755 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2756 {
2757         struct nvme_subsystem *subsys, *found;
2758         int ret;
2759
2760         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2761         if (!subsys)
2762                 return -ENOMEM;
2763
2764         subsys->instance = -1;
2765         mutex_init(&subsys->lock);
2766         kref_init(&subsys->ref);
2767         INIT_LIST_HEAD(&subsys->ctrls);
2768         INIT_LIST_HEAD(&subsys->nsheads);
2769         nvme_init_subnqn(subsys, ctrl, id);
2770         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2771         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2772         subsys->vendor_id = le16_to_cpu(id->vid);
2773         subsys->cmic = id->cmic;
2774
2775         /* Versions prior to 1.4 don't necessarily report a valid type */
2776         if (id->cntrltype == NVME_CTRL_DISC ||
2777             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2778                 subsys->subtype = NVME_NQN_DISC;
2779         else
2780                 subsys->subtype = NVME_NQN_NVME;
2781
2782         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2783                 dev_err(ctrl->device,
2784                         "Subsystem %s is not a discovery controller",
2785                         subsys->subnqn);
2786                 kfree(subsys);
2787                 return -EINVAL;
2788         }
2789         subsys->awupf = le16_to_cpu(id->awupf);
2790         nvme_mpath_default_iopolicy(subsys);
2791
2792         subsys->dev.class = nvme_subsys_class;
2793         subsys->dev.release = nvme_release_subsystem;
2794         subsys->dev.groups = nvme_subsys_attrs_groups;
2795         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2796         device_initialize(&subsys->dev);
2797
2798         mutex_lock(&nvme_subsystems_lock);
2799         found = __nvme_find_get_subsystem(subsys->subnqn);
2800         if (found) {
2801                 put_device(&subsys->dev);
2802                 subsys = found;
2803
2804                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2805                         ret = -EINVAL;
2806                         goto out_put_subsystem;
2807                 }
2808         } else {
2809                 ret = device_add(&subsys->dev);
2810                 if (ret) {
2811                         dev_err(ctrl->device,
2812                                 "failed to register subsystem device.\n");
2813                         put_device(&subsys->dev);
2814                         goto out_unlock;
2815                 }
2816                 ida_init(&subsys->ns_ida);
2817                 list_add_tail(&subsys->entry, &nvme_subsystems);
2818         }
2819
2820         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2821                                 dev_name(ctrl->device));
2822         if (ret) {
2823                 dev_err(ctrl->device,
2824                         "failed to create sysfs link from subsystem.\n");
2825                 goto out_put_subsystem;
2826         }
2827
2828         if (!found)
2829                 subsys->instance = ctrl->instance;
2830         ctrl->subsys = subsys;
2831         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2832         mutex_unlock(&nvme_subsystems_lock);
2833         return 0;
2834
2835 out_put_subsystem:
2836         nvme_put_subsystem(subsys);
2837 out_unlock:
2838         mutex_unlock(&nvme_subsystems_lock);
2839         return ret;
2840 }
2841
2842 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2843                 void *log, size_t size, u64 offset)
2844 {
2845         struct nvme_command c = { };
2846         u32 dwlen = nvme_bytes_to_numd(size);
2847
2848         c.get_log_page.opcode = nvme_admin_get_log_page;
2849         c.get_log_page.nsid = cpu_to_le32(nsid);
2850         c.get_log_page.lid = log_page;
2851         c.get_log_page.lsp = lsp;
2852         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2853         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2854         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2855         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2856         c.get_log_page.csi = csi;
2857
2858         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2859 }
2860
2861 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2862                                 struct nvme_effects_log **log)
2863 {
2864         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2865         int ret;
2866
2867         if (cel)
2868                 goto out;
2869
2870         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2871         if (!cel)
2872                 return -ENOMEM;
2873
2874         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2875                         cel, sizeof(*cel), 0);
2876         if (ret) {
2877                 kfree(cel);
2878                 return ret;
2879         }
2880
2881         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2882 out:
2883         *log = cel;
2884         return 0;
2885 }
2886
2887 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2888 {
2889         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2890
2891         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2892                 return UINT_MAX;
2893         return val;
2894 }
2895
2896 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2897 {
2898         struct nvme_command c = { };
2899         struct nvme_id_ctrl_nvm *id;
2900         int ret;
2901
2902         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2903                 ctrl->max_discard_sectors = UINT_MAX;
2904                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2905         } else {
2906                 ctrl->max_discard_sectors = 0;
2907                 ctrl->max_discard_segments = 0;
2908         }
2909
2910         /*
2911          * Even though NVMe spec explicitly states that MDTS is not applicable
2912          * to the write-zeroes, we are cautious and limit the size to the
2913          * controllers max_hw_sectors value, which is based on the MDTS field
2914          * and possibly other limiting factors.
2915          */
2916         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2917             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2918                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2919         else
2920                 ctrl->max_zeroes_sectors = 0;
2921
2922         if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2923             nvme_ctrl_limited_cns(ctrl) ||
2924             test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2925                 return 0;
2926
2927         id = kzalloc(sizeof(*id), GFP_KERNEL);
2928         if (!id)
2929                 return -ENOMEM;
2930
2931         c.identify.opcode = nvme_admin_identify;
2932         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2933         c.identify.csi = NVME_CSI_NVM;
2934
2935         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2936         if (ret)
2937                 goto free_data;
2938
2939         if (id->dmrl)
2940                 ctrl->max_discard_segments = id->dmrl;
2941         ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2942         if (id->wzsl)
2943                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2944
2945 free_data:
2946         if (ret > 0)
2947                 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2948         kfree(id);
2949         return ret;
2950 }
2951
2952 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2953 {
2954         struct nvme_effects_log *log = ctrl->effects;
2955
2956         log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2957                                                 NVME_CMD_EFFECTS_NCC |
2958                                                 NVME_CMD_EFFECTS_CSE_MASK);
2959         log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2960                                                 NVME_CMD_EFFECTS_CSE_MASK);
2961
2962         /*
2963          * The spec says the result of a security receive command depends on
2964          * the previous security send command. As such, many vendors log this
2965          * command as one to submitted only when no other commands to the same
2966          * namespace are outstanding. The intention is to tell the host to
2967          * prevent mixing security send and receive.
2968          *
2969          * This driver can only enforce such exclusive access against IO
2970          * queues, though. We are not readily able to enforce such a rule for
2971          * two commands to the admin queue, which is the only queue that
2972          * matters for this command.
2973          *
2974          * Rather than blindly freezing the IO queues for this effect that
2975          * doesn't even apply to IO, mask it off.
2976          */
2977         log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2978
2979         log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2980         log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2981         log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2982 }
2983
2984 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2985 {
2986         int ret = 0;
2987
2988         if (ctrl->effects)
2989                 return 0;
2990
2991         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2992                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2993                 if (ret < 0)
2994                         return ret;
2995         }
2996
2997         if (!ctrl->effects) {
2998                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2999                 if (!ctrl->effects)
3000                         return -ENOMEM;
3001                 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3002         }
3003
3004         nvme_init_known_nvm_effects(ctrl);
3005         return 0;
3006 }
3007
3008 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3009 {
3010         struct nvme_id_ctrl *id;
3011         u32 max_hw_sectors;
3012         bool prev_apst_enabled;
3013         int ret;
3014
3015         ret = nvme_identify_ctrl(ctrl, &id);
3016         if (ret) {
3017                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3018                 return -EIO;
3019         }
3020
3021         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3022                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3023
3024         if (!ctrl->identified) {
3025                 unsigned int i;
3026
3027                 /*
3028                  * Check for quirks.  Quirk can depend on firmware version,
3029                  * so, in principle, the set of quirks present can change
3030                  * across a reset.  As a possible future enhancement, we
3031                  * could re-scan for quirks every time we reinitialize
3032                  * the device, but we'd have to make sure that the driver
3033                  * behaves intelligently if the quirks change.
3034                  */
3035                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3036                         if (quirk_matches(id, &core_quirks[i]))
3037                                 ctrl->quirks |= core_quirks[i].quirks;
3038                 }
3039
3040                 ret = nvme_init_subsystem(ctrl, id);
3041                 if (ret)
3042                         goto out_free;
3043
3044                 ret = nvme_init_effects(ctrl, id);
3045                 if (ret)
3046                         goto out_free;
3047         }
3048         memcpy(ctrl->subsys->firmware_rev, id->fr,
3049                sizeof(ctrl->subsys->firmware_rev));
3050
3051         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3052                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3053                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3054         }
3055
3056         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3057         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3058         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3059
3060         ctrl->oacs = le16_to_cpu(id->oacs);
3061         ctrl->oncs = le16_to_cpu(id->oncs);
3062         ctrl->mtfa = le16_to_cpu(id->mtfa);
3063         ctrl->oaes = le32_to_cpu(id->oaes);
3064         ctrl->wctemp = le16_to_cpu(id->wctemp);
3065         ctrl->cctemp = le16_to_cpu(id->cctemp);
3066
3067         atomic_set(&ctrl->abort_limit, id->acl + 1);
3068         ctrl->vwc = id->vwc;
3069         if (id->mdts)
3070                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3071         else
3072                 max_hw_sectors = UINT_MAX;
3073         ctrl->max_hw_sectors =
3074                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3075
3076         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3077         ctrl->sgls = le32_to_cpu(id->sgls);
3078         ctrl->kas = le16_to_cpu(id->kas);
3079         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3080         ctrl->ctratt = le32_to_cpu(id->ctratt);
3081
3082         ctrl->cntrltype = id->cntrltype;
3083         ctrl->dctype = id->dctype;
3084
3085         if (id->rtd3e) {
3086                 /* us -> s */
3087                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3088
3089                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3090                                                  shutdown_timeout, 60);
3091
3092                 if (ctrl->shutdown_timeout != shutdown_timeout)
3093                         dev_info(ctrl->device,
3094                                  "Shutdown timeout set to %u seconds\n",
3095                                  ctrl->shutdown_timeout);
3096         } else
3097                 ctrl->shutdown_timeout = shutdown_timeout;
3098
3099         ctrl->npss = id->npss;
3100         ctrl->apsta = id->apsta;
3101         prev_apst_enabled = ctrl->apst_enabled;
3102         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3103                 if (force_apst && id->apsta) {
3104                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3105                         ctrl->apst_enabled = true;
3106                 } else {
3107                         ctrl->apst_enabled = false;
3108                 }
3109         } else {
3110                 ctrl->apst_enabled = id->apsta;
3111         }
3112         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3113
3114         if (ctrl->ops->flags & NVME_F_FABRICS) {
3115                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3116                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3117                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3118                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3119
3120                 /*
3121                  * In fabrics we need to verify the cntlid matches the
3122                  * admin connect
3123                  */
3124                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3125                         dev_err(ctrl->device,
3126                                 "Mismatching cntlid: Connect %u vs Identify "
3127                                 "%u, rejecting\n",
3128                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3129                         ret = -EINVAL;
3130                         goto out_free;
3131                 }
3132
3133                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3134                         dev_err(ctrl->device,
3135                                 "keep-alive support is mandatory for fabrics\n");
3136                         ret = -EINVAL;
3137                         goto out_free;
3138                 }
3139         } else {
3140                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3141                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3142                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3143                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3144         }
3145
3146         ret = nvme_mpath_init_identify(ctrl, id);
3147         if (ret < 0)
3148                 goto out_free;
3149
3150         if (ctrl->apst_enabled && !prev_apst_enabled)
3151                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3152         else if (!ctrl->apst_enabled && prev_apst_enabled)
3153                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3154
3155 out_free:
3156         kfree(id);
3157         return ret;
3158 }
3159
3160 /*
3161  * Initialize the cached copies of the Identify data and various controller
3162  * register in our nvme_ctrl structure.  This should be called as soon as
3163  * the admin queue is fully up and running.
3164  */
3165 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3166 {
3167         int ret;
3168
3169         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3170         if (ret) {
3171                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3172                 return ret;
3173         }
3174
3175         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3176
3177         if (ctrl->vs >= NVME_VS(1, 1, 0))
3178                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3179
3180         ret = nvme_init_identify(ctrl);
3181         if (ret)
3182                 return ret;
3183
3184         ret = nvme_configure_apst(ctrl);
3185         if (ret < 0)
3186                 return ret;
3187
3188         ret = nvme_configure_timestamp(ctrl);
3189         if (ret < 0)
3190                 return ret;
3191
3192         ret = nvme_configure_host_options(ctrl);
3193         if (ret < 0)
3194                 return ret;
3195
3196         nvme_configure_opal(ctrl, was_suspended);
3197
3198         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3199                 /*
3200                  * Do not return errors unless we are in a controller reset,
3201                  * the controller works perfectly fine without hwmon.
3202                  */
3203                 ret = nvme_hwmon_init(ctrl);
3204                 if (ret == -EINTR)
3205                         return ret;
3206         }
3207
3208         clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3209         ctrl->identified = true;
3210
3211         return 0;
3212 }
3213 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3214
3215 static int nvme_dev_open(struct inode *inode, struct file *file)
3216 {
3217         struct nvme_ctrl *ctrl =
3218                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3219
3220         switch (ctrl->state) {
3221         case NVME_CTRL_LIVE:
3222                 break;
3223         default:
3224                 return -EWOULDBLOCK;
3225         }
3226
3227         nvme_get_ctrl(ctrl);
3228         if (!try_module_get(ctrl->ops->module)) {
3229                 nvme_put_ctrl(ctrl);
3230                 return -EINVAL;
3231         }
3232
3233         file->private_data = ctrl;
3234         return 0;
3235 }
3236
3237 static int nvme_dev_release(struct inode *inode, struct file *file)
3238 {
3239         struct nvme_ctrl *ctrl =
3240                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3241
3242         module_put(ctrl->ops->module);
3243         nvme_put_ctrl(ctrl);
3244         return 0;
3245 }
3246
3247 static const struct file_operations nvme_dev_fops = {
3248         .owner          = THIS_MODULE,
3249         .open           = nvme_dev_open,
3250         .release        = nvme_dev_release,
3251         .unlocked_ioctl = nvme_dev_ioctl,
3252         .compat_ioctl   = compat_ptr_ioctl,
3253         .uring_cmd      = nvme_dev_uring_cmd,
3254 };
3255
3256 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3257                 unsigned nsid)
3258 {
3259         struct nvme_ns_head *h;
3260
3261         lockdep_assert_held(&ctrl->subsys->lock);
3262
3263         list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3264                 /*
3265                  * Private namespaces can share NSIDs under some conditions.
3266                  * In that case we can't use the same ns_head for namespaces
3267                  * with the same NSID.
3268                  */
3269                 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3270                         continue;
3271                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3272                         return h;
3273         }
3274
3275         return NULL;
3276 }
3277
3278 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3279                 struct nvme_ns_ids *ids)
3280 {
3281         bool has_uuid = !uuid_is_null(&ids->uuid);
3282         bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3283         bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3284         struct nvme_ns_head *h;
3285
3286         lockdep_assert_held(&subsys->lock);
3287
3288         list_for_each_entry(h, &subsys->nsheads, entry) {
3289                 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3290                         return -EINVAL;
3291                 if (has_nguid &&
3292                     memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3293                         return -EINVAL;
3294                 if (has_eui64 &&
3295                     memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3296                         return -EINVAL;
3297         }
3298
3299         return 0;
3300 }
3301
3302 static void nvme_cdev_rel(struct device *dev)
3303 {
3304         ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3305 }
3306
3307 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3308 {
3309         cdev_device_del(cdev, cdev_device);
3310         put_device(cdev_device);
3311 }
3312
3313 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3314                 const struct file_operations *fops, struct module *owner)
3315 {
3316         int minor, ret;
3317
3318         minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3319         if (minor < 0)
3320                 return minor;
3321         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3322         cdev_device->class = nvme_ns_chr_class;
3323         cdev_device->release = nvme_cdev_rel;
3324         device_initialize(cdev_device);
3325         cdev_init(cdev, fops);
3326         cdev->owner = owner;
3327         ret = cdev_device_add(cdev, cdev_device);
3328         if (ret)
3329                 put_device(cdev_device);
3330
3331         return ret;
3332 }
3333
3334 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3335 {
3336         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3337 }
3338
3339 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3340 {
3341         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3342         return 0;
3343 }
3344
3345 static const struct file_operations nvme_ns_chr_fops = {
3346         .owner          = THIS_MODULE,
3347         .open           = nvme_ns_chr_open,
3348         .release        = nvme_ns_chr_release,
3349         .unlocked_ioctl = nvme_ns_chr_ioctl,
3350         .compat_ioctl   = compat_ptr_ioctl,
3351         .uring_cmd      = nvme_ns_chr_uring_cmd,
3352         .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3353 };
3354
3355 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3356 {
3357         int ret;
3358
3359         ns->cdev_device.parent = ns->ctrl->device;
3360         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3361                            ns->ctrl->instance, ns->head->instance);
3362         if (ret)
3363                 return ret;
3364
3365         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3366                              ns->ctrl->ops->module);
3367 }
3368
3369 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3370                 struct nvme_ns_info *info)
3371 {
3372         struct nvme_ns_head *head;
3373         size_t size = sizeof(*head);
3374         int ret = -ENOMEM;
3375
3376 #ifdef CONFIG_NVME_MULTIPATH
3377         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3378 #endif
3379
3380         head = kzalloc(size, GFP_KERNEL);
3381         if (!head)
3382                 goto out;
3383         ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3384         if (ret < 0)
3385                 goto out_free_head;
3386         head->instance = ret;
3387         INIT_LIST_HEAD(&head->list);
3388         ret = init_srcu_struct(&head->srcu);
3389         if (ret)
3390                 goto out_ida_remove;
3391         head->subsys = ctrl->subsys;
3392         head->ns_id = info->nsid;
3393         head->ids = info->ids;
3394         head->shared = info->is_shared;
3395         kref_init(&head->ref);
3396
3397         if (head->ids.csi) {
3398                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3399                 if (ret)
3400                         goto out_cleanup_srcu;
3401         } else
3402                 head->effects = ctrl->effects;
3403
3404         ret = nvme_mpath_alloc_disk(ctrl, head);
3405         if (ret)
3406                 goto out_cleanup_srcu;
3407
3408         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3409
3410         kref_get(&ctrl->subsys->ref);
3411
3412         return head;
3413 out_cleanup_srcu:
3414         cleanup_srcu_struct(&head->srcu);
3415 out_ida_remove:
3416         ida_free(&ctrl->subsys->ns_ida, head->instance);
3417 out_free_head:
3418         kfree(head);
3419 out:
3420         if (ret > 0)
3421                 ret = blk_status_to_errno(nvme_error_status(ret));
3422         return ERR_PTR(ret);
3423 }
3424
3425 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3426                 struct nvme_ns_ids *ids)
3427 {
3428         struct nvme_subsystem *s;
3429         int ret = 0;
3430
3431         /*
3432          * Note that this check is racy as we try to avoid holding the global
3433          * lock over the whole ns_head creation.  But it is only intended as
3434          * a sanity check anyway.
3435          */
3436         mutex_lock(&nvme_subsystems_lock);
3437         list_for_each_entry(s, &nvme_subsystems, entry) {
3438                 if (s == this)
3439                         continue;
3440                 mutex_lock(&s->lock);
3441                 ret = nvme_subsys_check_duplicate_ids(s, ids);
3442                 mutex_unlock(&s->lock);
3443                 if (ret)
3444                         break;
3445         }
3446         mutex_unlock(&nvme_subsystems_lock);
3447
3448         return ret;
3449 }
3450
3451 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3452 {
3453         struct nvme_ctrl *ctrl = ns->ctrl;
3454         struct nvme_ns_head *head = NULL;
3455         int ret;
3456
3457         ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3458         if (ret) {
3459                 /*
3460                  * We've found two different namespaces on two different
3461                  * subsystems that report the same ID.  This is pretty nasty
3462                  * for anything that actually requires unique device
3463                  * identification.  In the kernel we need this for multipathing,
3464                  * and in user space the /dev/disk/by-id/ links rely on it.
3465                  *
3466                  * If the device also claims to be multi-path capable back off
3467                  * here now and refuse the probe the second device as this is a
3468                  * recipe for data corruption.  If not this is probably a
3469                  * cheap consumer device if on the PCIe bus, so let the user
3470                  * proceed and use the shiny toy, but warn that with changing
3471                  * probing order (which due to our async probing could just be
3472                  * device taking longer to startup) the other device could show
3473                  * up at any time.
3474                  */
3475                 nvme_print_device_info(ctrl);
3476                 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3477                     ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3478                      info->is_shared)) {
3479                         dev_err(ctrl->device,
3480                                 "ignoring nsid %d because of duplicate IDs\n",
3481                                 info->nsid);
3482                         return ret;
3483                 }
3484
3485                 dev_err(ctrl->device,
3486                         "clearing duplicate IDs for nsid %d\n", info->nsid);
3487                 dev_err(ctrl->device,
3488                         "use of /dev/disk/by-id/ may cause data corruption\n");
3489                 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3490                 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3491                 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3492                 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3493         }
3494
3495         mutex_lock(&ctrl->subsys->lock);
3496         head = nvme_find_ns_head(ctrl, info->nsid);
3497         if (!head) {
3498                 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3499                 if (ret) {
3500                         dev_err(ctrl->device,
3501                                 "duplicate IDs in subsystem for nsid %d\n",
3502                                 info->nsid);
3503                         goto out_unlock;
3504                 }
3505                 head = nvme_alloc_ns_head(ctrl, info);
3506                 if (IS_ERR(head)) {
3507                         ret = PTR_ERR(head);
3508                         goto out_unlock;
3509                 }
3510         } else {
3511                 ret = -EINVAL;
3512                 if (!info->is_shared || !head->shared) {
3513                         dev_err(ctrl->device,
3514                                 "Duplicate unshared namespace %d\n",
3515                                 info->nsid);
3516                         goto out_put_ns_head;
3517                 }
3518                 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3519                         dev_err(ctrl->device,
3520                                 "IDs don't match for shared namespace %d\n",
3521                                         info->nsid);
3522                         goto out_put_ns_head;
3523                 }
3524
3525                 if (!multipath) {
3526                         dev_warn(ctrl->device,
3527                                 "Found shared namespace %d, but multipathing not supported.\n",
3528                                 info->nsid);
3529                         dev_warn_once(ctrl->device,
3530                                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3531                 }
3532         }
3533
3534         list_add_tail_rcu(&ns->siblings, &head->list);
3535         ns->head = head;
3536         mutex_unlock(&ctrl->subsys->lock);
3537         return 0;
3538
3539 out_put_ns_head:
3540         nvme_put_ns_head(head);
3541 out_unlock:
3542         mutex_unlock(&ctrl->subsys->lock);
3543         return ret;
3544 }
3545
3546 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3547 {
3548         struct nvme_ns *ns, *ret = NULL;
3549
3550         down_read(&ctrl->namespaces_rwsem);
3551         list_for_each_entry(ns, &ctrl->namespaces, list) {
3552                 if (ns->head->ns_id == nsid) {
3553                         if (!nvme_get_ns(ns))
3554                                 continue;
3555                         ret = ns;
3556                         break;
3557                 }
3558                 if (ns->head->ns_id > nsid)
3559                         break;
3560         }
3561         up_read(&ctrl->namespaces_rwsem);
3562         return ret;
3563 }
3564 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3565
3566 /*
3567  * Add the namespace to the controller list while keeping the list ordered.
3568  */
3569 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3570 {
3571         struct nvme_ns *tmp;
3572
3573         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3574                 if (tmp->head->ns_id < ns->head->ns_id) {
3575                         list_add(&ns->list, &tmp->list);
3576                         return;
3577                 }
3578         }
3579         list_add(&ns->list, &ns->ctrl->namespaces);
3580 }
3581
3582 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3583 {
3584         struct nvme_ns *ns;
3585         struct gendisk *disk;
3586         int node = ctrl->numa_node;
3587
3588         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3589         if (!ns)
3590                 return;
3591
3592         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3593         if (IS_ERR(disk))
3594                 goto out_free_ns;
3595         disk->fops = &nvme_bdev_ops;
3596         disk->private_data = ns;
3597
3598         ns->disk = disk;
3599         ns->queue = disk->queue;
3600
3601         if (ctrl->opts && ctrl->opts->data_digest)
3602                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3603
3604         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3605         if (ctrl->ops->supports_pci_p2pdma &&
3606             ctrl->ops->supports_pci_p2pdma(ctrl))
3607                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3608
3609         ns->ctrl = ctrl;
3610         kref_init(&ns->kref);
3611
3612         if (nvme_init_ns_head(ns, info))
3613                 goto out_cleanup_disk;
3614
3615         /*
3616          * If multipathing is enabled, the device name for all disks and not
3617          * just those that represent shared namespaces needs to be based on the
3618          * subsystem instance.  Using the controller instance for private
3619          * namespaces could lead to naming collisions between shared and private
3620          * namespaces if they don't use a common numbering scheme.
3621          *
3622          * If multipathing is not enabled, disk names must use the controller
3623          * instance as shared namespaces will show up as multiple block
3624          * devices.
3625          */
3626         if (nvme_ns_head_multipath(ns->head)) {
3627                 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3628                         ctrl->instance, ns->head->instance);
3629                 disk->flags |= GENHD_FL_HIDDEN;
3630         } else if (multipath) {
3631                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3632                         ns->head->instance);
3633         } else {
3634                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3635                         ns->head->instance);
3636         }
3637
3638         if (nvme_update_ns_info(ns, info))
3639                 goto out_unlink_ns;
3640
3641         down_write(&ctrl->namespaces_rwsem);
3642         nvme_ns_add_to_ctrl_list(ns);
3643         up_write(&ctrl->namespaces_rwsem);
3644         nvme_get_ctrl(ctrl);
3645
3646         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3647                 goto out_cleanup_ns_from_list;
3648
3649         if (!nvme_ns_head_multipath(ns->head))
3650                 nvme_add_ns_cdev(ns);
3651
3652         nvme_mpath_add_disk(ns, info->anagrpid);
3653         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3654
3655         return;
3656
3657  out_cleanup_ns_from_list:
3658         nvme_put_ctrl(ctrl);
3659         down_write(&ctrl->namespaces_rwsem);
3660         list_del_init(&ns->list);
3661         up_write(&ctrl->namespaces_rwsem);
3662  out_unlink_ns:
3663         mutex_lock(&ctrl->subsys->lock);
3664         list_del_rcu(&ns->siblings);
3665         if (list_empty(&ns->head->list))
3666                 list_del_init(&ns->head->entry);
3667         mutex_unlock(&ctrl->subsys->lock);
3668         nvme_put_ns_head(ns->head);
3669  out_cleanup_disk:
3670         put_disk(disk);
3671  out_free_ns:
3672         kfree(ns);
3673 }
3674
3675 static void nvme_ns_remove(struct nvme_ns *ns)
3676 {
3677         bool last_path = false;
3678
3679         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3680                 return;
3681
3682         clear_bit(NVME_NS_READY, &ns->flags);
3683         set_capacity(ns->disk, 0);
3684         nvme_fault_inject_fini(&ns->fault_inject);
3685
3686         /*
3687          * Ensure that !NVME_NS_READY is seen by other threads to prevent
3688          * this ns going back into current_path.
3689          */
3690         synchronize_srcu(&ns->head->srcu);
3691
3692         /* wait for concurrent submissions */
3693         if (nvme_mpath_clear_current_path(ns))
3694                 synchronize_srcu(&ns->head->srcu);
3695
3696         mutex_lock(&ns->ctrl->subsys->lock);
3697         list_del_rcu(&ns->siblings);
3698         if (list_empty(&ns->head->list)) {
3699                 list_del_init(&ns->head->entry);
3700                 last_path = true;
3701         }
3702         mutex_unlock(&ns->ctrl->subsys->lock);
3703
3704         /* guarantee not available in head->list */
3705         synchronize_srcu(&ns->head->srcu);
3706
3707         if (!nvme_ns_head_multipath(ns->head))
3708                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3709         del_gendisk(ns->disk);
3710
3711         down_write(&ns->ctrl->namespaces_rwsem);
3712         list_del_init(&ns->list);
3713         up_write(&ns->ctrl->namespaces_rwsem);
3714
3715         if (last_path)
3716                 nvme_mpath_shutdown_disk(ns->head);
3717         nvme_put_ns(ns);
3718 }
3719
3720 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3721 {
3722         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3723
3724         if (ns) {
3725                 nvme_ns_remove(ns);
3726                 nvme_put_ns(ns);
3727         }
3728 }
3729
3730 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3731 {
3732         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3733
3734         if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3735                 dev_err(ns->ctrl->device,
3736                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3737                 goto out;
3738         }
3739
3740         ret = nvme_update_ns_info(ns, info);
3741 out:
3742         /*
3743          * Only remove the namespace if we got a fatal error back from the
3744          * device, otherwise ignore the error and just move on.
3745          *
3746          * TODO: we should probably schedule a delayed retry here.
3747          */
3748         if (ret > 0 && (ret & NVME_SC_DNR))
3749                 nvme_ns_remove(ns);
3750 }
3751
3752 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3753 {
3754         struct nvme_ns_info info = { .nsid = nsid };
3755         struct nvme_ns *ns;
3756         int ret;
3757
3758         if (nvme_identify_ns_descs(ctrl, &info))
3759                 return;
3760
3761         if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3762                 dev_warn(ctrl->device,
3763                         "command set not reported for nsid: %d\n", nsid);
3764                 return;
3765         }
3766
3767         /*
3768          * If available try to use the Command Set Idependent Identify Namespace
3769          * data structure to find all the generic information that is needed to
3770          * set up a namespace.  If not fall back to the legacy version.
3771          */
3772         if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3773             (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3774                 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3775         else
3776                 ret = nvme_ns_info_from_identify(ctrl, &info);
3777
3778         if (info.is_removed)
3779                 nvme_ns_remove_by_nsid(ctrl, nsid);
3780
3781         /*
3782          * Ignore the namespace if it is not ready. We will get an AEN once it
3783          * becomes ready and restart the scan.
3784          */
3785         if (ret || !info.is_ready)
3786                 return;
3787
3788         ns = nvme_find_get_ns(ctrl, nsid);
3789         if (ns) {
3790                 nvme_validate_ns(ns, &info);
3791                 nvme_put_ns(ns);
3792         } else {
3793                 nvme_alloc_ns(ctrl, &info);
3794         }
3795 }
3796
3797 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3798                                         unsigned nsid)
3799 {
3800         struct nvme_ns *ns, *next;
3801         LIST_HEAD(rm_list);
3802
3803         down_write(&ctrl->namespaces_rwsem);
3804         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3805                 if (ns->head->ns_id > nsid)
3806                         list_move_tail(&ns->list, &rm_list);
3807         }
3808         up_write(&ctrl->namespaces_rwsem);
3809
3810         list_for_each_entry_safe(ns, next, &rm_list, list)
3811                 nvme_ns_remove(ns);
3812
3813 }
3814
3815 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3816 {
3817         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3818         __le32 *ns_list;
3819         u32 prev = 0;
3820         int ret = 0, i;
3821
3822         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3823         if (!ns_list)
3824                 return -ENOMEM;
3825
3826         for (;;) {
3827                 struct nvme_command cmd = {
3828                         .identify.opcode        = nvme_admin_identify,
3829                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
3830                         .identify.nsid          = cpu_to_le32(prev),
3831                 };
3832
3833                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3834                                             NVME_IDENTIFY_DATA_SIZE);
3835                 if (ret) {
3836                         dev_warn(ctrl->device,
3837                                 "Identify NS List failed (status=0x%x)\n", ret);
3838                         goto free;
3839                 }
3840
3841                 for (i = 0; i < nr_entries; i++) {
3842                         u32 nsid = le32_to_cpu(ns_list[i]);
3843
3844                         if (!nsid)      /* end of the list? */
3845                                 goto out;
3846                         nvme_scan_ns(ctrl, nsid);
3847                         while (++prev < nsid)
3848                                 nvme_ns_remove_by_nsid(ctrl, prev);
3849                 }
3850         }
3851  out:
3852         nvme_remove_invalid_namespaces(ctrl, prev);
3853  free:
3854         kfree(ns_list);
3855         return ret;
3856 }
3857
3858 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3859 {
3860         struct nvme_id_ctrl *id;
3861         u32 nn, i;
3862
3863         if (nvme_identify_ctrl(ctrl, &id))
3864                 return;
3865         nn = le32_to_cpu(id->nn);
3866         kfree(id);
3867
3868         for (i = 1; i <= nn; i++)
3869                 nvme_scan_ns(ctrl, i);
3870
3871         nvme_remove_invalid_namespaces(ctrl, nn);
3872 }
3873
3874 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3875 {
3876         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3877         __le32 *log;
3878         int error;
3879
3880         log = kzalloc(log_size, GFP_KERNEL);
3881         if (!log)
3882                 return;
3883
3884         /*
3885          * We need to read the log to clear the AEN, but we don't want to rely
3886          * on it for the changed namespace information as userspace could have
3887          * raced with us in reading the log page, which could cause us to miss
3888          * updates.
3889          */
3890         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3891                         NVME_CSI_NVM, log, log_size, 0);
3892         if (error)
3893                 dev_warn(ctrl->device,
3894                         "reading changed ns log failed: %d\n", error);
3895
3896         kfree(log);
3897 }
3898
3899 static void nvme_scan_work(struct work_struct *work)
3900 {
3901         struct nvme_ctrl *ctrl =
3902                 container_of(work, struct nvme_ctrl, scan_work);
3903         int ret;
3904
3905         /* No tagset on a live ctrl means IO queues could not created */
3906         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3907                 return;
3908
3909         /*
3910          * Identify controller limits can change at controller reset due to
3911          * new firmware download, even though it is not common we cannot ignore
3912          * such scenario. Controller's non-mdts limits are reported in the unit
3913          * of logical blocks that is dependent on the format of attached
3914          * namespace. Hence re-read the limits at the time of ns allocation.
3915          */
3916         ret = nvme_init_non_mdts_limits(ctrl);
3917         if (ret < 0) {
3918                 dev_warn(ctrl->device,
3919                         "reading non-mdts-limits failed: %d\n", ret);
3920                 return;
3921         }
3922
3923         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3924                 dev_info(ctrl->device, "rescanning namespaces.\n");
3925                 nvme_clear_changed_ns_log(ctrl);
3926         }
3927
3928         mutex_lock(&ctrl->scan_lock);
3929         if (nvme_ctrl_limited_cns(ctrl)) {
3930                 nvme_scan_ns_sequential(ctrl);
3931         } else {
3932                 /*
3933                  * Fall back to sequential scan if DNR is set to handle broken
3934                  * devices which should support Identify NS List (as per the VS
3935                  * they report) but don't actually support it.
3936                  */
3937                 ret = nvme_scan_ns_list(ctrl);
3938                 if (ret > 0 && ret & NVME_SC_DNR)
3939                         nvme_scan_ns_sequential(ctrl);
3940         }
3941         mutex_unlock(&ctrl->scan_lock);
3942 }
3943
3944 /*
3945  * This function iterates the namespace list unlocked to allow recovery from
3946  * controller failure. It is up to the caller to ensure the namespace list is
3947  * not modified by scan work while this function is executing.
3948  */
3949 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3950 {
3951         struct nvme_ns *ns, *next;
3952         LIST_HEAD(ns_list);
3953
3954         /*
3955          * make sure to requeue I/O to all namespaces as these
3956          * might result from the scan itself and must complete
3957          * for the scan_work to make progress
3958          */
3959         nvme_mpath_clear_ctrl_paths(ctrl);
3960
3961         /*
3962          * Unquiesce io queues so any pending IO won't hang, especially
3963          * those submitted from scan work
3964          */
3965         nvme_unquiesce_io_queues(ctrl);
3966
3967         /* prevent racing with ns scanning */
3968         flush_work(&ctrl->scan_work);
3969
3970         /*
3971          * The dead states indicates the controller was not gracefully
3972          * disconnected. In that case, we won't be able to flush any data while
3973          * removing the namespaces' disks; fail all the queues now to avoid
3974          * potentially having to clean up the failed sync later.
3975          */
3976         if (ctrl->state == NVME_CTRL_DEAD)
3977                 nvme_mark_namespaces_dead(ctrl);
3978
3979         /* this is a no-op when called from the controller reset handler */
3980         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3981
3982         down_write(&ctrl->namespaces_rwsem);
3983         list_splice_init(&ctrl->namespaces, &ns_list);
3984         up_write(&ctrl->namespaces_rwsem);
3985
3986         list_for_each_entry_safe(ns, next, &ns_list, list)
3987                 nvme_ns_remove(ns);
3988 }
3989 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3990
3991 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3992 {
3993         const struct nvme_ctrl *ctrl =
3994                 container_of(dev, struct nvme_ctrl, ctrl_device);
3995         struct nvmf_ctrl_options *opts = ctrl->opts;
3996         int ret;
3997
3998         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3999         if (ret)
4000                 return ret;
4001
4002         if (opts) {
4003                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4004                 if (ret)
4005                         return ret;
4006
4007                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4008                                 opts->trsvcid ?: "none");
4009                 if (ret)
4010                         return ret;
4011
4012                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4013                                 opts->host_traddr ?: "none");
4014                 if (ret)
4015                         return ret;
4016
4017                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4018                                 opts->host_iface ?: "none");
4019         }
4020         return ret;
4021 }
4022
4023 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4024 {
4025         char *envp[2] = { envdata, NULL };
4026
4027         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4028 }
4029
4030 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4031 {
4032         char *envp[2] = { NULL, NULL };
4033         u32 aen_result = ctrl->aen_result;
4034
4035         ctrl->aen_result = 0;
4036         if (!aen_result)
4037                 return;
4038
4039         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4040         if (!envp[0])
4041                 return;
4042         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4043         kfree(envp[0]);
4044 }
4045
4046 static void nvme_async_event_work(struct work_struct *work)
4047 {
4048         struct nvme_ctrl *ctrl =
4049                 container_of(work, struct nvme_ctrl, async_event_work);
4050
4051         nvme_aen_uevent(ctrl);
4052
4053         /*
4054          * The transport drivers must guarantee AER submission here is safe by
4055          * flushing ctrl async_event_work after changing the controller state
4056          * from LIVE and before freeing the admin queue.
4057         */
4058         if (ctrl->state == NVME_CTRL_LIVE)
4059                 ctrl->ops->submit_async_event(ctrl);
4060 }
4061
4062 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4063 {
4064
4065         u32 csts;
4066
4067         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4068                 return false;
4069
4070         if (csts == ~0)
4071                 return false;
4072
4073         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4074 }
4075
4076 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4077 {
4078         struct nvme_fw_slot_info_log *log;
4079
4080         log = kmalloc(sizeof(*log), GFP_KERNEL);
4081         if (!log)
4082                 return;
4083
4084         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4085                         log, sizeof(*log), 0))
4086                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4087         kfree(log);
4088 }
4089
4090 static void nvme_fw_act_work(struct work_struct *work)
4091 {
4092         struct nvme_ctrl *ctrl = container_of(work,
4093                                 struct nvme_ctrl, fw_act_work);
4094         unsigned long fw_act_timeout;
4095
4096         if (ctrl->mtfa)
4097                 fw_act_timeout = jiffies +
4098                                 msecs_to_jiffies(ctrl->mtfa * 100);
4099         else
4100                 fw_act_timeout = jiffies +
4101                                 msecs_to_jiffies(admin_timeout * 1000);
4102
4103         nvme_quiesce_io_queues(ctrl);
4104         while (nvme_ctrl_pp_status(ctrl)) {
4105                 if (time_after(jiffies, fw_act_timeout)) {
4106                         dev_warn(ctrl->device,
4107                                 "Fw activation timeout, reset controller\n");
4108                         nvme_try_sched_reset(ctrl);
4109                         return;
4110                 }
4111                 msleep(100);
4112         }
4113
4114         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4115                 return;
4116
4117         nvme_unquiesce_io_queues(ctrl);
4118         /* read FW slot information to clear the AER */
4119         nvme_get_fw_slot_info(ctrl);
4120
4121         queue_work(nvme_wq, &ctrl->async_event_work);
4122 }
4123
4124 static u32 nvme_aer_type(u32 result)
4125 {
4126         return result & 0x7;
4127 }
4128
4129 static u32 nvme_aer_subtype(u32 result)
4130 {
4131         return (result & 0xff00) >> 8;
4132 }
4133
4134 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4135 {
4136         u32 aer_notice_type = nvme_aer_subtype(result);
4137         bool requeue = true;
4138
4139         switch (aer_notice_type) {
4140         case NVME_AER_NOTICE_NS_CHANGED:
4141                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4142                 nvme_queue_scan(ctrl);
4143                 break;
4144         case NVME_AER_NOTICE_FW_ACT_STARTING:
4145                 /*
4146                  * We are (ab)using the RESETTING state to prevent subsequent
4147                  * recovery actions from interfering with the controller's
4148                  * firmware activation.
4149                  */
4150                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4151                         nvme_auth_stop(ctrl);
4152                         requeue = false;
4153                         queue_work(nvme_wq, &ctrl->fw_act_work);
4154                 }
4155                 break;
4156 #ifdef CONFIG_NVME_MULTIPATH
4157         case NVME_AER_NOTICE_ANA:
4158                 if (!ctrl->ana_log_buf)
4159                         break;
4160                 queue_work(nvme_wq, &ctrl->ana_work);
4161                 break;
4162 #endif
4163         case NVME_AER_NOTICE_DISC_CHANGED:
4164                 ctrl->aen_result = result;
4165                 break;
4166         default:
4167                 dev_warn(ctrl->device, "async event result %08x\n", result);
4168         }
4169         return requeue;
4170 }
4171
4172 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4173 {
4174         dev_warn(ctrl->device, "resetting controller due to AER\n");
4175         nvme_reset_ctrl(ctrl);
4176 }
4177
4178 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4179                 volatile union nvme_result *res)
4180 {
4181         u32 result = le32_to_cpu(res->u32);
4182         u32 aer_type = nvme_aer_type(result);
4183         u32 aer_subtype = nvme_aer_subtype(result);
4184         bool requeue = true;
4185
4186         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4187                 return;
4188
4189         trace_nvme_async_event(ctrl, result);
4190         switch (aer_type) {
4191         case NVME_AER_NOTICE:
4192                 requeue = nvme_handle_aen_notice(ctrl, result);
4193                 break;
4194         case NVME_AER_ERROR:
4195                 /*
4196                  * For a persistent internal error, don't run async_event_work
4197                  * to submit a new AER. The controller reset will do it.
4198                  */
4199                 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4200                         nvme_handle_aer_persistent_error(ctrl);
4201                         return;
4202                 }
4203                 fallthrough;
4204         case NVME_AER_SMART:
4205         case NVME_AER_CSS:
4206         case NVME_AER_VS:
4207                 ctrl->aen_result = result;
4208                 break;
4209         default:
4210                 break;
4211         }
4212
4213         if (requeue)
4214                 queue_work(nvme_wq, &ctrl->async_event_work);
4215 }
4216 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4217
4218 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4219                 const struct blk_mq_ops *ops, unsigned int cmd_size)
4220 {
4221         int ret;
4222
4223         memset(set, 0, sizeof(*set));
4224         set->ops = ops;
4225         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4226         if (ctrl->ops->flags & NVME_F_FABRICS)
4227                 set->reserved_tags = NVMF_RESERVED_TAGS;
4228         set->numa_node = ctrl->numa_node;
4229         set->flags = BLK_MQ_F_NO_SCHED;
4230         if (ctrl->ops->flags & NVME_F_BLOCKING)
4231                 set->flags |= BLK_MQ_F_BLOCKING;
4232         set->cmd_size = cmd_size;
4233         set->driver_data = ctrl;
4234         set->nr_hw_queues = 1;
4235         set->timeout = NVME_ADMIN_TIMEOUT;
4236         ret = blk_mq_alloc_tag_set(set);
4237         if (ret)
4238                 return ret;
4239
4240         ctrl->admin_q = blk_mq_init_queue(set);
4241         if (IS_ERR(ctrl->admin_q)) {
4242                 ret = PTR_ERR(ctrl->admin_q);
4243                 goto out_free_tagset;
4244         }
4245
4246         if (ctrl->ops->flags & NVME_F_FABRICS) {
4247                 ctrl->fabrics_q = blk_mq_init_queue(set);
4248                 if (IS_ERR(ctrl->fabrics_q)) {
4249                         ret = PTR_ERR(ctrl->fabrics_q);
4250                         goto out_cleanup_admin_q;
4251                 }
4252         }
4253
4254         ctrl->admin_tagset = set;
4255         return 0;
4256
4257 out_cleanup_admin_q:
4258         blk_mq_destroy_queue(ctrl->admin_q);
4259         blk_put_queue(ctrl->admin_q);
4260 out_free_tagset:
4261         blk_mq_free_tag_set(set);
4262         ctrl->admin_q = NULL;
4263         ctrl->fabrics_q = NULL;
4264         return ret;
4265 }
4266 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4267
4268 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4269 {
4270         blk_mq_destroy_queue(ctrl->admin_q);
4271         blk_put_queue(ctrl->admin_q);
4272         if (ctrl->ops->flags & NVME_F_FABRICS) {
4273                 blk_mq_destroy_queue(ctrl->fabrics_q);
4274                 blk_put_queue(ctrl->fabrics_q);
4275         }
4276         blk_mq_free_tag_set(ctrl->admin_tagset);
4277 }
4278 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4279
4280 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4281                 const struct blk_mq_ops *ops, unsigned int nr_maps,
4282                 unsigned int cmd_size)
4283 {
4284         int ret;
4285
4286         memset(set, 0, sizeof(*set));
4287         set->ops = ops;
4288         set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4289         /*
4290          * Some Apple controllers requires tags to be unique across admin and
4291          * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4292          */
4293         if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4294                 set->reserved_tags = NVME_AQ_DEPTH;
4295         else if (ctrl->ops->flags & NVME_F_FABRICS)
4296                 set->reserved_tags = NVMF_RESERVED_TAGS;
4297         set->numa_node = ctrl->numa_node;
4298         set->flags = BLK_MQ_F_SHOULD_MERGE;
4299         if (ctrl->ops->flags & NVME_F_BLOCKING)
4300                 set->flags |= BLK_MQ_F_BLOCKING;
4301         set->cmd_size = cmd_size,
4302         set->driver_data = ctrl;
4303         set->nr_hw_queues = ctrl->queue_count - 1;
4304         set->timeout = NVME_IO_TIMEOUT;
4305         set->nr_maps = nr_maps;
4306         ret = blk_mq_alloc_tag_set(set);
4307         if (ret)
4308                 return ret;
4309
4310         if (ctrl->ops->flags & NVME_F_FABRICS) {
4311                 ctrl->connect_q = blk_mq_init_queue(set);
4312                 if (IS_ERR(ctrl->connect_q)) {
4313                         ret = PTR_ERR(ctrl->connect_q);
4314                         goto out_free_tag_set;
4315                 }
4316                 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4317                                    ctrl->connect_q);
4318         }
4319
4320         ctrl->tagset = set;
4321         return 0;
4322
4323 out_free_tag_set:
4324         blk_mq_free_tag_set(set);
4325         ctrl->connect_q = NULL;
4326         return ret;
4327 }
4328 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4329
4330 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4331 {
4332         if (ctrl->ops->flags & NVME_F_FABRICS) {
4333                 blk_mq_destroy_queue(ctrl->connect_q);
4334                 blk_put_queue(ctrl->connect_q);
4335         }
4336         blk_mq_free_tag_set(ctrl->tagset);
4337 }
4338 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4339
4340 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4341 {
4342         nvme_mpath_stop(ctrl);
4343         nvme_auth_stop(ctrl);
4344         nvme_stop_keep_alive(ctrl);
4345         nvme_stop_failfast_work(ctrl);
4346         flush_work(&ctrl->async_event_work);
4347         cancel_work_sync(&ctrl->fw_act_work);
4348         if (ctrl->ops->stop_ctrl)
4349                 ctrl->ops->stop_ctrl(ctrl);
4350 }
4351 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4352
4353 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4354 {
4355         nvme_start_keep_alive(ctrl);
4356
4357         nvme_enable_aen(ctrl);
4358
4359         /*
4360          * persistent discovery controllers need to send indication to userspace
4361          * to re-read the discovery log page to learn about possible changes
4362          * that were missed. We identify persistent discovery controllers by
4363          * checking that they started once before, hence are reconnecting back.
4364          */
4365         if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4366             nvme_discovery_ctrl(ctrl))
4367                 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4368
4369         if (ctrl->queue_count > 1) {
4370                 nvme_queue_scan(ctrl);
4371                 nvme_unquiesce_io_queues(ctrl);
4372                 nvme_mpath_update(ctrl);
4373         }
4374
4375         nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4376         set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4377 }
4378 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4379
4380 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4381 {
4382         nvme_hwmon_exit(ctrl);
4383         nvme_fault_inject_fini(&ctrl->fault_inject);
4384         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4385         cdev_device_del(&ctrl->cdev, ctrl->device);
4386         nvme_put_ctrl(ctrl);
4387 }
4388 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4389
4390 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4391 {
4392         struct nvme_effects_log *cel;
4393         unsigned long i;
4394
4395         xa_for_each(&ctrl->cels, i, cel) {
4396                 xa_erase(&ctrl->cels, i);
4397                 kfree(cel);
4398         }
4399
4400         xa_destroy(&ctrl->cels);
4401 }
4402
4403 static void nvme_free_ctrl(struct device *dev)
4404 {
4405         struct nvme_ctrl *ctrl =
4406                 container_of(dev, struct nvme_ctrl, ctrl_device);
4407         struct nvme_subsystem *subsys = ctrl->subsys;
4408
4409         if (!subsys || ctrl->instance != subsys->instance)
4410                 ida_free(&nvme_instance_ida, ctrl->instance);
4411
4412         nvme_free_cels(ctrl);
4413         nvme_mpath_uninit(ctrl);
4414         nvme_auth_stop(ctrl);
4415         nvme_auth_free(ctrl);
4416         __free_page(ctrl->discard_page);
4417         free_opal_dev(ctrl->opal_dev);
4418
4419         if (subsys) {
4420                 mutex_lock(&nvme_subsystems_lock);
4421                 list_del(&ctrl->subsys_entry);
4422                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4423                 mutex_unlock(&nvme_subsystems_lock);
4424         }
4425
4426         ctrl->ops->free_ctrl(ctrl);
4427
4428         if (subsys)
4429                 nvme_put_subsystem(subsys);
4430 }
4431
4432 /*
4433  * Initialize a NVMe controller structures.  This needs to be called during
4434  * earliest initialization so that we have the initialized structured around
4435  * during probing.
4436  */
4437 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4438                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4439 {
4440         int ret;
4441
4442         ctrl->state = NVME_CTRL_NEW;
4443         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4444         spin_lock_init(&ctrl->lock);
4445         mutex_init(&ctrl->scan_lock);
4446         INIT_LIST_HEAD(&ctrl->namespaces);
4447         xa_init(&ctrl->cels);
4448         init_rwsem(&ctrl->namespaces_rwsem);
4449         ctrl->dev = dev;
4450         ctrl->ops = ops;
4451         ctrl->quirks = quirks;
4452         ctrl->numa_node = NUMA_NO_NODE;
4453         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4454         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4455         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4456         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4457         init_waitqueue_head(&ctrl->state_wq);
4458
4459         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4460         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4461         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4462         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4463
4464         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4465                         PAGE_SIZE);
4466         ctrl->discard_page = alloc_page(GFP_KERNEL);
4467         if (!ctrl->discard_page) {
4468                 ret = -ENOMEM;
4469                 goto out;
4470         }
4471
4472         ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4473         if (ret < 0)
4474                 goto out;
4475         ctrl->instance = ret;
4476
4477         device_initialize(&ctrl->ctrl_device);
4478         ctrl->device = &ctrl->ctrl_device;
4479         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4480                         ctrl->instance);
4481         ctrl->device->class = nvme_class;
4482         ctrl->device->parent = ctrl->dev;
4483         if (ops->dev_attr_groups)
4484                 ctrl->device->groups = ops->dev_attr_groups;
4485         else
4486                 ctrl->device->groups = nvme_dev_attr_groups;
4487         ctrl->device->release = nvme_free_ctrl;
4488         dev_set_drvdata(ctrl->device, ctrl);
4489         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4490         if (ret)
4491                 goto out_release_instance;
4492
4493         nvme_get_ctrl(ctrl);
4494         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4495         ctrl->cdev.owner = ops->module;
4496         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4497         if (ret)
4498                 goto out_free_name;
4499
4500         /*
4501          * Initialize latency tolerance controls.  The sysfs files won't
4502          * be visible to userspace unless the device actually supports APST.
4503          */
4504         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4505         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4506                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4507
4508         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4509         nvme_mpath_init_ctrl(ctrl);
4510         ret = nvme_auth_init_ctrl(ctrl);
4511         if (ret)
4512                 goto out_free_cdev;
4513
4514         return 0;
4515 out_free_cdev:
4516         nvme_fault_inject_fini(&ctrl->fault_inject);
4517         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4518         cdev_device_del(&ctrl->cdev, ctrl->device);
4519 out_free_name:
4520         nvme_put_ctrl(ctrl);
4521         kfree_const(ctrl->device->kobj.name);
4522 out_release_instance:
4523         ida_free(&nvme_instance_ida, ctrl->instance);
4524 out:
4525         if (ctrl->discard_page)
4526                 __free_page(ctrl->discard_page);
4527         return ret;
4528 }
4529 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4530
4531 /* let I/O to all namespaces fail in preparation for surprise removal */
4532 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4533 {
4534         struct nvme_ns *ns;
4535
4536         down_read(&ctrl->namespaces_rwsem);
4537         list_for_each_entry(ns, &ctrl->namespaces, list)
4538                 blk_mark_disk_dead(ns->disk);
4539         up_read(&ctrl->namespaces_rwsem);
4540 }
4541 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4542
4543 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4544 {
4545         struct nvme_ns *ns;
4546
4547         down_read(&ctrl->namespaces_rwsem);
4548         list_for_each_entry(ns, &ctrl->namespaces, list)
4549                 blk_mq_unfreeze_queue(ns->queue);
4550         up_read(&ctrl->namespaces_rwsem);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4553
4554 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4555 {
4556         struct nvme_ns *ns;
4557
4558         down_read(&ctrl->namespaces_rwsem);
4559         list_for_each_entry(ns, &ctrl->namespaces, list) {
4560                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4561                 if (timeout <= 0)
4562                         break;
4563         }
4564         up_read(&ctrl->namespaces_rwsem);
4565         return timeout;
4566 }
4567 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4568
4569 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4570 {
4571         struct nvme_ns *ns;
4572
4573         down_read(&ctrl->namespaces_rwsem);
4574         list_for_each_entry(ns, &ctrl->namespaces, list)
4575                 blk_mq_freeze_queue_wait(ns->queue);
4576         up_read(&ctrl->namespaces_rwsem);
4577 }
4578 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4579
4580 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4581 {
4582         struct nvme_ns *ns;
4583
4584         down_read(&ctrl->namespaces_rwsem);
4585         list_for_each_entry(ns, &ctrl->namespaces, list)
4586                 blk_freeze_queue_start(ns->queue);
4587         up_read(&ctrl->namespaces_rwsem);
4588 }
4589 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4590
4591 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4592 {
4593         if (!ctrl->tagset)
4594                 return;
4595         if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4596                 blk_mq_quiesce_tagset(ctrl->tagset);
4597         else
4598                 blk_mq_wait_quiesce_done(ctrl->tagset);
4599 }
4600 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4601
4602 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4603 {
4604         if (!ctrl->tagset)
4605                 return;
4606         if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4607                 blk_mq_unquiesce_tagset(ctrl->tagset);
4608 }
4609 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4610
4611 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4612 {
4613         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4614                 blk_mq_quiesce_queue(ctrl->admin_q);
4615         else
4616                 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4617 }
4618 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4619
4620 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4621 {
4622         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4623                 blk_mq_unquiesce_queue(ctrl->admin_q);
4624 }
4625 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4626
4627 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4628 {
4629         struct nvme_ns *ns;
4630
4631         down_read(&ctrl->namespaces_rwsem);
4632         list_for_each_entry(ns, &ctrl->namespaces, list)
4633                 blk_sync_queue(ns->queue);
4634         up_read(&ctrl->namespaces_rwsem);
4635 }
4636 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4637
4638 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4639 {
4640         nvme_sync_io_queues(ctrl);
4641         if (ctrl->admin_q)
4642                 blk_sync_queue(ctrl->admin_q);
4643 }
4644 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4645
4646 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4647 {
4648         if (file->f_op != &nvme_dev_fops)
4649                 return NULL;
4650         return file->private_data;
4651 }
4652 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4653
4654 /*
4655  * Check we didn't inadvertently grow the command structure sizes:
4656  */
4657 static inline void _nvme_check_size(void)
4658 {
4659         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4660         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4661         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4662         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4663         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4664         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4665         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4666         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4667         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4668         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4669         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4670         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4671         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4672         BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4673                         NVME_IDENTIFY_DATA_SIZE);
4674         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4675         BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4676         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4677         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4678         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4679         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4680         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4681         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4682         BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4683 }
4684
4685
4686 static int __init nvme_core_init(void)
4687 {
4688         int result = -ENOMEM;
4689
4690         _nvme_check_size();
4691
4692         nvme_wq = alloc_workqueue("nvme-wq",
4693                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4694         if (!nvme_wq)
4695                 goto out;
4696
4697         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4698                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4699         if (!nvme_reset_wq)
4700                 goto destroy_wq;
4701
4702         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4703                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4704         if (!nvme_delete_wq)
4705                 goto destroy_reset_wq;
4706
4707         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4708                         NVME_MINORS, "nvme");
4709         if (result < 0)
4710                 goto destroy_delete_wq;
4711
4712         nvme_class = class_create("nvme");
4713         if (IS_ERR(nvme_class)) {
4714                 result = PTR_ERR(nvme_class);
4715                 goto unregister_chrdev;
4716         }
4717         nvme_class->dev_uevent = nvme_class_uevent;
4718
4719         nvme_subsys_class = class_create("nvme-subsystem");
4720         if (IS_ERR(nvme_subsys_class)) {
4721                 result = PTR_ERR(nvme_subsys_class);
4722                 goto destroy_class;
4723         }
4724
4725         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4726                                      "nvme-generic");
4727         if (result < 0)
4728                 goto destroy_subsys_class;
4729
4730         nvme_ns_chr_class = class_create("nvme-generic");
4731         if (IS_ERR(nvme_ns_chr_class)) {
4732                 result = PTR_ERR(nvme_ns_chr_class);
4733                 goto unregister_generic_ns;
4734         }
4735
4736         result = nvme_init_auth();
4737         if (result)
4738                 goto destroy_ns_chr;
4739         return 0;
4740
4741 destroy_ns_chr:
4742         class_destroy(nvme_ns_chr_class);
4743 unregister_generic_ns:
4744         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4745 destroy_subsys_class:
4746         class_destroy(nvme_subsys_class);
4747 destroy_class:
4748         class_destroy(nvme_class);
4749 unregister_chrdev:
4750         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4751 destroy_delete_wq:
4752         destroy_workqueue(nvme_delete_wq);
4753 destroy_reset_wq:
4754         destroy_workqueue(nvme_reset_wq);
4755 destroy_wq:
4756         destroy_workqueue(nvme_wq);
4757 out:
4758         return result;
4759 }
4760
4761 static void __exit nvme_core_exit(void)
4762 {
4763         nvme_exit_auth();
4764         class_destroy(nvme_ns_chr_class);
4765         class_destroy(nvme_subsys_class);
4766         class_destroy(nvme_class);
4767         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4768         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4769         destroy_workqueue(nvme_delete_wq);
4770         destroy_workqueue(nvme_reset_wq);
4771         destroy_workqueue(nvme_wq);
4772         ida_destroy(&nvme_ns_chr_minor_ida);
4773         ida_destroy(&nvme_instance_ida);
4774 }
4775
4776 MODULE_LICENSE("GPL");
4777 MODULE_VERSION("1.0");
4778 module_init(nvme_core_init);
4779 module_exit(nvme_core_exit);