1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
28 #define CREATE_TRACE_POINTS
31 #define NVME_MINORS (1U << MINORBITS)
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96 static void nvme_update_bdev_size(struct gendisk *disk)
98 struct block_device *bdev = bdget_disk(disk, 0);
101 bd_set_nr_sectors(bdev, get_capacity(disk));
107 * Prepare a queue for teardown.
109 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
110 * the capacity to 0 after that to avoid blocking dispatchers that may be
111 * holding bd_butex. This will end buffered writers dirtying pages that can't
114 static void nvme_set_queue_dying(struct nvme_ns *ns)
116 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
119 blk_set_queue_dying(ns->queue);
120 blk_mq_unquiesce_queue(ns->queue);
122 set_capacity(ns->disk, 0);
123 nvme_update_bdev_size(ns->disk);
126 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
129 * Only new queue scan work when admin and IO queues are both alive
131 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
132 queue_work(nvme_wq, &ctrl->scan_work);
136 * Use this function to proceed with scheduling reset_work for a controller
137 * that had previously been set to the resetting state. This is intended for
138 * code paths that can't be interrupted by other reset attempts. A hot removal
139 * may prevent this from succeeding.
141 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
143 if (ctrl->state != NVME_CTRL_RESETTING)
145 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
151 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
153 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
155 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
161 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
165 ret = nvme_reset_ctrl(ctrl);
167 flush_work(&ctrl->reset_work);
168 if (ctrl->state != NVME_CTRL_LIVE)
174 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
176 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
178 dev_info(ctrl->device,
179 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
181 flush_work(&ctrl->reset_work);
182 nvme_stop_ctrl(ctrl);
183 nvme_remove_namespaces(ctrl);
184 ctrl->ops->delete_ctrl(ctrl);
185 nvme_uninit_ctrl(ctrl);
188 static void nvme_delete_ctrl_work(struct work_struct *work)
190 struct nvme_ctrl *ctrl =
191 container_of(work, struct nvme_ctrl, delete_work);
193 nvme_do_delete_ctrl(ctrl);
196 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
200 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
204 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
206 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
209 * Keep a reference until nvme_do_delete_ctrl() complete,
210 * since ->delete_ctrl can free the controller.
213 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
214 nvme_do_delete_ctrl(ctrl);
218 static blk_status_t nvme_error_status(u16 status)
220 switch (status & 0x7ff) {
221 case NVME_SC_SUCCESS:
223 case NVME_SC_CAP_EXCEEDED:
224 return BLK_STS_NOSPC;
225 case NVME_SC_LBA_RANGE:
226 case NVME_SC_CMD_INTERRUPTED:
227 case NVME_SC_NS_NOT_READY:
228 return BLK_STS_TARGET;
229 case NVME_SC_BAD_ATTRIBUTES:
230 case NVME_SC_ONCS_NOT_SUPPORTED:
231 case NVME_SC_INVALID_OPCODE:
232 case NVME_SC_INVALID_FIELD:
233 case NVME_SC_INVALID_NS:
234 return BLK_STS_NOTSUPP;
235 case NVME_SC_WRITE_FAULT:
236 case NVME_SC_READ_ERROR:
237 case NVME_SC_UNWRITTEN_BLOCK:
238 case NVME_SC_ACCESS_DENIED:
239 case NVME_SC_READ_ONLY:
240 case NVME_SC_COMPARE_FAILED:
241 return BLK_STS_MEDIUM;
242 case NVME_SC_GUARD_CHECK:
243 case NVME_SC_APPTAG_CHECK:
244 case NVME_SC_REFTAG_CHECK:
245 case NVME_SC_INVALID_PI:
246 return BLK_STS_PROTECTION;
247 case NVME_SC_RESERVATION_CONFLICT:
248 return BLK_STS_NEXUS;
249 case NVME_SC_HOST_PATH_ERROR:
250 return BLK_STS_TRANSPORT;
251 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
252 return BLK_STS_ZONE_ACTIVE_RESOURCE;
253 case NVME_SC_ZONE_TOO_MANY_OPEN:
254 return BLK_STS_ZONE_OPEN_RESOURCE;
256 return BLK_STS_IOERR;
260 static void nvme_retry_req(struct request *req)
262 struct nvme_ns *ns = req->q->queuedata;
263 unsigned long delay = 0;
266 /* The mask and shift result must be <= 3 */
267 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
269 delay = ns->ctrl->crdt[crd - 1] * 100;
271 nvme_req(req)->retries++;
272 blk_mq_requeue_request(req, false);
273 blk_mq_delay_kick_requeue_list(req->q, delay);
276 enum nvme_disposition {
282 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
284 if (likely(nvme_req(req)->status == 0))
287 if (blk_noretry_request(req) ||
288 (nvme_req(req)->status & NVME_SC_DNR) ||
289 nvme_req(req)->retries >= nvme_max_retries)
292 if (req->cmd_flags & REQ_NVME_MPATH) {
293 if (nvme_is_path_error(nvme_req(req)->status) ||
294 blk_queue_dying(req->q))
297 if (blk_queue_dying(req->q))
304 static inline void nvme_end_req(struct request *req)
306 blk_status_t status = nvme_error_status(nvme_req(req)->status);
308 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
309 req_op(req) == REQ_OP_ZONE_APPEND)
310 req->__sector = nvme_lba_to_sect(req->q->queuedata,
311 le64_to_cpu(nvme_req(req)->result.u64));
313 nvme_trace_bio_complete(req, status);
314 blk_mq_end_request(req, status);
317 void nvme_complete_rq(struct request *req)
319 trace_nvme_complete_rq(req);
320 nvme_cleanup_cmd(req);
322 if (nvme_req(req)->ctrl->kas)
323 nvme_req(req)->ctrl->comp_seen = true;
325 switch (nvme_decide_disposition(req)) {
333 nvme_failover_req(req);
337 EXPORT_SYMBOL_GPL(nvme_complete_rq);
339 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
341 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
342 "Cancelling I/O %d", req->tag);
344 /* don't abort one completed request */
345 if (blk_mq_request_completed(req))
348 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
349 blk_mq_complete_request(req);
352 EXPORT_SYMBOL_GPL(nvme_cancel_request);
354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355 enum nvme_ctrl_state new_state)
357 enum nvme_ctrl_state old_state;
359 bool changed = false;
361 spin_lock_irqsave(&ctrl->lock, flags);
363 old_state = ctrl->state;
368 case NVME_CTRL_RESETTING:
369 case NVME_CTRL_CONNECTING:
376 case NVME_CTRL_RESETTING:
386 case NVME_CTRL_CONNECTING:
389 case NVME_CTRL_RESETTING:
396 case NVME_CTRL_DELETING:
399 case NVME_CTRL_RESETTING:
400 case NVME_CTRL_CONNECTING:
407 case NVME_CTRL_DELETING_NOIO:
409 case NVME_CTRL_DELETING:
419 case NVME_CTRL_DELETING:
431 ctrl->state = new_state;
432 wake_up_all(&ctrl->state_wq);
435 spin_unlock_irqrestore(&ctrl->lock, flags);
436 if (changed && ctrl->state == NVME_CTRL_LIVE)
437 nvme_kick_requeue_lists(ctrl);
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
443 * Returns true for sink states that can't ever transition back to live.
445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
447 switch (ctrl->state) {
450 case NVME_CTRL_RESETTING:
451 case NVME_CTRL_CONNECTING:
453 case NVME_CTRL_DELETING:
454 case NVME_CTRL_DELETING_NOIO:
458 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
464 * Waits for the controller state to be resetting, or returns false if it is
465 * not possible to ever transition to that state.
467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
469 wait_event(ctrl->state_wq,
470 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471 nvme_state_terminal(ctrl));
472 return ctrl->state == NVME_CTRL_RESETTING;
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
476 static void nvme_free_ns_head(struct kref *ref)
478 struct nvme_ns_head *head =
479 container_of(ref, struct nvme_ns_head, ref);
481 nvme_mpath_remove_disk(head);
482 ida_simple_remove(&head->subsys->ns_ida, head->instance);
483 cleanup_srcu_struct(&head->srcu);
484 nvme_put_subsystem(head->subsys);
488 static void nvme_put_ns_head(struct nvme_ns_head *head)
490 kref_put(&head->ref, nvme_free_ns_head);
493 static void nvme_free_ns(struct kref *kref)
495 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
498 nvme_nvm_unregister(ns);
501 nvme_put_ns_head(ns->head);
502 nvme_put_ctrl(ns->ctrl);
506 void nvme_put_ns(struct nvme_ns *ns)
508 kref_put(&ns->kref, nvme_free_ns);
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
512 static inline void nvme_clear_nvme_request(struct request *req)
514 if (!(req->rq_flags & RQF_DONTPREP)) {
515 nvme_req(req)->retries = 0;
516 nvme_req(req)->flags = 0;
517 req->rq_flags |= RQF_DONTPREP;
521 struct request *nvme_alloc_request(struct request_queue *q,
522 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
524 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
527 if (qid == NVME_QID_ANY) {
528 req = blk_mq_alloc_request(q, op, flags);
530 req = blk_mq_alloc_request_hctx(q, op, flags,
536 req->cmd_flags |= REQ_FAILFAST_DRIVER;
537 nvme_clear_nvme_request(req);
538 nvme_req(req)->cmd = cmd;
542 EXPORT_SYMBOL_GPL(nvme_alloc_request);
544 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
546 struct nvme_command c;
548 memset(&c, 0, sizeof(c));
550 c.directive.opcode = nvme_admin_directive_send;
551 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
552 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
553 c.directive.dtype = NVME_DIR_IDENTIFY;
554 c.directive.tdtype = NVME_DIR_STREAMS;
555 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
557 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
560 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
562 return nvme_toggle_streams(ctrl, false);
565 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
567 return nvme_toggle_streams(ctrl, true);
570 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
571 struct streams_directive_params *s, u32 nsid)
573 struct nvme_command c;
575 memset(&c, 0, sizeof(c));
576 memset(s, 0, sizeof(*s));
578 c.directive.opcode = nvme_admin_directive_recv;
579 c.directive.nsid = cpu_to_le32(nsid);
580 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
581 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
582 c.directive.dtype = NVME_DIR_STREAMS;
584 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
587 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
589 struct streams_directive_params s;
592 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
597 ret = nvme_enable_streams(ctrl);
601 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
603 goto out_disable_stream;
605 ctrl->nssa = le16_to_cpu(s.nssa);
606 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
607 dev_info(ctrl->device, "too few streams (%u) available\n",
609 goto out_disable_stream;
612 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
613 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
617 nvme_disable_streams(ctrl);
622 * Check if 'req' has a write hint associated with it. If it does, assign
623 * a valid namespace stream to the write.
625 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
626 struct request *req, u16 *control,
629 enum rw_hint streamid = req->write_hint;
631 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
635 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
638 *control |= NVME_RW_DTYPE_STREAMS;
639 *dsmgmt |= streamid << 16;
642 if (streamid < ARRAY_SIZE(req->q->write_hints))
643 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
646 static void nvme_setup_passthrough(struct request *req,
647 struct nvme_command *cmd)
649 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
650 /* passthru commands should let the driver set the SGL flags */
651 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
654 static inline void nvme_setup_flush(struct nvme_ns *ns,
655 struct nvme_command *cmnd)
657 cmnd->common.opcode = nvme_cmd_flush;
658 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
661 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
662 struct nvme_command *cmnd)
664 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
665 struct nvme_dsm_range *range;
669 * Some devices do not consider the DSM 'Number of Ranges' field when
670 * determining how much data to DMA. Always allocate memory for maximum
671 * number of segments to prevent device reading beyond end of buffer.
673 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
675 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
678 * If we fail allocation our range, fallback to the controller
679 * discard page. If that's also busy, it's safe to return
680 * busy, as we know we can make progress once that's freed.
682 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
683 return BLK_STS_RESOURCE;
685 range = page_address(ns->ctrl->discard_page);
688 __rq_for_each_bio(bio, req) {
689 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
690 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
693 range[n].cattr = cpu_to_le32(0);
694 range[n].nlb = cpu_to_le32(nlb);
695 range[n].slba = cpu_to_le64(slba);
700 if (WARN_ON_ONCE(n != segments)) {
701 if (virt_to_page(range) == ns->ctrl->discard_page)
702 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
705 return BLK_STS_IOERR;
708 cmnd->dsm.opcode = nvme_cmd_dsm;
709 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
710 cmnd->dsm.nr = cpu_to_le32(segments - 1);
711 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
713 req->special_vec.bv_page = virt_to_page(range);
714 req->special_vec.bv_offset = offset_in_page(range);
715 req->special_vec.bv_len = alloc_size;
716 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
721 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
722 struct request *req, struct nvme_command *cmnd)
724 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
725 return nvme_setup_discard(ns, req, cmnd);
727 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
728 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
729 cmnd->write_zeroes.slba =
730 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
731 cmnd->write_zeroes.length =
732 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
733 cmnd->write_zeroes.control = 0;
737 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
738 struct request *req, struct nvme_command *cmnd,
741 struct nvme_ctrl *ctrl = ns->ctrl;
745 if (req->cmd_flags & REQ_FUA)
746 control |= NVME_RW_FUA;
747 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
748 control |= NVME_RW_LR;
750 if (req->cmd_flags & REQ_RAHEAD)
751 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
753 cmnd->rw.opcode = op;
754 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
755 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
756 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
758 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
759 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
763 * If formated with metadata, the block layer always provides a
764 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
765 * we enable the PRACT bit for protection information or set the
766 * namespace capacity to zero to prevent any I/O.
768 if (!blk_integrity_rq(req)) {
769 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
770 return BLK_STS_NOTSUPP;
771 control |= NVME_RW_PRINFO_PRACT;
774 switch (ns->pi_type) {
775 case NVME_NS_DPS_PI_TYPE3:
776 control |= NVME_RW_PRINFO_PRCHK_GUARD;
778 case NVME_NS_DPS_PI_TYPE1:
779 case NVME_NS_DPS_PI_TYPE2:
780 control |= NVME_RW_PRINFO_PRCHK_GUARD |
781 NVME_RW_PRINFO_PRCHK_REF;
782 if (op == nvme_cmd_zone_append)
783 control |= NVME_RW_APPEND_PIREMAP;
784 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
789 cmnd->rw.control = cpu_to_le16(control);
790 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
794 void nvme_cleanup_cmd(struct request *req)
796 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
797 struct nvme_ns *ns = req->rq_disk->private_data;
798 struct page *page = req->special_vec.bv_page;
800 if (page == ns->ctrl->discard_page)
801 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
803 kfree(page_address(page) + req->special_vec.bv_offset);
806 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
808 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
809 struct nvme_command *cmd)
811 blk_status_t ret = BLK_STS_OK;
813 nvme_clear_nvme_request(req);
815 memset(cmd, 0, sizeof(*cmd));
816 switch (req_op(req)) {
819 nvme_setup_passthrough(req, cmd);
822 nvme_setup_flush(ns, cmd);
824 case REQ_OP_ZONE_RESET_ALL:
825 case REQ_OP_ZONE_RESET:
826 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
828 case REQ_OP_ZONE_OPEN:
829 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
831 case REQ_OP_ZONE_CLOSE:
832 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
834 case REQ_OP_ZONE_FINISH:
835 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
837 case REQ_OP_WRITE_ZEROES:
838 ret = nvme_setup_write_zeroes(ns, req, cmd);
841 ret = nvme_setup_discard(ns, req, cmd);
844 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
847 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
849 case REQ_OP_ZONE_APPEND:
850 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
854 return BLK_STS_IOERR;
857 cmd->common.command_id = req->tag;
858 trace_nvme_setup_cmd(req, cmd);
861 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
863 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
865 struct completion *waiting = rq->end_io_data;
867 rq->end_io_data = NULL;
871 static void nvme_execute_rq_polled(struct request_queue *q,
872 struct gendisk *bd_disk, struct request *rq, int at_head)
874 DECLARE_COMPLETION_ONSTACK(wait);
876 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
878 rq->cmd_flags |= REQ_HIPRI;
879 rq->end_io_data = &wait;
880 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
882 while (!completion_done(&wait)) {
883 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
889 * Returns 0 on success. If the result is negative, it's a Linux error code;
890 * if the result is positive, it's an NVM Express status code
892 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
893 union nvme_result *result, void *buffer, unsigned bufflen,
894 unsigned timeout, int qid, int at_head,
895 blk_mq_req_flags_t flags, bool poll)
900 req = nvme_alloc_request(q, cmd, flags, qid);
904 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
906 if (buffer && bufflen) {
907 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
913 nvme_execute_rq_polled(req->q, NULL, req, at_head);
915 blk_execute_rq(req->q, NULL, req, at_head);
917 *result = nvme_req(req)->result;
918 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
921 ret = nvme_req(req)->status;
923 blk_mq_free_request(req);
926 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
928 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
929 void *buffer, unsigned bufflen)
931 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
932 NVME_QID_ANY, 0, 0, false);
934 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
936 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
937 unsigned len, u32 seed, bool write)
939 struct bio_integrity_payload *bip;
943 buf = kmalloc(len, GFP_KERNEL);
948 if (write && copy_from_user(buf, ubuf, len))
951 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
957 bip->bip_iter.bi_size = len;
958 bip->bip_iter.bi_sector = seed;
959 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
960 offset_in_page(buf));
970 static u32 nvme_known_admin_effects(u8 opcode)
973 case nvme_admin_format_nvm:
974 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
975 NVME_CMD_EFFECTS_CSE_MASK;
976 case nvme_admin_sanitize_nvm:
977 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
984 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
989 if (ns->head->effects)
990 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
991 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
992 dev_warn(ctrl->device,
993 "IO command:%02x has unhandled effects:%08x\n",
999 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1000 effects |= nvme_known_admin_effects(opcode);
1004 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1006 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1009 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1012 * For simplicity, IO to all namespaces is quiesced even if the command
1013 * effects say only one namespace is affected.
1015 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1016 mutex_lock(&ctrl->scan_lock);
1017 mutex_lock(&ctrl->subsys->lock);
1018 nvme_mpath_start_freeze(ctrl->subsys);
1019 nvme_mpath_wait_freeze(ctrl->subsys);
1020 nvme_start_freeze(ctrl);
1021 nvme_wait_freeze(ctrl);
1026 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1028 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1029 nvme_unfreeze(ctrl);
1030 nvme_mpath_unfreeze(ctrl->subsys);
1031 mutex_unlock(&ctrl->subsys->lock);
1032 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1033 mutex_unlock(&ctrl->scan_lock);
1035 if (effects & NVME_CMD_EFFECTS_CCC)
1036 nvme_init_identify(ctrl);
1037 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1038 nvme_queue_scan(ctrl);
1039 flush_work(&ctrl->scan_work);
1043 void nvme_execute_passthru_rq(struct request *rq)
1045 struct nvme_command *cmd = nvme_req(rq)->cmd;
1046 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1047 struct nvme_ns *ns = rq->q->queuedata;
1048 struct gendisk *disk = ns ? ns->disk : NULL;
1051 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1052 blk_execute_rq(rq->q, disk, rq, 0);
1053 nvme_passthru_end(ctrl, effects);
1055 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1057 static int nvme_submit_user_cmd(struct request_queue *q,
1058 struct nvme_command *cmd, void __user *ubuffer,
1059 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1060 u32 meta_seed, u64 *result, unsigned timeout)
1062 bool write = nvme_is_write(cmd);
1063 struct nvme_ns *ns = q->queuedata;
1064 struct gendisk *disk = ns ? ns->disk : NULL;
1065 struct request *req;
1066 struct bio *bio = NULL;
1070 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1072 return PTR_ERR(req);
1074 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1075 nvme_req(req)->flags |= NVME_REQ_USERCMD;
1077 if (ubuffer && bufflen) {
1078 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1083 bio->bi_disk = disk;
1084 if (disk && meta_buffer && meta_len) {
1085 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1088 ret = PTR_ERR(meta);
1091 req->cmd_flags |= REQ_INTEGRITY;
1095 nvme_execute_passthru_rq(req);
1096 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1099 ret = nvme_req(req)->status;
1101 *result = le64_to_cpu(nvme_req(req)->result.u64);
1102 if (meta && !ret && !write) {
1103 if (copy_to_user(meta_buffer, meta, meta_len))
1109 blk_rq_unmap_user(bio);
1111 blk_mq_free_request(req);
1115 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1117 struct nvme_ctrl *ctrl = rq->end_io_data;
1118 unsigned long flags;
1119 bool startka = false;
1121 blk_mq_free_request(rq);
1124 dev_err(ctrl->device,
1125 "failed nvme_keep_alive_end_io error=%d\n",
1130 ctrl->comp_seen = false;
1131 spin_lock_irqsave(&ctrl->lock, flags);
1132 if (ctrl->state == NVME_CTRL_LIVE ||
1133 ctrl->state == NVME_CTRL_CONNECTING)
1135 spin_unlock_irqrestore(&ctrl->lock, flags);
1137 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1140 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1144 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1149 rq->timeout = ctrl->kato * HZ;
1150 rq->end_io_data = ctrl;
1152 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1157 static void nvme_keep_alive_work(struct work_struct *work)
1159 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1160 struct nvme_ctrl, ka_work);
1161 bool comp_seen = ctrl->comp_seen;
1163 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1164 dev_dbg(ctrl->device,
1165 "reschedule traffic based keep-alive timer\n");
1166 ctrl->comp_seen = false;
1167 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1171 if (nvme_keep_alive(ctrl)) {
1172 /* allocation failure, reset the controller */
1173 dev_err(ctrl->device, "keep-alive failed\n");
1174 nvme_reset_ctrl(ctrl);
1179 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1181 if (unlikely(ctrl->kato == 0))
1184 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1187 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1189 if (unlikely(ctrl->kato == 0))
1192 cancel_delayed_work_sync(&ctrl->ka_work);
1194 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1197 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1198 * flag, thus sending any new CNS opcodes has a big chance of not working.
1199 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1200 * (but not for any later version).
1202 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1204 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1205 return ctrl->vs < NVME_VS(1, 2, 0);
1206 return ctrl->vs < NVME_VS(1, 1, 0);
1209 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1211 struct nvme_command c = { };
1214 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1215 c.identify.opcode = nvme_admin_identify;
1216 c.identify.cns = NVME_ID_CNS_CTRL;
1218 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1222 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1223 sizeof(struct nvme_id_ctrl));
1229 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1231 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1234 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1235 struct nvme_ns_id_desc *cur, bool *csi_seen)
1237 const char *warn_str = "ctrl returned bogus length:";
1240 switch (cur->nidt) {
1241 case NVME_NIDT_EUI64:
1242 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1243 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1244 warn_str, cur->nidl);
1247 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1248 return NVME_NIDT_EUI64_LEN;
1249 case NVME_NIDT_NGUID:
1250 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1251 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1252 warn_str, cur->nidl);
1255 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1256 return NVME_NIDT_NGUID_LEN;
1257 case NVME_NIDT_UUID:
1258 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1259 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1260 warn_str, cur->nidl);
1263 uuid_copy(&ids->uuid, data + sizeof(*cur));
1264 return NVME_NIDT_UUID_LEN;
1266 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1267 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1268 warn_str, cur->nidl);
1271 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1273 return NVME_NIDT_CSI_LEN;
1275 /* Skip unknown types */
1280 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1281 struct nvme_ns_ids *ids)
1283 struct nvme_command c = { };
1284 bool csi_seen = false;
1285 int status, pos, len;
1288 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1290 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1293 c.identify.opcode = nvme_admin_identify;
1294 c.identify.nsid = cpu_to_le32(nsid);
1295 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1297 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1301 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1302 NVME_IDENTIFY_DATA_SIZE);
1304 dev_warn(ctrl->device,
1305 "Identify Descriptors failed (%d)\n", status);
1309 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1310 struct nvme_ns_id_desc *cur = data + pos;
1315 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1319 len += sizeof(*cur);
1322 if (nvme_multi_css(ctrl) && !csi_seen) {
1323 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1333 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1334 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1336 struct nvme_command c = { };
1339 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1340 c.identify.opcode = nvme_admin_identify;
1341 c.identify.nsid = cpu_to_le32(nsid);
1342 c.identify.cns = NVME_ID_CNS_NS;
1344 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1348 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1350 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1355 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1358 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1359 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1360 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1361 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1362 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1363 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1372 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1373 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1375 union nvme_result res = { 0 };
1376 struct nvme_command c;
1379 memset(&c, 0, sizeof(c));
1380 c.features.opcode = op;
1381 c.features.fid = cpu_to_le32(fid);
1382 c.features.dword11 = cpu_to_le32(dword11);
1384 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1385 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1386 if (ret >= 0 && result)
1387 *result = le32_to_cpu(res.u32);
1391 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1392 unsigned int dword11, void *buffer, size_t buflen,
1395 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1398 EXPORT_SYMBOL_GPL(nvme_set_features);
1400 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1401 unsigned int dword11, void *buffer, size_t buflen,
1404 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1407 EXPORT_SYMBOL_GPL(nvme_get_features);
1409 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1411 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1413 int status, nr_io_queues;
1415 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1421 * Degraded controllers might return an error when setting the queue
1422 * count. We still want to be able to bring them online and offer
1423 * access to the admin queue, as that might be only way to fix them up.
1426 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1429 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1430 *count = min(*count, nr_io_queues);
1435 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1437 #define NVME_AEN_SUPPORTED \
1438 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1439 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1441 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1443 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1446 if (!supported_aens)
1449 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1452 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1455 queue_work(nvme_wq, &ctrl->async_event_work);
1459 * Convert integer values from ioctl structures to user pointers, silently
1460 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1463 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1465 if (in_compat_syscall())
1466 ptrval = (compat_uptr_t)ptrval;
1467 return (void __user *)ptrval;
1470 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1472 struct nvme_user_io io;
1473 struct nvme_command c;
1474 unsigned length, meta_len;
1475 void __user *metadata;
1477 if (copy_from_user(&io, uio, sizeof(io)))
1482 switch (io.opcode) {
1483 case nvme_cmd_write:
1485 case nvme_cmd_compare:
1491 length = (io.nblocks + 1) << ns->lba_shift;
1492 meta_len = (io.nblocks + 1) * ns->ms;
1493 metadata = nvme_to_user_ptr(io.metadata);
1495 if (ns->features & NVME_NS_EXT_LBAS) {
1498 } else if (meta_len) {
1499 if ((io.metadata & 3) || !io.metadata)
1503 memset(&c, 0, sizeof(c));
1504 c.rw.opcode = io.opcode;
1505 c.rw.flags = io.flags;
1506 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1507 c.rw.slba = cpu_to_le64(io.slba);
1508 c.rw.length = cpu_to_le16(io.nblocks);
1509 c.rw.control = cpu_to_le16(io.control);
1510 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1511 c.rw.reftag = cpu_to_le32(io.reftag);
1512 c.rw.apptag = cpu_to_le16(io.apptag);
1513 c.rw.appmask = cpu_to_le16(io.appmask);
1515 return nvme_submit_user_cmd(ns->queue, &c,
1516 nvme_to_user_ptr(io.addr), length,
1517 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1520 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1521 struct nvme_passthru_cmd __user *ucmd)
1523 struct nvme_passthru_cmd cmd;
1524 struct nvme_command c;
1525 unsigned timeout = 0;
1529 if (!capable(CAP_SYS_ADMIN))
1531 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1536 memset(&c, 0, sizeof(c));
1537 c.common.opcode = cmd.opcode;
1538 c.common.flags = cmd.flags;
1539 c.common.nsid = cpu_to_le32(cmd.nsid);
1540 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1541 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1542 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1543 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1544 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1545 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1546 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1547 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1550 timeout = msecs_to_jiffies(cmd.timeout_ms);
1552 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1553 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1554 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1555 0, &result, timeout);
1558 if (put_user(result, &ucmd->result))
1565 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1566 struct nvme_passthru_cmd64 __user *ucmd)
1568 struct nvme_passthru_cmd64 cmd;
1569 struct nvme_command c;
1570 unsigned timeout = 0;
1573 if (!capable(CAP_SYS_ADMIN))
1575 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1580 memset(&c, 0, sizeof(c));
1581 c.common.opcode = cmd.opcode;
1582 c.common.flags = cmd.flags;
1583 c.common.nsid = cpu_to_le32(cmd.nsid);
1584 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1585 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1586 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1587 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1588 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1589 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1590 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1591 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1594 timeout = msecs_to_jiffies(cmd.timeout_ms);
1596 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1597 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1598 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1599 0, &cmd.result, timeout);
1602 if (put_user(cmd.result, &ucmd->result))
1610 * Issue ioctl requests on the first available path. Note that unlike normal
1611 * block layer requests we will not retry failed request on another controller.
1613 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1614 struct nvme_ns_head **head, int *srcu_idx)
1616 #ifdef CONFIG_NVME_MULTIPATH
1617 if (disk->fops == &nvme_ns_head_ops) {
1620 *head = disk->private_data;
1621 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1622 ns = nvme_find_path(*head);
1624 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1630 return disk->private_data;
1633 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1636 srcu_read_unlock(&head->srcu, idx);
1639 static bool is_ctrl_ioctl(unsigned int cmd)
1641 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1643 if (is_sed_ioctl(cmd))
1648 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1650 struct nvme_ns_head *head,
1653 struct nvme_ctrl *ctrl = ns->ctrl;
1656 nvme_get_ctrl(ns->ctrl);
1657 nvme_put_ns_from_disk(head, srcu_idx);
1660 case NVME_IOCTL_ADMIN_CMD:
1661 ret = nvme_user_cmd(ctrl, NULL, argp);
1663 case NVME_IOCTL_ADMIN64_CMD:
1664 ret = nvme_user_cmd64(ctrl, NULL, argp);
1667 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1670 nvme_put_ctrl(ctrl);
1674 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1675 unsigned int cmd, unsigned long arg)
1677 struct nvme_ns_head *head = NULL;
1678 void __user *argp = (void __user *)arg;
1682 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1684 return -EWOULDBLOCK;
1687 * Handle ioctls that apply to the controller instead of the namespace
1688 * seperately and drop the ns SRCU reference early. This avoids a
1689 * deadlock when deleting namespaces using the passthrough interface.
1691 if (is_ctrl_ioctl(cmd))
1692 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1696 force_successful_syscall_return();
1697 ret = ns->head->ns_id;
1699 case NVME_IOCTL_IO_CMD:
1700 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1702 case NVME_IOCTL_SUBMIT_IO:
1703 ret = nvme_submit_io(ns, argp);
1705 case NVME_IOCTL_IO64_CMD:
1706 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1710 ret = nvme_nvm_ioctl(ns, cmd, arg);
1715 nvme_put_ns_from_disk(head, srcu_idx);
1719 #ifdef CONFIG_COMPAT
1720 struct nvme_user_io32 {
1733 } __attribute__((__packed__));
1735 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1737 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1738 unsigned int cmd, unsigned long arg)
1741 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1742 * between 32 bit programs and 64 bit kernel.
1743 * The cause is that the results of sizeof(struct nvme_user_io),
1744 * which is used to define NVME_IOCTL_SUBMIT_IO,
1745 * are not same between 32 bit compiler and 64 bit compiler.
1746 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1747 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1748 * Other IOCTL numbers are same between 32 bit and 64 bit.
1749 * So there is nothing to do regarding to other IOCTL numbers.
1751 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1752 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1754 return nvme_ioctl(bdev, mode, cmd, arg);
1757 #define nvme_compat_ioctl NULL
1758 #endif /* CONFIG_COMPAT */
1760 static int nvme_open(struct block_device *bdev, fmode_t mode)
1762 struct nvme_ns *ns = bdev->bd_disk->private_data;
1764 #ifdef CONFIG_NVME_MULTIPATH
1765 /* should never be called due to GENHD_FL_HIDDEN */
1766 if (WARN_ON_ONCE(ns->head->disk))
1769 if (!kref_get_unless_zero(&ns->kref))
1771 if (!try_module_get(ns->ctrl->ops->module))
1782 static void nvme_release(struct gendisk *disk, fmode_t mode)
1784 struct nvme_ns *ns = disk->private_data;
1786 module_put(ns->ctrl->ops->module);
1790 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1792 /* some standard values */
1793 geo->heads = 1 << 6;
1794 geo->sectors = 1 << 5;
1795 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1799 #ifdef CONFIG_BLK_DEV_INTEGRITY
1800 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1801 u32 max_integrity_segments)
1803 struct blk_integrity integrity;
1805 memset(&integrity, 0, sizeof(integrity));
1807 case NVME_NS_DPS_PI_TYPE3:
1808 integrity.profile = &t10_pi_type3_crc;
1809 integrity.tag_size = sizeof(u16) + sizeof(u32);
1810 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1812 case NVME_NS_DPS_PI_TYPE1:
1813 case NVME_NS_DPS_PI_TYPE2:
1814 integrity.profile = &t10_pi_type1_crc;
1815 integrity.tag_size = sizeof(u16);
1816 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1819 integrity.profile = NULL;
1822 integrity.tuple_size = ms;
1823 blk_integrity_register(disk, &integrity);
1824 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1827 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1828 u32 max_integrity_segments)
1831 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1833 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1835 struct nvme_ctrl *ctrl = ns->ctrl;
1836 struct request_queue *queue = disk->queue;
1837 u32 size = queue_logical_block_size(queue);
1839 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1840 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1844 if (ctrl->nr_streams && ns->sws && ns->sgs)
1845 size *= ns->sws * ns->sgs;
1847 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1848 NVME_DSM_MAX_RANGES);
1850 queue->limits.discard_alignment = 0;
1851 queue->limits.discard_granularity = size;
1853 /* If discard is already enabled, don't reset queue limits */
1854 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1857 blk_queue_max_discard_sectors(queue, UINT_MAX);
1858 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1860 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1861 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1864 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1868 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1869 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1872 * Even though NVMe spec explicitly states that MDTS is not
1873 * applicable to the write-zeroes:- "The restriction does not apply to
1874 * commands that do not transfer data between the host and the
1875 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1876 * In order to be more cautious use controller's max_hw_sectors value
1877 * to configure the maximum sectors for the write-zeroes which is
1878 * configured based on the controller's MDTS field in the
1879 * nvme_init_identify() if available.
1881 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1882 max_blocks = (u64)USHRT_MAX + 1;
1884 max_blocks = ns->ctrl->max_hw_sectors + 1;
1886 blk_queue_max_write_zeroes_sectors(disk->queue,
1887 nvme_lba_to_sect(ns, max_blocks));
1890 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1892 return !uuid_is_null(&ids->uuid) ||
1893 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1894 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1897 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1899 return uuid_equal(&a->uuid, &b->uuid) &&
1900 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1901 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1905 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1906 u32 *phys_bs, u32 *io_opt)
1908 struct streams_directive_params s;
1911 if (!ctrl->nr_streams)
1914 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1918 ns->sws = le32_to_cpu(s.sws);
1919 ns->sgs = le16_to_cpu(s.sgs);
1922 *phys_bs = ns->sws * (1 << ns->lba_shift);
1924 *io_opt = *phys_bs * ns->sgs;
1930 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1932 struct nvme_ctrl *ctrl = ns->ctrl;
1935 * The PI implementation requires the metadata size to be equal to the
1936 * t10 pi tuple size.
1938 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1939 if (ns->ms == sizeof(struct t10_pi_tuple))
1940 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1944 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1945 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1947 if (ctrl->ops->flags & NVME_F_FABRICS) {
1949 * The NVMe over Fabrics specification only supports metadata as
1950 * part of the extended data LBA. We rely on HCA/HBA support to
1951 * remap the separate metadata buffer from the block layer.
1953 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1955 if (ctrl->max_integrity_segments)
1957 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1960 * For PCIe controllers, we can't easily remap the separate
1961 * metadata buffer from the block layer and thus require a
1962 * separate metadata buffer for block layer metadata/PI support.
1963 * We allow extended LBAs for the passthrough interface, though.
1965 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1966 ns->features |= NVME_NS_EXT_LBAS;
1968 ns->features |= NVME_NS_METADATA_SUPPORTED;
1974 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1975 struct request_queue *q)
1977 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1979 if (ctrl->max_hw_sectors) {
1981 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1983 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1984 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1985 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1987 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1988 blk_queue_dma_alignment(q, 7);
1989 blk_queue_write_cache(q, vwc, vwc);
1992 static void nvme_update_disk_info(struct gendisk *disk,
1993 struct nvme_ns *ns, struct nvme_id_ns *id)
1995 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1996 unsigned short bs = 1 << ns->lba_shift;
1997 u32 atomic_bs, phys_bs, io_opt = 0;
2000 * The block layer can't support LBA sizes larger than the page size
2001 * yet, so catch this early and don't allow block I/O.
2003 if (ns->lba_shift > PAGE_SHIFT) {
2008 blk_integrity_unregister(disk);
2010 atomic_bs = phys_bs = bs;
2011 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2012 if (id->nabo == 0) {
2014 * Bit 1 indicates whether NAWUPF is defined for this namespace
2015 * and whether it should be used instead of AWUPF. If NAWUPF ==
2016 * 0 then AWUPF must be used instead.
2018 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2019 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2021 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2024 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2025 /* NPWG = Namespace Preferred Write Granularity */
2026 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2027 /* NOWS = Namespace Optimal Write Size */
2028 io_opt = bs * (1 + le16_to_cpu(id->nows));
2031 blk_queue_logical_block_size(disk->queue, bs);
2033 * Linux filesystems assume writing a single physical block is
2034 * an atomic operation. Hence limit the physical block size to the
2035 * value of the Atomic Write Unit Power Fail parameter.
2037 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2038 blk_queue_io_min(disk->queue, phys_bs);
2039 blk_queue_io_opt(disk->queue, io_opt);
2042 * Register a metadata profile for PI, or the plain non-integrity NVMe
2043 * metadata masquerading as Type 0 if supported, otherwise reject block
2044 * I/O to namespaces with metadata except when the namespace supports
2045 * PI, as it can strip/insert in that case.
2048 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2049 (ns->features & NVME_NS_METADATA_SUPPORTED))
2050 nvme_init_integrity(disk, ns->ms, ns->pi_type,
2051 ns->ctrl->max_integrity_segments);
2052 else if (!nvme_ns_has_pi(ns))
2056 set_capacity_revalidate_and_notify(disk, capacity, false);
2058 nvme_config_discard(disk, ns);
2059 nvme_config_write_zeroes(disk, ns);
2061 if (id->nsattr & NVME_NS_ATTR_RO)
2062 set_disk_ro(disk, true);
2064 set_disk_ro(disk, false);
2067 static inline bool nvme_first_scan(struct gendisk *disk)
2069 /* nvme_alloc_ns() scans the disk prior to adding it */
2070 return !(disk->flags & GENHD_FL_UP);
2073 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2075 struct nvme_ctrl *ctrl = ns->ctrl;
2078 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2079 is_power_of_2(ctrl->max_hw_sectors))
2080 iob = ctrl->max_hw_sectors;
2082 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2087 if (!is_power_of_2(iob)) {
2088 if (nvme_first_scan(ns->disk))
2089 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2090 ns->disk->disk_name, iob);
2094 if (blk_queue_is_zoned(ns->disk->queue)) {
2095 if (nvme_first_scan(ns->disk))
2096 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2097 ns->disk->disk_name);
2101 blk_queue_chunk_sectors(ns->queue, iob);
2104 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2106 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2109 blk_mq_freeze_queue(ns->disk->queue);
2110 ns->lba_shift = id->lbaf[lbaf].ds;
2111 nvme_set_queue_limits(ns->ctrl, ns->queue);
2113 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2114 ret = nvme_update_zone_info(ns, lbaf);
2119 ret = nvme_configure_metadata(ns, id);
2122 nvme_set_chunk_sectors(ns, id);
2123 nvme_update_disk_info(ns->disk, ns, id);
2124 blk_mq_unfreeze_queue(ns->disk->queue);
2126 if (blk_queue_is_zoned(ns->queue)) {
2127 ret = nvme_revalidate_zones(ns);
2132 #ifdef CONFIG_NVME_MULTIPATH
2133 if (ns->head->disk) {
2134 blk_mq_freeze_queue(ns->head->disk->queue);
2135 nvme_update_disk_info(ns->head->disk, ns, id);
2136 blk_stack_limits(&ns->head->disk->queue->limits,
2137 &ns->queue->limits, 0);
2138 blk_queue_update_readahead(ns->head->disk->queue);
2139 nvme_update_bdev_size(ns->head->disk);
2140 blk_mq_unfreeze_queue(ns->head->disk->queue);
2146 blk_mq_unfreeze_queue(ns->disk->queue);
2150 static char nvme_pr_type(enum pr_type type)
2153 case PR_WRITE_EXCLUSIVE:
2155 case PR_EXCLUSIVE_ACCESS:
2157 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2159 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2161 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2163 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2170 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2171 u64 key, u64 sa_key, u8 op)
2173 struct nvme_ns_head *head = NULL;
2175 struct nvme_command c;
2177 u8 data[16] = { 0, };
2179 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2181 return -EWOULDBLOCK;
2183 put_unaligned_le64(key, &data[0]);
2184 put_unaligned_le64(sa_key, &data[8]);
2186 memset(&c, 0, sizeof(c));
2187 c.common.opcode = op;
2188 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2189 c.common.cdw10 = cpu_to_le32(cdw10);
2191 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2192 nvme_put_ns_from_disk(head, srcu_idx);
2196 static int nvme_pr_register(struct block_device *bdev, u64 old,
2197 u64 new, unsigned flags)
2201 if (flags & ~PR_FL_IGNORE_KEY)
2204 cdw10 = old ? 2 : 0;
2205 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2206 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2207 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2210 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2211 enum pr_type type, unsigned flags)
2215 if (flags & ~PR_FL_IGNORE_KEY)
2218 cdw10 = nvme_pr_type(type) << 8;
2219 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2220 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2223 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2224 enum pr_type type, bool abort)
2226 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2227 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2230 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2232 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2233 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2236 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2238 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2239 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2242 static const struct pr_ops nvme_pr_ops = {
2243 .pr_register = nvme_pr_register,
2244 .pr_reserve = nvme_pr_reserve,
2245 .pr_release = nvme_pr_release,
2246 .pr_preempt = nvme_pr_preempt,
2247 .pr_clear = nvme_pr_clear,
2250 #ifdef CONFIG_BLK_SED_OPAL
2251 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2254 struct nvme_ctrl *ctrl = data;
2255 struct nvme_command cmd;
2257 memset(&cmd, 0, sizeof(cmd));
2259 cmd.common.opcode = nvme_admin_security_send;
2261 cmd.common.opcode = nvme_admin_security_recv;
2262 cmd.common.nsid = 0;
2263 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2264 cmd.common.cdw11 = cpu_to_le32(len);
2266 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2267 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2269 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2270 #endif /* CONFIG_BLK_SED_OPAL */
2272 static const struct block_device_operations nvme_fops = {
2273 .owner = THIS_MODULE,
2274 .ioctl = nvme_ioctl,
2275 .compat_ioctl = nvme_compat_ioctl,
2277 .release = nvme_release,
2278 .getgeo = nvme_getgeo,
2279 .report_zones = nvme_report_zones,
2280 .pr_ops = &nvme_pr_ops,
2283 #ifdef CONFIG_NVME_MULTIPATH
2284 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2286 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2288 if (!kref_get_unless_zero(&head->ref))
2293 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2295 nvme_put_ns_head(disk->private_data);
2298 const struct block_device_operations nvme_ns_head_ops = {
2299 .owner = THIS_MODULE,
2300 .submit_bio = nvme_ns_head_submit_bio,
2301 .open = nvme_ns_head_open,
2302 .release = nvme_ns_head_release,
2303 .ioctl = nvme_ioctl,
2304 .compat_ioctl = nvme_compat_ioctl,
2305 .getgeo = nvme_getgeo,
2306 .report_zones = nvme_report_zones,
2307 .pr_ops = &nvme_pr_ops,
2309 #endif /* CONFIG_NVME_MULTIPATH */
2311 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2313 unsigned long timeout =
2314 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2315 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2318 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2321 if ((csts & NVME_CSTS_RDY) == bit)
2324 usleep_range(1000, 2000);
2325 if (fatal_signal_pending(current))
2327 if (time_after(jiffies, timeout)) {
2328 dev_err(ctrl->device,
2329 "Device not ready; aborting %s, CSTS=0x%x\n",
2330 enabled ? "initialisation" : "reset", csts);
2339 * If the device has been passed off to us in an enabled state, just clear
2340 * the enabled bit. The spec says we should set the 'shutdown notification
2341 * bits', but doing so may cause the device to complete commands to the
2342 * admin queue ... and we don't know what memory that might be pointing at!
2344 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2348 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2349 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2351 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2355 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2356 msleep(NVME_QUIRK_DELAY_AMOUNT);
2358 return nvme_wait_ready(ctrl, ctrl->cap, false);
2360 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2362 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2364 unsigned dev_page_min;
2367 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2369 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2372 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2374 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2375 dev_err(ctrl->device,
2376 "Minimum device page size %u too large for host (%u)\n",
2377 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2381 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2382 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2384 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2385 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2386 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2387 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2388 ctrl->ctrl_config |= NVME_CC_ENABLE;
2390 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2393 return nvme_wait_ready(ctrl, ctrl->cap, true);
2395 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2397 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2399 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2403 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2404 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2406 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2410 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2411 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2415 if (fatal_signal_pending(current))
2417 if (time_after(jiffies, timeout)) {
2418 dev_err(ctrl->device,
2419 "Device shutdown incomplete; abort shutdown\n");
2426 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2428 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2433 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2436 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2437 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2440 dev_warn_once(ctrl->device,
2441 "could not set timestamp (%d)\n", ret);
2445 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2447 struct nvme_feat_host_behavior *host;
2450 /* Don't bother enabling the feature if retry delay is not reported */
2454 host = kzalloc(sizeof(*host), GFP_KERNEL);
2458 host->acre = NVME_ENABLE_ACRE;
2459 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2460 host, sizeof(*host), NULL);
2465 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2468 * APST (Autonomous Power State Transition) lets us program a
2469 * table of power state transitions that the controller will
2470 * perform automatically. We configure it with a simple
2471 * heuristic: we are willing to spend at most 2% of the time
2472 * transitioning between power states. Therefore, when running
2473 * in any given state, we will enter the next lower-power
2474 * non-operational state after waiting 50 * (enlat + exlat)
2475 * microseconds, as long as that state's exit latency is under
2476 * the requested maximum latency.
2478 * We will not autonomously enter any non-operational state for
2479 * which the total latency exceeds ps_max_latency_us. Users
2480 * can set ps_max_latency_us to zero to turn off APST.
2484 struct nvme_feat_auto_pst *table;
2490 * If APST isn't supported or if we haven't been initialized yet,
2491 * then don't do anything.
2496 if (ctrl->npss > 31) {
2497 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2501 table = kzalloc(sizeof(*table), GFP_KERNEL);
2505 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2506 /* Turn off APST. */
2508 dev_dbg(ctrl->device, "APST disabled\n");
2510 __le64 target = cpu_to_le64(0);
2514 * Walk through all states from lowest- to highest-power.
2515 * According to the spec, lower-numbered states use more
2516 * power. NPSS, despite the name, is the index of the
2517 * lowest-power state, not the number of states.
2519 for (state = (int)ctrl->npss; state >= 0; state--) {
2520 u64 total_latency_us, exit_latency_us, transition_ms;
2523 table->entries[state] = target;
2526 * Don't allow transitions to the deepest state
2527 * if it's quirked off.
2529 if (state == ctrl->npss &&
2530 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2534 * Is this state a useful non-operational state for
2535 * higher-power states to autonomously transition to?
2537 if (!(ctrl->psd[state].flags &
2538 NVME_PS_FLAGS_NON_OP_STATE))
2542 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2543 if (exit_latency_us > ctrl->ps_max_latency_us)
2548 le32_to_cpu(ctrl->psd[state].entry_lat);
2551 * This state is good. Use it as the APST idle
2552 * target for higher power states.
2554 transition_ms = total_latency_us + 19;
2555 do_div(transition_ms, 20);
2556 if (transition_ms > (1 << 24) - 1)
2557 transition_ms = (1 << 24) - 1;
2559 target = cpu_to_le64((state << 3) |
2560 (transition_ms << 8));
2565 if (total_latency_us > max_lat_us)
2566 max_lat_us = total_latency_us;
2572 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2574 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2575 max_ps, max_lat_us, (int)sizeof(*table), table);
2579 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2580 table, sizeof(*table), NULL);
2582 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2588 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2590 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2594 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2595 case PM_QOS_LATENCY_ANY:
2603 if (ctrl->ps_max_latency_us != latency) {
2604 ctrl->ps_max_latency_us = latency;
2605 nvme_configure_apst(ctrl);
2609 struct nvme_core_quirk_entry {
2611 * NVMe model and firmware strings are padded with spaces. For
2612 * simplicity, strings in the quirk table are padded with NULLs
2618 unsigned long quirks;
2621 static const struct nvme_core_quirk_entry core_quirks[] = {
2624 * This Toshiba device seems to die using any APST states. See:
2625 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2628 .mn = "THNSF5256GPUK TOSHIBA",
2629 .quirks = NVME_QUIRK_NO_APST,
2633 * This LiteON CL1-3D*-Q11 firmware version has a race
2634 * condition associated with actions related to suspend to idle
2635 * LiteON has resolved the problem in future firmware
2639 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2643 /* match is null-terminated but idstr is space-padded. */
2644 static bool string_matches(const char *idstr, const char *match, size_t len)
2651 matchlen = strlen(match);
2652 WARN_ON_ONCE(matchlen > len);
2654 if (memcmp(idstr, match, matchlen))
2657 for (; matchlen < len; matchlen++)
2658 if (idstr[matchlen] != ' ')
2664 static bool quirk_matches(const struct nvme_id_ctrl *id,
2665 const struct nvme_core_quirk_entry *q)
2667 return q->vid == le16_to_cpu(id->vid) &&
2668 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2669 string_matches(id->fr, q->fr, sizeof(id->fr));
2672 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2673 struct nvme_id_ctrl *id)
2678 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2679 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2680 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2681 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2685 if (ctrl->vs >= NVME_VS(1, 2, 1))
2686 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2689 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2690 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2691 "nqn.2014.08.org.nvmexpress:%04x%04x",
2692 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2693 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2694 off += sizeof(id->sn);
2695 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2696 off += sizeof(id->mn);
2697 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2700 static void nvme_release_subsystem(struct device *dev)
2702 struct nvme_subsystem *subsys =
2703 container_of(dev, struct nvme_subsystem, dev);
2705 if (subsys->instance >= 0)
2706 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2710 static void nvme_destroy_subsystem(struct kref *ref)
2712 struct nvme_subsystem *subsys =
2713 container_of(ref, struct nvme_subsystem, ref);
2715 mutex_lock(&nvme_subsystems_lock);
2716 list_del(&subsys->entry);
2717 mutex_unlock(&nvme_subsystems_lock);
2719 ida_destroy(&subsys->ns_ida);
2720 device_del(&subsys->dev);
2721 put_device(&subsys->dev);
2724 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2726 kref_put(&subsys->ref, nvme_destroy_subsystem);
2729 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2731 struct nvme_subsystem *subsys;
2733 lockdep_assert_held(&nvme_subsystems_lock);
2736 * Fail matches for discovery subsystems. This results
2737 * in each discovery controller bound to a unique subsystem.
2738 * This avoids issues with validating controller values
2739 * that can only be true when there is a single unique subsystem.
2740 * There may be multiple and completely independent entities
2741 * that provide discovery controllers.
2743 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2746 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2747 if (strcmp(subsys->subnqn, subsysnqn))
2749 if (!kref_get_unless_zero(&subsys->ref))
2757 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2758 struct device_attribute subsys_attr_##_name = \
2759 __ATTR(_name, _mode, _show, NULL)
2761 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2762 struct device_attribute *attr,
2765 struct nvme_subsystem *subsys =
2766 container_of(dev, struct nvme_subsystem, dev);
2768 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2770 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2772 #define nvme_subsys_show_str_function(field) \
2773 static ssize_t subsys_##field##_show(struct device *dev, \
2774 struct device_attribute *attr, char *buf) \
2776 struct nvme_subsystem *subsys = \
2777 container_of(dev, struct nvme_subsystem, dev); \
2778 return sprintf(buf, "%.*s\n", \
2779 (int)sizeof(subsys->field), subsys->field); \
2781 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2783 nvme_subsys_show_str_function(model);
2784 nvme_subsys_show_str_function(serial);
2785 nvme_subsys_show_str_function(firmware_rev);
2787 static struct attribute *nvme_subsys_attrs[] = {
2788 &subsys_attr_model.attr,
2789 &subsys_attr_serial.attr,
2790 &subsys_attr_firmware_rev.attr,
2791 &subsys_attr_subsysnqn.attr,
2792 #ifdef CONFIG_NVME_MULTIPATH
2793 &subsys_attr_iopolicy.attr,
2798 static struct attribute_group nvme_subsys_attrs_group = {
2799 .attrs = nvme_subsys_attrs,
2802 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2803 &nvme_subsys_attrs_group,
2807 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2808 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2810 struct nvme_ctrl *tmp;
2812 lockdep_assert_held(&nvme_subsystems_lock);
2814 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2815 if (nvme_state_terminal(tmp))
2818 if (tmp->cntlid == ctrl->cntlid) {
2819 dev_err(ctrl->device,
2820 "Duplicate cntlid %u with %s, rejecting\n",
2821 ctrl->cntlid, dev_name(tmp->device));
2825 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2826 (ctrl->opts && ctrl->opts->discovery_nqn))
2829 dev_err(ctrl->device,
2830 "Subsystem does not support multiple controllers\n");
2837 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2839 struct nvme_subsystem *subsys, *found;
2842 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2846 subsys->instance = -1;
2847 mutex_init(&subsys->lock);
2848 kref_init(&subsys->ref);
2849 INIT_LIST_HEAD(&subsys->ctrls);
2850 INIT_LIST_HEAD(&subsys->nsheads);
2851 nvme_init_subnqn(subsys, ctrl, id);
2852 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2853 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2854 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2855 subsys->vendor_id = le16_to_cpu(id->vid);
2856 subsys->cmic = id->cmic;
2857 subsys->awupf = le16_to_cpu(id->awupf);
2858 #ifdef CONFIG_NVME_MULTIPATH
2859 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2862 subsys->dev.class = nvme_subsys_class;
2863 subsys->dev.release = nvme_release_subsystem;
2864 subsys->dev.groups = nvme_subsys_attrs_groups;
2865 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2866 device_initialize(&subsys->dev);
2868 mutex_lock(&nvme_subsystems_lock);
2869 found = __nvme_find_get_subsystem(subsys->subnqn);
2871 put_device(&subsys->dev);
2874 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2876 goto out_put_subsystem;
2879 ret = device_add(&subsys->dev);
2881 dev_err(ctrl->device,
2882 "failed to register subsystem device.\n");
2883 put_device(&subsys->dev);
2886 ida_init(&subsys->ns_ida);
2887 list_add_tail(&subsys->entry, &nvme_subsystems);
2890 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2891 dev_name(ctrl->device));
2893 dev_err(ctrl->device,
2894 "failed to create sysfs link from subsystem.\n");
2895 goto out_put_subsystem;
2899 subsys->instance = ctrl->instance;
2900 ctrl->subsys = subsys;
2901 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2902 mutex_unlock(&nvme_subsystems_lock);
2906 nvme_put_subsystem(subsys);
2908 mutex_unlock(&nvme_subsystems_lock);
2912 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2913 void *log, size_t size, u64 offset)
2915 struct nvme_command c = { };
2916 u32 dwlen = nvme_bytes_to_numd(size);
2918 c.get_log_page.opcode = nvme_admin_get_log_page;
2919 c.get_log_page.nsid = cpu_to_le32(nsid);
2920 c.get_log_page.lid = log_page;
2921 c.get_log_page.lsp = lsp;
2922 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2923 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2924 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2925 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2926 c.get_log_page.csi = csi;
2928 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2931 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2932 struct nvme_effects_log **log)
2934 struct nvme_cel *cel = xa_load(&ctrl->cels, csi);
2940 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2944 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2945 &cel->log, sizeof(cel->log), 0);
2952 xa_store(&ctrl->cels, cel->csi, cel, GFP_KERNEL);
2959 * Initialize the cached copies of the Identify data and various controller
2960 * register in our nvme_ctrl structure. This should be called as soon as
2961 * the admin queue is fully up and running.
2963 int nvme_init_identify(struct nvme_ctrl *ctrl)
2965 struct nvme_id_ctrl *id;
2966 int ret, page_shift;
2968 bool prev_apst_enabled;
2970 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2972 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2975 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2976 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2978 if (ctrl->vs >= NVME_VS(1, 1, 0))
2979 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2981 ret = nvme_identify_ctrl(ctrl, &id);
2983 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2987 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2988 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2993 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2994 ctrl->cntlid = le16_to_cpu(id->cntlid);
2996 if (!ctrl->identified) {
2999 ret = nvme_init_subsystem(ctrl, id);
3004 * Check for quirks. Quirk can depend on firmware version,
3005 * so, in principle, the set of quirks present can change
3006 * across a reset. As a possible future enhancement, we
3007 * could re-scan for quirks every time we reinitialize
3008 * the device, but we'd have to make sure that the driver
3009 * behaves intelligently if the quirks change.
3011 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3012 if (quirk_matches(id, &core_quirks[i]))
3013 ctrl->quirks |= core_quirks[i].quirks;
3017 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3018 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3019 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3022 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3023 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3024 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3026 ctrl->oacs = le16_to_cpu(id->oacs);
3027 ctrl->oncs = le16_to_cpu(id->oncs);
3028 ctrl->mtfa = le16_to_cpu(id->mtfa);
3029 ctrl->oaes = le32_to_cpu(id->oaes);
3030 ctrl->wctemp = le16_to_cpu(id->wctemp);
3031 ctrl->cctemp = le16_to_cpu(id->cctemp);
3033 atomic_set(&ctrl->abort_limit, id->acl + 1);
3034 ctrl->vwc = id->vwc;
3036 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3038 max_hw_sectors = UINT_MAX;
3039 ctrl->max_hw_sectors =
3040 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3042 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3043 ctrl->sgls = le32_to_cpu(id->sgls);
3044 ctrl->kas = le16_to_cpu(id->kas);
3045 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3046 ctrl->ctratt = le32_to_cpu(id->ctratt);
3050 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3052 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3053 shutdown_timeout, 60);
3055 if (ctrl->shutdown_timeout != shutdown_timeout)
3056 dev_info(ctrl->device,
3057 "Shutdown timeout set to %u seconds\n",
3058 ctrl->shutdown_timeout);
3060 ctrl->shutdown_timeout = shutdown_timeout;
3062 ctrl->npss = id->npss;
3063 ctrl->apsta = id->apsta;
3064 prev_apst_enabled = ctrl->apst_enabled;
3065 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3066 if (force_apst && id->apsta) {
3067 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3068 ctrl->apst_enabled = true;
3070 ctrl->apst_enabled = false;
3073 ctrl->apst_enabled = id->apsta;
3075 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3077 if (ctrl->ops->flags & NVME_F_FABRICS) {
3078 ctrl->icdoff = le16_to_cpu(id->icdoff);
3079 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3080 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3081 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3084 * In fabrics we need to verify the cntlid matches the
3087 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3088 dev_err(ctrl->device,
3089 "Mismatching cntlid: Connect %u vs Identify "
3091 ctrl->cntlid, le16_to_cpu(id->cntlid));
3096 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3097 dev_err(ctrl->device,
3098 "keep-alive support is mandatory for fabrics\n");
3103 ctrl->hmpre = le32_to_cpu(id->hmpre);
3104 ctrl->hmmin = le32_to_cpu(id->hmmin);
3105 ctrl->hmminds = le32_to_cpu(id->hmminds);
3106 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3109 ret = nvme_mpath_init(ctrl, id);
3115 if (ctrl->apst_enabled && !prev_apst_enabled)
3116 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3117 else if (!ctrl->apst_enabled && prev_apst_enabled)
3118 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3120 ret = nvme_configure_apst(ctrl);
3124 ret = nvme_configure_timestamp(ctrl);
3128 ret = nvme_configure_directives(ctrl);
3132 ret = nvme_configure_acre(ctrl);
3136 if (!ctrl->identified) {
3137 ret = nvme_hwmon_init(ctrl);
3142 ctrl->identified = true;
3150 EXPORT_SYMBOL_GPL(nvme_init_identify);
3152 static int nvme_dev_open(struct inode *inode, struct file *file)
3154 struct nvme_ctrl *ctrl =
3155 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3157 switch (ctrl->state) {
3158 case NVME_CTRL_LIVE:
3161 return -EWOULDBLOCK;
3164 nvme_get_ctrl(ctrl);
3165 if (!try_module_get(ctrl->ops->module)) {
3166 nvme_put_ctrl(ctrl);
3170 file->private_data = ctrl;
3174 static int nvme_dev_release(struct inode *inode, struct file *file)
3176 struct nvme_ctrl *ctrl =
3177 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3179 module_put(ctrl->ops->module);
3180 nvme_put_ctrl(ctrl);
3184 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3189 down_read(&ctrl->namespaces_rwsem);
3190 if (list_empty(&ctrl->namespaces)) {
3195 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3196 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3197 dev_warn(ctrl->device,
3198 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3203 dev_warn(ctrl->device,
3204 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3205 kref_get(&ns->kref);
3206 up_read(&ctrl->namespaces_rwsem);
3208 ret = nvme_user_cmd(ctrl, ns, argp);
3213 up_read(&ctrl->namespaces_rwsem);
3217 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3220 struct nvme_ctrl *ctrl = file->private_data;
3221 void __user *argp = (void __user *)arg;
3224 case NVME_IOCTL_ADMIN_CMD:
3225 return nvme_user_cmd(ctrl, NULL, argp);
3226 case NVME_IOCTL_ADMIN64_CMD:
3227 return nvme_user_cmd64(ctrl, NULL, argp);
3228 case NVME_IOCTL_IO_CMD:
3229 return nvme_dev_user_cmd(ctrl, argp);
3230 case NVME_IOCTL_RESET:
3231 dev_warn(ctrl->device, "resetting controller\n");
3232 return nvme_reset_ctrl_sync(ctrl);
3233 case NVME_IOCTL_SUBSYS_RESET:
3234 return nvme_reset_subsystem(ctrl);
3235 case NVME_IOCTL_RESCAN:
3236 nvme_queue_scan(ctrl);
3243 static const struct file_operations nvme_dev_fops = {
3244 .owner = THIS_MODULE,
3245 .open = nvme_dev_open,
3246 .release = nvme_dev_release,
3247 .unlocked_ioctl = nvme_dev_ioctl,
3248 .compat_ioctl = compat_ptr_ioctl,
3251 static ssize_t nvme_sysfs_reset(struct device *dev,
3252 struct device_attribute *attr, const char *buf,
3255 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3258 ret = nvme_reset_ctrl_sync(ctrl);
3263 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3265 static ssize_t nvme_sysfs_rescan(struct device *dev,
3266 struct device_attribute *attr, const char *buf,
3269 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3271 nvme_queue_scan(ctrl);
3274 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3276 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3278 struct gendisk *disk = dev_to_disk(dev);
3280 if (disk->fops == &nvme_fops)
3281 return nvme_get_ns_from_dev(dev)->head;
3283 return disk->private_data;
3286 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3289 struct nvme_ns_head *head = dev_to_ns_head(dev);
3290 struct nvme_ns_ids *ids = &head->ids;
3291 struct nvme_subsystem *subsys = head->subsys;
3292 int serial_len = sizeof(subsys->serial);
3293 int model_len = sizeof(subsys->model);
3295 if (!uuid_is_null(&ids->uuid))
3296 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3298 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3299 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3301 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3302 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3304 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3305 subsys->serial[serial_len - 1] == '\0'))
3307 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3308 subsys->model[model_len - 1] == '\0'))
3311 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3312 serial_len, subsys->serial, model_len, subsys->model,
3315 static DEVICE_ATTR_RO(wwid);
3317 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3320 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3322 static DEVICE_ATTR_RO(nguid);
3324 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3327 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3329 /* For backward compatibility expose the NGUID to userspace if
3330 * we have no UUID set
3332 if (uuid_is_null(&ids->uuid)) {
3333 printk_ratelimited(KERN_WARNING
3334 "No UUID available providing old NGUID\n");
3335 return sprintf(buf, "%pU\n", ids->nguid);
3337 return sprintf(buf, "%pU\n", &ids->uuid);
3339 static DEVICE_ATTR_RO(uuid);
3341 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3344 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3346 static DEVICE_ATTR_RO(eui);
3348 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3351 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3353 static DEVICE_ATTR_RO(nsid);
3355 static struct attribute *nvme_ns_id_attrs[] = {
3356 &dev_attr_wwid.attr,
3357 &dev_attr_uuid.attr,
3358 &dev_attr_nguid.attr,
3360 &dev_attr_nsid.attr,
3361 #ifdef CONFIG_NVME_MULTIPATH
3362 &dev_attr_ana_grpid.attr,
3363 &dev_attr_ana_state.attr,
3368 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3369 struct attribute *a, int n)
3371 struct device *dev = container_of(kobj, struct device, kobj);
3372 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3374 if (a == &dev_attr_uuid.attr) {
3375 if (uuid_is_null(&ids->uuid) &&
3376 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3379 if (a == &dev_attr_nguid.attr) {
3380 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3383 if (a == &dev_attr_eui.attr) {
3384 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3387 #ifdef CONFIG_NVME_MULTIPATH
3388 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3389 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3391 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3398 static const struct attribute_group nvme_ns_id_attr_group = {
3399 .attrs = nvme_ns_id_attrs,
3400 .is_visible = nvme_ns_id_attrs_are_visible,
3403 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3404 &nvme_ns_id_attr_group,
3406 &nvme_nvm_attr_group,
3411 #define nvme_show_str_function(field) \
3412 static ssize_t field##_show(struct device *dev, \
3413 struct device_attribute *attr, char *buf) \
3415 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3416 return sprintf(buf, "%.*s\n", \
3417 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3419 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3421 nvme_show_str_function(model);
3422 nvme_show_str_function(serial);
3423 nvme_show_str_function(firmware_rev);
3425 #define nvme_show_int_function(field) \
3426 static ssize_t field##_show(struct device *dev, \
3427 struct device_attribute *attr, char *buf) \
3429 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3430 return sprintf(buf, "%d\n", ctrl->field); \
3432 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3434 nvme_show_int_function(cntlid);
3435 nvme_show_int_function(numa_node);
3436 nvme_show_int_function(queue_count);
3437 nvme_show_int_function(sqsize);
3439 static ssize_t nvme_sysfs_delete(struct device *dev,
3440 struct device_attribute *attr, const char *buf,
3443 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3445 if (device_remove_file_self(dev, attr))
3446 nvme_delete_ctrl_sync(ctrl);
3449 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3451 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3452 struct device_attribute *attr,
3455 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3457 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3459 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3461 static ssize_t nvme_sysfs_show_state(struct device *dev,
3462 struct device_attribute *attr,
3465 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3466 static const char *const state_name[] = {
3467 [NVME_CTRL_NEW] = "new",
3468 [NVME_CTRL_LIVE] = "live",
3469 [NVME_CTRL_RESETTING] = "resetting",
3470 [NVME_CTRL_CONNECTING] = "connecting",
3471 [NVME_CTRL_DELETING] = "deleting",
3472 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3473 [NVME_CTRL_DEAD] = "dead",
3476 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3477 state_name[ctrl->state])
3478 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3480 return sprintf(buf, "unknown state\n");
3483 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3485 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3486 struct device_attribute *attr,
3489 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3491 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3493 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3495 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3496 struct device_attribute *attr,
3499 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3501 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3503 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3505 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3506 struct device_attribute *attr,
3509 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3511 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3513 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3515 static ssize_t nvme_sysfs_show_address(struct device *dev,
3516 struct device_attribute *attr,
3519 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3521 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3523 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3525 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3526 struct device_attribute *attr, char *buf)
3528 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3529 struct nvmf_ctrl_options *opts = ctrl->opts;
3531 if (ctrl->opts->max_reconnects == -1)
3532 return sprintf(buf, "off\n");
3533 return sprintf(buf, "%d\n",
3534 opts->max_reconnects * opts->reconnect_delay);
3537 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3538 struct device_attribute *attr, const char *buf, size_t count)
3540 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3541 struct nvmf_ctrl_options *opts = ctrl->opts;
3542 int ctrl_loss_tmo, err;
3544 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3548 else if (ctrl_loss_tmo < 0)
3549 opts->max_reconnects = -1;
3551 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3552 opts->reconnect_delay);
3555 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3556 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3558 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3559 struct device_attribute *attr, char *buf)
3561 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3563 if (ctrl->opts->reconnect_delay == -1)
3564 return sprintf(buf, "off\n");
3565 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3568 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3569 struct device_attribute *attr, const char *buf, size_t count)
3571 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3575 err = kstrtou32(buf, 10, &v);
3579 ctrl->opts->reconnect_delay = v;
3582 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3583 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3585 static struct attribute *nvme_dev_attrs[] = {
3586 &dev_attr_reset_controller.attr,
3587 &dev_attr_rescan_controller.attr,
3588 &dev_attr_model.attr,
3589 &dev_attr_serial.attr,
3590 &dev_attr_firmware_rev.attr,
3591 &dev_attr_cntlid.attr,
3592 &dev_attr_delete_controller.attr,
3593 &dev_attr_transport.attr,
3594 &dev_attr_subsysnqn.attr,
3595 &dev_attr_address.attr,
3596 &dev_attr_state.attr,
3597 &dev_attr_numa_node.attr,
3598 &dev_attr_queue_count.attr,
3599 &dev_attr_sqsize.attr,
3600 &dev_attr_hostnqn.attr,
3601 &dev_attr_hostid.attr,
3602 &dev_attr_ctrl_loss_tmo.attr,
3603 &dev_attr_reconnect_delay.attr,
3607 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3608 struct attribute *a, int n)
3610 struct device *dev = container_of(kobj, struct device, kobj);
3611 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3613 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3615 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3617 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3619 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3621 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3623 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3629 static struct attribute_group nvme_dev_attrs_group = {
3630 .attrs = nvme_dev_attrs,
3631 .is_visible = nvme_dev_attrs_are_visible,
3634 static const struct attribute_group *nvme_dev_attr_groups[] = {
3635 &nvme_dev_attrs_group,
3639 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3642 struct nvme_ns_head *h;
3644 lockdep_assert_held(&subsys->lock);
3646 list_for_each_entry(h, &subsys->nsheads, entry) {
3647 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3654 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3655 struct nvme_ns_head *new)
3657 struct nvme_ns_head *h;
3659 lockdep_assert_held(&subsys->lock);
3661 list_for_each_entry(h, &subsys->nsheads, entry) {
3662 if (nvme_ns_ids_valid(&new->ids) &&
3663 nvme_ns_ids_equal(&new->ids, &h->ids))
3670 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3671 unsigned nsid, struct nvme_ns_ids *ids)
3673 struct nvme_ns_head *head;
3674 size_t size = sizeof(*head);
3677 #ifdef CONFIG_NVME_MULTIPATH
3678 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3681 head = kzalloc(size, GFP_KERNEL);
3684 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3687 head->instance = ret;
3688 INIT_LIST_HEAD(&head->list);
3689 ret = init_srcu_struct(&head->srcu);
3691 goto out_ida_remove;
3692 head->subsys = ctrl->subsys;
3695 kref_init(&head->ref);
3697 ret = __nvme_check_ids(ctrl->subsys, head);
3699 dev_err(ctrl->device,
3700 "duplicate IDs for nsid %d\n", nsid);
3701 goto out_cleanup_srcu;
3704 if (head->ids.csi) {
3705 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3707 goto out_cleanup_srcu;
3709 head->effects = ctrl->effects;
3711 ret = nvme_mpath_alloc_disk(ctrl, head);
3713 goto out_cleanup_srcu;
3715 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3717 kref_get(&ctrl->subsys->ref);
3721 cleanup_srcu_struct(&head->srcu);
3723 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3728 ret = blk_status_to_errno(nvme_error_status(ret));
3729 return ERR_PTR(ret);
3732 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3733 struct nvme_ns_ids *ids, bool is_shared)
3735 struct nvme_ctrl *ctrl = ns->ctrl;
3736 struct nvme_ns_head *head = NULL;
3739 mutex_lock(&ctrl->subsys->lock);
3740 head = nvme_find_ns_head(ctrl->subsys, nsid);
3742 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3744 ret = PTR_ERR(head);
3747 head->shared = is_shared;
3750 if (!is_shared || !head->shared) {
3751 dev_err(ctrl->device,
3752 "Duplicate unshared namespace %d\n", nsid);
3753 goto out_put_ns_head;
3755 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3756 dev_err(ctrl->device,
3757 "IDs don't match for shared namespace %d\n",
3759 goto out_put_ns_head;
3763 list_add_tail(&ns->siblings, &head->list);
3765 mutex_unlock(&ctrl->subsys->lock);
3769 nvme_put_ns_head(head);
3771 mutex_unlock(&ctrl->subsys->lock);
3775 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3777 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3778 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3780 return nsa->head->ns_id - nsb->head->ns_id;
3783 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3785 struct nvme_ns *ns, *ret = NULL;
3787 down_read(&ctrl->namespaces_rwsem);
3788 list_for_each_entry(ns, &ctrl->namespaces, list) {
3789 if (ns->head->ns_id == nsid) {
3790 if (!kref_get_unless_zero(&ns->kref))
3795 if (ns->head->ns_id > nsid)
3798 up_read(&ctrl->namespaces_rwsem);
3801 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3803 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3804 struct nvme_ns_ids *ids)
3807 struct gendisk *disk;
3808 struct nvme_id_ns *id;
3809 char disk_name[DISK_NAME_LEN];
3810 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3812 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3815 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3819 ns->queue = blk_mq_init_queue(ctrl->tagset);
3820 if (IS_ERR(ns->queue))
3823 if (ctrl->opts && ctrl->opts->data_digest)
3824 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3826 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3827 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3828 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3830 ns->queue->queuedata = ns;
3832 kref_init(&ns->kref);
3834 ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3836 goto out_free_queue;
3837 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3839 disk = alloc_disk_node(0, node);
3843 disk->fops = &nvme_fops;
3844 disk->private_data = ns;
3845 disk->queue = ns->queue;
3846 disk->flags = flags;
3847 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3850 if (nvme_update_ns_info(ns, id))
3853 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3854 ret = nvme_nvm_register(ns, disk_name, node);
3856 dev_warn(ctrl->device, "LightNVM init failure\n");
3861 down_write(&ctrl->namespaces_rwsem);
3862 list_add_tail(&ns->list, &ctrl->namespaces);
3863 up_write(&ctrl->namespaces_rwsem);
3865 nvme_get_ctrl(ctrl);
3867 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3869 nvme_mpath_add_disk(ns, id);
3870 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3875 /* prevent double queue cleanup */
3876 ns->disk->queue = NULL;
3879 mutex_lock(&ctrl->subsys->lock);
3880 list_del_rcu(&ns->siblings);
3881 if (list_empty(&ns->head->list))
3882 list_del_init(&ns->head->entry);
3883 mutex_unlock(&ctrl->subsys->lock);
3884 nvme_put_ns_head(ns->head);
3886 blk_cleanup_queue(ns->queue);
3893 static void nvme_ns_remove(struct nvme_ns *ns)
3895 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3898 set_capacity(ns->disk, 0);
3899 nvme_fault_inject_fini(&ns->fault_inject);
3901 mutex_lock(&ns->ctrl->subsys->lock);
3902 list_del_rcu(&ns->siblings);
3903 if (list_empty(&ns->head->list))
3904 list_del_init(&ns->head->entry);
3905 mutex_unlock(&ns->ctrl->subsys->lock);
3907 synchronize_rcu(); /* guarantee not available in head->list */
3908 nvme_mpath_clear_current_path(ns);
3909 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3911 if (ns->disk->flags & GENHD_FL_UP) {
3912 del_gendisk(ns->disk);
3913 blk_cleanup_queue(ns->queue);
3914 if (blk_get_integrity(ns->disk))
3915 blk_integrity_unregister(ns->disk);
3918 down_write(&ns->ctrl->namespaces_rwsem);
3919 list_del_init(&ns->list);
3920 up_write(&ns->ctrl->namespaces_rwsem);
3922 nvme_mpath_check_last_path(ns);
3926 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3928 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3936 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3938 struct nvme_id_ns *id;
3941 if (test_bit(NVME_NS_DEAD, &ns->flags))
3944 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3949 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3950 dev_err(ns->ctrl->device,
3951 "identifiers changed for nsid %d\n", ns->head->ns_id);
3955 ret = nvme_update_ns_info(ns, id);
3961 * Only remove the namespace if we got a fatal error back from the
3962 * device, otherwise ignore the error and just move on.
3964 * TODO: we should probably schedule a delayed retry here.
3966 if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
3969 revalidate_disk_size(ns->disk, true);
3972 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3974 struct nvme_ns_ids ids = { };
3977 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3980 ns = nvme_find_get_ns(ctrl, nsid);
3982 nvme_validate_ns(ns, &ids);
3989 nvme_alloc_ns(ctrl, nsid, &ids);
3992 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3993 dev_warn(ctrl->device,
3994 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3998 nvme_alloc_ns(ctrl, nsid, &ids);
4001 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4007 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4010 struct nvme_ns *ns, *next;
4013 down_write(&ctrl->namespaces_rwsem);
4014 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4015 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4016 list_move_tail(&ns->list, &rm_list);
4018 up_write(&ctrl->namespaces_rwsem);
4020 list_for_each_entry_safe(ns, next, &rm_list, list)
4025 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4027 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4032 if (nvme_ctrl_limited_cns(ctrl))
4035 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4040 struct nvme_command cmd = {
4041 .identify.opcode = nvme_admin_identify,
4042 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4043 .identify.nsid = cpu_to_le32(prev),
4046 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4047 NVME_IDENTIFY_DATA_SIZE);
4051 for (i = 0; i < nr_entries; i++) {
4052 u32 nsid = le32_to_cpu(ns_list[i]);
4054 if (!nsid) /* end of the list? */
4056 nvme_validate_or_alloc_ns(ctrl, nsid);
4057 while (++prev < nsid)
4058 nvme_ns_remove_by_nsid(ctrl, prev);
4062 nvme_remove_invalid_namespaces(ctrl, prev);
4068 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4070 struct nvme_id_ctrl *id;
4073 if (nvme_identify_ctrl(ctrl, &id))
4075 nn = le32_to_cpu(id->nn);
4078 for (i = 1; i <= nn; i++)
4079 nvme_validate_or_alloc_ns(ctrl, i);
4081 nvme_remove_invalid_namespaces(ctrl, nn);
4084 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4086 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4090 log = kzalloc(log_size, GFP_KERNEL);
4095 * We need to read the log to clear the AEN, but we don't want to rely
4096 * on it for the changed namespace information as userspace could have
4097 * raced with us in reading the log page, which could cause us to miss
4100 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4101 NVME_CSI_NVM, log, log_size, 0);
4103 dev_warn(ctrl->device,
4104 "reading changed ns log failed: %d\n", error);
4109 static void nvme_scan_work(struct work_struct *work)
4111 struct nvme_ctrl *ctrl =
4112 container_of(work, struct nvme_ctrl, scan_work);
4114 /* No tagset on a live ctrl means IO queues could not created */
4115 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4118 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4119 dev_info(ctrl->device, "rescanning namespaces.\n");
4120 nvme_clear_changed_ns_log(ctrl);
4123 mutex_lock(&ctrl->scan_lock);
4124 if (nvme_scan_ns_list(ctrl) != 0)
4125 nvme_scan_ns_sequential(ctrl);
4126 mutex_unlock(&ctrl->scan_lock);
4128 down_write(&ctrl->namespaces_rwsem);
4129 list_sort(NULL, &ctrl->namespaces, ns_cmp);
4130 up_write(&ctrl->namespaces_rwsem);
4134 * This function iterates the namespace list unlocked to allow recovery from
4135 * controller failure. It is up to the caller to ensure the namespace list is
4136 * not modified by scan work while this function is executing.
4138 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4140 struct nvme_ns *ns, *next;
4144 * make sure to requeue I/O to all namespaces as these
4145 * might result from the scan itself and must complete
4146 * for the scan_work to make progress
4148 nvme_mpath_clear_ctrl_paths(ctrl);
4150 /* prevent racing with ns scanning */
4151 flush_work(&ctrl->scan_work);
4154 * The dead states indicates the controller was not gracefully
4155 * disconnected. In that case, we won't be able to flush any data while
4156 * removing the namespaces' disks; fail all the queues now to avoid
4157 * potentially having to clean up the failed sync later.
4159 if (ctrl->state == NVME_CTRL_DEAD)
4160 nvme_kill_queues(ctrl);
4162 /* this is a no-op when called from the controller reset handler */
4163 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4165 down_write(&ctrl->namespaces_rwsem);
4166 list_splice_init(&ctrl->namespaces, &ns_list);
4167 up_write(&ctrl->namespaces_rwsem);
4169 list_for_each_entry_safe(ns, next, &ns_list, list)
4172 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4174 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4176 struct nvme_ctrl *ctrl =
4177 container_of(dev, struct nvme_ctrl, ctrl_device);
4178 struct nvmf_ctrl_options *opts = ctrl->opts;
4181 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4186 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4190 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4191 opts->trsvcid ?: "none");
4195 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4196 opts->host_traddr ?: "none");
4201 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4203 char *envp[2] = { NULL, NULL };
4204 u32 aen_result = ctrl->aen_result;
4206 ctrl->aen_result = 0;
4210 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4213 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4217 static void nvme_async_event_work(struct work_struct *work)
4219 struct nvme_ctrl *ctrl =
4220 container_of(work, struct nvme_ctrl, async_event_work);
4222 nvme_aen_uevent(ctrl);
4223 ctrl->ops->submit_async_event(ctrl);
4226 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4231 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4237 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4240 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4242 struct nvme_fw_slot_info_log *log;
4244 log = kmalloc(sizeof(*log), GFP_KERNEL);
4248 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4249 log, sizeof(*log), 0))
4250 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4254 static void nvme_fw_act_work(struct work_struct *work)
4256 struct nvme_ctrl *ctrl = container_of(work,
4257 struct nvme_ctrl, fw_act_work);
4258 unsigned long fw_act_timeout;
4261 fw_act_timeout = jiffies +
4262 msecs_to_jiffies(ctrl->mtfa * 100);
4264 fw_act_timeout = jiffies +
4265 msecs_to_jiffies(admin_timeout * 1000);
4267 nvme_stop_queues(ctrl);
4268 while (nvme_ctrl_pp_status(ctrl)) {
4269 if (time_after(jiffies, fw_act_timeout)) {
4270 dev_warn(ctrl->device,
4271 "Fw activation timeout, reset controller\n");
4272 nvme_try_sched_reset(ctrl);
4278 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4281 nvme_start_queues(ctrl);
4282 /* read FW slot information to clear the AER */
4283 nvme_get_fw_slot_info(ctrl);
4286 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4288 u32 aer_notice_type = (result & 0xff00) >> 8;
4290 trace_nvme_async_event(ctrl, aer_notice_type);
4292 switch (aer_notice_type) {
4293 case NVME_AER_NOTICE_NS_CHANGED:
4294 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4295 nvme_queue_scan(ctrl);
4297 case NVME_AER_NOTICE_FW_ACT_STARTING:
4299 * We are (ab)using the RESETTING state to prevent subsequent
4300 * recovery actions from interfering with the controller's
4301 * firmware activation.
4303 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4304 queue_work(nvme_wq, &ctrl->fw_act_work);
4306 #ifdef CONFIG_NVME_MULTIPATH
4307 case NVME_AER_NOTICE_ANA:
4308 if (!ctrl->ana_log_buf)
4310 queue_work(nvme_wq, &ctrl->ana_work);
4313 case NVME_AER_NOTICE_DISC_CHANGED:
4314 ctrl->aen_result = result;
4317 dev_warn(ctrl->device, "async event result %08x\n", result);
4321 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4322 volatile union nvme_result *res)
4324 u32 result = le32_to_cpu(res->u32);
4325 u32 aer_type = result & 0x07;
4327 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4331 case NVME_AER_NOTICE:
4332 nvme_handle_aen_notice(ctrl, result);
4334 case NVME_AER_ERROR:
4335 case NVME_AER_SMART:
4338 trace_nvme_async_event(ctrl, aer_type);
4339 ctrl->aen_result = result;
4344 queue_work(nvme_wq, &ctrl->async_event_work);
4346 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4348 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4350 nvme_mpath_stop(ctrl);
4351 nvme_stop_keep_alive(ctrl);
4352 flush_work(&ctrl->async_event_work);
4353 cancel_work_sync(&ctrl->fw_act_work);
4355 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4357 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4359 nvme_start_keep_alive(ctrl);
4361 nvme_enable_aen(ctrl);
4363 if (ctrl->queue_count > 1) {
4364 nvme_queue_scan(ctrl);
4365 nvme_start_queues(ctrl);
4368 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4370 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4372 nvme_fault_inject_fini(&ctrl->fault_inject);
4373 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4374 cdev_device_del(&ctrl->cdev, ctrl->device);
4375 nvme_put_ctrl(ctrl);
4377 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4379 static void nvme_free_ctrl(struct device *dev)
4381 struct nvme_ctrl *ctrl =
4382 container_of(dev, struct nvme_ctrl, ctrl_device);
4383 struct nvme_subsystem *subsys = ctrl->subsys;
4385 if (!subsys || ctrl->instance != subsys->instance)
4386 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4388 xa_destroy(&ctrl->cels);
4390 nvme_mpath_uninit(ctrl);
4391 __free_page(ctrl->discard_page);
4394 mutex_lock(&nvme_subsystems_lock);
4395 list_del(&ctrl->subsys_entry);
4396 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4397 mutex_unlock(&nvme_subsystems_lock);
4400 ctrl->ops->free_ctrl(ctrl);
4403 nvme_put_subsystem(subsys);
4407 * Initialize a NVMe controller structures. This needs to be called during
4408 * earliest initialization so that we have the initialized structured around
4411 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4412 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4416 ctrl->state = NVME_CTRL_NEW;
4417 spin_lock_init(&ctrl->lock);
4418 mutex_init(&ctrl->scan_lock);
4419 INIT_LIST_HEAD(&ctrl->namespaces);
4420 xa_init(&ctrl->cels);
4421 init_rwsem(&ctrl->namespaces_rwsem);
4424 ctrl->quirks = quirks;
4425 ctrl->numa_node = NUMA_NO_NODE;
4426 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4427 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4428 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4429 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4430 init_waitqueue_head(&ctrl->state_wq);
4432 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4433 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4434 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4436 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4438 ctrl->discard_page = alloc_page(GFP_KERNEL);
4439 if (!ctrl->discard_page) {
4444 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4447 ctrl->instance = ret;
4449 device_initialize(&ctrl->ctrl_device);
4450 ctrl->device = &ctrl->ctrl_device;
4451 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4452 ctrl->device->class = nvme_class;
4453 ctrl->device->parent = ctrl->dev;
4454 ctrl->device->groups = nvme_dev_attr_groups;
4455 ctrl->device->release = nvme_free_ctrl;
4456 dev_set_drvdata(ctrl->device, ctrl);
4457 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4459 goto out_release_instance;
4461 nvme_get_ctrl(ctrl);
4462 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4463 ctrl->cdev.owner = ops->module;
4464 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4469 * Initialize latency tolerance controls. The sysfs files won't
4470 * be visible to userspace unless the device actually supports APST.
4472 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4473 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4474 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4476 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4480 nvme_put_ctrl(ctrl);
4481 kfree_const(ctrl->device->kobj.name);
4482 out_release_instance:
4483 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4485 if (ctrl->discard_page)
4486 __free_page(ctrl->discard_page);
4489 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4492 * nvme_kill_queues(): Ends all namespace queues
4493 * @ctrl: the dead controller that needs to end
4495 * Call this function when the driver determines it is unable to get the
4496 * controller in a state capable of servicing IO.
4498 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4502 down_read(&ctrl->namespaces_rwsem);
4504 /* Forcibly unquiesce queues to avoid blocking dispatch */
4505 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4506 blk_mq_unquiesce_queue(ctrl->admin_q);
4508 list_for_each_entry(ns, &ctrl->namespaces, list)
4509 nvme_set_queue_dying(ns);
4511 up_read(&ctrl->namespaces_rwsem);
4513 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4515 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4519 down_read(&ctrl->namespaces_rwsem);
4520 list_for_each_entry(ns, &ctrl->namespaces, list)
4521 blk_mq_unfreeze_queue(ns->queue);
4522 up_read(&ctrl->namespaces_rwsem);
4524 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4526 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4530 down_read(&ctrl->namespaces_rwsem);
4531 list_for_each_entry(ns, &ctrl->namespaces, list) {
4532 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4536 up_read(&ctrl->namespaces_rwsem);
4539 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4541 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4545 down_read(&ctrl->namespaces_rwsem);
4546 list_for_each_entry(ns, &ctrl->namespaces, list)
4547 blk_mq_freeze_queue_wait(ns->queue);
4548 up_read(&ctrl->namespaces_rwsem);
4550 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4552 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4556 down_read(&ctrl->namespaces_rwsem);
4557 list_for_each_entry(ns, &ctrl->namespaces, list)
4558 blk_freeze_queue_start(ns->queue);
4559 up_read(&ctrl->namespaces_rwsem);
4561 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4563 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4567 down_read(&ctrl->namespaces_rwsem);
4568 list_for_each_entry(ns, &ctrl->namespaces, list)
4569 blk_mq_quiesce_queue(ns->queue);
4570 up_read(&ctrl->namespaces_rwsem);
4572 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4574 void nvme_start_queues(struct nvme_ctrl *ctrl)
4578 down_read(&ctrl->namespaces_rwsem);
4579 list_for_each_entry(ns, &ctrl->namespaces, list)
4580 blk_mq_unquiesce_queue(ns->queue);
4581 up_read(&ctrl->namespaces_rwsem);
4583 EXPORT_SYMBOL_GPL(nvme_start_queues);
4586 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4590 down_read(&ctrl->namespaces_rwsem);
4591 list_for_each_entry(ns, &ctrl->namespaces, list)
4592 blk_sync_queue(ns->queue);
4593 up_read(&ctrl->namespaces_rwsem);
4596 blk_sync_queue(ctrl->admin_q);
4598 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4600 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4602 if (file->f_op != &nvme_dev_fops)
4604 return file->private_data;
4606 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4609 * Check we didn't inadvertently grow the command structure sizes:
4611 static inline void _nvme_check_size(void)
4613 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4614 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4615 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4616 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4617 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4618 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4619 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4620 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4621 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4622 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4623 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4624 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4625 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4626 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4627 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4628 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4629 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4630 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4631 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4635 static int __init nvme_core_init(void)
4637 int result = -ENOMEM;
4641 nvme_wq = alloc_workqueue("nvme-wq",
4642 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4646 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4647 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4651 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4652 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4653 if (!nvme_delete_wq)
4654 goto destroy_reset_wq;
4656 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4658 goto destroy_delete_wq;
4660 nvme_class = class_create(THIS_MODULE, "nvme");
4661 if (IS_ERR(nvme_class)) {
4662 result = PTR_ERR(nvme_class);
4663 goto unregister_chrdev;
4665 nvme_class->dev_uevent = nvme_class_uevent;
4667 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4668 if (IS_ERR(nvme_subsys_class)) {
4669 result = PTR_ERR(nvme_subsys_class);
4675 class_destroy(nvme_class);
4677 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4679 destroy_workqueue(nvme_delete_wq);
4681 destroy_workqueue(nvme_reset_wq);
4683 destroy_workqueue(nvme_wq);
4688 static void __exit nvme_core_exit(void)
4690 class_destroy(nvme_subsys_class);
4691 class_destroy(nvme_class);
4692 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4693 destroy_workqueue(nvme_delete_wq);
4694 destroy_workqueue(nvme_reset_wq);
4695 destroy_workqueue(nvme_wq);
4696 ida_destroy(&nvme_instance_ida);
4699 MODULE_LICENSE("GPL");
4700 MODULE_VERSION("1.0");
4701 module_init(nvme_core_init);
4702 module_exit(nvme_core_exit);