block: change request end_io handler to pass back a return value
[platform/kernel/linux-starfive.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 struct nvme_ns_info {
35         struct nvme_ns_ids ids;
36         u32 nsid;
37         __le32 anagrpid;
38         bool is_shared;
39         bool is_readonly;
40         bool is_ready;
41 };
42
43 unsigned int admin_timeout = 60;
44 module_param(admin_timeout, uint, 0644);
45 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
46 EXPORT_SYMBOL_GPL(admin_timeout);
47
48 unsigned int nvme_io_timeout = 30;
49 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
50 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
51 EXPORT_SYMBOL_GPL(nvme_io_timeout);
52
53 static unsigned char shutdown_timeout = 5;
54 module_param(shutdown_timeout, byte, 0644);
55 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
56
57 static u8 nvme_max_retries = 5;
58 module_param_named(max_retries, nvme_max_retries, byte, 0644);
59 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
60
61 static unsigned long default_ps_max_latency_us = 100000;
62 module_param(default_ps_max_latency_us, ulong, 0644);
63 MODULE_PARM_DESC(default_ps_max_latency_us,
64                  "max power saving latency for new devices; use PM QOS to change per device");
65
66 static bool force_apst;
67 module_param(force_apst, bool, 0644);
68 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
69
70 static unsigned long apst_primary_timeout_ms = 100;
71 module_param(apst_primary_timeout_ms, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_timeout_ms,
73         "primary APST timeout in ms");
74
75 static unsigned long apst_secondary_timeout_ms = 2000;
76 module_param(apst_secondary_timeout_ms, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_timeout_ms,
78         "secondary APST timeout in ms");
79
80 static unsigned long apst_primary_latency_tol_us = 15000;
81 module_param(apst_primary_latency_tol_us, ulong, 0644);
82 MODULE_PARM_DESC(apst_primary_latency_tol_us,
83         "primary APST latency tolerance in us");
84
85 static unsigned long apst_secondary_latency_tol_us = 100000;
86 module_param(apst_secondary_latency_tol_us, ulong, 0644);
87 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
88         "secondary APST latency tolerance in us");
89
90 /*
91  * nvme_wq - hosts nvme related works that are not reset or delete
92  * nvme_reset_wq - hosts nvme reset works
93  * nvme_delete_wq - hosts nvme delete works
94  *
95  * nvme_wq will host works such as scan, aen handling, fw activation,
96  * keep-alive, periodic reconnects etc. nvme_reset_wq
97  * runs reset works which also flush works hosted on nvme_wq for
98  * serialization purposes. nvme_delete_wq host controller deletion
99  * works which flush reset works for serialization.
100  */
101 struct workqueue_struct *nvme_wq;
102 EXPORT_SYMBOL_GPL(nvme_wq);
103
104 struct workqueue_struct *nvme_reset_wq;
105 EXPORT_SYMBOL_GPL(nvme_reset_wq);
106
107 struct workqueue_struct *nvme_delete_wq;
108 EXPORT_SYMBOL_GPL(nvme_delete_wq);
109
110 static LIST_HEAD(nvme_subsystems);
111 static DEFINE_MUTEX(nvme_subsystems_lock);
112
113 static DEFINE_IDA(nvme_instance_ida);
114 static dev_t nvme_ctrl_base_chr_devt;
115 static struct class *nvme_class;
116 static struct class *nvme_subsys_class;
117
118 static DEFINE_IDA(nvme_ns_chr_minor_ida);
119 static dev_t nvme_ns_chr_devt;
120 static struct class *nvme_ns_chr_class;
121
122 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
124                                            unsigned nsid);
125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
126                                    struct nvme_command *cmd);
127
128 void nvme_queue_scan(struct nvme_ctrl *ctrl)
129 {
130         /*
131          * Only new queue scan work when admin and IO queues are both alive
132          */
133         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
134                 queue_work(nvme_wq, &ctrl->scan_work);
135 }
136
137 /*
138  * Use this function to proceed with scheduling reset_work for a controller
139  * that had previously been set to the resetting state. This is intended for
140  * code paths that can't be interrupted by other reset attempts. A hot removal
141  * may prevent this from succeeding.
142  */
143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
144 {
145         if (ctrl->state != NVME_CTRL_RESETTING)
146                 return -EBUSY;
147         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
148                 return -EBUSY;
149         return 0;
150 }
151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
152
153 static void nvme_failfast_work(struct work_struct *work)
154 {
155         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
156                         struct nvme_ctrl, failfast_work);
157
158         if (ctrl->state != NVME_CTRL_CONNECTING)
159                 return;
160
161         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
162         dev_info(ctrl->device, "failfast expired\n");
163         nvme_kick_requeue_lists(ctrl);
164 }
165
166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
167 {
168         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
169                 return;
170
171         schedule_delayed_work(&ctrl->failfast_work,
172                               ctrl->opts->fast_io_fail_tmo * HZ);
173 }
174
175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
176 {
177         if (!ctrl->opts)
178                 return;
179
180         cancel_delayed_work_sync(&ctrl->failfast_work);
181         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
182 }
183
184
185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
186 {
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
188                 return -EBUSY;
189         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
190                 return -EBUSY;
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
194
195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197         int ret;
198
199         ret = nvme_reset_ctrl(ctrl);
200         if (!ret) {
201                 flush_work(&ctrl->reset_work);
202                 if (ctrl->state != NVME_CTRL_LIVE)
203                         ret = -ENETRESET;
204         }
205
206         return ret;
207 }
208
209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
210 {
211         dev_info(ctrl->device,
212                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
213
214         flush_work(&ctrl->reset_work);
215         nvme_stop_ctrl(ctrl);
216         nvme_remove_namespaces(ctrl);
217         ctrl->ops->delete_ctrl(ctrl);
218         nvme_uninit_ctrl(ctrl);
219 }
220
221 static void nvme_delete_ctrl_work(struct work_struct *work)
222 {
223         struct nvme_ctrl *ctrl =
224                 container_of(work, struct nvme_ctrl, delete_work);
225
226         nvme_do_delete_ctrl(ctrl);
227 }
228
229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
230 {
231         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
232                 return -EBUSY;
233         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
234                 return -EBUSY;
235         return 0;
236 }
237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
238
239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
240 {
241         /*
242          * Keep a reference until nvme_do_delete_ctrl() complete,
243          * since ->delete_ctrl can free the controller.
244          */
245         nvme_get_ctrl(ctrl);
246         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
247                 nvme_do_delete_ctrl(ctrl);
248         nvme_put_ctrl(ctrl);
249 }
250
251 static blk_status_t nvme_error_status(u16 status)
252 {
253         switch (status & 0x7ff) {
254         case NVME_SC_SUCCESS:
255                 return BLK_STS_OK;
256         case NVME_SC_CAP_EXCEEDED:
257                 return BLK_STS_NOSPC;
258         case NVME_SC_LBA_RANGE:
259         case NVME_SC_CMD_INTERRUPTED:
260         case NVME_SC_NS_NOT_READY:
261                 return BLK_STS_TARGET;
262         case NVME_SC_BAD_ATTRIBUTES:
263         case NVME_SC_ONCS_NOT_SUPPORTED:
264         case NVME_SC_INVALID_OPCODE:
265         case NVME_SC_INVALID_FIELD:
266         case NVME_SC_INVALID_NS:
267                 return BLK_STS_NOTSUPP;
268         case NVME_SC_WRITE_FAULT:
269         case NVME_SC_READ_ERROR:
270         case NVME_SC_UNWRITTEN_BLOCK:
271         case NVME_SC_ACCESS_DENIED:
272         case NVME_SC_READ_ONLY:
273         case NVME_SC_COMPARE_FAILED:
274                 return BLK_STS_MEDIUM;
275         case NVME_SC_GUARD_CHECK:
276         case NVME_SC_APPTAG_CHECK:
277         case NVME_SC_REFTAG_CHECK:
278         case NVME_SC_INVALID_PI:
279                 return BLK_STS_PROTECTION;
280         case NVME_SC_RESERVATION_CONFLICT:
281                 return BLK_STS_NEXUS;
282         case NVME_SC_HOST_PATH_ERROR:
283                 return BLK_STS_TRANSPORT;
284         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
285                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
286         case NVME_SC_ZONE_TOO_MANY_OPEN:
287                 return BLK_STS_ZONE_OPEN_RESOURCE;
288         default:
289                 return BLK_STS_IOERR;
290         }
291 }
292
293 static void nvme_retry_req(struct request *req)
294 {
295         unsigned long delay = 0;
296         u16 crd;
297
298         /* The mask and shift result must be <= 3 */
299         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
300         if (crd)
301                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
302
303         nvme_req(req)->retries++;
304         blk_mq_requeue_request(req, false);
305         blk_mq_delay_kick_requeue_list(req->q, delay);
306 }
307
308 static void nvme_log_error(struct request *req)
309 {
310         struct nvme_ns *ns = req->q->queuedata;
311         struct nvme_request *nr = nvme_req(req);
312
313         if (ns) {
314                 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
315                        ns->disk ? ns->disk->disk_name : "?",
316                        nvme_get_opcode_str(nr->cmd->common.opcode),
317                        nr->cmd->common.opcode,
318                        (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
319                        (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
320                        nvme_get_error_status_str(nr->status),
321                        nr->status >> 8 & 7,     /* Status Code Type */
322                        nr->status & 0xff,       /* Status Code */
323                        nr->status & NVME_SC_MORE ? "MORE " : "",
324                        nr->status & NVME_SC_DNR  ? "DNR "  : "");
325                 return;
326         }
327
328         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
329                            dev_name(nr->ctrl->device),
330                            nvme_get_admin_opcode_str(nr->cmd->common.opcode),
331                            nr->cmd->common.opcode,
332                            nvme_get_error_status_str(nr->status),
333                            nr->status >> 8 & 7, /* Status Code Type */
334                            nr->status & 0xff,   /* Status Code */
335                            nr->status & NVME_SC_MORE ? "MORE " : "",
336                            nr->status & NVME_SC_DNR  ? "DNR "  : "");
337 }
338
339 enum nvme_disposition {
340         COMPLETE,
341         RETRY,
342         FAILOVER,
343         AUTHENTICATE,
344 };
345
346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
347 {
348         if (likely(nvme_req(req)->status == 0))
349                 return COMPLETE;
350
351         if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
352                 return AUTHENTICATE;
353
354         if (blk_noretry_request(req) ||
355             (nvme_req(req)->status & NVME_SC_DNR) ||
356             nvme_req(req)->retries >= nvme_max_retries)
357                 return COMPLETE;
358
359         if (req->cmd_flags & REQ_NVME_MPATH) {
360                 if (nvme_is_path_error(nvme_req(req)->status) ||
361                     blk_queue_dying(req->q))
362                         return FAILOVER;
363         } else {
364                 if (blk_queue_dying(req->q))
365                         return COMPLETE;
366         }
367
368         return RETRY;
369 }
370
371 static inline void nvme_end_req_zoned(struct request *req)
372 {
373         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
374             req_op(req) == REQ_OP_ZONE_APPEND)
375                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
376                         le64_to_cpu(nvme_req(req)->result.u64));
377 }
378
379 static inline void nvme_end_req(struct request *req)
380 {
381         blk_status_t status = nvme_error_status(nvme_req(req)->status);
382
383         if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
384                 nvme_log_error(req);
385         nvme_end_req_zoned(req);
386         nvme_trace_bio_complete(req);
387         blk_mq_end_request(req, status);
388 }
389
390 void nvme_complete_rq(struct request *req)
391 {
392         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
393
394         trace_nvme_complete_rq(req);
395         nvme_cleanup_cmd(req);
396
397         if (ctrl->kas)
398                 ctrl->comp_seen = true;
399
400         switch (nvme_decide_disposition(req)) {
401         case COMPLETE:
402                 nvme_end_req(req);
403                 return;
404         case RETRY:
405                 nvme_retry_req(req);
406                 return;
407         case FAILOVER:
408                 nvme_failover_req(req);
409                 return;
410         case AUTHENTICATE:
411 #ifdef CONFIG_NVME_AUTH
412                 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
413                 nvme_retry_req(req);
414 #else
415                 nvme_end_req(req);
416 #endif
417                 return;
418         }
419 }
420 EXPORT_SYMBOL_GPL(nvme_complete_rq);
421
422 void nvme_complete_batch_req(struct request *req)
423 {
424         trace_nvme_complete_rq(req);
425         nvme_cleanup_cmd(req);
426         nvme_end_req_zoned(req);
427 }
428 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
429
430 /*
431  * Called to unwind from ->queue_rq on a failed command submission so that the
432  * multipathing code gets called to potentially failover to another path.
433  * The caller needs to unwind all transport specific resource allocations and
434  * must return propagate the return value.
435  */
436 blk_status_t nvme_host_path_error(struct request *req)
437 {
438         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
439         blk_mq_set_request_complete(req);
440         nvme_complete_rq(req);
441         return BLK_STS_OK;
442 }
443 EXPORT_SYMBOL_GPL(nvme_host_path_error);
444
445 bool nvme_cancel_request(struct request *req, void *data)
446 {
447         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
448                                 "Cancelling I/O %d", req->tag);
449
450         /* don't abort one completed request */
451         if (blk_mq_request_completed(req))
452                 return true;
453
454         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
455         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
456         blk_mq_complete_request(req);
457         return true;
458 }
459 EXPORT_SYMBOL_GPL(nvme_cancel_request);
460
461 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
462 {
463         if (ctrl->tagset) {
464                 blk_mq_tagset_busy_iter(ctrl->tagset,
465                                 nvme_cancel_request, ctrl);
466                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
467         }
468 }
469 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
470
471 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
472 {
473         if (ctrl->admin_tagset) {
474                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
475                                 nvme_cancel_request, ctrl);
476                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
477         }
478 }
479 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
480
481 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
482                 enum nvme_ctrl_state new_state)
483 {
484         enum nvme_ctrl_state old_state;
485         unsigned long flags;
486         bool changed = false;
487
488         spin_lock_irqsave(&ctrl->lock, flags);
489
490         old_state = ctrl->state;
491         switch (new_state) {
492         case NVME_CTRL_LIVE:
493                 switch (old_state) {
494                 case NVME_CTRL_NEW:
495                 case NVME_CTRL_RESETTING:
496                 case NVME_CTRL_CONNECTING:
497                         changed = true;
498                         fallthrough;
499                 default:
500                         break;
501                 }
502                 break;
503         case NVME_CTRL_RESETTING:
504                 switch (old_state) {
505                 case NVME_CTRL_NEW:
506                 case NVME_CTRL_LIVE:
507                         changed = true;
508                         fallthrough;
509                 default:
510                         break;
511                 }
512                 break;
513         case NVME_CTRL_CONNECTING:
514                 switch (old_state) {
515                 case NVME_CTRL_NEW:
516                 case NVME_CTRL_RESETTING:
517                         changed = true;
518                         fallthrough;
519                 default:
520                         break;
521                 }
522                 break;
523         case NVME_CTRL_DELETING:
524                 switch (old_state) {
525                 case NVME_CTRL_LIVE:
526                 case NVME_CTRL_RESETTING:
527                 case NVME_CTRL_CONNECTING:
528                         changed = true;
529                         fallthrough;
530                 default:
531                         break;
532                 }
533                 break;
534         case NVME_CTRL_DELETING_NOIO:
535                 switch (old_state) {
536                 case NVME_CTRL_DELETING:
537                 case NVME_CTRL_DEAD:
538                         changed = true;
539                         fallthrough;
540                 default:
541                         break;
542                 }
543                 break;
544         case NVME_CTRL_DEAD:
545                 switch (old_state) {
546                 case NVME_CTRL_DELETING:
547                         changed = true;
548                         fallthrough;
549                 default:
550                         break;
551                 }
552                 break;
553         default:
554                 break;
555         }
556
557         if (changed) {
558                 ctrl->state = new_state;
559                 wake_up_all(&ctrl->state_wq);
560         }
561
562         spin_unlock_irqrestore(&ctrl->lock, flags);
563         if (!changed)
564                 return false;
565
566         if (ctrl->state == NVME_CTRL_LIVE) {
567                 if (old_state == NVME_CTRL_CONNECTING)
568                         nvme_stop_failfast_work(ctrl);
569                 nvme_kick_requeue_lists(ctrl);
570         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
571                 old_state == NVME_CTRL_RESETTING) {
572                 nvme_start_failfast_work(ctrl);
573         }
574         return changed;
575 }
576 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
577
578 /*
579  * Returns true for sink states that can't ever transition back to live.
580  */
581 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
582 {
583         switch (ctrl->state) {
584         case NVME_CTRL_NEW:
585         case NVME_CTRL_LIVE:
586         case NVME_CTRL_RESETTING:
587         case NVME_CTRL_CONNECTING:
588                 return false;
589         case NVME_CTRL_DELETING:
590         case NVME_CTRL_DELETING_NOIO:
591         case NVME_CTRL_DEAD:
592                 return true;
593         default:
594                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
595                 return true;
596         }
597 }
598
599 /*
600  * Waits for the controller state to be resetting, or returns false if it is
601  * not possible to ever transition to that state.
602  */
603 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
604 {
605         wait_event(ctrl->state_wq,
606                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
607                    nvme_state_terminal(ctrl));
608         return ctrl->state == NVME_CTRL_RESETTING;
609 }
610 EXPORT_SYMBOL_GPL(nvme_wait_reset);
611
612 static void nvme_free_ns_head(struct kref *ref)
613 {
614         struct nvme_ns_head *head =
615                 container_of(ref, struct nvme_ns_head, ref);
616
617         nvme_mpath_remove_disk(head);
618         ida_free(&head->subsys->ns_ida, head->instance);
619         cleanup_srcu_struct(&head->srcu);
620         nvme_put_subsystem(head->subsys);
621         kfree(head);
622 }
623
624 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
625 {
626         return kref_get_unless_zero(&head->ref);
627 }
628
629 void nvme_put_ns_head(struct nvme_ns_head *head)
630 {
631         kref_put(&head->ref, nvme_free_ns_head);
632 }
633
634 static void nvme_free_ns(struct kref *kref)
635 {
636         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
637
638         put_disk(ns->disk);
639         nvme_put_ns_head(ns->head);
640         nvme_put_ctrl(ns->ctrl);
641         kfree(ns);
642 }
643
644 static inline bool nvme_get_ns(struct nvme_ns *ns)
645 {
646         return kref_get_unless_zero(&ns->kref);
647 }
648
649 void nvme_put_ns(struct nvme_ns *ns)
650 {
651         kref_put(&ns->kref, nvme_free_ns);
652 }
653 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
654
655 static inline void nvme_clear_nvme_request(struct request *req)
656 {
657         nvme_req(req)->status = 0;
658         nvme_req(req)->retries = 0;
659         nvme_req(req)->flags = 0;
660         req->rq_flags |= RQF_DONTPREP;
661 }
662
663 /* initialize a passthrough request */
664 void nvme_init_request(struct request *req, struct nvme_command *cmd)
665 {
666         if (req->q->queuedata)
667                 req->timeout = NVME_IO_TIMEOUT;
668         else /* no queuedata implies admin queue */
669                 req->timeout = NVME_ADMIN_TIMEOUT;
670
671         /* passthru commands should let the driver set the SGL flags */
672         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
673
674         req->cmd_flags |= REQ_FAILFAST_DRIVER;
675         if (req->mq_hctx->type == HCTX_TYPE_POLL)
676                 req->cmd_flags |= REQ_POLLED;
677         nvme_clear_nvme_request(req);
678         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
679 }
680 EXPORT_SYMBOL_GPL(nvme_init_request);
681
682 /*
683  * For something we're not in a state to send to the device the default action
684  * is to busy it and retry it after the controller state is recovered.  However,
685  * if the controller is deleting or if anything is marked for failfast or
686  * nvme multipath it is immediately failed.
687  *
688  * Note: commands used to initialize the controller will be marked for failfast.
689  * Note: nvme cli/ioctl commands are marked for failfast.
690  */
691 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
692                 struct request *rq)
693 {
694         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
695             ctrl->state != NVME_CTRL_DELETING &&
696             ctrl->state != NVME_CTRL_DEAD &&
697             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
698             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
699                 return BLK_STS_RESOURCE;
700         return nvme_host_path_error(rq);
701 }
702 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
703
704 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
705                 bool queue_live)
706 {
707         struct nvme_request *req = nvme_req(rq);
708
709         /*
710          * currently we have a problem sending passthru commands
711          * on the admin_q if the controller is not LIVE because we can't
712          * make sure that they are going out after the admin connect,
713          * controller enable and/or other commands in the initialization
714          * sequence. until the controller will be LIVE, fail with
715          * BLK_STS_RESOURCE so that they will be rescheduled.
716          */
717         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
718                 return false;
719
720         if (ctrl->ops->flags & NVME_F_FABRICS) {
721                 /*
722                  * Only allow commands on a live queue, except for the connect
723                  * command, which is require to set the queue live in the
724                  * appropinquate states.
725                  */
726                 switch (ctrl->state) {
727                 case NVME_CTRL_CONNECTING:
728                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
729                             (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
730                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
731                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
732                                 return true;
733                         break;
734                 default:
735                         break;
736                 case NVME_CTRL_DEAD:
737                         return false;
738                 }
739         }
740
741         return queue_live;
742 }
743 EXPORT_SYMBOL_GPL(__nvme_check_ready);
744
745 static inline void nvme_setup_flush(struct nvme_ns *ns,
746                 struct nvme_command *cmnd)
747 {
748         memset(cmnd, 0, sizeof(*cmnd));
749         cmnd->common.opcode = nvme_cmd_flush;
750         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
751 }
752
753 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
754                 struct nvme_command *cmnd)
755 {
756         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
757         struct nvme_dsm_range *range;
758         struct bio *bio;
759
760         /*
761          * Some devices do not consider the DSM 'Number of Ranges' field when
762          * determining how much data to DMA. Always allocate memory for maximum
763          * number of segments to prevent device reading beyond end of buffer.
764          */
765         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
766
767         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
768         if (!range) {
769                 /*
770                  * If we fail allocation our range, fallback to the controller
771                  * discard page. If that's also busy, it's safe to return
772                  * busy, as we know we can make progress once that's freed.
773                  */
774                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
775                         return BLK_STS_RESOURCE;
776
777                 range = page_address(ns->ctrl->discard_page);
778         }
779
780         __rq_for_each_bio(bio, req) {
781                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
782                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
783
784                 if (n < segments) {
785                         range[n].cattr = cpu_to_le32(0);
786                         range[n].nlb = cpu_to_le32(nlb);
787                         range[n].slba = cpu_to_le64(slba);
788                 }
789                 n++;
790         }
791
792         if (WARN_ON_ONCE(n != segments)) {
793                 if (virt_to_page(range) == ns->ctrl->discard_page)
794                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
795                 else
796                         kfree(range);
797                 return BLK_STS_IOERR;
798         }
799
800         memset(cmnd, 0, sizeof(*cmnd));
801         cmnd->dsm.opcode = nvme_cmd_dsm;
802         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
803         cmnd->dsm.nr = cpu_to_le32(segments - 1);
804         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
805
806         req->special_vec.bv_page = virt_to_page(range);
807         req->special_vec.bv_offset = offset_in_page(range);
808         req->special_vec.bv_len = alloc_size;
809         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
810
811         return BLK_STS_OK;
812 }
813
814 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
815                               struct request *req)
816 {
817         u32 upper, lower;
818         u64 ref48;
819
820         /* both rw and write zeroes share the same reftag format */
821         switch (ns->guard_type) {
822         case NVME_NVM_NS_16B_GUARD:
823                 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
824                 break;
825         case NVME_NVM_NS_64B_GUARD:
826                 ref48 = ext_pi_ref_tag(req);
827                 lower = lower_32_bits(ref48);
828                 upper = upper_32_bits(ref48);
829
830                 cmnd->rw.reftag = cpu_to_le32(lower);
831                 cmnd->rw.cdw3 = cpu_to_le32(upper);
832                 break;
833         default:
834                 break;
835         }
836 }
837
838 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
839                 struct request *req, struct nvme_command *cmnd)
840 {
841         memset(cmnd, 0, sizeof(*cmnd));
842
843         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
844                 return nvme_setup_discard(ns, req, cmnd);
845
846         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
847         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
848         cmnd->write_zeroes.slba =
849                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
850         cmnd->write_zeroes.length =
851                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
852
853         if (nvme_ns_has_pi(ns)) {
854                 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
855
856                 switch (ns->pi_type) {
857                 case NVME_NS_DPS_PI_TYPE1:
858                 case NVME_NS_DPS_PI_TYPE2:
859                         nvme_set_ref_tag(ns, cmnd, req);
860                         break;
861                 }
862         }
863
864         return BLK_STS_OK;
865 }
866
867 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
868                 struct request *req, struct nvme_command *cmnd,
869                 enum nvme_opcode op)
870 {
871         u16 control = 0;
872         u32 dsmgmt = 0;
873
874         if (req->cmd_flags & REQ_FUA)
875                 control |= NVME_RW_FUA;
876         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
877                 control |= NVME_RW_LR;
878
879         if (req->cmd_flags & REQ_RAHEAD)
880                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
881
882         cmnd->rw.opcode = op;
883         cmnd->rw.flags = 0;
884         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
885         cmnd->rw.cdw2 = 0;
886         cmnd->rw.cdw3 = 0;
887         cmnd->rw.metadata = 0;
888         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
889         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
890         cmnd->rw.reftag = 0;
891         cmnd->rw.apptag = 0;
892         cmnd->rw.appmask = 0;
893
894         if (ns->ms) {
895                 /*
896                  * If formated with metadata, the block layer always provides a
897                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
898                  * we enable the PRACT bit for protection information or set the
899                  * namespace capacity to zero to prevent any I/O.
900                  */
901                 if (!blk_integrity_rq(req)) {
902                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
903                                 return BLK_STS_NOTSUPP;
904                         control |= NVME_RW_PRINFO_PRACT;
905                 }
906
907                 switch (ns->pi_type) {
908                 case NVME_NS_DPS_PI_TYPE3:
909                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
910                         break;
911                 case NVME_NS_DPS_PI_TYPE1:
912                 case NVME_NS_DPS_PI_TYPE2:
913                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
914                                         NVME_RW_PRINFO_PRCHK_REF;
915                         if (op == nvme_cmd_zone_append)
916                                 control |= NVME_RW_APPEND_PIREMAP;
917                         nvme_set_ref_tag(ns, cmnd, req);
918                         break;
919                 }
920         }
921
922         cmnd->rw.control = cpu_to_le16(control);
923         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
924         return 0;
925 }
926
927 void nvme_cleanup_cmd(struct request *req)
928 {
929         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
930                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
931
932                 if (req->special_vec.bv_page == ctrl->discard_page)
933                         clear_bit_unlock(0, &ctrl->discard_page_busy);
934                 else
935                         kfree(bvec_virt(&req->special_vec));
936         }
937 }
938 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
939
940 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
941 {
942         struct nvme_command *cmd = nvme_req(req)->cmd;
943         blk_status_t ret = BLK_STS_OK;
944
945         if (!(req->rq_flags & RQF_DONTPREP))
946                 nvme_clear_nvme_request(req);
947
948         switch (req_op(req)) {
949         case REQ_OP_DRV_IN:
950         case REQ_OP_DRV_OUT:
951                 /* these are setup prior to execution in nvme_init_request() */
952                 break;
953         case REQ_OP_FLUSH:
954                 nvme_setup_flush(ns, cmd);
955                 break;
956         case REQ_OP_ZONE_RESET_ALL:
957         case REQ_OP_ZONE_RESET:
958                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
959                 break;
960         case REQ_OP_ZONE_OPEN:
961                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
962                 break;
963         case REQ_OP_ZONE_CLOSE:
964                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
965                 break;
966         case REQ_OP_ZONE_FINISH:
967                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
968                 break;
969         case REQ_OP_WRITE_ZEROES:
970                 ret = nvme_setup_write_zeroes(ns, req, cmd);
971                 break;
972         case REQ_OP_DISCARD:
973                 ret = nvme_setup_discard(ns, req, cmd);
974                 break;
975         case REQ_OP_READ:
976                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
977                 break;
978         case REQ_OP_WRITE:
979                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
980                 break;
981         case REQ_OP_ZONE_APPEND:
982                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
983                 break;
984         default:
985                 WARN_ON_ONCE(1);
986                 return BLK_STS_IOERR;
987         }
988
989         cmd->common.command_id = nvme_cid(req);
990         trace_nvme_setup_cmd(req, cmd);
991         return ret;
992 }
993 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
994
995 /*
996  * Return values:
997  * 0:  success
998  * >0: nvme controller's cqe status response
999  * <0: kernel error in lieu of controller response
1000  */
1001 static int nvme_execute_rq(struct request *rq, bool at_head)
1002 {
1003         blk_status_t status;
1004
1005         status = blk_execute_rq(rq, at_head);
1006         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1007                 return -EINTR;
1008         if (nvme_req(rq)->status)
1009                 return nvme_req(rq)->status;
1010         return blk_status_to_errno(status);
1011 }
1012
1013 /*
1014  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1015  * if the result is positive, it's an NVM Express status code
1016  */
1017 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1018                 union nvme_result *result, void *buffer, unsigned bufflen,
1019                 int qid, int at_head, blk_mq_req_flags_t flags)
1020 {
1021         struct request *req;
1022         int ret;
1023
1024         if (qid == NVME_QID_ANY)
1025                 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1026         else
1027                 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1028                                                 qid - 1);
1029
1030         if (IS_ERR(req))
1031                 return PTR_ERR(req);
1032         nvme_init_request(req, cmd);
1033
1034         if (buffer && bufflen) {
1035                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1036                 if (ret)
1037                         goto out;
1038         }
1039
1040         req->rq_flags |= RQF_QUIET;
1041         ret = nvme_execute_rq(req, at_head);
1042         if (result && ret >= 0)
1043                 *result = nvme_req(req)->result;
1044  out:
1045         blk_mq_free_request(req);
1046         return ret;
1047 }
1048 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1049
1050 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1051                 void *buffer, unsigned bufflen)
1052 {
1053         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1054                         NVME_QID_ANY, 0, 0);
1055 }
1056 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1057
1058 static u32 nvme_known_admin_effects(u8 opcode)
1059 {
1060         switch (opcode) {
1061         case nvme_admin_format_nvm:
1062                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1063                         NVME_CMD_EFFECTS_CSE_MASK;
1064         case nvme_admin_sanitize_nvm:
1065                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1066         default:
1067                 break;
1068         }
1069         return 0;
1070 }
1071
1072 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1073 {
1074         u32 effects = 0;
1075
1076         if (ns) {
1077                 if (ns->head->effects)
1078                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1079                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1080                         dev_warn_once(ctrl->device,
1081                                 "IO command:%02x has unhandled effects:%08x\n",
1082                                 opcode, effects);
1083                 return 0;
1084         }
1085
1086         if (ctrl->effects)
1087                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1088         effects |= nvme_known_admin_effects(opcode);
1089
1090         return effects;
1091 }
1092 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1093
1094 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1095                                u8 opcode)
1096 {
1097         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1098
1099         /*
1100          * For simplicity, IO to all namespaces is quiesced even if the command
1101          * effects say only one namespace is affected.
1102          */
1103         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1104                 mutex_lock(&ctrl->scan_lock);
1105                 mutex_lock(&ctrl->subsys->lock);
1106                 nvme_mpath_start_freeze(ctrl->subsys);
1107                 nvme_mpath_wait_freeze(ctrl->subsys);
1108                 nvme_start_freeze(ctrl);
1109                 nvme_wait_freeze(ctrl);
1110         }
1111         return effects;
1112 }
1113
1114 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1115                        struct nvme_command *cmd, int status)
1116 {
1117         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1118                 nvme_unfreeze(ctrl);
1119                 nvme_mpath_unfreeze(ctrl->subsys);
1120                 mutex_unlock(&ctrl->subsys->lock);
1121                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1122                 mutex_unlock(&ctrl->scan_lock);
1123         }
1124         if (effects & NVME_CMD_EFFECTS_CCC)
1125                 nvme_init_ctrl_finish(ctrl);
1126         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1127                 nvme_queue_scan(ctrl);
1128                 flush_work(&ctrl->scan_work);
1129         }
1130
1131         switch (cmd->common.opcode) {
1132         case nvme_admin_set_features:
1133                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1134                 case NVME_FEAT_KATO:
1135                         /*
1136                          * Keep alive commands interval on the host should be
1137                          * updated when KATO is modified by Set Features
1138                          * commands.
1139                          */
1140                         if (!status)
1141                                 nvme_update_keep_alive(ctrl, cmd);
1142                         break;
1143                 default:
1144                         break;
1145                 }
1146                 break;
1147         default:
1148                 break;
1149         }
1150 }
1151 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1152
1153 int nvme_execute_passthru_rq(struct request *rq, u32 *effects)
1154 {
1155         struct nvme_command *cmd = nvme_req(rq)->cmd;
1156         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1157         struct nvme_ns *ns = rq->q->queuedata;
1158
1159         *effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1160         return nvme_execute_rq(rq, false);
1161 }
1162 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1163
1164 /*
1165  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1166  * 
1167  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1168  *   accounting for transport roundtrip times [..].
1169  */
1170 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1171 {
1172         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1173 }
1174
1175 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1176                                                  blk_status_t status)
1177 {
1178         struct nvme_ctrl *ctrl = rq->end_io_data;
1179         unsigned long flags;
1180         bool startka = false;
1181
1182         blk_mq_free_request(rq);
1183
1184         if (status) {
1185                 dev_err(ctrl->device,
1186                         "failed nvme_keep_alive_end_io error=%d\n",
1187                                 status);
1188                 return RQ_END_IO_NONE;
1189         }
1190
1191         ctrl->comp_seen = false;
1192         spin_lock_irqsave(&ctrl->lock, flags);
1193         if (ctrl->state == NVME_CTRL_LIVE ||
1194             ctrl->state == NVME_CTRL_CONNECTING)
1195                 startka = true;
1196         spin_unlock_irqrestore(&ctrl->lock, flags);
1197         if (startka)
1198                 nvme_queue_keep_alive_work(ctrl);
1199         return RQ_END_IO_NONE;
1200 }
1201
1202 static void nvme_keep_alive_work(struct work_struct *work)
1203 {
1204         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1205                         struct nvme_ctrl, ka_work);
1206         bool comp_seen = ctrl->comp_seen;
1207         struct request *rq;
1208
1209         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1210                 dev_dbg(ctrl->device,
1211                         "reschedule traffic based keep-alive timer\n");
1212                 ctrl->comp_seen = false;
1213                 nvme_queue_keep_alive_work(ctrl);
1214                 return;
1215         }
1216
1217         rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1218                                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1219         if (IS_ERR(rq)) {
1220                 /* allocation failure, reset the controller */
1221                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1222                 nvme_reset_ctrl(ctrl);
1223                 return;
1224         }
1225         nvme_init_request(rq, &ctrl->ka_cmd);
1226
1227         rq->timeout = ctrl->kato * HZ;
1228         rq->end_io = nvme_keep_alive_end_io;
1229         rq->end_io_data = ctrl;
1230         rq->rq_flags |= RQF_QUIET;
1231         blk_execute_rq_nowait(rq, false);
1232 }
1233
1234 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1235 {
1236         if (unlikely(ctrl->kato == 0))
1237                 return;
1238
1239         nvme_queue_keep_alive_work(ctrl);
1240 }
1241
1242 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1243 {
1244         if (unlikely(ctrl->kato == 0))
1245                 return;
1246
1247         cancel_delayed_work_sync(&ctrl->ka_work);
1248 }
1249 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1250
1251 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1252                                    struct nvme_command *cmd)
1253 {
1254         unsigned int new_kato =
1255                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1256
1257         dev_info(ctrl->device,
1258                  "keep alive interval updated from %u ms to %u ms\n",
1259                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1260
1261         nvme_stop_keep_alive(ctrl);
1262         ctrl->kato = new_kato;
1263         nvme_start_keep_alive(ctrl);
1264 }
1265
1266 /*
1267  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1268  * flag, thus sending any new CNS opcodes has a big chance of not working.
1269  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1270  * (but not for any later version).
1271  */
1272 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1273 {
1274         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1275                 return ctrl->vs < NVME_VS(1, 2, 0);
1276         return ctrl->vs < NVME_VS(1, 1, 0);
1277 }
1278
1279 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1280 {
1281         struct nvme_command c = { };
1282         int error;
1283
1284         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1285         c.identify.opcode = nvme_admin_identify;
1286         c.identify.cns = NVME_ID_CNS_CTRL;
1287
1288         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1289         if (!*id)
1290                 return -ENOMEM;
1291
1292         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1293                         sizeof(struct nvme_id_ctrl));
1294         if (error)
1295                 kfree(*id);
1296         return error;
1297 }
1298
1299 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1300                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1301 {
1302         const char *warn_str = "ctrl returned bogus length:";
1303         void *data = cur;
1304
1305         switch (cur->nidt) {
1306         case NVME_NIDT_EUI64:
1307                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1308                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1309                                  warn_str, cur->nidl);
1310                         return -1;
1311                 }
1312                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1313                         return NVME_NIDT_EUI64_LEN;
1314                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1315                 return NVME_NIDT_EUI64_LEN;
1316         case NVME_NIDT_NGUID:
1317                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1318                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1319                                  warn_str, cur->nidl);
1320                         return -1;
1321                 }
1322                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1323                         return NVME_NIDT_NGUID_LEN;
1324                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1325                 return NVME_NIDT_NGUID_LEN;
1326         case NVME_NIDT_UUID:
1327                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1328                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1329                                  warn_str, cur->nidl);
1330                         return -1;
1331                 }
1332                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1333                         return NVME_NIDT_UUID_LEN;
1334                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1335                 return NVME_NIDT_UUID_LEN;
1336         case NVME_NIDT_CSI:
1337                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1338                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1339                                  warn_str, cur->nidl);
1340                         return -1;
1341                 }
1342                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1343                 *csi_seen = true;
1344                 return NVME_NIDT_CSI_LEN;
1345         default:
1346                 /* Skip unknown types */
1347                 return cur->nidl;
1348         }
1349 }
1350
1351 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1352                 struct nvme_ns_info *info)
1353 {
1354         struct nvme_command c = { };
1355         bool csi_seen = false;
1356         int status, pos, len;
1357         void *data;
1358
1359         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1360                 return 0;
1361         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1362                 return 0;
1363
1364         c.identify.opcode = nvme_admin_identify;
1365         c.identify.nsid = cpu_to_le32(info->nsid);
1366         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1367
1368         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1369         if (!data)
1370                 return -ENOMEM;
1371
1372         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1373                                       NVME_IDENTIFY_DATA_SIZE);
1374         if (status) {
1375                 dev_warn(ctrl->device,
1376                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1377                         info->nsid, status);
1378                 goto free_data;
1379         }
1380
1381         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1382                 struct nvme_ns_id_desc *cur = data + pos;
1383
1384                 if (cur->nidl == 0)
1385                         break;
1386
1387                 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1388                 if (len < 0)
1389                         break;
1390
1391                 len += sizeof(*cur);
1392         }
1393
1394         if (nvme_multi_css(ctrl) && !csi_seen) {
1395                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1396                          info->nsid);
1397                 status = -EINVAL;
1398         }
1399
1400 free_data:
1401         kfree(data);
1402         return status;
1403 }
1404
1405 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1406                         struct nvme_id_ns **id)
1407 {
1408         struct nvme_command c = { };
1409         int error;
1410
1411         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1412         c.identify.opcode = nvme_admin_identify;
1413         c.identify.nsid = cpu_to_le32(nsid);
1414         c.identify.cns = NVME_ID_CNS_NS;
1415
1416         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1417         if (!*id)
1418                 return -ENOMEM;
1419
1420         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1421         if (error) {
1422                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1423                 goto out_free_id;
1424         }
1425
1426         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1427         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1428                 goto out_free_id;
1429         return 0;
1430
1431 out_free_id:
1432         kfree(*id);
1433         return error;
1434 }
1435
1436 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1437                 struct nvme_ns_info *info)
1438 {
1439         struct nvme_ns_ids *ids = &info->ids;
1440         struct nvme_id_ns *id;
1441         int ret;
1442
1443         ret = nvme_identify_ns(ctrl, info->nsid, &id);
1444         if (ret)
1445                 return ret;
1446         info->anagrpid = id->anagrpid;
1447         info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1448         info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1449         info->is_ready = true;
1450         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1451                 dev_info(ctrl->device,
1452                          "Ignoring bogus Namespace Identifiers\n");
1453         } else {
1454                 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1455                     !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1456                         memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1457                 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1458                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1459                         memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1460         }
1461         kfree(id);
1462         return 0;
1463 }
1464
1465 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1466                 struct nvme_ns_info *info)
1467 {
1468         struct nvme_id_ns_cs_indep *id;
1469         struct nvme_command c = {
1470                 .identify.opcode        = nvme_admin_identify,
1471                 .identify.nsid          = cpu_to_le32(info->nsid),
1472                 .identify.cns           = NVME_ID_CNS_NS_CS_INDEP,
1473         };
1474         int ret;
1475
1476         id = kmalloc(sizeof(*id), GFP_KERNEL);
1477         if (!id)
1478                 return -ENOMEM;
1479
1480         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1481         if (!ret) {
1482                 info->anagrpid = id->anagrpid;
1483                 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1484                 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1485                 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1486         }
1487         kfree(id);
1488         return ret;
1489 }
1490
1491 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1492                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1493 {
1494         union nvme_result res = { 0 };
1495         struct nvme_command c = { };
1496         int ret;
1497
1498         c.features.opcode = op;
1499         c.features.fid = cpu_to_le32(fid);
1500         c.features.dword11 = cpu_to_le32(dword11);
1501
1502         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1503                         buffer, buflen, NVME_QID_ANY, 0, 0);
1504         if (ret >= 0 && result)
1505                 *result = le32_to_cpu(res.u32);
1506         return ret;
1507 }
1508
1509 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1510                       unsigned int dword11, void *buffer, size_t buflen,
1511                       u32 *result)
1512 {
1513         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1514                              buflen, result);
1515 }
1516 EXPORT_SYMBOL_GPL(nvme_set_features);
1517
1518 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1519                       unsigned int dword11, void *buffer, size_t buflen,
1520                       u32 *result)
1521 {
1522         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1523                              buflen, result);
1524 }
1525 EXPORT_SYMBOL_GPL(nvme_get_features);
1526
1527 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1528 {
1529         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1530         u32 result;
1531         int status, nr_io_queues;
1532
1533         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1534                         &result);
1535         if (status < 0)
1536                 return status;
1537
1538         /*
1539          * Degraded controllers might return an error when setting the queue
1540          * count.  We still want to be able to bring them online and offer
1541          * access to the admin queue, as that might be only way to fix them up.
1542          */
1543         if (status > 0) {
1544                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1545                 *count = 0;
1546         } else {
1547                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1548                 *count = min(*count, nr_io_queues);
1549         }
1550
1551         return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1554
1555 #define NVME_AEN_SUPPORTED \
1556         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1557          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1558
1559 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1560 {
1561         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1562         int status;
1563
1564         if (!supported_aens)
1565                 return;
1566
1567         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1568                         NULL, 0, &result);
1569         if (status)
1570                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1571                          supported_aens);
1572
1573         queue_work(nvme_wq, &ctrl->async_event_work);
1574 }
1575
1576 static int nvme_ns_open(struct nvme_ns *ns)
1577 {
1578
1579         /* should never be called due to GENHD_FL_HIDDEN */
1580         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1581                 goto fail;
1582         if (!nvme_get_ns(ns))
1583                 goto fail;
1584         if (!try_module_get(ns->ctrl->ops->module))
1585                 goto fail_put_ns;
1586
1587         return 0;
1588
1589 fail_put_ns:
1590         nvme_put_ns(ns);
1591 fail:
1592         return -ENXIO;
1593 }
1594
1595 static void nvme_ns_release(struct nvme_ns *ns)
1596 {
1597
1598         module_put(ns->ctrl->ops->module);
1599         nvme_put_ns(ns);
1600 }
1601
1602 static int nvme_open(struct block_device *bdev, fmode_t mode)
1603 {
1604         return nvme_ns_open(bdev->bd_disk->private_data);
1605 }
1606
1607 static void nvme_release(struct gendisk *disk, fmode_t mode)
1608 {
1609         nvme_ns_release(disk->private_data);
1610 }
1611
1612 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1613 {
1614         /* some standard values */
1615         geo->heads = 1 << 6;
1616         geo->sectors = 1 << 5;
1617         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1618         return 0;
1619 }
1620
1621 #ifdef CONFIG_BLK_DEV_INTEGRITY
1622 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1623                                 u32 max_integrity_segments)
1624 {
1625         struct blk_integrity integrity = { };
1626
1627         switch (ns->pi_type) {
1628         case NVME_NS_DPS_PI_TYPE3:
1629                 switch (ns->guard_type) {
1630                 case NVME_NVM_NS_16B_GUARD:
1631                         integrity.profile = &t10_pi_type3_crc;
1632                         integrity.tag_size = sizeof(u16) + sizeof(u32);
1633                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1634                         break;
1635                 case NVME_NVM_NS_64B_GUARD:
1636                         integrity.profile = &ext_pi_type3_crc64;
1637                         integrity.tag_size = sizeof(u16) + 6;
1638                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1639                         break;
1640                 default:
1641                         integrity.profile = NULL;
1642                         break;
1643                 }
1644                 break;
1645         case NVME_NS_DPS_PI_TYPE1:
1646         case NVME_NS_DPS_PI_TYPE2:
1647                 switch (ns->guard_type) {
1648                 case NVME_NVM_NS_16B_GUARD:
1649                         integrity.profile = &t10_pi_type1_crc;
1650                         integrity.tag_size = sizeof(u16);
1651                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1652                         break;
1653                 case NVME_NVM_NS_64B_GUARD:
1654                         integrity.profile = &ext_pi_type1_crc64;
1655                         integrity.tag_size = sizeof(u16);
1656                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1657                         break;
1658                 default:
1659                         integrity.profile = NULL;
1660                         break;
1661                 }
1662                 break;
1663         default:
1664                 integrity.profile = NULL;
1665                 break;
1666         }
1667
1668         integrity.tuple_size = ns->ms;
1669         blk_integrity_register(disk, &integrity);
1670         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1671 }
1672 #else
1673 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1674                                 u32 max_integrity_segments)
1675 {
1676 }
1677 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1678
1679 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1680 {
1681         struct nvme_ctrl *ctrl = ns->ctrl;
1682         struct request_queue *queue = disk->queue;
1683         u32 size = queue_logical_block_size(queue);
1684
1685         if (ctrl->max_discard_sectors == 0) {
1686                 blk_queue_max_discard_sectors(queue, 0);
1687                 return;
1688         }
1689
1690         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1691                         NVME_DSM_MAX_RANGES);
1692
1693         queue->limits.discard_granularity = size;
1694
1695         /* If discard is already enabled, don't reset queue limits */
1696         if (queue->limits.max_discard_sectors)
1697                 return;
1698
1699         if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1700                 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1701
1702         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1703         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1704
1705         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1706                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1707 }
1708
1709 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1710 {
1711         return uuid_equal(&a->uuid, &b->uuid) &&
1712                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1713                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1714                 a->csi == b->csi;
1715 }
1716
1717 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1718 {
1719         bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1720         unsigned lbaf = nvme_lbaf_index(id->flbas);
1721         struct nvme_ctrl *ctrl = ns->ctrl;
1722         struct nvme_command c = { };
1723         struct nvme_id_ns_nvm *nvm;
1724         int ret = 0;
1725         u32 elbaf;
1726
1727         ns->pi_size = 0;
1728         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1729         if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1730                 ns->pi_size = sizeof(struct t10_pi_tuple);
1731                 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1732                 goto set_pi;
1733         }
1734
1735         nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1736         if (!nvm)
1737                 return -ENOMEM;
1738
1739         c.identify.opcode = nvme_admin_identify;
1740         c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1741         c.identify.cns = NVME_ID_CNS_CS_NS;
1742         c.identify.csi = NVME_CSI_NVM;
1743
1744         ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1745         if (ret)
1746                 goto free_data;
1747
1748         elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1749
1750         /* no support for storage tag formats right now */
1751         if (nvme_elbaf_sts(elbaf))
1752                 goto free_data;
1753
1754         ns->guard_type = nvme_elbaf_guard_type(elbaf);
1755         switch (ns->guard_type) {
1756         case NVME_NVM_NS_64B_GUARD:
1757                 ns->pi_size = sizeof(struct crc64_pi_tuple);
1758                 break;
1759         case NVME_NVM_NS_16B_GUARD:
1760                 ns->pi_size = sizeof(struct t10_pi_tuple);
1761                 break;
1762         default:
1763                 break;
1764         }
1765
1766 free_data:
1767         kfree(nvm);
1768 set_pi:
1769         if (ns->pi_size && (first || ns->ms == ns->pi_size))
1770                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1771         else
1772                 ns->pi_type = 0;
1773
1774         return ret;
1775 }
1776
1777 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1778 {
1779         struct nvme_ctrl *ctrl = ns->ctrl;
1780
1781         if (nvme_init_ms(ns, id))
1782                 return;
1783
1784         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1785         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1786                 return;
1787
1788         if (ctrl->ops->flags & NVME_F_FABRICS) {
1789                 /*
1790                  * The NVMe over Fabrics specification only supports metadata as
1791                  * part of the extended data LBA.  We rely on HCA/HBA support to
1792                  * remap the separate metadata buffer from the block layer.
1793                  */
1794                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1795                         return;
1796
1797                 ns->features |= NVME_NS_EXT_LBAS;
1798
1799                 /*
1800                  * The current fabrics transport drivers support namespace
1801                  * metadata formats only if nvme_ns_has_pi() returns true.
1802                  * Suppress support for all other formats so the namespace will
1803                  * have a 0 capacity and not be usable through the block stack.
1804                  *
1805                  * Note, this check will need to be modified if any drivers
1806                  * gain the ability to use other metadata formats.
1807                  */
1808                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1809                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1810         } else {
1811                 /*
1812                  * For PCIe controllers, we can't easily remap the separate
1813                  * metadata buffer from the block layer and thus require a
1814                  * separate metadata buffer for block layer metadata/PI support.
1815                  * We allow extended LBAs for the passthrough interface, though.
1816                  */
1817                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1818                         ns->features |= NVME_NS_EXT_LBAS;
1819                 else
1820                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1821         }
1822 }
1823
1824 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1825                 struct request_queue *q)
1826 {
1827         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1828
1829         if (ctrl->max_hw_sectors) {
1830                 u32 max_segments =
1831                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1832
1833                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1834                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1835                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1836         }
1837         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1838         blk_queue_dma_alignment(q, 3);
1839         blk_queue_write_cache(q, vwc, vwc);
1840 }
1841
1842 static void nvme_update_disk_info(struct gendisk *disk,
1843                 struct nvme_ns *ns, struct nvme_id_ns *id)
1844 {
1845         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1846         unsigned short bs = 1 << ns->lba_shift;
1847         u32 atomic_bs, phys_bs, io_opt = 0;
1848
1849         /*
1850          * The block layer can't support LBA sizes larger than the page size
1851          * yet, so catch this early and don't allow block I/O.
1852          */
1853         if (ns->lba_shift > PAGE_SHIFT) {
1854                 capacity = 0;
1855                 bs = (1 << 9);
1856         }
1857
1858         blk_integrity_unregister(disk);
1859
1860         atomic_bs = phys_bs = bs;
1861         if (id->nabo == 0) {
1862                 /*
1863                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1864                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1865                  * 0 then AWUPF must be used instead.
1866                  */
1867                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1868                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1869                 else
1870                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1871         }
1872
1873         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1874                 /* NPWG = Namespace Preferred Write Granularity */
1875                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1876                 /* NOWS = Namespace Optimal Write Size */
1877                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1878         }
1879
1880         blk_queue_logical_block_size(disk->queue, bs);
1881         /*
1882          * Linux filesystems assume writing a single physical block is
1883          * an atomic operation. Hence limit the physical block size to the
1884          * value of the Atomic Write Unit Power Fail parameter.
1885          */
1886         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1887         blk_queue_io_min(disk->queue, phys_bs);
1888         blk_queue_io_opt(disk->queue, io_opt);
1889
1890         /*
1891          * Register a metadata profile for PI, or the plain non-integrity NVMe
1892          * metadata masquerading as Type 0 if supported, otherwise reject block
1893          * I/O to namespaces with metadata except when the namespace supports
1894          * PI, as it can strip/insert in that case.
1895          */
1896         if (ns->ms) {
1897                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1898                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1899                         nvme_init_integrity(disk, ns,
1900                                             ns->ctrl->max_integrity_segments);
1901                 else if (!nvme_ns_has_pi(ns))
1902                         capacity = 0;
1903         }
1904
1905         set_capacity_and_notify(disk, capacity);
1906
1907         nvme_config_discard(disk, ns);
1908         blk_queue_max_write_zeroes_sectors(disk->queue,
1909                                            ns->ctrl->max_zeroes_sectors);
1910 }
1911
1912 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1913 {
1914         return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1915 }
1916
1917 static inline bool nvme_first_scan(struct gendisk *disk)
1918 {
1919         /* nvme_alloc_ns() scans the disk prior to adding it */
1920         return !disk_live(disk);
1921 }
1922
1923 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1924 {
1925         struct nvme_ctrl *ctrl = ns->ctrl;
1926         u32 iob;
1927
1928         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1929             is_power_of_2(ctrl->max_hw_sectors))
1930                 iob = ctrl->max_hw_sectors;
1931         else
1932                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1933
1934         if (!iob)
1935                 return;
1936
1937         if (!is_power_of_2(iob)) {
1938                 if (nvme_first_scan(ns->disk))
1939                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1940                                 ns->disk->disk_name, iob);
1941                 return;
1942         }
1943
1944         if (blk_queue_is_zoned(ns->disk->queue)) {
1945                 if (nvme_first_scan(ns->disk))
1946                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1947                                 ns->disk->disk_name);
1948                 return;
1949         }
1950
1951         blk_queue_chunk_sectors(ns->queue, iob);
1952 }
1953
1954 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1955                 struct nvme_ns_info *info)
1956 {
1957         blk_mq_freeze_queue(ns->disk->queue);
1958         nvme_set_queue_limits(ns->ctrl, ns->queue);
1959         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1960         blk_mq_unfreeze_queue(ns->disk->queue);
1961
1962         if (nvme_ns_head_multipath(ns->head)) {
1963                 blk_mq_freeze_queue(ns->head->disk->queue);
1964                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1965                 nvme_mpath_revalidate_paths(ns);
1966                 blk_stack_limits(&ns->head->disk->queue->limits,
1967                                  &ns->queue->limits, 0);
1968                 ns->head->disk->flags |= GENHD_FL_HIDDEN;
1969                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1970         }
1971
1972         /* Hide the block-interface for these devices */
1973         ns->disk->flags |= GENHD_FL_HIDDEN;
1974         set_bit(NVME_NS_READY, &ns->flags);
1975
1976         return 0;
1977 }
1978
1979 static int nvme_update_ns_info_block(struct nvme_ns *ns,
1980                 struct nvme_ns_info *info)
1981 {
1982         struct nvme_id_ns *id;
1983         unsigned lbaf;
1984         int ret;
1985
1986         ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
1987         if (ret)
1988                 return ret;
1989
1990         blk_mq_freeze_queue(ns->disk->queue);
1991         lbaf = nvme_lbaf_index(id->flbas);
1992         ns->lba_shift = id->lbaf[lbaf].ds;
1993         nvme_set_queue_limits(ns->ctrl, ns->queue);
1994
1995         nvme_configure_metadata(ns, id);
1996         nvme_set_chunk_sectors(ns, id);
1997         nvme_update_disk_info(ns->disk, ns, id);
1998
1999         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2000                 ret = nvme_update_zone_info(ns, lbaf);
2001                 if (ret) {
2002                         blk_mq_unfreeze_queue(ns->disk->queue);
2003                         goto out;
2004                 }
2005         }
2006
2007         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2008         set_bit(NVME_NS_READY, &ns->flags);
2009         blk_mq_unfreeze_queue(ns->disk->queue);
2010
2011         if (blk_queue_is_zoned(ns->queue)) {
2012                 ret = nvme_revalidate_zones(ns);
2013                 if (ret && !nvme_first_scan(ns->disk))
2014                         goto out;
2015         }
2016
2017         if (nvme_ns_head_multipath(ns->head)) {
2018                 blk_mq_freeze_queue(ns->head->disk->queue);
2019                 nvme_update_disk_info(ns->head->disk, ns, id);
2020                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2021                 nvme_mpath_revalidate_paths(ns);
2022                 blk_stack_limits(&ns->head->disk->queue->limits,
2023                                  &ns->queue->limits, 0);
2024                 disk_update_readahead(ns->head->disk);
2025                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2026         }
2027
2028         ret = 0;
2029 out:
2030         /*
2031          * If probing fails due an unsupported feature, hide the block device,
2032          * but still allow other access.
2033          */
2034         if (ret == -ENODEV) {
2035                 ns->disk->flags |= GENHD_FL_HIDDEN;
2036                 set_bit(NVME_NS_READY, &ns->flags);
2037                 ret = 0;
2038         }
2039         kfree(id);
2040         return ret;
2041 }
2042
2043 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2044 {
2045         switch (info->ids.csi) {
2046         case NVME_CSI_ZNS:
2047                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2048                         dev_info(ns->ctrl->device,
2049         "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2050                                 info->nsid);
2051                         return nvme_update_ns_info_generic(ns, info);
2052                 }
2053                 return nvme_update_ns_info_block(ns, info);
2054         case NVME_CSI_NVM:
2055                 return nvme_update_ns_info_block(ns, info);
2056         default:
2057                 dev_info(ns->ctrl->device,
2058                         "block device for nsid %u not supported (csi %u)\n",
2059                         info->nsid, info->ids.csi);
2060                 return nvme_update_ns_info_generic(ns, info);
2061         }
2062 }
2063
2064 static char nvme_pr_type(enum pr_type type)
2065 {
2066         switch (type) {
2067         case PR_WRITE_EXCLUSIVE:
2068                 return 1;
2069         case PR_EXCLUSIVE_ACCESS:
2070                 return 2;
2071         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2072                 return 3;
2073         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2074                 return 4;
2075         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2076                 return 5;
2077         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2078                 return 6;
2079         default:
2080                 return 0;
2081         }
2082 }
2083
2084 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2085                 struct nvme_command *c, u8 data[16])
2086 {
2087         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2088         int srcu_idx = srcu_read_lock(&head->srcu);
2089         struct nvme_ns *ns = nvme_find_path(head);
2090         int ret = -EWOULDBLOCK;
2091
2092         if (ns) {
2093                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2094                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2095         }
2096         srcu_read_unlock(&head->srcu, srcu_idx);
2097         return ret;
2098 }
2099         
2100 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2101                 u8 data[16])
2102 {
2103         c->common.nsid = cpu_to_le32(ns->head->ns_id);
2104         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2105 }
2106
2107 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2108                                 u64 key, u64 sa_key, u8 op)
2109 {
2110         struct nvme_command c = { };
2111         u8 data[16] = { 0, };
2112
2113         put_unaligned_le64(key, &data[0]);
2114         put_unaligned_le64(sa_key, &data[8]);
2115
2116         c.common.opcode = op;
2117         c.common.cdw10 = cpu_to_le32(cdw10);
2118
2119         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2120             bdev->bd_disk->fops == &nvme_ns_head_ops)
2121                 return nvme_send_ns_head_pr_command(bdev, &c, data);
2122         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2123 }
2124
2125 static int nvme_pr_register(struct block_device *bdev, u64 old,
2126                 u64 new, unsigned flags)
2127 {
2128         u32 cdw10;
2129
2130         if (flags & ~PR_FL_IGNORE_KEY)
2131                 return -EOPNOTSUPP;
2132
2133         cdw10 = old ? 2 : 0;
2134         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2135         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2136         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2137 }
2138
2139 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2140                 enum pr_type type, unsigned flags)
2141 {
2142         u32 cdw10;
2143
2144         if (flags & ~PR_FL_IGNORE_KEY)
2145                 return -EOPNOTSUPP;
2146
2147         cdw10 = nvme_pr_type(type) << 8;
2148         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2149         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2150 }
2151
2152 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2153                 enum pr_type type, bool abort)
2154 {
2155         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2156
2157         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2158 }
2159
2160 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2161 {
2162         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2163
2164         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2165 }
2166
2167 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2168 {
2169         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2170
2171         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2172 }
2173
2174 const struct pr_ops nvme_pr_ops = {
2175         .pr_register    = nvme_pr_register,
2176         .pr_reserve     = nvme_pr_reserve,
2177         .pr_release     = nvme_pr_release,
2178         .pr_preempt     = nvme_pr_preempt,
2179         .pr_clear       = nvme_pr_clear,
2180 };
2181
2182 #ifdef CONFIG_BLK_SED_OPAL
2183 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2184                 bool send)
2185 {
2186         struct nvme_ctrl *ctrl = data;
2187         struct nvme_command cmd = { };
2188
2189         if (send)
2190                 cmd.common.opcode = nvme_admin_security_send;
2191         else
2192                 cmd.common.opcode = nvme_admin_security_recv;
2193         cmd.common.nsid = 0;
2194         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2195         cmd.common.cdw11 = cpu_to_le32(len);
2196
2197         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2198                         NVME_QID_ANY, 1, 0);
2199 }
2200 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2201 #endif /* CONFIG_BLK_SED_OPAL */
2202
2203 #ifdef CONFIG_BLK_DEV_ZONED
2204 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2205                 unsigned int nr_zones, report_zones_cb cb, void *data)
2206 {
2207         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2208                         data);
2209 }
2210 #else
2211 #define nvme_report_zones       NULL
2212 #endif /* CONFIG_BLK_DEV_ZONED */
2213
2214 static const struct block_device_operations nvme_bdev_ops = {
2215         .owner          = THIS_MODULE,
2216         .ioctl          = nvme_ioctl,
2217         .compat_ioctl   = blkdev_compat_ptr_ioctl,
2218         .open           = nvme_open,
2219         .release        = nvme_release,
2220         .getgeo         = nvme_getgeo,
2221         .report_zones   = nvme_report_zones,
2222         .pr_ops         = &nvme_pr_ops,
2223 };
2224
2225 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled)
2226 {
2227         unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies;
2228         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2229         int ret;
2230
2231         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2232                 if (csts == ~0)
2233                         return -ENODEV;
2234                 if ((csts & NVME_CSTS_RDY) == bit)
2235                         break;
2236
2237                 usleep_range(1000, 2000);
2238                 if (fatal_signal_pending(current))
2239                         return -EINTR;
2240                 if (time_after(jiffies, timeout_jiffies)) {
2241                         dev_err(ctrl->device,
2242                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2243                                 enabled ? "initialisation" : "reset", csts);
2244                         return -ENODEV;
2245                 }
2246         }
2247
2248         return ret;
2249 }
2250
2251 /*
2252  * If the device has been passed off to us in an enabled state, just clear
2253  * the enabled bit.  The spec says we should set the 'shutdown notification
2254  * bits', but doing so may cause the device to complete commands to the
2255  * admin queue ... and we don't know what memory that might be pointing at!
2256  */
2257 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2258 {
2259         int ret;
2260
2261         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2262         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2263
2264         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2265         if (ret)
2266                 return ret;
2267
2268         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2269                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2270
2271         return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false);
2272 }
2273 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2274
2275 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2276 {
2277         unsigned dev_page_min;
2278         u32 timeout;
2279         int ret;
2280
2281         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2282         if (ret) {
2283                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2284                 return ret;
2285         }
2286         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2287
2288         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2289                 dev_err(ctrl->device,
2290                         "Minimum device page size %u too large for host (%u)\n",
2291                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2292                 return -ENODEV;
2293         }
2294
2295         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2296                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2297         else
2298                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2299
2300         if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2301                 u32 crto;
2302
2303                 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2304                 if (ret) {
2305                         dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2306                                 ret);
2307                         return ret;
2308                 }
2309
2310                 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2311                         ctrl->ctrl_config |= NVME_CC_CRIME;
2312                         timeout = NVME_CRTO_CRIMT(crto);
2313                 } else {
2314                         timeout = NVME_CRTO_CRWMT(crto);
2315                 }
2316         } else {
2317                 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2318         }
2319
2320         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2321         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2322         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2323         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2324         if (ret)
2325                 return ret;
2326
2327         /* Flush write to device (required if transport is PCI) */
2328         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2329         if (ret)
2330                 return ret;
2331
2332         ctrl->ctrl_config |= NVME_CC_ENABLE;
2333         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2334         if (ret)
2335                 return ret;
2336         return nvme_wait_ready(ctrl, timeout, true);
2337 }
2338 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2339
2340 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2341 {
2342         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2343         u32 csts;
2344         int ret;
2345
2346         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2347         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2348
2349         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2350         if (ret)
2351                 return ret;
2352
2353         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2354                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2355                         break;
2356
2357                 msleep(100);
2358                 if (fatal_signal_pending(current))
2359                         return -EINTR;
2360                 if (time_after(jiffies, timeout)) {
2361                         dev_err(ctrl->device,
2362                                 "Device shutdown incomplete; abort shutdown\n");
2363                         return -ENODEV;
2364                 }
2365         }
2366
2367         return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2370
2371 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2372 {
2373         __le64 ts;
2374         int ret;
2375
2376         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2377                 return 0;
2378
2379         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2380         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2381                         NULL);
2382         if (ret)
2383                 dev_warn_once(ctrl->device,
2384                         "could not set timestamp (%d)\n", ret);
2385         return ret;
2386 }
2387
2388 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2389 {
2390         struct nvme_feat_host_behavior *host;
2391         u8 acre = 0, lbafee = 0;
2392         int ret;
2393
2394         /* Don't bother enabling the feature if retry delay is not reported */
2395         if (ctrl->crdt[0])
2396                 acre = NVME_ENABLE_ACRE;
2397         if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2398                 lbafee = NVME_ENABLE_LBAFEE;
2399
2400         if (!acre && !lbafee)
2401                 return 0;
2402
2403         host = kzalloc(sizeof(*host), GFP_KERNEL);
2404         if (!host)
2405                 return 0;
2406
2407         host->acre = acre;
2408         host->lbafee = lbafee;
2409         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2410                                 host, sizeof(*host), NULL);
2411         kfree(host);
2412         return ret;
2413 }
2414
2415 /*
2416  * The function checks whether the given total (exlat + enlat) latency of
2417  * a power state allows the latter to be used as an APST transition target.
2418  * It does so by comparing the latency to the primary and secondary latency
2419  * tolerances defined by module params. If there's a match, the corresponding
2420  * timeout value is returned and the matching tolerance index (1 or 2) is
2421  * reported.
2422  */
2423 static bool nvme_apst_get_transition_time(u64 total_latency,
2424                 u64 *transition_time, unsigned *last_index)
2425 {
2426         if (total_latency <= apst_primary_latency_tol_us) {
2427                 if (*last_index == 1)
2428                         return false;
2429                 *last_index = 1;
2430                 *transition_time = apst_primary_timeout_ms;
2431                 return true;
2432         }
2433         if (apst_secondary_timeout_ms &&
2434                 total_latency <= apst_secondary_latency_tol_us) {
2435                 if (*last_index <= 2)
2436                         return false;
2437                 *last_index = 2;
2438                 *transition_time = apst_secondary_timeout_ms;
2439                 return true;
2440         }
2441         return false;
2442 }
2443
2444 /*
2445  * APST (Autonomous Power State Transition) lets us program a table of power
2446  * state transitions that the controller will perform automatically.
2447  *
2448  * Depending on module params, one of the two supported techniques will be used:
2449  *
2450  * - If the parameters provide explicit timeouts and tolerances, they will be
2451  *   used to build a table with up to 2 non-operational states to transition to.
2452  *   The default parameter values were selected based on the values used by
2453  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2454  *   regeneration of the APST table in the event of switching between external
2455  *   and battery power, the timeouts and tolerances reflect a compromise
2456  *   between values used by Microsoft for AC and battery scenarios.
2457  * - If not, we'll configure the table with a simple heuristic: we are willing
2458  *   to spend at most 2% of the time transitioning between power states.
2459  *   Therefore, when running in any given state, we will enter the next
2460  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2461  *   microseconds, as long as that state's exit latency is under the requested
2462  *   maximum latency.
2463  *
2464  * We will not autonomously enter any non-operational state for which the total
2465  * latency exceeds ps_max_latency_us.
2466  *
2467  * Users can set ps_max_latency_us to zero to turn off APST.
2468  */
2469 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2470 {
2471         struct nvme_feat_auto_pst *table;
2472         unsigned apste = 0;
2473         u64 max_lat_us = 0;
2474         __le64 target = 0;
2475         int max_ps = -1;
2476         int state;
2477         int ret;
2478         unsigned last_lt_index = UINT_MAX;
2479
2480         /*
2481          * If APST isn't supported or if we haven't been initialized yet,
2482          * then don't do anything.
2483          */
2484         if (!ctrl->apsta)
2485                 return 0;
2486
2487         if (ctrl->npss > 31) {
2488                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2489                 return 0;
2490         }
2491
2492         table = kzalloc(sizeof(*table), GFP_KERNEL);
2493         if (!table)
2494                 return 0;
2495
2496         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2497                 /* Turn off APST. */
2498                 dev_dbg(ctrl->device, "APST disabled\n");
2499                 goto done;
2500         }
2501
2502         /*
2503          * Walk through all states from lowest- to highest-power.
2504          * According to the spec, lower-numbered states use more power.  NPSS,
2505          * despite the name, is the index of the lowest-power state, not the
2506          * number of states.
2507          */
2508         for (state = (int)ctrl->npss; state >= 0; state--) {
2509                 u64 total_latency_us, exit_latency_us, transition_ms;
2510
2511                 if (target)
2512                         table->entries[state] = target;
2513
2514                 /*
2515                  * Don't allow transitions to the deepest state if it's quirked
2516                  * off.
2517                  */
2518                 if (state == ctrl->npss &&
2519                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2520                         continue;
2521
2522                 /*
2523                  * Is this state a useful non-operational state for higher-power
2524                  * states to autonomously transition to?
2525                  */
2526                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2527                         continue;
2528
2529                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2530                 if (exit_latency_us > ctrl->ps_max_latency_us)
2531                         continue;
2532
2533                 total_latency_us = exit_latency_us +
2534                         le32_to_cpu(ctrl->psd[state].entry_lat);
2535
2536                 /*
2537                  * This state is good. It can be used as the APST idle target
2538                  * for higher power states.
2539                  */
2540                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2541                         if (!nvme_apst_get_transition_time(total_latency_us,
2542                                         &transition_ms, &last_lt_index))
2543                                 continue;
2544                 } else {
2545                         transition_ms = total_latency_us + 19;
2546                         do_div(transition_ms, 20);
2547                         if (transition_ms > (1 << 24) - 1)
2548                                 transition_ms = (1 << 24) - 1;
2549                 }
2550
2551                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2552                 if (max_ps == -1)
2553                         max_ps = state;
2554                 if (total_latency_us > max_lat_us)
2555                         max_lat_us = total_latency_us;
2556         }
2557
2558         if (max_ps == -1)
2559                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2560         else
2561                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2562                         max_ps, max_lat_us, (int)sizeof(*table), table);
2563         apste = 1;
2564
2565 done:
2566         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2567                                 table, sizeof(*table), NULL);
2568         if (ret)
2569                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2570         kfree(table);
2571         return ret;
2572 }
2573
2574 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2575 {
2576         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2577         u64 latency;
2578
2579         switch (val) {
2580         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2581         case PM_QOS_LATENCY_ANY:
2582                 latency = U64_MAX;
2583                 break;
2584
2585         default:
2586                 latency = val;
2587         }
2588
2589         if (ctrl->ps_max_latency_us != latency) {
2590                 ctrl->ps_max_latency_us = latency;
2591                 if (ctrl->state == NVME_CTRL_LIVE)
2592                         nvme_configure_apst(ctrl);
2593         }
2594 }
2595
2596 struct nvme_core_quirk_entry {
2597         /*
2598          * NVMe model and firmware strings are padded with spaces.  For
2599          * simplicity, strings in the quirk table are padded with NULLs
2600          * instead.
2601          */
2602         u16 vid;
2603         const char *mn;
2604         const char *fr;
2605         unsigned long quirks;
2606 };
2607
2608 static const struct nvme_core_quirk_entry core_quirks[] = {
2609         {
2610                 /*
2611                  * This Toshiba device seems to die using any APST states.  See:
2612                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2613                  */
2614                 .vid = 0x1179,
2615                 .mn = "THNSF5256GPUK TOSHIBA",
2616                 .quirks = NVME_QUIRK_NO_APST,
2617         },
2618         {
2619                 /*
2620                  * This LiteON CL1-3D*-Q11 firmware version has a race
2621                  * condition associated with actions related to suspend to idle
2622                  * LiteON has resolved the problem in future firmware
2623                  */
2624                 .vid = 0x14a4,
2625                 .fr = "22301111",
2626                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2627         },
2628         {
2629                 /*
2630                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2631                  * aborts I/O during any load, but more easily reproducible
2632                  * with discards (fstrim).
2633                  *
2634                  * The device is left in a state where it is also not possible
2635                  * to use "nvme set-feature" to disable APST, but booting with
2636                  * nvme_core.default_ps_max_latency=0 works.
2637                  */
2638                 .vid = 0x1e0f,
2639                 .mn = "KCD6XVUL6T40",
2640                 .quirks = NVME_QUIRK_NO_APST,
2641         },
2642         {
2643                 /*
2644                  * The external Samsung X5 SSD fails initialization without a
2645                  * delay before checking if it is ready and has a whole set of
2646                  * other problems.  To make this even more interesting, it
2647                  * shares the PCI ID with internal Samsung 970 Evo Plus that
2648                  * does not need or want these quirks.
2649                  */
2650                 .vid = 0x144d,
2651                 .mn = "Samsung Portable SSD X5",
2652                 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2653                           NVME_QUIRK_NO_DEEPEST_PS |
2654                           NVME_QUIRK_IGNORE_DEV_SUBNQN,
2655         }
2656 };
2657
2658 /* match is null-terminated but idstr is space-padded. */
2659 static bool string_matches(const char *idstr, const char *match, size_t len)
2660 {
2661         size_t matchlen;
2662
2663         if (!match)
2664                 return true;
2665
2666         matchlen = strlen(match);
2667         WARN_ON_ONCE(matchlen > len);
2668
2669         if (memcmp(idstr, match, matchlen))
2670                 return false;
2671
2672         for (; matchlen < len; matchlen++)
2673                 if (idstr[matchlen] != ' ')
2674                         return false;
2675
2676         return true;
2677 }
2678
2679 static bool quirk_matches(const struct nvme_id_ctrl *id,
2680                           const struct nvme_core_quirk_entry *q)
2681 {
2682         return q->vid == le16_to_cpu(id->vid) &&
2683                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2684                 string_matches(id->fr, q->fr, sizeof(id->fr));
2685 }
2686
2687 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2688                 struct nvme_id_ctrl *id)
2689 {
2690         size_t nqnlen;
2691         int off;
2692
2693         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2694                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2695                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2696                         strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2697                         return;
2698                 }
2699
2700                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2701                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2702         }
2703
2704         /*
2705          * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2706          * Base Specification 2.0.  It is slightly different from the format
2707          * specified there due to historic reasons, and we can't change it now.
2708          */
2709         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2710                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2711                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2712         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2713         off += sizeof(id->sn);
2714         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2715         off += sizeof(id->mn);
2716         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2717 }
2718
2719 static void nvme_release_subsystem(struct device *dev)
2720 {
2721         struct nvme_subsystem *subsys =
2722                 container_of(dev, struct nvme_subsystem, dev);
2723
2724         if (subsys->instance >= 0)
2725                 ida_free(&nvme_instance_ida, subsys->instance);
2726         kfree(subsys);
2727 }
2728
2729 static void nvme_destroy_subsystem(struct kref *ref)
2730 {
2731         struct nvme_subsystem *subsys =
2732                         container_of(ref, struct nvme_subsystem, ref);
2733
2734         mutex_lock(&nvme_subsystems_lock);
2735         list_del(&subsys->entry);
2736         mutex_unlock(&nvme_subsystems_lock);
2737
2738         ida_destroy(&subsys->ns_ida);
2739         device_del(&subsys->dev);
2740         put_device(&subsys->dev);
2741 }
2742
2743 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2744 {
2745         kref_put(&subsys->ref, nvme_destroy_subsystem);
2746 }
2747
2748 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2749 {
2750         struct nvme_subsystem *subsys;
2751
2752         lockdep_assert_held(&nvme_subsystems_lock);
2753
2754         /*
2755          * Fail matches for discovery subsystems. This results
2756          * in each discovery controller bound to a unique subsystem.
2757          * This avoids issues with validating controller values
2758          * that can only be true when there is a single unique subsystem.
2759          * There may be multiple and completely independent entities
2760          * that provide discovery controllers.
2761          */
2762         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2763                 return NULL;
2764
2765         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2766                 if (strcmp(subsys->subnqn, subsysnqn))
2767                         continue;
2768                 if (!kref_get_unless_zero(&subsys->ref))
2769                         continue;
2770                 return subsys;
2771         }
2772
2773         return NULL;
2774 }
2775
2776 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2777         struct device_attribute subsys_attr_##_name = \
2778                 __ATTR(_name, _mode, _show, NULL)
2779
2780 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2781                                     struct device_attribute *attr,
2782                                     char *buf)
2783 {
2784         struct nvme_subsystem *subsys =
2785                 container_of(dev, struct nvme_subsystem, dev);
2786
2787         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2788 }
2789 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2790
2791 static ssize_t nvme_subsys_show_type(struct device *dev,
2792                                     struct device_attribute *attr,
2793                                     char *buf)
2794 {
2795         struct nvme_subsystem *subsys =
2796                 container_of(dev, struct nvme_subsystem, dev);
2797
2798         switch (subsys->subtype) {
2799         case NVME_NQN_DISC:
2800                 return sysfs_emit(buf, "discovery\n");
2801         case NVME_NQN_NVME:
2802                 return sysfs_emit(buf, "nvm\n");
2803         default:
2804                 return sysfs_emit(buf, "reserved\n");
2805         }
2806 }
2807 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2808
2809 #define nvme_subsys_show_str_function(field)                            \
2810 static ssize_t subsys_##field##_show(struct device *dev,                \
2811                             struct device_attribute *attr, char *buf)   \
2812 {                                                                       \
2813         struct nvme_subsystem *subsys =                                 \
2814                 container_of(dev, struct nvme_subsystem, dev);          \
2815         return sysfs_emit(buf, "%.*s\n",                                \
2816                            (int)sizeof(subsys->field), subsys->field);  \
2817 }                                                                       \
2818 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2819
2820 nvme_subsys_show_str_function(model);
2821 nvme_subsys_show_str_function(serial);
2822 nvme_subsys_show_str_function(firmware_rev);
2823
2824 static struct attribute *nvme_subsys_attrs[] = {
2825         &subsys_attr_model.attr,
2826         &subsys_attr_serial.attr,
2827         &subsys_attr_firmware_rev.attr,
2828         &subsys_attr_subsysnqn.attr,
2829         &subsys_attr_subsystype.attr,
2830 #ifdef CONFIG_NVME_MULTIPATH
2831         &subsys_attr_iopolicy.attr,
2832 #endif
2833         NULL,
2834 };
2835
2836 static const struct attribute_group nvme_subsys_attrs_group = {
2837         .attrs = nvme_subsys_attrs,
2838 };
2839
2840 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2841         &nvme_subsys_attrs_group,
2842         NULL,
2843 };
2844
2845 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2846 {
2847         return ctrl->opts && ctrl->opts->discovery_nqn;
2848 }
2849
2850 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2851                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2852 {
2853         struct nvme_ctrl *tmp;
2854
2855         lockdep_assert_held(&nvme_subsystems_lock);
2856
2857         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2858                 if (nvme_state_terminal(tmp))
2859                         continue;
2860
2861                 if (tmp->cntlid == ctrl->cntlid) {
2862                         dev_err(ctrl->device,
2863                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2864                                 ctrl->cntlid, dev_name(tmp->device),
2865                                 subsys->subnqn);
2866                         return false;
2867                 }
2868
2869                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2870                     nvme_discovery_ctrl(ctrl))
2871                         continue;
2872
2873                 dev_err(ctrl->device,
2874                         "Subsystem does not support multiple controllers\n");
2875                 return false;
2876         }
2877
2878         return true;
2879 }
2880
2881 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2882 {
2883         struct nvme_subsystem *subsys, *found;
2884         int ret;
2885
2886         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2887         if (!subsys)
2888                 return -ENOMEM;
2889
2890         subsys->instance = -1;
2891         mutex_init(&subsys->lock);
2892         kref_init(&subsys->ref);
2893         INIT_LIST_HEAD(&subsys->ctrls);
2894         INIT_LIST_HEAD(&subsys->nsheads);
2895         nvme_init_subnqn(subsys, ctrl, id);
2896         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2897         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2898         subsys->vendor_id = le16_to_cpu(id->vid);
2899         subsys->cmic = id->cmic;
2900
2901         /* Versions prior to 1.4 don't necessarily report a valid type */
2902         if (id->cntrltype == NVME_CTRL_DISC ||
2903             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2904                 subsys->subtype = NVME_NQN_DISC;
2905         else
2906                 subsys->subtype = NVME_NQN_NVME;
2907
2908         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2909                 dev_err(ctrl->device,
2910                         "Subsystem %s is not a discovery controller",
2911                         subsys->subnqn);
2912                 kfree(subsys);
2913                 return -EINVAL;
2914         }
2915         subsys->awupf = le16_to_cpu(id->awupf);
2916         nvme_mpath_default_iopolicy(subsys);
2917
2918         subsys->dev.class = nvme_subsys_class;
2919         subsys->dev.release = nvme_release_subsystem;
2920         subsys->dev.groups = nvme_subsys_attrs_groups;
2921         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2922         device_initialize(&subsys->dev);
2923
2924         mutex_lock(&nvme_subsystems_lock);
2925         found = __nvme_find_get_subsystem(subsys->subnqn);
2926         if (found) {
2927                 put_device(&subsys->dev);
2928                 subsys = found;
2929
2930                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2931                         ret = -EINVAL;
2932                         goto out_put_subsystem;
2933                 }
2934         } else {
2935                 ret = device_add(&subsys->dev);
2936                 if (ret) {
2937                         dev_err(ctrl->device,
2938                                 "failed to register subsystem device.\n");
2939                         put_device(&subsys->dev);
2940                         goto out_unlock;
2941                 }
2942                 ida_init(&subsys->ns_ida);
2943                 list_add_tail(&subsys->entry, &nvme_subsystems);
2944         }
2945
2946         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2947                                 dev_name(ctrl->device));
2948         if (ret) {
2949                 dev_err(ctrl->device,
2950                         "failed to create sysfs link from subsystem.\n");
2951                 goto out_put_subsystem;
2952         }
2953
2954         if (!found)
2955                 subsys->instance = ctrl->instance;
2956         ctrl->subsys = subsys;
2957         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2958         mutex_unlock(&nvme_subsystems_lock);
2959         return 0;
2960
2961 out_put_subsystem:
2962         nvme_put_subsystem(subsys);
2963 out_unlock:
2964         mutex_unlock(&nvme_subsystems_lock);
2965         return ret;
2966 }
2967
2968 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2969                 void *log, size_t size, u64 offset)
2970 {
2971         struct nvme_command c = { };
2972         u32 dwlen = nvme_bytes_to_numd(size);
2973
2974         c.get_log_page.opcode = nvme_admin_get_log_page;
2975         c.get_log_page.nsid = cpu_to_le32(nsid);
2976         c.get_log_page.lid = log_page;
2977         c.get_log_page.lsp = lsp;
2978         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2979         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2980         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2981         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2982         c.get_log_page.csi = csi;
2983
2984         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2985 }
2986
2987 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2988                                 struct nvme_effects_log **log)
2989 {
2990         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2991         int ret;
2992
2993         if (cel)
2994                 goto out;
2995
2996         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2997         if (!cel)
2998                 return -ENOMEM;
2999
3000         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3001                         cel, sizeof(*cel), 0);
3002         if (ret) {
3003                 kfree(cel);
3004                 return ret;
3005         }
3006
3007         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3008 out:
3009         *log = cel;
3010         return 0;
3011 }
3012
3013 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3014 {
3015         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3016
3017         if (check_shl_overflow(1U, units + page_shift - 9, &val))
3018                 return UINT_MAX;
3019         return val;
3020 }
3021
3022 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3023 {
3024         struct nvme_command c = { };
3025         struct nvme_id_ctrl_nvm *id;
3026         int ret;
3027
3028         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3029                 ctrl->max_discard_sectors = UINT_MAX;
3030                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3031         } else {
3032                 ctrl->max_discard_sectors = 0;
3033                 ctrl->max_discard_segments = 0;
3034         }
3035
3036         /*
3037          * Even though NVMe spec explicitly states that MDTS is not applicable
3038          * to the write-zeroes, we are cautious and limit the size to the
3039          * controllers max_hw_sectors value, which is based on the MDTS field
3040          * and possibly other limiting factors.
3041          */
3042         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3043             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3044                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3045         else
3046                 ctrl->max_zeroes_sectors = 0;
3047
3048         if (nvme_ctrl_limited_cns(ctrl))
3049                 return 0;
3050
3051         id = kzalloc(sizeof(*id), GFP_KERNEL);
3052         if (!id)
3053                 return 0;
3054
3055         c.identify.opcode = nvme_admin_identify;
3056         c.identify.cns = NVME_ID_CNS_CS_CTRL;
3057         c.identify.csi = NVME_CSI_NVM;
3058
3059         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3060         if (ret)
3061                 goto free_data;
3062
3063         if (id->dmrl)
3064                 ctrl->max_discard_segments = id->dmrl;
3065         ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3066         if (id->wzsl)
3067                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3068
3069 free_data:
3070         kfree(id);
3071         return ret;
3072 }
3073
3074 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3075 {
3076         struct nvme_id_ctrl *id;
3077         u32 max_hw_sectors;
3078         bool prev_apst_enabled;
3079         int ret;
3080
3081         ret = nvme_identify_ctrl(ctrl, &id);
3082         if (ret) {
3083                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3084                 return -EIO;
3085         }
3086
3087         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3088                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3089                 if (ret < 0)
3090                         goto out_free;
3091         }
3092
3093         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3094                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3095
3096         if (!ctrl->identified) {
3097                 unsigned int i;
3098
3099                 ret = nvme_init_subsystem(ctrl, id);
3100                 if (ret)
3101                         goto out_free;
3102
3103                 /*
3104                  * Check for quirks.  Quirk can depend on firmware version,
3105                  * so, in principle, the set of quirks present can change
3106                  * across a reset.  As a possible future enhancement, we
3107                  * could re-scan for quirks every time we reinitialize
3108                  * the device, but we'd have to make sure that the driver
3109                  * behaves intelligently if the quirks change.
3110                  */
3111                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3112                         if (quirk_matches(id, &core_quirks[i]))
3113                                 ctrl->quirks |= core_quirks[i].quirks;
3114                 }
3115         }
3116         memcpy(ctrl->subsys->firmware_rev, id->fr,
3117                sizeof(ctrl->subsys->firmware_rev));
3118
3119         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3120                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3121                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3122         }
3123
3124         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3125         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3126         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3127
3128         ctrl->oacs = le16_to_cpu(id->oacs);
3129         ctrl->oncs = le16_to_cpu(id->oncs);
3130         ctrl->mtfa = le16_to_cpu(id->mtfa);
3131         ctrl->oaes = le32_to_cpu(id->oaes);
3132         ctrl->wctemp = le16_to_cpu(id->wctemp);
3133         ctrl->cctemp = le16_to_cpu(id->cctemp);
3134
3135         atomic_set(&ctrl->abort_limit, id->acl + 1);
3136         ctrl->vwc = id->vwc;
3137         if (id->mdts)
3138                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3139         else
3140                 max_hw_sectors = UINT_MAX;
3141         ctrl->max_hw_sectors =
3142                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3143
3144         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3145         ctrl->sgls = le32_to_cpu(id->sgls);
3146         ctrl->kas = le16_to_cpu(id->kas);
3147         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3148         ctrl->ctratt = le32_to_cpu(id->ctratt);
3149
3150         ctrl->cntrltype = id->cntrltype;
3151         ctrl->dctype = id->dctype;
3152
3153         if (id->rtd3e) {
3154                 /* us -> s */
3155                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3156
3157                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3158                                                  shutdown_timeout, 60);
3159
3160                 if (ctrl->shutdown_timeout != shutdown_timeout)
3161                         dev_info(ctrl->device,
3162                                  "Shutdown timeout set to %u seconds\n",
3163                                  ctrl->shutdown_timeout);
3164         } else
3165                 ctrl->shutdown_timeout = shutdown_timeout;
3166
3167         ctrl->npss = id->npss;
3168         ctrl->apsta = id->apsta;
3169         prev_apst_enabled = ctrl->apst_enabled;
3170         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3171                 if (force_apst && id->apsta) {
3172                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3173                         ctrl->apst_enabled = true;
3174                 } else {
3175                         ctrl->apst_enabled = false;
3176                 }
3177         } else {
3178                 ctrl->apst_enabled = id->apsta;
3179         }
3180         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3181
3182         if (ctrl->ops->flags & NVME_F_FABRICS) {
3183                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3184                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3185                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3186                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3187
3188                 /*
3189                  * In fabrics we need to verify the cntlid matches the
3190                  * admin connect
3191                  */
3192                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3193                         dev_err(ctrl->device,
3194                                 "Mismatching cntlid: Connect %u vs Identify "
3195                                 "%u, rejecting\n",
3196                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3197                         ret = -EINVAL;
3198                         goto out_free;
3199                 }
3200
3201                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3202                         dev_err(ctrl->device,
3203                                 "keep-alive support is mandatory for fabrics\n");
3204                         ret = -EINVAL;
3205                         goto out_free;
3206                 }
3207         } else {
3208                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3209                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3210                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3211                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3212         }
3213
3214         ret = nvme_mpath_init_identify(ctrl, id);
3215         if (ret < 0)
3216                 goto out_free;
3217
3218         if (ctrl->apst_enabled && !prev_apst_enabled)
3219                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3220         else if (!ctrl->apst_enabled && prev_apst_enabled)
3221                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3222
3223 out_free:
3224         kfree(id);
3225         return ret;
3226 }
3227
3228 /*
3229  * Initialize the cached copies of the Identify data and various controller
3230  * register in our nvme_ctrl structure.  This should be called as soon as
3231  * the admin queue is fully up and running.
3232  */
3233 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3234 {
3235         int ret;
3236
3237         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3238         if (ret) {
3239                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3240                 return ret;
3241         }
3242
3243         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3244
3245         if (ctrl->vs >= NVME_VS(1, 1, 0))
3246                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3247
3248         ret = nvme_init_identify(ctrl);
3249         if (ret)
3250                 return ret;
3251
3252         ret = nvme_configure_apst(ctrl);
3253         if (ret < 0)
3254                 return ret;
3255
3256         ret = nvme_configure_timestamp(ctrl);
3257         if (ret < 0)
3258                 return ret;
3259
3260         ret = nvme_configure_host_options(ctrl);
3261         if (ret < 0)
3262                 return ret;
3263
3264         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3265                 ret = nvme_hwmon_init(ctrl);
3266                 if (ret < 0)
3267                         return ret;
3268         }
3269
3270         ctrl->identified = true;
3271
3272         return 0;
3273 }
3274 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3275
3276 static int nvme_dev_open(struct inode *inode, struct file *file)
3277 {
3278         struct nvme_ctrl *ctrl =
3279                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3280
3281         switch (ctrl->state) {
3282         case NVME_CTRL_LIVE:
3283                 break;
3284         default:
3285                 return -EWOULDBLOCK;
3286         }
3287
3288         nvme_get_ctrl(ctrl);
3289         if (!try_module_get(ctrl->ops->module)) {
3290                 nvme_put_ctrl(ctrl);
3291                 return -EINVAL;
3292         }
3293
3294         file->private_data = ctrl;
3295         return 0;
3296 }
3297
3298 static int nvme_dev_release(struct inode *inode, struct file *file)
3299 {
3300         struct nvme_ctrl *ctrl =
3301                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3302
3303         module_put(ctrl->ops->module);
3304         nvme_put_ctrl(ctrl);
3305         return 0;
3306 }
3307
3308 static const struct file_operations nvme_dev_fops = {
3309         .owner          = THIS_MODULE,
3310         .open           = nvme_dev_open,
3311         .release        = nvme_dev_release,
3312         .unlocked_ioctl = nvme_dev_ioctl,
3313         .compat_ioctl   = compat_ptr_ioctl,
3314         .uring_cmd      = nvme_dev_uring_cmd,
3315 };
3316
3317 static ssize_t nvme_sysfs_reset(struct device *dev,
3318                                 struct device_attribute *attr, const char *buf,
3319                                 size_t count)
3320 {
3321         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3322         int ret;
3323
3324         ret = nvme_reset_ctrl_sync(ctrl);
3325         if (ret < 0)
3326                 return ret;
3327         return count;
3328 }
3329 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3330
3331 static ssize_t nvme_sysfs_rescan(struct device *dev,
3332                                 struct device_attribute *attr, const char *buf,
3333                                 size_t count)
3334 {
3335         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3336
3337         nvme_queue_scan(ctrl);
3338         return count;
3339 }
3340 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3341
3342 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3343 {
3344         struct gendisk *disk = dev_to_disk(dev);
3345
3346         if (disk->fops == &nvme_bdev_ops)
3347                 return nvme_get_ns_from_dev(dev)->head;
3348         else
3349                 return disk->private_data;
3350 }
3351
3352 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3353                 char *buf)
3354 {
3355         struct nvme_ns_head *head = dev_to_ns_head(dev);
3356         struct nvme_ns_ids *ids = &head->ids;
3357         struct nvme_subsystem *subsys = head->subsys;
3358         int serial_len = sizeof(subsys->serial);
3359         int model_len = sizeof(subsys->model);
3360
3361         if (!uuid_is_null(&ids->uuid))
3362                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3363
3364         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3365                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3366
3367         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3368                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3369
3370         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3371                                   subsys->serial[serial_len - 1] == '\0'))
3372                 serial_len--;
3373         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3374                                  subsys->model[model_len - 1] == '\0'))
3375                 model_len--;
3376
3377         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3378                 serial_len, subsys->serial, model_len, subsys->model,
3379                 head->ns_id);
3380 }
3381 static DEVICE_ATTR_RO(wwid);
3382
3383 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3384                 char *buf)
3385 {
3386         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3387 }
3388 static DEVICE_ATTR_RO(nguid);
3389
3390 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3391                 char *buf)
3392 {
3393         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3394
3395         /* For backward compatibility expose the NGUID to userspace if
3396          * we have no UUID set
3397          */
3398         if (uuid_is_null(&ids->uuid)) {
3399                 dev_warn_ratelimited(dev,
3400                         "No UUID available providing old NGUID\n");
3401                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3402         }
3403         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3404 }
3405 static DEVICE_ATTR_RO(uuid);
3406
3407 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3408                 char *buf)
3409 {
3410         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3411 }
3412 static DEVICE_ATTR_RO(eui);
3413
3414 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3415                 char *buf)
3416 {
3417         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3418 }
3419 static DEVICE_ATTR_RO(nsid);
3420
3421 static struct attribute *nvme_ns_id_attrs[] = {
3422         &dev_attr_wwid.attr,
3423         &dev_attr_uuid.attr,
3424         &dev_attr_nguid.attr,
3425         &dev_attr_eui.attr,
3426         &dev_attr_nsid.attr,
3427 #ifdef CONFIG_NVME_MULTIPATH
3428         &dev_attr_ana_grpid.attr,
3429         &dev_attr_ana_state.attr,
3430 #endif
3431         NULL,
3432 };
3433
3434 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3435                 struct attribute *a, int n)
3436 {
3437         struct device *dev = container_of(kobj, struct device, kobj);
3438         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3439
3440         if (a == &dev_attr_uuid.attr) {
3441                 if (uuid_is_null(&ids->uuid) &&
3442                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3443                         return 0;
3444         }
3445         if (a == &dev_attr_nguid.attr) {
3446                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3447                         return 0;
3448         }
3449         if (a == &dev_attr_eui.attr) {
3450                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3451                         return 0;
3452         }
3453 #ifdef CONFIG_NVME_MULTIPATH
3454         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3455                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3456                         return 0;
3457                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3458                         return 0;
3459         }
3460 #endif
3461         return a->mode;
3462 }
3463
3464 static const struct attribute_group nvme_ns_id_attr_group = {
3465         .attrs          = nvme_ns_id_attrs,
3466         .is_visible     = nvme_ns_id_attrs_are_visible,
3467 };
3468
3469 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3470         &nvme_ns_id_attr_group,
3471         NULL,
3472 };
3473
3474 #define nvme_show_str_function(field)                                           \
3475 static ssize_t  field##_show(struct device *dev,                                \
3476                             struct device_attribute *attr, char *buf)           \
3477 {                                                                               \
3478         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3479         return sysfs_emit(buf, "%.*s\n",                                        \
3480                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3481 }                                                                               \
3482 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3483
3484 nvme_show_str_function(model);
3485 nvme_show_str_function(serial);
3486 nvme_show_str_function(firmware_rev);
3487
3488 #define nvme_show_int_function(field)                                           \
3489 static ssize_t  field##_show(struct device *dev,                                \
3490                             struct device_attribute *attr, char *buf)           \
3491 {                                                                               \
3492         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3493         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3494 }                                                                               \
3495 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3496
3497 nvme_show_int_function(cntlid);
3498 nvme_show_int_function(numa_node);
3499 nvme_show_int_function(queue_count);
3500 nvme_show_int_function(sqsize);
3501 nvme_show_int_function(kato);
3502
3503 static ssize_t nvme_sysfs_delete(struct device *dev,
3504                                 struct device_attribute *attr, const char *buf,
3505                                 size_t count)
3506 {
3507         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3508
3509         if (device_remove_file_self(dev, attr))
3510                 nvme_delete_ctrl_sync(ctrl);
3511         return count;
3512 }
3513 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3514
3515 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3516                                          struct device_attribute *attr,
3517                                          char *buf)
3518 {
3519         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3520
3521         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3522 }
3523 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3524
3525 static ssize_t nvme_sysfs_show_state(struct device *dev,
3526                                      struct device_attribute *attr,
3527                                      char *buf)
3528 {
3529         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3530         static const char *const state_name[] = {
3531                 [NVME_CTRL_NEW]         = "new",
3532                 [NVME_CTRL_LIVE]        = "live",
3533                 [NVME_CTRL_RESETTING]   = "resetting",
3534                 [NVME_CTRL_CONNECTING]  = "connecting",
3535                 [NVME_CTRL_DELETING]    = "deleting",
3536                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3537                 [NVME_CTRL_DEAD]        = "dead",
3538         };
3539
3540         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3541             state_name[ctrl->state])
3542                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3543
3544         return sysfs_emit(buf, "unknown state\n");
3545 }
3546
3547 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3548
3549 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3550                                          struct device_attribute *attr,
3551                                          char *buf)
3552 {
3553         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3554
3555         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3556 }
3557 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3558
3559 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3560                                         struct device_attribute *attr,
3561                                         char *buf)
3562 {
3563         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3564
3565         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3566 }
3567 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3568
3569 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3570                                         struct device_attribute *attr,
3571                                         char *buf)
3572 {
3573         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3574
3575         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3576 }
3577 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3578
3579 static ssize_t nvme_sysfs_show_address(struct device *dev,
3580                                          struct device_attribute *attr,
3581                                          char *buf)
3582 {
3583         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3584
3585         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3586 }
3587 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3588
3589 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3590                 struct device_attribute *attr, char *buf)
3591 {
3592         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3593         struct nvmf_ctrl_options *opts = ctrl->opts;
3594
3595         if (ctrl->opts->max_reconnects == -1)
3596                 return sysfs_emit(buf, "off\n");
3597         return sysfs_emit(buf, "%d\n",
3598                           opts->max_reconnects * opts->reconnect_delay);
3599 }
3600
3601 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3602                 struct device_attribute *attr, const char *buf, size_t count)
3603 {
3604         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3605         struct nvmf_ctrl_options *opts = ctrl->opts;
3606         int ctrl_loss_tmo, err;
3607
3608         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3609         if (err)
3610                 return -EINVAL;
3611
3612         if (ctrl_loss_tmo < 0)
3613                 opts->max_reconnects = -1;
3614         else
3615                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3616                                                 opts->reconnect_delay);
3617         return count;
3618 }
3619 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3620         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3621
3622 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3623                 struct device_attribute *attr, char *buf)
3624 {
3625         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3626
3627         if (ctrl->opts->reconnect_delay == -1)
3628                 return sysfs_emit(buf, "off\n");
3629         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3630 }
3631
3632 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3633                 struct device_attribute *attr, const char *buf, size_t count)
3634 {
3635         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3636         unsigned int v;
3637         int err;
3638
3639         err = kstrtou32(buf, 10, &v);
3640         if (err)
3641                 return err;
3642
3643         ctrl->opts->reconnect_delay = v;
3644         return count;
3645 }
3646 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3647         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3648
3649 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3650                 struct device_attribute *attr, char *buf)
3651 {
3652         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3653
3654         if (ctrl->opts->fast_io_fail_tmo == -1)
3655                 return sysfs_emit(buf, "off\n");
3656         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3657 }
3658
3659 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3660                 struct device_attribute *attr, const char *buf, size_t count)
3661 {
3662         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3663         struct nvmf_ctrl_options *opts = ctrl->opts;
3664         int fast_io_fail_tmo, err;
3665
3666         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3667         if (err)
3668                 return -EINVAL;
3669
3670         if (fast_io_fail_tmo < 0)
3671                 opts->fast_io_fail_tmo = -1;
3672         else
3673                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3674         return count;
3675 }
3676 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3677         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3678
3679 static ssize_t cntrltype_show(struct device *dev,
3680                               struct device_attribute *attr, char *buf)
3681 {
3682         static const char * const type[] = {
3683                 [NVME_CTRL_IO] = "io\n",
3684                 [NVME_CTRL_DISC] = "discovery\n",
3685                 [NVME_CTRL_ADMIN] = "admin\n",
3686         };
3687         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3688
3689         if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3690                 return sysfs_emit(buf, "reserved\n");
3691
3692         return sysfs_emit(buf, type[ctrl->cntrltype]);
3693 }
3694 static DEVICE_ATTR_RO(cntrltype);
3695
3696 static ssize_t dctype_show(struct device *dev,
3697                            struct device_attribute *attr, char *buf)
3698 {
3699         static const char * const type[] = {
3700                 [NVME_DCTYPE_NOT_REPORTED] = "none\n",
3701                 [NVME_DCTYPE_DDC] = "ddc\n",
3702                 [NVME_DCTYPE_CDC] = "cdc\n",
3703         };
3704         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3705
3706         if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3707                 return sysfs_emit(buf, "reserved\n");
3708
3709         return sysfs_emit(buf, type[ctrl->dctype]);
3710 }
3711 static DEVICE_ATTR_RO(dctype);
3712
3713 #ifdef CONFIG_NVME_AUTH
3714 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3715                 struct device_attribute *attr, char *buf)
3716 {
3717         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3718         struct nvmf_ctrl_options *opts = ctrl->opts;
3719
3720         if (!opts->dhchap_secret)
3721                 return sysfs_emit(buf, "none\n");
3722         return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3723 }
3724
3725 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3726                 struct device_attribute *attr, const char *buf, size_t count)
3727 {
3728         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3729         struct nvmf_ctrl_options *opts = ctrl->opts;
3730         char *dhchap_secret;
3731
3732         if (!ctrl->opts->dhchap_secret)
3733                 return -EINVAL;
3734         if (count < 7)
3735                 return -EINVAL;
3736         if (memcmp(buf, "DHHC-1:", 7))
3737                 return -EINVAL;
3738
3739         dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3740         if (!dhchap_secret)
3741                 return -ENOMEM;
3742         memcpy(dhchap_secret, buf, count);
3743         nvme_auth_stop(ctrl);
3744         if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3745                 int ret;
3746
3747                 ret = nvme_auth_generate_key(dhchap_secret, &ctrl->host_key);
3748                 if (ret)
3749                         return ret;
3750                 kfree(opts->dhchap_secret);
3751                 opts->dhchap_secret = dhchap_secret;
3752                 /* Key has changed; re-authentication with new key */
3753                 nvme_auth_reset(ctrl);
3754         }
3755         /* Start re-authentication */
3756         dev_info(ctrl->device, "re-authenticating controller\n");
3757         queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3758
3759         return count;
3760 }
3761 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3762         nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3763
3764 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3765                 struct device_attribute *attr, char *buf)
3766 {
3767         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3768         struct nvmf_ctrl_options *opts = ctrl->opts;
3769
3770         if (!opts->dhchap_ctrl_secret)
3771                 return sysfs_emit(buf, "none\n");
3772         return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3773 }
3774
3775 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3776                 struct device_attribute *attr, const char *buf, size_t count)
3777 {
3778         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3779         struct nvmf_ctrl_options *opts = ctrl->opts;
3780         char *dhchap_secret;
3781
3782         if (!ctrl->opts->dhchap_ctrl_secret)
3783                 return -EINVAL;
3784         if (count < 7)
3785                 return -EINVAL;
3786         if (memcmp(buf, "DHHC-1:", 7))
3787                 return -EINVAL;
3788
3789         dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3790         if (!dhchap_secret)
3791                 return -ENOMEM;
3792         memcpy(dhchap_secret, buf, count);
3793         nvme_auth_stop(ctrl);
3794         if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3795                 int ret;
3796
3797                 ret = nvme_auth_generate_key(dhchap_secret, &ctrl->ctrl_key);
3798                 if (ret)
3799                         return ret;
3800                 kfree(opts->dhchap_ctrl_secret);
3801                 opts->dhchap_ctrl_secret = dhchap_secret;
3802                 /* Key has changed; re-authentication with new key */
3803                 nvme_auth_reset(ctrl);
3804         }
3805         /* Start re-authentication */
3806         dev_info(ctrl->device, "re-authenticating controller\n");
3807         queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3808
3809         return count;
3810 }
3811 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3812         nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3813 #endif
3814
3815 static struct attribute *nvme_dev_attrs[] = {
3816         &dev_attr_reset_controller.attr,
3817         &dev_attr_rescan_controller.attr,
3818         &dev_attr_model.attr,
3819         &dev_attr_serial.attr,
3820         &dev_attr_firmware_rev.attr,
3821         &dev_attr_cntlid.attr,
3822         &dev_attr_delete_controller.attr,
3823         &dev_attr_transport.attr,
3824         &dev_attr_subsysnqn.attr,
3825         &dev_attr_address.attr,
3826         &dev_attr_state.attr,
3827         &dev_attr_numa_node.attr,
3828         &dev_attr_queue_count.attr,
3829         &dev_attr_sqsize.attr,
3830         &dev_attr_hostnqn.attr,
3831         &dev_attr_hostid.attr,
3832         &dev_attr_ctrl_loss_tmo.attr,
3833         &dev_attr_reconnect_delay.attr,
3834         &dev_attr_fast_io_fail_tmo.attr,
3835         &dev_attr_kato.attr,
3836         &dev_attr_cntrltype.attr,
3837         &dev_attr_dctype.attr,
3838 #ifdef CONFIG_NVME_AUTH
3839         &dev_attr_dhchap_secret.attr,
3840         &dev_attr_dhchap_ctrl_secret.attr,
3841 #endif
3842         NULL
3843 };
3844
3845 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3846                 struct attribute *a, int n)
3847 {
3848         struct device *dev = container_of(kobj, struct device, kobj);
3849         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3850
3851         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3852                 return 0;
3853         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3854                 return 0;
3855         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3856                 return 0;
3857         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3858                 return 0;
3859         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3860                 return 0;
3861         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3862                 return 0;
3863         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3864                 return 0;
3865 #ifdef CONFIG_NVME_AUTH
3866         if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
3867                 return 0;
3868         if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
3869                 return 0;
3870 #endif
3871
3872         return a->mode;
3873 }
3874
3875 static const struct attribute_group nvme_dev_attrs_group = {
3876         .attrs          = nvme_dev_attrs,
3877         .is_visible     = nvme_dev_attrs_are_visible,
3878 };
3879
3880 static const struct attribute_group *nvme_dev_attr_groups[] = {
3881         &nvme_dev_attrs_group,
3882         NULL,
3883 };
3884
3885 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3886                 unsigned nsid)
3887 {
3888         struct nvme_ns_head *h;
3889
3890         lockdep_assert_held(&ctrl->subsys->lock);
3891
3892         list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3893                 /*
3894                  * Private namespaces can share NSIDs under some conditions.
3895                  * In that case we can't use the same ns_head for namespaces
3896                  * with the same NSID.
3897                  */
3898                 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3899                         continue;
3900                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3901                         return h;
3902         }
3903
3904         return NULL;
3905 }
3906
3907 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3908                 struct nvme_ns_ids *ids)
3909 {
3910         bool has_uuid = !uuid_is_null(&ids->uuid);
3911         bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3912         bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3913         struct nvme_ns_head *h;
3914
3915         lockdep_assert_held(&subsys->lock);
3916
3917         list_for_each_entry(h, &subsys->nsheads, entry) {
3918                 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3919                         return -EINVAL;
3920                 if (has_nguid &&
3921                     memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3922                         return -EINVAL;
3923                 if (has_eui64 &&
3924                     memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3925                         return -EINVAL;
3926         }
3927
3928         return 0;
3929 }
3930
3931 static void nvme_cdev_rel(struct device *dev)
3932 {
3933         ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3934 }
3935
3936 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3937 {
3938         cdev_device_del(cdev, cdev_device);
3939         put_device(cdev_device);
3940 }
3941
3942 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3943                 const struct file_operations *fops, struct module *owner)
3944 {
3945         int minor, ret;
3946
3947         minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3948         if (minor < 0)
3949                 return minor;
3950         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3951         cdev_device->class = nvme_ns_chr_class;
3952         cdev_device->release = nvme_cdev_rel;
3953         device_initialize(cdev_device);
3954         cdev_init(cdev, fops);
3955         cdev->owner = owner;
3956         ret = cdev_device_add(cdev, cdev_device);
3957         if (ret)
3958                 put_device(cdev_device);
3959
3960         return ret;
3961 }
3962
3963 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3964 {
3965         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3966 }
3967
3968 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3969 {
3970         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3971         return 0;
3972 }
3973
3974 static const struct file_operations nvme_ns_chr_fops = {
3975         .owner          = THIS_MODULE,
3976         .open           = nvme_ns_chr_open,
3977         .release        = nvme_ns_chr_release,
3978         .unlocked_ioctl = nvme_ns_chr_ioctl,
3979         .compat_ioctl   = compat_ptr_ioctl,
3980         .uring_cmd      = nvme_ns_chr_uring_cmd,
3981         .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3982 };
3983
3984 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3985 {
3986         int ret;
3987
3988         ns->cdev_device.parent = ns->ctrl->device;
3989         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3990                            ns->ctrl->instance, ns->head->instance);
3991         if (ret)
3992                 return ret;
3993
3994         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3995                              ns->ctrl->ops->module);
3996 }
3997
3998 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3999                 struct nvme_ns_info *info)
4000 {
4001         struct nvme_ns_head *head;
4002         size_t size = sizeof(*head);
4003         int ret = -ENOMEM;
4004
4005 #ifdef CONFIG_NVME_MULTIPATH
4006         size += num_possible_nodes() * sizeof(struct nvme_ns *);
4007 #endif
4008
4009         head = kzalloc(size, GFP_KERNEL);
4010         if (!head)
4011                 goto out;
4012         ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4013         if (ret < 0)
4014                 goto out_free_head;
4015         head->instance = ret;
4016         INIT_LIST_HEAD(&head->list);
4017         ret = init_srcu_struct(&head->srcu);
4018         if (ret)
4019                 goto out_ida_remove;
4020         head->subsys = ctrl->subsys;
4021         head->ns_id = info->nsid;
4022         head->ids = info->ids;
4023         head->shared = info->is_shared;
4024         kref_init(&head->ref);
4025
4026         if (head->ids.csi) {
4027                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4028                 if (ret)
4029                         goto out_cleanup_srcu;
4030         } else
4031                 head->effects = ctrl->effects;
4032
4033         ret = nvme_mpath_alloc_disk(ctrl, head);
4034         if (ret)
4035                 goto out_cleanup_srcu;
4036
4037         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4038
4039         kref_get(&ctrl->subsys->ref);
4040
4041         return head;
4042 out_cleanup_srcu:
4043         cleanup_srcu_struct(&head->srcu);
4044 out_ida_remove:
4045         ida_free(&ctrl->subsys->ns_ida, head->instance);
4046 out_free_head:
4047         kfree(head);
4048 out:
4049         if (ret > 0)
4050                 ret = blk_status_to_errno(nvme_error_status(ret));
4051         return ERR_PTR(ret);
4052 }
4053
4054 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4055                 struct nvme_ns_ids *ids)
4056 {
4057         struct nvme_subsystem *s;
4058         int ret = 0;
4059
4060         /*
4061          * Note that this check is racy as we try to avoid holding the global
4062          * lock over the whole ns_head creation.  But it is only intended as
4063          * a sanity check anyway.
4064          */
4065         mutex_lock(&nvme_subsystems_lock);
4066         list_for_each_entry(s, &nvme_subsystems, entry) {
4067                 if (s == this)
4068                         continue;
4069                 mutex_lock(&s->lock);
4070                 ret = nvme_subsys_check_duplicate_ids(s, ids);
4071                 mutex_unlock(&s->lock);
4072                 if (ret)
4073                         break;
4074         }
4075         mutex_unlock(&nvme_subsystems_lock);
4076
4077         return ret;
4078 }
4079
4080 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4081 {
4082         struct nvme_ctrl *ctrl = ns->ctrl;
4083         struct nvme_ns_head *head = NULL;
4084         int ret;
4085
4086         ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4087         if (ret) {
4088                 dev_err(ctrl->device,
4089                         "globally duplicate IDs for nsid %d\n", info->nsid);
4090                 nvme_print_device_info(ctrl);
4091                 return ret;
4092         }
4093
4094         mutex_lock(&ctrl->subsys->lock);
4095         head = nvme_find_ns_head(ctrl, info->nsid);
4096         if (!head) {
4097                 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4098                 if (ret) {
4099                         dev_err(ctrl->device,
4100                                 "duplicate IDs in subsystem for nsid %d\n",
4101                                 info->nsid);
4102                         goto out_unlock;
4103                 }
4104                 head = nvme_alloc_ns_head(ctrl, info);
4105                 if (IS_ERR(head)) {
4106                         ret = PTR_ERR(head);
4107                         goto out_unlock;
4108                 }
4109         } else {
4110                 ret = -EINVAL;
4111                 if (!info->is_shared || !head->shared) {
4112                         dev_err(ctrl->device,
4113                                 "Duplicate unshared namespace %d\n",
4114                                 info->nsid);
4115                         goto out_put_ns_head;
4116                 }
4117                 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4118                         dev_err(ctrl->device,
4119                                 "IDs don't match for shared namespace %d\n",
4120                                         info->nsid);
4121                         goto out_put_ns_head;
4122                 }
4123
4124                 if (!multipath && !list_empty(&head->list)) {
4125                         dev_warn(ctrl->device,
4126                                 "Found shared namespace %d, but multipathing not supported.\n",
4127                                 info->nsid);
4128                         dev_warn_once(ctrl->device,
4129                                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4130                 }
4131         }
4132
4133         list_add_tail_rcu(&ns->siblings, &head->list);
4134         ns->head = head;
4135         mutex_unlock(&ctrl->subsys->lock);
4136         return 0;
4137
4138 out_put_ns_head:
4139         nvme_put_ns_head(head);
4140 out_unlock:
4141         mutex_unlock(&ctrl->subsys->lock);
4142         return ret;
4143 }
4144
4145 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4146 {
4147         struct nvme_ns *ns, *ret = NULL;
4148
4149         down_read(&ctrl->namespaces_rwsem);
4150         list_for_each_entry(ns, &ctrl->namespaces, list) {
4151                 if (ns->head->ns_id == nsid) {
4152                         if (!nvme_get_ns(ns))
4153                                 continue;
4154                         ret = ns;
4155                         break;
4156                 }
4157                 if (ns->head->ns_id > nsid)
4158                         break;
4159         }
4160         up_read(&ctrl->namespaces_rwsem);
4161         return ret;
4162 }
4163 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4164
4165 /*
4166  * Add the namespace to the controller list while keeping the list ordered.
4167  */
4168 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4169 {
4170         struct nvme_ns *tmp;
4171
4172         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4173                 if (tmp->head->ns_id < ns->head->ns_id) {
4174                         list_add(&ns->list, &tmp->list);
4175                         return;
4176                 }
4177         }
4178         list_add(&ns->list, &ns->ctrl->namespaces);
4179 }
4180
4181 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4182 {
4183         struct nvme_ns *ns;
4184         struct gendisk *disk;
4185         int node = ctrl->numa_node;
4186
4187         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4188         if (!ns)
4189                 return;
4190
4191         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4192         if (IS_ERR(disk))
4193                 goto out_free_ns;
4194         disk->fops = &nvme_bdev_ops;
4195         disk->private_data = ns;
4196
4197         ns->disk = disk;
4198         ns->queue = disk->queue;
4199
4200         if (ctrl->opts && ctrl->opts->data_digest)
4201                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4202
4203         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4204         if (ctrl->ops->supports_pci_p2pdma &&
4205             ctrl->ops->supports_pci_p2pdma(ctrl))
4206                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4207
4208         ns->ctrl = ctrl;
4209         kref_init(&ns->kref);
4210
4211         if (nvme_init_ns_head(ns, info))
4212                 goto out_cleanup_disk;
4213
4214         /*
4215          * If multipathing is enabled, the device name for all disks and not
4216          * just those that represent shared namespaces needs to be based on the
4217          * subsystem instance.  Using the controller instance for private
4218          * namespaces could lead to naming collisions between shared and private
4219          * namespaces if they don't use a common numbering scheme.
4220          *
4221          * If multipathing is not enabled, disk names must use the controller
4222          * instance as shared namespaces will show up as multiple block
4223          * devices.
4224          */
4225         if (ns->head->disk) {
4226                 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4227                         ctrl->instance, ns->head->instance);
4228                 disk->flags |= GENHD_FL_HIDDEN;
4229         } else if (multipath) {
4230                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4231                         ns->head->instance);
4232         } else {
4233                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4234                         ns->head->instance);
4235         }
4236
4237         if (nvme_update_ns_info(ns, info))
4238                 goto out_unlink_ns;
4239
4240         down_write(&ctrl->namespaces_rwsem);
4241         nvme_ns_add_to_ctrl_list(ns);
4242         up_write(&ctrl->namespaces_rwsem);
4243         nvme_get_ctrl(ctrl);
4244
4245         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4246                 goto out_cleanup_ns_from_list;
4247
4248         if (!nvme_ns_head_multipath(ns->head))
4249                 nvme_add_ns_cdev(ns);
4250
4251         nvme_mpath_add_disk(ns, info->anagrpid);
4252         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4253
4254         return;
4255
4256  out_cleanup_ns_from_list:
4257         nvme_put_ctrl(ctrl);
4258         down_write(&ctrl->namespaces_rwsem);
4259         list_del_init(&ns->list);
4260         up_write(&ctrl->namespaces_rwsem);
4261  out_unlink_ns:
4262         mutex_lock(&ctrl->subsys->lock);
4263         list_del_rcu(&ns->siblings);
4264         if (list_empty(&ns->head->list))
4265                 list_del_init(&ns->head->entry);
4266         mutex_unlock(&ctrl->subsys->lock);
4267         nvme_put_ns_head(ns->head);
4268  out_cleanup_disk:
4269         put_disk(disk);
4270  out_free_ns:
4271         kfree(ns);
4272 }
4273
4274 static void nvme_ns_remove(struct nvme_ns *ns)
4275 {
4276         bool last_path = false;
4277
4278         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4279                 return;
4280
4281         clear_bit(NVME_NS_READY, &ns->flags);
4282         set_capacity(ns->disk, 0);
4283         nvme_fault_inject_fini(&ns->fault_inject);
4284
4285         /*
4286          * Ensure that !NVME_NS_READY is seen by other threads to prevent
4287          * this ns going back into current_path.
4288          */
4289         synchronize_srcu(&ns->head->srcu);
4290
4291         /* wait for concurrent submissions */
4292         if (nvme_mpath_clear_current_path(ns))
4293                 synchronize_srcu(&ns->head->srcu);
4294
4295         mutex_lock(&ns->ctrl->subsys->lock);
4296         list_del_rcu(&ns->siblings);
4297         if (list_empty(&ns->head->list)) {
4298                 list_del_init(&ns->head->entry);
4299                 last_path = true;
4300         }
4301         mutex_unlock(&ns->ctrl->subsys->lock);
4302
4303         /* guarantee not available in head->list */
4304         synchronize_rcu();
4305
4306         if (!nvme_ns_head_multipath(ns->head))
4307                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4308         del_gendisk(ns->disk);
4309
4310         down_write(&ns->ctrl->namespaces_rwsem);
4311         list_del_init(&ns->list);
4312         up_write(&ns->ctrl->namespaces_rwsem);
4313
4314         if (last_path)
4315                 nvme_mpath_shutdown_disk(ns->head);
4316         nvme_put_ns(ns);
4317 }
4318
4319 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4320 {
4321         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4322
4323         if (ns) {
4324                 nvme_ns_remove(ns);
4325                 nvme_put_ns(ns);
4326         }
4327 }
4328
4329 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4330 {
4331         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4332
4333         if (test_bit(NVME_NS_DEAD, &ns->flags))
4334                 goto out;
4335
4336         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4337         if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4338                 dev_err(ns->ctrl->device,
4339                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4340                 goto out;
4341         }
4342
4343         ret = nvme_update_ns_info(ns, info);
4344 out:
4345         /*
4346          * Only remove the namespace if we got a fatal error back from the
4347          * device, otherwise ignore the error and just move on.
4348          *
4349          * TODO: we should probably schedule a delayed retry here.
4350          */
4351         if (ret > 0 && (ret & NVME_SC_DNR))
4352                 nvme_ns_remove(ns);
4353 }
4354
4355 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4356 {
4357         struct nvme_ns_info info = { .nsid = nsid };
4358         struct nvme_ns *ns;
4359
4360         if (nvme_identify_ns_descs(ctrl, &info))
4361                 return;
4362
4363         if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4364                 dev_warn(ctrl->device,
4365                         "command set not reported for nsid: %d\n", nsid);
4366                 return;
4367         }
4368
4369         /*
4370          * If available try to use the Command Set Idependent Identify Namespace
4371          * data structure to find all the generic information that is needed to
4372          * set up a namespace.  If not fall back to the legacy version.
4373          */
4374         if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4375             (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) {
4376                 if (nvme_ns_info_from_id_cs_indep(ctrl, &info))
4377                         return;
4378         } else {
4379                 if (nvme_ns_info_from_identify(ctrl, &info))
4380                         return;
4381         }
4382
4383         /*
4384          * Ignore the namespace if it is not ready. We will get an AEN once it
4385          * becomes ready and restart the scan.
4386          */
4387         if (!info.is_ready)
4388                 return;
4389
4390         ns = nvme_find_get_ns(ctrl, nsid);
4391         if (ns) {
4392                 nvme_validate_ns(ns, &info);
4393                 nvme_put_ns(ns);
4394         } else {
4395                 nvme_alloc_ns(ctrl, &info);
4396         }
4397 }
4398
4399 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4400                                         unsigned nsid)
4401 {
4402         struct nvme_ns *ns, *next;
4403         LIST_HEAD(rm_list);
4404
4405         down_write(&ctrl->namespaces_rwsem);
4406         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4407                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4408                         list_move_tail(&ns->list, &rm_list);
4409         }
4410         up_write(&ctrl->namespaces_rwsem);
4411
4412         list_for_each_entry_safe(ns, next, &rm_list, list)
4413                 nvme_ns_remove(ns);
4414
4415 }
4416
4417 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4418 {
4419         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4420         __le32 *ns_list;
4421         u32 prev = 0;
4422         int ret = 0, i;
4423
4424         if (nvme_ctrl_limited_cns(ctrl))
4425                 return -EOPNOTSUPP;
4426
4427         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4428         if (!ns_list)
4429                 return -ENOMEM;
4430
4431         for (;;) {
4432                 struct nvme_command cmd = {
4433                         .identify.opcode        = nvme_admin_identify,
4434                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4435                         .identify.nsid          = cpu_to_le32(prev),
4436                 };
4437
4438                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4439                                             NVME_IDENTIFY_DATA_SIZE);
4440                 if (ret) {
4441                         dev_warn(ctrl->device,
4442                                 "Identify NS List failed (status=0x%x)\n", ret);
4443                         goto free;
4444                 }
4445
4446                 for (i = 0; i < nr_entries; i++) {
4447                         u32 nsid = le32_to_cpu(ns_list[i]);
4448
4449                         if (!nsid)      /* end of the list? */
4450                                 goto out;
4451                         nvme_scan_ns(ctrl, nsid);
4452                         while (++prev < nsid)
4453                                 nvme_ns_remove_by_nsid(ctrl, prev);
4454                 }
4455         }
4456  out:
4457         nvme_remove_invalid_namespaces(ctrl, prev);
4458  free:
4459         kfree(ns_list);
4460         return ret;
4461 }
4462
4463 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4464 {
4465         struct nvme_id_ctrl *id;
4466         u32 nn, i;
4467
4468         if (nvme_identify_ctrl(ctrl, &id))
4469                 return;
4470         nn = le32_to_cpu(id->nn);
4471         kfree(id);
4472
4473         for (i = 1; i <= nn; i++)
4474                 nvme_scan_ns(ctrl, i);
4475
4476         nvme_remove_invalid_namespaces(ctrl, nn);
4477 }
4478
4479 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4480 {
4481         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4482         __le32 *log;
4483         int error;
4484
4485         log = kzalloc(log_size, GFP_KERNEL);
4486         if (!log)
4487                 return;
4488
4489         /*
4490          * We need to read the log to clear the AEN, but we don't want to rely
4491          * on it for the changed namespace information as userspace could have
4492          * raced with us in reading the log page, which could cause us to miss
4493          * updates.
4494          */
4495         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4496                         NVME_CSI_NVM, log, log_size, 0);
4497         if (error)
4498                 dev_warn(ctrl->device,
4499                         "reading changed ns log failed: %d\n", error);
4500
4501         kfree(log);
4502 }
4503
4504 static void nvme_scan_work(struct work_struct *work)
4505 {
4506         struct nvme_ctrl *ctrl =
4507                 container_of(work, struct nvme_ctrl, scan_work);
4508         int ret;
4509
4510         /* No tagset on a live ctrl means IO queues could not created */
4511         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4512                 return;
4513
4514         /*
4515          * Identify controller limits can change at controller reset due to
4516          * new firmware download, even though it is not common we cannot ignore
4517          * such scenario. Controller's non-mdts limits are reported in the unit
4518          * of logical blocks that is dependent on the format of attached
4519          * namespace. Hence re-read the limits at the time of ns allocation.
4520          */
4521         ret = nvme_init_non_mdts_limits(ctrl);
4522         if (ret < 0) {
4523                 dev_warn(ctrl->device,
4524                         "reading non-mdts-limits failed: %d\n", ret);
4525                 return;
4526         }
4527
4528         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4529                 dev_info(ctrl->device, "rescanning namespaces.\n");
4530                 nvme_clear_changed_ns_log(ctrl);
4531         }
4532
4533         mutex_lock(&ctrl->scan_lock);
4534         if (nvme_scan_ns_list(ctrl) != 0)
4535                 nvme_scan_ns_sequential(ctrl);
4536         mutex_unlock(&ctrl->scan_lock);
4537 }
4538
4539 /*
4540  * This function iterates the namespace list unlocked to allow recovery from
4541  * controller failure. It is up to the caller to ensure the namespace list is
4542  * not modified by scan work while this function is executing.
4543  */
4544 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4545 {
4546         struct nvme_ns *ns, *next;
4547         LIST_HEAD(ns_list);
4548
4549         /*
4550          * make sure to requeue I/O to all namespaces as these
4551          * might result from the scan itself and must complete
4552          * for the scan_work to make progress
4553          */
4554         nvme_mpath_clear_ctrl_paths(ctrl);
4555
4556         /* prevent racing with ns scanning */
4557         flush_work(&ctrl->scan_work);
4558
4559         /*
4560          * The dead states indicates the controller was not gracefully
4561          * disconnected. In that case, we won't be able to flush any data while
4562          * removing the namespaces' disks; fail all the queues now to avoid
4563          * potentially having to clean up the failed sync later.
4564          */
4565         if (ctrl->state == NVME_CTRL_DEAD)
4566                 nvme_kill_queues(ctrl);
4567
4568         /* this is a no-op when called from the controller reset handler */
4569         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4570
4571         down_write(&ctrl->namespaces_rwsem);
4572         list_splice_init(&ctrl->namespaces, &ns_list);
4573         up_write(&ctrl->namespaces_rwsem);
4574
4575         list_for_each_entry_safe(ns, next, &ns_list, list)
4576                 nvme_ns_remove(ns);
4577 }
4578 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4579
4580 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4581 {
4582         struct nvme_ctrl *ctrl =
4583                 container_of(dev, struct nvme_ctrl, ctrl_device);
4584         struct nvmf_ctrl_options *opts = ctrl->opts;
4585         int ret;
4586
4587         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4588         if (ret)
4589                 return ret;
4590
4591         if (opts) {
4592                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4593                 if (ret)
4594                         return ret;
4595
4596                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4597                                 opts->trsvcid ?: "none");
4598                 if (ret)
4599                         return ret;
4600
4601                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4602                                 opts->host_traddr ?: "none");
4603                 if (ret)
4604                         return ret;
4605
4606                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4607                                 opts->host_iface ?: "none");
4608         }
4609         return ret;
4610 }
4611
4612 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4613 {
4614         char *envp[2] = { envdata, NULL };
4615
4616         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4617 }
4618
4619 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4620 {
4621         char *envp[2] = { NULL, NULL };
4622         u32 aen_result = ctrl->aen_result;
4623
4624         ctrl->aen_result = 0;
4625         if (!aen_result)
4626                 return;
4627
4628         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4629         if (!envp[0])
4630                 return;
4631         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4632         kfree(envp[0]);
4633 }
4634
4635 static void nvme_async_event_work(struct work_struct *work)
4636 {
4637         struct nvme_ctrl *ctrl =
4638                 container_of(work, struct nvme_ctrl, async_event_work);
4639
4640         nvme_aen_uevent(ctrl);
4641
4642         /*
4643          * The transport drivers must guarantee AER submission here is safe by
4644          * flushing ctrl async_event_work after changing the controller state
4645          * from LIVE and before freeing the admin queue.
4646         */
4647         if (ctrl->state == NVME_CTRL_LIVE)
4648                 ctrl->ops->submit_async_event(ctrl);
4649 }
4650
4651 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4652 {
4653
4654         u32 csts;
4655
4656         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4657                 return false;
4658
4659         if (csts == ~0)
4660                 return false;
4661
4662         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4663 }
4664
4665 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4666 {
4667         struct nvme_fw_slot_info_log *log;
4668
4669         log = kmalloc(sizeof(*log), GFP_KERNEL);
4670         if (!log)
4671                 return;
4672
4673         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4674                         log, sizeof(*log), 0))
4675                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4676         kfree(log);
4677 }
4678
4679 static void nvme_fw_act_work(struct work_struct *work)
4680 {
4681         struct nvme_ctrl *ctrl = container_of(work,
4682                                 struct nvme_ctrl, fw_act_work);
4683         unsigned long fw_act_timeout;
4684
4685         if (ctrl->mtfa)
4686                 fw_act_timeout = jiffies +
4687                                 msecs_to_jiffies(ctrl->mtfa * 100);
4688         else
4689                 fw_act_timeout = jiffies +
4690                                 msecs_to_jiffies(admin_timeout * 1000);
4691
4692         nvme_stop_queues(ctrl);
4693         while (nvme_ctrl_pp_status(ctrl)) {
4694                 if (time_after(jiffies, fw_act_timeout)) {
4695                         dev_warn(ctrl->device,
4696                                 "Fw activation timeout, reset controller\n");
4697                         nvme_try_sched_reset(ctrl);
4698                         return;
4699                 }
4700                 msleep(100);
4701         }
4702
4703         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4704                 return;
4705
4706         nvme_start_queues(ctrl);
4707         /* read FW slot information to clear the AER */
4708         nvme_get_fw_slot_info(ctrl);
4709
4710         queue_work(nvme_wq, &ctrl->async_event_work);
4711 }
4712
4713 static u32 nvme_aer_type(u32 result)
4714 {
4715         return result & 0x7;
4716 }
4717
4718 static u32 nvme_aer_subtype(u32 result)
4719 {
4720         return (result & 0xff00) >> 8;
4721 }
4722
4723 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4724 {
4725         u32 aer_notice_type = nvme_aer_subtype(result);
4726         bool requeue = true;
4727
4728         trace_nvme_async_event(ctrl, aer_notice_type);
4729
4730         switch (aer_notice_type) {
4731         case NVME_AER_NOTICE_NS_CHANGED:
4732                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4733                 nvme_queue_scan(ctrl);
4734                 break;
4735         case NVME_AER_NOTICE_FW_ACT_STARTING:
4736                 /*
4737                  * We are (ab)using the RESETTING state to prevent subsequent
4738                  * recovery actions from interfering with the controller's
4739                  * firmware activation.
4740                  */
4741                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4742                         nvme_auth_stop(ctrl);
4743                         requeue = false;
4744                         queue_work(nvme_wq, &ctrl->fw_act_work);
4745                 }
4746                 break;
4747 #ifdef CONFIG_NVME_MULTIPATH
4748         case NVME_AER_NOTICE_ANA:
4749                 if (!ctrl->ana_log_buf)
4750                         break;
4751                 queue_work(nvme_wq, &ctrl->ana_work);
4752                 break;
4753 #endif
4754         case NVME_AER_NOTICE_DISC_CHANGED:
4755                 ctrl->aen_result = result;
4756                 break;
4757         default:
4758                 dev_warn(ctrl->device, "async event result %08x\n", result);
4759         }
4760         return requeue;
4761 }
4762
4763 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4764 {
4765         trace_nvme_async_event(ctrl, NVME_AER_ERROR);
4766         dev_warn(ctrl->device, "resetting controller due to AER\n");
4767         nvme_reset_ctrl(ctrl);
4768 }
4769
4770 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4771                 volatile union nvme_result *res)
4772 {
4773         u32 result = le32_to_cpu(res->u32);
4774         u32 aer_type = nvme_aer_type(result);
4775         u32 aer_subtype = nvme_aer_subtype(result);
4776         bool requeue = true;
4777
4778         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4779                 return;
4780
4781         switch (aer_type) {
4782         case NVME_AER_NOTICE:
4783                 requeue = nvme_handle_aen_notice(ctrl, result);
4784                 break;
4785         case NVME_AER_ERROR:
4786                 /*
4787                  * For a persistent internal error, don't run async_event_work
4788                  * to submit a new AER. The controller reset will do it.
4789                  */
4790                 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4791                         nvme_handle_aer_persistent_error(ctrl);
4792                         return;
4793                 }
4794                 fallthrough;
4795         case NVME_AER_SMART:
4796         case NVME_AER_CSS:
4797         case NVME_AER_VS:
4798                 trace_nvme_async_event(ctrl, aer_type);
4799                 ctrl->aen_result = result;
4800                 break;
4801         default:
4802                 break;
4803         }
4804
4805         if (requeue)
4806                 queue_work(nvme_wq, &ctrl->async_event_work);
4807 }
4808 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4809
4810 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4811                 const struct blk_mq_ops *ops, unsigned int flags,
4812                 unsigned int cmd_size)
4813 {
4814         int ret;
4815
4816         memset(set, 0, sizeof(*set));
4817         set->ops = ops;
4818         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4819         if (ctrl->ops->flags & NVME_F_FABRICS)
4820                 set->reserved_tags = NVMF_RESERVED_TAGS;
4821         set->numa_node = ctrl->numa_node;
4822         set->flags = flags;
4823         set->cmd_size = cmd_size;
4824         set->driver_data = ctrl;
4825         set->nr_hw_queues = 1;
4826         set->timeout = NVME_ADMIN_TIMEOUT;
4827         ret = blk_mq_alloc_tag_set(set);
4828         if (ret)
4829                 return ret;
4830
4831         ctrl->admin_q = blk_mq_init_queue(set);
4832         if (IS_ERR(ctrl->admin_q)) {
4833                 ret = PTR_ERR(ctrl->admin_q);
4834                 goto out_free_tagset;
4835         }
4836
4837         if (ctrl->ops->flags & NVME_F_FABRICS) {
4838                 ctrl->fabrics_q = blk_mq_init_queue(set);
4839                 if (IS_ERR(ctrl->fabrics_q)) {
4840                         ret = PTR_ERR(ctrl->fabrics_q);
4841                         goto out_cleanup_admin_q;
4842                 }
4843         }
4844
4845         ctrl->admin_tagset = set;
4846         return 0;
4847
4848 out_cleanup_admin_q:
4849         blk_mq_destroy_queue(ctrl->fabrics_q);
4850 out_free_tagset:
4851         blk_mq_free_tag_set(ctrl->admin_tagset);
4852         return ret;
4853 }
4854 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4855
4856 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4857 {
4858         blk_mq_destroy_queue(ctrl->admin_q);
4859         if (ctrl->ops->flags & NVME_F_FABRICS)
4860                 blk_mq_destroy_queue(ctrl->fabrics_q);
4861         blk_mq_free_tag_set(ctrl->admin_tagset);
4862 }
4863 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4864
4865 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4866                 const struct blk_mq_ops *ops, unsigned int flags,
4867                 unsigned int cmd_size)
4868 {
4869         int ret;
4870
4871         memset(set, 0, sizeof(*set));
4872         set->ops = ops;
4873         set->queue_depth = ctrl->sqsize + 1;
4874         set->reserved_tags = NVMF_RESERVED_TAGS;
4875         set->numa_node = ctrl->numa_node;
4876         set->flags = flags;
4877         set->cmd_size = cmd_size,
4878         set->driver_data = ctrl;
4879         set->nr_hw_queues = ctrl->queue_count - 1;
4880         set->timeout = NVME_IO_TIMEOUT;
4881         if (ops->map_queues)
4882                 set->nr_maps = ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
4883         ret = blk_mq_alloc_tag_set(set);
4884         if (ret)
4885                 return ret;
4886
4887         if (ctrl->ops->flags & NVME_F_FABRICS) {
4888                 ctrl->connect_q = blk_mq_init_queue(set);
4889                 if (IS_ERR(ctrl->connect_q)) {
4890                         ret = PTR_ERR(ctrl->connect_q);
4891                         goto out_free_tag_set;
4892                 }
4893         }
4894
4895         ctrl->tagset = set;
4896         return 0;
4897
4898 out_free_tag_set:
4899         blk_mq_free_tag_set(set);
4900         return ret;
4901 }
4902 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4903
4904 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4905 {
4906         if (ctrl->ops->flags & NVME_F_FABRICS)
4907                 blk_mq_destroy_queue(ctrl->connect_q);
4908         blk_mq_free_tag_set(ctrl->tagset);
4909 }
4910 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4911
4912 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4913 {
4914         nvme_mpath_stop(ctrl);
4915         nvme_auth_stop(ctrl);
4916         nvme_stop_keep_alive(ctrl);
4917         nvme_stop_failfast_work(ctrl);
4918         flush_work(&ctrl->async_event_work);
4919         cancel_work_sync(&ctrl->fw_act_work);
4920         if (ctrl->ops->stop_ctrl)
4921                 ctrl->ops->stop_ctrl(ctrl);
4922 }
4923 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4924
4925 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4926 {
4927         nvme_start_keep_alive(ctrl);
4928
4929         nvme_enable_aen(ctrl);
4930
4931         /*
4932          * persistent discovery controllers need to send indication to userspace
4933          * to re-read the discovery log page to learn about possible changes
4934          * that were missed. We identify persistent discovery controllers by
4935          * checking that they started once before, hence are reconnecting back.
4936          */
4937         if (test_and_set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4938             nvme_discovery_ctrl(ctrl))
4939                 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4940
4941         if (ctrl->queue_count > 1) {
4942                 nvme_queue_scan(ctrl);
4943                 nvme_start_queues(ctrl);
4944                 nvme_mpath_update(ctrl);
4945         }
4946
4947         nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4948 }
4949 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4950
4951 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4952 {
4953         nvme_hwmon_exit(ctrl);
4954         nvme_fault_inject_fini(&ctrl->fault_inject);
4955         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4956         cdev_device_del(&ctrl->cdev, ctrl->device);
4957         nvme_put_ctrl(ctrl);
4958 }
4959 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4960
4961 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4962 {
4963         struct nvme_effects_log *cel;
4964         unsigned long i;
4965
4966         xa_for_each(&ctrl->cels, i, cel) {
4967                 xa_erase(&ctrl->cels, i);
4968                 kfree(cel);
4969         }
4970
4971         xa_destroy(&ctrl->cels);
4972 }
4973
4974 static void nvme_free_ctrl(struct device *dev)
4975 {
4976         struct nvme_ctrl *ctrl =
4977                 container_of(dev, struct nvme_ctrl, ctrl_device);
4978         struct nvme_subsystem *subsys = ctrl->subsys;
4979
4980         if (!subsys || ctrl->instance != subsys->instance)
4981                 ida_free(&nvme_instance_ida, ctrl->instance);
4982
4983         nvme_free_cels(ctrl);
4984         nvme_mpath_uninit(ctrl);
4985         nvme_auth_stop(ctrl);
4986         nvme_auth_free(ctrl);
4987         __free_page(ctrl->discard_page);
4988
4989         if (subsys) {
4990                 mutex_lock(&nvme_subsystems_lock);
4991                 list_del(&ctrl->subsys_entry);
4992                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4993                 mutex_unlock(&nvme_subsystems_lock);
4994         }
4995
4996         ctrl->ops->free_ctrl(ctrl);
4997
4998         if (subsys)
4999                 nvme_put_subsystem(subsys);
5000 }
5001
5002 /*
5003  * Initialize a NVMe controller structures.  This needs to be called during
5004  * earliest initialization so that we have the initialized structured around
5005  * during probing.
5006  */
5007 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5008                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
5009 {
5010         int ret;
5011
5012         ctrl->state = NVME_CTRL_NEW;
5013         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5014         spin_lock_init(&ctrl->lock);
5015         mutex_init(&ctrl->scan_lock);
5016         INIT_LIST_HEAD(&ctrl->namespaces);
5017         xa_init(&ctrl->cels);
5018         init_rwsem(&ctrl->namespaces_rwsem);
5019         ctrl->dev = dev;
5020         ctrl->ops = ops;
5021         ctrl->quirks = quirks;
5022         ctrl->numa_node = NUMA_NO_NODE;
5023         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5024         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5025         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5026         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5027         init_waitqueue_head(&ctrl->state_wq);
5028
5029         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5030         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5031         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5032         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5033
5034         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5035                         PAGE_SIZE);
5036         ctrl->discard_page = alloc_page(GFP_KERNEL);
5037         if (!ctrl->discard_page) {
5038                 ret = -ENOMEM;
5039                 goto out;
5040         }
5041
5042         ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5043         if (ret < 0)
5044                 goto out;
5045         ctrl->instance = ret;
5046
5047         device_initialize(&ctrl->ctrl_device);
5048         ctrl->device = &ctrl->ctrl_device;
5049         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5050                         ctrl->instance);
5051         ctrl->device->class = nvme_class;
5052         ctrl->device->parent = ctrl->dev;
5053         ctrl->device->groups = nvme_dev_attr_groups;
5054         ctrl->device->release = nvme_free_ctrl;
5055         dev_set_drvdata(ctrl->device, ctrl);
5056         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5057         if (ret)
5058                 goto out_release_instance;
5059
5060         nvme_get_ctrl(ctrl);
5061         cdev_init(&ctrl->cdev, &nvme_dev_fops);
5062         ctrl->cdev.owner = ops->module;
5063         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5064         if (ret)
5065                 goto out_free_name;
5066
5067         /*
5068          * Initialize latency tolerance controls.  The sysfs files won't
5069          * be visible to userspace unless the device actually supports APST.
5070          */
5071         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5072         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5073                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5074
5075         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5076         nvme_mpath_init_ctrl(ctrl);
5077         nvme_auth_init_ctrl(ctrl);
5078
5079         return 0;
5080 out_free_name:
5081         nvme_put_ctrl(ctrl);
5082         kfree_const(ctrl->device->kobj.name);
5083 out_release_instance:
5084         ida_free(&nvme_instance_ida, ctrl->instance);
5085 out:
5086         if (ctrl->discard_page)
5087                 __free_page(ctrl->discard_page);
5088         return ret;
5089 }
5090 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5091
5092 static void nvme_start_ns_queue(struct nvme_ns *ns)
5093 {
5094         if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
5095                 blk_mq_unquiesce_queue(ns->queue);
5096 }
5097
5098 static void nvme_stop_ns_queue(struct nvme_ns *ns)
5099 {
5100         if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
5101                 blk_mq_quiesce_queue(ns->queue);
5102         else
5103                 blk_mq_wait_quiesce_done(ns->queue);
5104 }
5105
5106 /*
5107  * Prepare a queue for teardown.
5108  *
5109  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
5110  * the capacity to 0 after that to avoid blocking dispatchers that may be
5111  * holding bd_butex.  This will end buffered writers dirtying pages that can't
5112  * be synced.
5113  */
5114 static void nvme_set_queue_dying(struct nvme_ns *ns)
5115 {
5116         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
5117                 return;
5118
5119         blk_mark_disk_dead(ns->disk);
5120         nvme_start_ns_queue(ns);
5121
5122         set_capacity_and_notify(ns->disk, 0);
5123 }
5124
5125 /**
5126  * nvme_kill_queues(): Ends all namespace queues
5127  * @ctrl: the dead controller that needs to end
5128  *
5129  * Call this function when the driver determines it is unable to get the
5130  * controller in a state capable of servicing IO.
5131  */
5132 void nvme_kill_queues(struct nvme_ctrl *ctrl)
5133 {
5134         struct nvme_ns *ns;
5135
5136         down_read(&ctrl->namespaces_rwsem);
5137
5138         /* Forcibly unquiesce queues to avoid blocking dispatch */
5139         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
5140                 nvme_start_admin_queue(ctrl);
5141
5142         list_for_each_entry(ns, &ctrl->namespaces, list)
5143                 nvme_set_queue_dying(ns);
5144
5145         up_read(&ctrl->namespaces_rwsem);
5146 }
5147 EXPORT_SYMBOL_GPL(nvme_kill_queues);
5148
5149 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5150 {
5151         struct nvme_ns *ns;
5152
5153         down_read(&ctrl->namespaces_rwsem);
5154         list_for_each_entry(ns, &ctrl->namespaces, list)
5155                 blk_mq_unfreeze_queue(ns->queue);
5156         up_read(&ctrl->namespaces_rwsem);
5157 }
5158 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5159
5160 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5161 {
5162         struct nvme_ns *ns;
5163
5164         down_read(&ctrl->namespaces_rwsem);
5165         list_for_each_entry(ns, &ctrl->namespaces, list) {
5166                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5167                 if (timeout <= 0)
5168                         break;
5169         }
5170         up_read(&ctrl->namespaces_rwsem);
5171         return timeout;
5172 }
5173 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5174
5175 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5176 {
5177         struct nvme_ns *ns;
5178
5179         down_read(&ctrl->namespaces_rwsem);
5180         list_for_each_entry(ns, &ctrl->namespaces, list)
5181                 blk_mq_freeze_queue_wait(ns->queue);
5182         up_read(&ctrl->namespaces_rwsem);
5183 }
5184 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5185
5186 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5187 {
5188         struct nvme_ns *ns;
5189
5190         down_read(&ctrl->namespaces_rwsem);
5191         list_for_each_entry(ns, &ctrl->namespaces, list)
5192                 blk_freeze_queue_start(ns->queue);
5193         up_read(&ctrl->namespaces_rwsem);
5194 }
5195 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5196
5197 void nvme_stop_queues(struct nvme_ctrl *ctrl)
5198 {
5199         struct nvme_ns *ns;
5200
5201         down_read(&ctrl->namespaces_rwsem);
5202         list_for_each_entry(ns, &ctrl->namespaces, list)
5203                 nvme_stop_ns_queue(ns);
5204         up_read(&ctrl->namespaces_rwsem);
5205 }
5206 EXPORT_SYMBOL_GPL(nvme_stop_queues);
5207
5208 void nvme_start_queues(struct nvme_ctrl *ctrl)
5209 {
5210         struct nvme_ns *ns;
5211
5212         down_read(&ctrl->namespaces_rwsem);
5213         list_for_each_entry(ns, &ctrl->namespaces, list)
5214                 nvme_start_ns_queue(ns);
5215         up_read(&ctrl->namespaces_rwsem);
5216 }
5217 EXPORT_SYMBOL_GPL(nvme_start_queues);
5218
5219 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
5220 {
5221         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5222                 blk_mq_quiesce_queue(ctrl->admin_q);
5223         else
5224                 blk_mq_wait_quiesce_done(ctrl->admin_q);
5225 }
5226 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
5227
5228 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
5229 {
5230         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5231                 blk_mq_unquiesce_queue(ctrl->admin_q);
5232 }
5233 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
5234
5235 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5236 {
5237         struct nvme_ns *ns;
5238
5239         down_read(&ctrl->namespaces_rwsem);
5240         list_for_each_entry(ns, &ctrl->namespaces, list)
5241                 blk_sync_queue(ns->queue);
5242         up_read(&ctrl->namespaces_rwsem);
5243 }
5244 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5245
5246 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5247 {
5248         nvme_sync_io_queues(ctrl);
5249         if (ctrl->admin_q)
5250                 blk_sync_queue(ctrl->admin_q);
5251 }
5252 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5253
5254 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5255 {
5256         if (file->f_op != &nvme_dev_fops)
5257                 return NULL;
5258         return file->private_data;
5259 }
5260 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5261
5262 /*
5263  * Check we didn't inadvertently grow the command structure sizes:
5264  */
5265 static inline void _nvme_check_size(void)
5266 {
5267         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5268         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5269         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5270         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5271         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5272         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5273         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5274         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5275         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5276         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5277         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5278         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5279         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5280         BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5281                         NVME_IDENTIFY_DATA_SIZE);
5282         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5283         BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5284         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5285         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5286         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5287         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5288         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5289         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5290         BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5291 }
5292
5293
5294 static int __init nvme_core_init(void)
5295 {
5296         int result = -ENOMEM;
5297
5298         _nvme_check_size();
5299
5300         nvme_wq = alloc_workqueue("nvme-wq",
5301                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5302         if (!nvme_wq)
5303                 goto out;
5304
5305         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5306                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5307         if (!nvme_reset_wq)
5308                 goto destroy_wq;
5309
5310         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5311                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5312         if (!nvme_delete_wq)
5313                 goto destroy_reset_wq;
5314
5315         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5316                         NVME_MINORS, "nvme");
5317         if (result < 0)
5318                 goto destroy_delete_wq;
5319
5320         nvme_class = class_create(THIS_MODULE, "nvme");
5321         if (IS_ERR(nvme_class)) {
5322                 result = PTR_ERR(nvme_class);
5323                 goto unregister_chrdev;
5324         }
5325         nvme_class->dev_uevent = nvme_class_uevent;
5326
5327         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
5328         if (IS_ERR(nvme_subsys_class)) {
5329                 result = PTR_ERR(nvme_subsys_class);
5330                 goto destroy_class;
5331         }
5332
5333         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5334                                      "nvme-generic");
5335         if (result < 0)
5336                 goto destroy_subsys_class;
5337
5338         nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5339         if (IS_ERR(nvme_ns_chr_class)) {
5340                 result = PTR_ERR(nvme_ns_chr_class);
5341                 goto unregister_generic_ns;
5342         }
5343
5344         return 0;
5345
5346 unregister_generic_ns:
5347         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5348 destroy_subsys_class:
5349         class_destroy(nvme_subsys_class);
5350 destroy_class:
5351         class_destroy(nvme_class);
5352 unregister_chrdev:
5353         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5354 destroy_delete_wq:
5355         destroy_workqueue(nvme_delete_wq);
5356 destroy_reset_wq:
5357         destroy_workqueue(nvme_reset_wq);
5358 destroy_wq:
5359         destroy_workqueue(nvme_wq);
5360 out:
5361         return result;
5362 }
5363
5364 static void __exit nvme_core_exit(void)
5365 {
5366         class_destroy(nvme_ns_chr_class);
5367         class_destroy(nvme_subsys_class);
5368         class_destroy(nvme_class);
5369         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5370         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5371         destroy_workqueue(nvme_delete_wq);
5372         destroy_workqueue(nvme_reset_wq);
5373         destroy_workqueue(nvme_wq);
5374         ida_destroy(&nvme_ns_chr_minor_ida);
5375         ida_destroy(&nvme_instance_ida);
5376 }
5377
5378 MODULE_LICENSE("GPL");
5379 MODULE_VERSION("1.0");
5380 module_init(nvme_core_init);
5381 module_exit(nvme_core_exit);