1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
27 #include <linux/nvme-auth.h>
29 #define CREATE_TRACE_POINTS
32 #define NVME_MINORS (1U << MINORBITS)
35 struct nvme_ns_ids ids;
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65 "max power saving latency for new devices; use PM QOS to change per device");
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74 "primary APST timeout in ms");
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79 "secondary APST timeout in ms");
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84 "primary APST latency tolerance in us");
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89 "secondary APST latency tolerance in us");
92 * nvme_wq - hosts nvme related works that are not reset or delete
93 * nvme_reset_wq - hosts nvme reset works
94 * nvme_delete_wq - hosts nvme delete works
96 * nvme_wq will host works such as scan, aen handling, fw activation,
97 * keep-alive, periodic reconnects etc. nvme_reset_wq
98 * runs reset works which also flush works hosted on nvme_wq for
99 * serialization purposes. nvme_delete_wq host controller deletion
100 * works which flush reset works for serialization.
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127 struct nvme_command *cmd);
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
132 * Only new queue scan work when admin and IO queues are both alive
134 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135 queue_work(nvme_wq, &ctrl->scan_work);
139 * Use this function to proceed with scheduling reset_work for a controller
140 * that had previously been set to the resetting state. This is intended for
141 * code paths that can't be interrupted by other reset attempts. A hot removal
142 * may prevent this from succeeding.
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
146 if (ctrl->state != NVME_CTRL_RESETTING)
148 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
154 static void nvme_failfast_work(struct work_struct *work)
156 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157 struct nvme_ctrl, failfast_work);
159 if (ctrl->state != NVME_CTRL_CONNECTING)
162 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163 dev_info(ctrl->device, "failfast expired\n");
164 nvme_kick_requeue_lists(ctrl);
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
169 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
172 schedule_delayed_work(&ctrl->failfast_work,
173 ctrl->opts->fast_io_fail_tmo * HZ);
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
181 cancel_delayed_work_sync(&ctrl->failfast_work);
182 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
188 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
190 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
200 ret = nvme_reset_ctrl(ctrl);
202 flush_work(&ctrl->reset_work);
203 if (ctrl->state != NVME_CTRL_LIVE)
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
212 dev_info(ctrl->device,
213 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
215 flush_work(&ctrl->reset_work);
216 nvme_stop_ctrl(ctrl);
217 nvme_remove_namespaces(ctrl);
218 ctrl->ops->delete_ctrl(ctrl);
219 nvme_uninit_ctrl(ctrl);
222 static void nvme_delete_ctrl_work(struct work_struct *work)
224 struct nvme_ctrl *ctrl =
225 container_of(work, struct nvme_ctrl, delete_work);
227 nvme_do_delete_ctrl(ctrl);
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
232 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
240 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
243 * Keep a reference until nvme_do_delete_ctrl() complete,
244 * since ->delete_ctrl can free the controller.
247 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248 nvme_do_delete_ctrl(ctrl);
252 static blk_status_t nvme_error_status(u16 status)
254 switch (status & 0x7ff) {
255 case NVME_SC_SUCCESS:
257 case NVME_SC_CAP_EXCEEDED:
258 return BLK_STS_NOSPC;
259 case NVME_SC_LBA_RANGE:
260 case NVME_SC_CMD_INTERRUPTED:
261 case NVME_SC_NS_NOT_READY:
262 return BLK_STS_TARGET;
263 case NVME_SC_BAD_ATTRIBUTES:
264 case NVME_SC_ONCS_NOT_SUPPORTED:
265 case NVME_SC_INVALID_OPCODE:
266 case NVME_SC_INVALID_FIELD:
267 case NVME_SC_INVALID_NS:
268 return BLK_STS_NOTSUPP;
269 case NVME_SC_WRITE_FAULT:
270 case NVME_SC_READ_ERROR:
271 case NVME_SC_UNWRITTEN_BLOCK:
272 case NVME_SC_ACCESS_DENIED:
273 case NVME_SC_READ_ONLY:
274 case NVME_SC_COMPARE_FAILED:
275 return BLK_STS_MEDIUM;
276 case NVME_SC_GUARD_CHECK:
277 case NVME_SC_APPTAG_CHECK:
278 case NVME_SC_REFTAG_CHECK:
279 case NVME_SC_INVALID_PI:
280 return BLK_STS_PROTECTION;
281 case NVME_SC_RESERVATION_CONFLICT:
282 return BLK_STS_NEXUS;
283 case NVME_SC_HOST_PATH_ERROR:
284 return BLK_STS_TRANSPORT;
285 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286 return BLK_STS_ZONE_ACTIVE_RESOURCE;
287 case NVME_SC_ZONE_TOO_MANY_OPEN:
288 return BLK_STS_ZONE_OPEN_RESOURCE;
290 return BLK_STS_IOERR;
294 static void nvme_retry_req(struct request *req)
296 unsigned long delay = 0;
299 /* The mask and shift result must be <= 3 */
300 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
302 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
304 nvme_req(req)->retries++;
305 blk_mq_requeue_request(req, false);
306 blk_mq_delay_kick_requeue_list(req->q, delay);
309 static void nvme_log_error(struct request *req)
311 struct nvme_ns *ns = req->q->queuedata;
312 struct nvme_request *nr = nvme_req(req);
315 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316 ns->disk ? ns->disk->disk_name : "?",
317 nvme_get_opcode_str(nr->cmd->common.opcode),
318 nr->cmd->common.opcode,
319 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321 nvme_get_error_status_str(nr->status),
322 nr->status >> 8 & 7, /* Status Code Type */
323 nr->status & 0xff, /* Status Code */
324 nr->status & NVME_SC_MORE ? "MORE " : "",
325 nr->status & NVME_SC_DNR ? "DNR " : "");
329 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330 dev_name(nr->ctrl->device),
331 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332 nr->cmd->common.opcode,
333 nvme_get_error_status_str(nr->status),
334 nr->status >> 8 & 7, /* Status Code Type */
335 nr->status & 0xff, /* Status Code */
336 nr->status & NVME_SC_MORE ? "MORE " : "",
337 nr->status & NVME_SC_DNR ? "DNR " : "");
340 enum nvme_disposition {
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
349 if (likely(nvme_req(req)->status == 0))
352 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
355 if (blk_noretry_request(req) ||
356 (nvme_req(req)->status & NVME_SC_DNR) ||
357 nvme_req(req)->retries >= nvme_max_retries)
360 if (req->cmd_flags & REQ_NVME_MPATH) {
361 if (nvme_is_path_error(nvme_req(req)->status) ||
362 blk_queue_dying(req->q))
365 if (blk_queue_dying(req->q))
372 static inline void nvme_end_req_zoned(struct request *req)
374 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375 req_op(req) == REQ_OP_ZONE_APPEND)
376 req->__sector = nvme_lba_to_sect(req->q->queuedata,
377 le64_to_cpu(nvme_req(req)->result.u64));
380 static inline void nvme_end_req(struct request *req)
382 blk_status_t status = nvme_error_status(nvme_req(req)->status);
384 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
386 nvme_end_req_zoned(req);
387 nvme_trace_bio_complete(req);
388 if (req->cmd_flags & REQ_NVME_MPATH)
389 nvme_mpath_end_request(req);
390 blk_mq_end_request(req, status);
393 void nvme_complete_rq(struct request *req)
395 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
397 trace_nvme_complete_rq(req);
398 nvme_cleanup_cmd(req);
401 ctrl->comp_seen = true;
403 switch (nvme_decide_disposition(req)) {
411 nvme_failover_req(req);
414 #ifdef CONFIG_NVME_AUTH
415 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
423 EXPORT_SYMBOL_GPL(nvme_complete_rq);
425 void nvme_complete_batch_req(struct request *req)
427 trace_nvme_complete_rq(req);
428 nvme_cleanup_cmd(req);
429 nvme_end_req_zoned(req);
431 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
434 * Called to unwind from ->queue_rq on a failed command submission so that the
435 * multipathing code gets called to potentially failover to another path.
436 * The caller needs to unwind all transport specific resource allocations and
437 * must return propagate the return value.
439 blk_status_t nvme_host_path_error(struct request *req)
441 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
442 blk_mq_set_request_complete(req);
443 nvme_complete_rq(req);
446 EXPORT_SYMBOL_GPL(nvme_host_path_error);
448 bool nvme_cancel_request(struct request *req, void *data)
450 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
451 "Cancelling I/O %d", req->tag);
453 /* don't abort one completed or idle request */
454 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
457 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
458 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
459 blk_mq_complete_request(req);
462 EXPORT_SYMBOL_GPL(nvme_cancel_request);
464 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
467 blk_mq_tagset_busy_iter(ctrl->tagset,
468 nvme_cancel_request, ctrl);
469 blk_mq_tagset_wait_completed_request(ctrl->tagset);
472 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
474 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
476 if (ctrl->admin_tagset) {
477 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
478 nvme_cancel_request, ctrl);
479 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
482 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
484 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
485 enum nvme_ctrl_state new_state)
487 enum nvme_ctrl_state old_state;
489 bool changed = false;
491 spin_lock_irqsave(&ctrl->lock, flags);
493 old_state = ctrl->state;
498 case NVME_CTRL_RESETTING:
499 case NVME_CTRL_CONNECTING:
506 case NVME_CTRL_RESETTING:
516 case NVME_CTRL_CONNECTING:
519 case NVME_CTRL_RESETTING:
526 case NVME_CTRL_DELETING:
529 case NVME_CTRL_RESETTING:
530 case NVME_CTRL_CONNECTING:
537 case NVME_CTRL_DELETING_NOIO:
539 case NVME_CTRL_DELETING:
549 case NVME_CTRL_DELETING:
561 ctrl->state = new_state;
562 wake_up_all(&ctrl->state_wq);
565 spin_unlock_irqrestore(&ctrl->lock, flags);
569 if (ctrl->state == NVME_CTRL_LIVE) {
570 if (old_state == NVME_CTRL_CONNECTING)
571 nvme_stop_failfast_work(ctrl);
572 nvme_kick_requeue_lists(ctrl);
573 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
574 old_state == NVME_CTRL_RESETTING) {
575 nvme_start_failfast_work(ctrl);
579 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
582 * Returns true for sink states that can't ever transition back to live.
584 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
586 switch (ctrl->state) {
589 case NVME_CTRL_RESETTING:
590 case NVME_CTRL_CONNECTING:
592 case NVME_CTRL_DELETING:
593 case NVME_CTRL_DELETING_NOIO:
597 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
603 * Waits for the controller state to be resetting, or returns false if it is
604 * not possible to ever transition to that state.
606 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
608 wait_event(ctrl->state_wq,
609 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
610 nvme_state_terminal(ctrl));
611 return ctrl->state == NVME_CTRL_RESETTING;
613 EXPORT_SYMBOL_GPL(nvme_wait_reset);
615 static void nvme_free_ns_head(struct kref *ref)
617 struct nvme_ns_head *head =
618 container_of(ref, struct nvme_ns_head, ref);
620 nvme_mpath_remove_disk(head);
621 ida_free(&head->subsys->ns_ida, head->instance);
622 cleanup_srcu_struct(&head->srcu);
623 nvme_put_subsystem(head->subsys);
627 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
629 return kref_get_unless_zero(&head->ref);
632 void nvme_put_ns_head(struct nvme_ns_head *head)
634 kref_put(&head->ref, nvme_free_ns_head);
637 static void nvme_free_ns(struct kref *kref)
639 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
642 nvme_put_ns_head(ns->head);
643 nvme_put_ctrl(ns->ctrl);
647 static inline bool nvme_get_ns(struct nvme_ns *ns)
649 return kref_get_unless_zero(&ns->kref);
652 void nvme_put_ns(struct nvme_ns *ns)
654 kref_put(&ns->kref, nvme_free_ns);
656 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
658 static inline void nvme_clear_nvme_request(struct request *req)
660 nvme_req(req)->status = 0;
661 nvme_req(req)->retries = 0;
662 nvme_req(req)->flags = 0;
663 req->rq_flags |= RQF_DONTPREP;
666 /* initialize a passthrough request */
667 void nvme_init_request(struct request *req, struct nvme_command *cmd)
669 if (req->q->queuedata)
670 req->timeout = NVME_IO_TIMEOUT;
671 else /* no queuedata implies admin queue */
672 req->timeout = NVME_ADMIN_TIMEOUT;
674 /* passthru commands should let the driver set the SGL flags */
675 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
677 req->cmd_flags |= REQ_FAILFAST_DRIVER;
678 if (req->mq_hctx->type == HCTX_TYPE_POLL)
679 req->cmd_flags |= REQ_POLLED;
680 nvme_clear_nvme_request(req);
681 req->rq_flags |= RQF_QUIET;
682 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
684 EXPORT_SYMBOL_GPL(nvme_init_request);
687 * For something we're not in a state to send to the device the default action
688 * is to busy it and retry it after the controller state is recovered. However,
689 * if the controller is deleting or if anything is marked for failfast or
690 * nvme multipath it is immediately failed.
692 * Note: commands used to initialize the controller will be marked for failfast.
693 * Note: nvme cli/ioctl commands are marked for failfast.
695 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
698 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
699 ctrl->state != NVME_CTRL_DELETING &&
700 ctrl->state != NVME_CTRL_DEAD &&
701 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
702 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
703 return BLK_STS_RESOURCE;
704 return nvme_host_path_error(rq);
706 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
708 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
711 struct nvme_request *req = nvme_req(rq);
714 * currently we have a problem sending passthru commands
715 * on the admin_q if the controller is not LIVE because we can't
716 * make sure that they are going out after the admin connect,
717 * controller enable and/or other commands in the initialization
718 * sequence. until the controller will be LIVE, fail with
719 * BLK_STS_RESOURCE so that they will be rescheduled.
721 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
724 if (ctrl->ops->flags & NVME_F_FABRICS) {
726 * Only allow commands on a live queue, except for the connect
727 * command, which is require to set the queue live in the
728 * appropinquate states.
730 switch (ctrl->state) {
731 case NVME_CTRL_CONNECTING:
732 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
733 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
734 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
735 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
747 EXPORT_SYMBOL_GPL(__nvme_check_ready);
749 static inline void nvme_setup_flush(struct nvme_ns *ns,
750 struct nvme_command *cmnd)
752 memset(cmnd, 0, sizeof(*cmnd));
753 cmnd->common.opcode = nvme_cmd_flush;
754 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
757 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
758 struct nvme_command *cmnd)
760 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
761 struct nvme_dsm_range *range;
765 * Some devices do not consider the DSM 'Number of Ranges' field when
766 * determining how much data to DMA. Always allocate memory for maximum
767 * number of segments to prevent device reading beyond end of buffer.
769 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
771 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
774 * If we fail allocation our range, fallback to the controller
775 * discard page. If that's also busy, it's safe to return
776 * busy, as we know we can make progress once that's freed.
778 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
779 return BLK_STS_RESOURCE;
781 range = page_address(ns->ctrl->discard_page);
784 __rq_for_each_bio(bio, req) {
785 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
786 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
789 range[n].cattr = cpu_to_le32(0);
790 range[n].nlb = cpu_to_le32(nlb);
791 range[n].slba = cpu_to_le64(slba);
796 if (WARN_ON_ONCE(n != segments)) {
797 if (virt_to_page(range) == ns->ctrl->discard_page)
798 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
801 return BLK_STS_IOERR;
804 memset(cmnd, 0, sizeof(*cmnd));
805 cmnd->dsm.opcode = nvme_cmd_dsm;
806 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
807 cmnd->dsm.nr = cpu_to_le32(segments - 1);
808 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
810 bvec_set_virt(&req->special_vec, range, alloc_size);
811 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
816 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
822 /* both rw and write zeroes share the same reftag format */
823 switch (ns->guard_type) {
824 case NVME_NVM_NS_16B_GUARD:
825 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
827 case NVME_NVM_NS_64B_GUARD:
828 ref48 = ext_pi_ref_tag(req);
829 lower = lower_32_bits(ref48);
830 upper = upper_32_bits(ref48);
832 cmnd->rw.reftag = cpu_to_le32(lower);
833 cmnd->rw.cdw3 = cpu_to_le32(upper);
840 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
841 struct request *req, struct nvme_command *cmnd)
843 memset(cmnd, 0, sizeof(*cmnd));
845 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
846 return nvme_setup_discard(ns, req, cmnd);
848 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
849 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
850 cmnd->write_zeroes.slba =
851 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
852 cmnd->write_zeroes.length =
853 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
855 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
856 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
858 if (nvme_ns_has_pi(ns)) {
859 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
861 switch (ns->pi_type) {
862 case NVME_NS_DPS_PI_TYPE1:
863 case NVME_NS_DPS_PI_TYPE2:
864 nvme_set_ref_tag(ns, cmnd, req);
872 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
873 struct request *req, struct nvme_command *cmnd,
879 if (req->cmd_flags & REQ_FUA)
880 control |= NVME_RW_FUA;
881 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
882 control |= NVME_RW_LR;
884 if (req->cmd_flags & REQ_RAHEAD)
885 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
887 cmnd->rw.opcode = op;
889 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
892 cmnd->rw.metadata = 0;
893 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
894 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
897 cmnd->rw.appmask = 0;
901 * If formated with metadata, the block layer always provides a
902 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
903 * we enable the PRACT bit for protection information or set the
904 * namespace capacity to zero to prevent any I/O.
906 if (!blk_integrity_rq(req)) {
907 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
908 return BLK_STS_NOTSUPP;
909 control |= NVME_RW_PRINFO_PRACT;
912 switch (ns->pi_type) {
913 case NVME_NS_DPS_PI_TYPE3:
914 control |= NVME_RW_PRINFO_PRCHK_GUARD;
916 case NVME_NS_DPS_PI_TYPE1:
917 case NVME_NS_DPS_PI_TYPE2:
918 control |= NVME_RW_PRINFO_PRCHK_GUARD |
919 NVME_RW_PRINFO_PRCHK_REF;
920 if (op == nvme_cmd_zone_append)
921 control |= NVME_RW_APPEND_PIREMAP;
922 nvme_set_ref_tag(ns, cmnd, req);
927 cmnd->rw.control = cpu_to_le16(control);
928 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
932 void nvme_cleanup_cmd(struct request *req)
934 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
935 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
937 if (req->special_vec.bv_page == ctrl->discard_page)
938 clear_bit_unlock(0, &ctrl->discard_page_busy);
940 kfree(bvec_virt(&req->special_vec));
943 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
945 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
947 struct nvme_command *cmd = nvme_req(req)->cmd;
948 blk_status_t ret = BLK_STS_OK;
950 if (!(req->rq_flags & RQF_DONTPREP))
951 nvme_clear_nvme_request(req);
953 switch (req_op(req)) {
956 /* these are setup prior to execution in nvme_init_request() */
959 nvme_setup_flush(ns, cmd);
961 case REQ_OP_ZONE_RESET_ALL:
962 case REQ_OP_ZONE_RESET:
963 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
965 case REQ_OP_ZONE_OPEN:
966 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
968 case REQ_OP_ZONE_CLOSE:
969 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
971 case REQ_OP_ZONE_FINISH:
972 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
974 case REQ_OP_WRITE_ZEROES:
975 ret = nvme_setup_write_zeroes(ns, req, cmd);
978 ret = nvme_setup_discard(ns, req, cmd);
981 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
984 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
986 case REQ_OP_ZONE_APPEND:
987 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
991 return BLK_STS_IOERR;
994 cmd->common.command_id = nvme_cid(req);
995 trace_nvme_setup_cmd(req, cmd);
998 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1003 * >0: nvme controller's cqe status response
1004 * <0: kernel error in lieu of controller response
1006 int nvme_execute_rq(struct request *rq, bool at_head)
1008 blk_status_t status;
1010 status = blk_execute_rq(rq, at_head);
1011 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1013 if (nvme_req(rq)->status)
1014 return nvme_req(rq)->status;
1015 return blk_status_to_errno(status);
1017 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1020 * Returns 0 on success. If the result is negative, it's a Linux error code;
1021 * if the result is positive, it's an NVM Express status code
1023 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1024 union nvme_result *result, void *buffer, unsigned bufflen,
1025 int qid, int at_head, blk_mq_req_flags_t flags)
1027 struct request *req;
1030 if (qid == NVME_QID_ANY)
1031 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1033 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1037 return PTR_ERR(req);
1038 nvme_init_request(req, cmd);
1040 if (buffer && bufflen) {
1041 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1046 ret = nvme_execute_rq(req, at_head);
1047 if (result && ret >= 0)
1048 *result = nvme_req(req)->result;
1050 blk_mq_free_request(req);
1053 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1055 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1056 void *buffer, unsigned bufflen)
1058 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1059 NVME_QID_ANY, 0, 0);
1061 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1063 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1068 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1069 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1070 dev_warn_once(ctrl->device,
1071 "IO command:%02x has unusual effects:%08x\n",
1075 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1076 * which would deadlock when done on an I/O command. Note that
1077 * We already warn about an unusual effect above.
1079 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1081 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1086 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1088 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1090 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1093 * For simplicity, IO to all namespaces is quiesced even if the command
1094 * effects say only one namespace is affected.
1096 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1097 mutex_lock(&ctrl->scan_lock);
1098 mutex_lock(&ctrl->subsys->lock);
1099 nvme_mpath_start_freeze(ctrl->subsys);
1100 nvme_mpath_wait_freeze(ctrl->subsys);
1101 nvme_start_freeze(ctrl);
1102 nvme_wait_freeze(ctrl);
1106 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1108 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1109 struct nvme_command *cmd, int status)
1111 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1112 nvme_unfreeze(ctrl);
1113 nvme_mpath_unfreeze(ctrl->subsys);
1114 mutex_unlock(&ctrl->subsys->lock);
1115 mutex_unlock(&ctrl->scan_lock);
1117 if (effects & NVME_CMD_EFFECTS_CCC) {
1118 dev_info(ctrl->device,
1119 "controller capabilities changed, reset may be required to take effect.\n");
1121 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1122 nvme_queue_scan(ctrl);
1123 flush_work(&ctrl->scan_work);
1126 switch (cmd->common.opcode) {
1127 case nvme_admin_set_features:
1128 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1129 case NVME_FEAT_KATO:
1131 * Keep alive commands interval on the host should be
1132 * updated when KATO is modified by Set Features
1136 nvme_update_keep_alive(ctrl, cmd);
1146 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1149 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1151 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1152 * accounting for transport roundtrip times [..].
1154 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1156 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1159 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1160 blk_status_t status)
1162 struct nvme_ctrl *ctrl = rq->end_io_data;
1163 unsigned long flags;
1164 bool startka = false;
1166 blk_mq_free_request(rq);
1169 dev_err(ctrl->device,
1170 "failed nvme_keep_alive_end_io error=%d\n",
1172 return RQ_END_IO_NONE;
1175 ctrl->comp_seen = false;
1176 spin_lock_irqsave(&ctrl->lock, flags);
1177 if (ctrl->state == NVME_CTRL_LIVE ||
1178 ctrl->state == NVME_CTRL_CONNECTING)
1180 spin_unlock_irqrestore(&ctrl->lock, flags);
1182 nvme_queue_keep_alive_work(ctrl);
1183 return RQ_END_IO_NONE;
1186 static void nvme_keep_alive_work(struct work_struct *work)
1188 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1189 struct nvme_ctrl, ka_work);
1190 bool comp_seen = ctrl->comp_seen;
1193 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1194 dev_dbg(ctrl->device,
1195 "reschedule traffic based keep-alive timer\n");
1196 ctrl->comp_seen = false;
1197 nvme_queue_keep_alive_work(ctrl);
1201 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1202 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1204 /* allocation failure, reset the controller */
1205 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1206 nvme_reset_ctrl(ctrl);
1209 nvme_init_request(rq, &ctrl->ka_cmd);
1211 rq->timeout = ctrl->kato * HZ;
1212 rq->end_io = nvme_keep_alive_end_io;
1213 rq->end_io_data = ctrl;
1214 blk_execute_rq_nowait(rq, false);
1217 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1219 if (unlikely(ctrl->kato == 0))
1222 nvme_queue_keep_alive_work(ctrl);
1225 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1227 if (unlikely(ctrl->kato == 0))
1230 cancel_delayed_work_sync(&ctrl->ka_work);
1232 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1234 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1235 struct nvme_command *cmd)
1237 unsigned int new_kato =
1238 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1240 dev_info(ctrl->device,
1241 "keep alive interval updated from %u ms to %u ms\n",
1242 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1244 nvme_stop_keep_alive(ctrl);
1245 ctrl->kato = new_kato;
1246 nvme_start_keep_alive(ctrl);
1250 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1251 * flag, thus sending any new CNS opcodes has a big chance of not working.
1252 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1253 * (but not for any later version).
1255 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1257 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1258 return ctrl->vs < NVME_VS(1, 2, 0);
1259 return ctrl->vs < NVME_VS(1, 1, 0);
1262 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1264 struct nvme_command c = { };
1267 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1268 c.identify.opcode = nvme_admin_identify;
1269 c.identify.cns = NVME_ID_CNS_CTRL;
1271 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1275 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1276 sizeof(struct nvme_id_ctrl));
1282 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1283 struct nvme_ns_id_desc *cur, bool *csi_seen)
1285 const char *warn_str = "ctrl returned bogus length:";
1288 switch (cur->nidt) {
1289 case NVME_NIDT_EUI64:
1290 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1291 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1292 warn_str, cur->nidl);
1295 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1296 return NVME_NIDT_EUI64_LEN;
1297 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1298 return NVME_NIDT_EUI64_LEN;
1299 case NVME_NIDT_NGUID:
1300 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1301 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1302 warn_str, cur->nidl);
1305 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1306 return NVME_NIDT_NGUID_LEN;
1307 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1308 return NVME_NIDT_NGUID_LEN;
1309 case NVME_NIDT_UUID:
1310 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1311 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1312 warn_str, cur->nidl);
1315 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1316 return NVME_NIDT_UUID_LEN;
1317 uuid_copy(&ids->uuid, data + sizeof(*cur));
1318 return NVME_NIDT_UUID_LEN;
1320 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1321 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1322 warn_str, cur->nidl);
1325 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1327 return NVME_NIDT_CSI_LEN;
1329 /* Skip unknown types */
1334 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1335 struct nvme_ns_info *info)
1337 struct nvme_command c = { };
1338 bool csi_seen = false;
1339 int status, pos, len;
1342 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1344 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1347 c.identify.opcode = nvme_admin_identify;
1348 c.identify.nsid = cpu_to_le32(info->nsid);
1349 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1351 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1355 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1356 NVME_IDENTIFY_DATA_SIZE);
1358 dev_warn(ctrl->device,
1359 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1360 info->nsid, status);
1364 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1365 struct nvme_ns_id_desc *cur = data + pos;
1370 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1374 len += sizeof(*cur);
1377 if (nvme_multi_css(ctrl) && !csi_seen) {
1378 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1388 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1389 struct nvme_id_ns **id)
1391 struct nvme_command c = { };
1394 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1395 c.identify.opcode = nvme_admin_identify;
1396 c.identify.nsid = cpu_to_le32(nsid);
1397 c.identify.cns = NVME_ID_CNS_NS;
1399 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1403 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1405 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1411 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1412 struct nvme_ns_info *info)
1414 struct nvme_ns_ids *ids = &info->ids;
1415 struct nvme_id_ns *id;
1418 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1422 if (id->ncap == 0) {
1423 /* namespace not allocated or attached */
1424 info->is_removed = true;
1428 info->anagrpid = id->anagrpid;
1429 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1430 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1431 info->is_ready = true;
1432 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1433 dev_info(ctrl->device,
1434 "Ignoring bogus Namespace Identifiers\n");
1436 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1437 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1438 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1439 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1440 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1441 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1447 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1448 struct nvme_ns_info *info)
1450 struct nvme_id_ns_cs_indep *id;
1451 struct nvme_command c = {
1452 .identify.opcode = nvme_admin_identify,
1453 .identify.nsid = cpu_to_le32(info->nsid),
1454 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1458 id = kmalloc(sizeof(*id), GFP_KERNEL);
1462 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1464 info->anagrpid = id->anagrpid;
1465 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1466 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1467 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1473 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1474 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1476 union nvme_result res = { 0 };
1477 struct nvme_command c = { };
1480 c.features.opcode = op;
1481 c.features.fid = cpu_to_le32(fid);
1482 c.features.dword11 = cpu_to_le32(dword11);
1484 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1485 buffer, buflen, NVME_QID_ANY, 0, 0);
1486 if (ret >= 0 && result)
1487 *result = le32_to_cpu(res.u32);
1491 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1492 unsigned int dword11, void *buffer, size_t buflen,
1495 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1498 EXPORT_SYMBOL_GPL(nvme_set_features);
1500 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1501 unsigned int dword11, void *buffer, size_t buflen,
1504 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1507 EXPORT_SYMBOL_GPL(nvme_get_features);
1509 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1511 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1513 int status, nr_io_queues;
1515 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1521 * Degraded controllers might return an error when setting the queue
1522 * count. We still want to be able to bring them online and offer
1523 * access to the admin queue, as that might be only way to fix them up.
1526 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1529 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1530 *count = min(*count, nr_io_queues);
1535 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1537 #define NVME_AEN_SUPPORTED \
1538 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1539 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1541 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1543 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1546 if (!supported_aens)
1549 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1552 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1555 queue_work(nvme_wq, &ctrl->async_event_work);
1558 static int nvme_ns_open(struct nvme_ns *ns)
1561 /* should never be called due to GENHD_FL_HIDDEN */
1562 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1564 if (!nvme_get_ns(ns))
1566 if (!try_module_get(ns->ctrl->ops->module))
1577 static void nvme_ns_release(struct nvme_ns *ns)
1580 module_put(ns->ctrl->ops->module);
1584 static int nvme_open(struct block_device *bdev, fmode_t mode)
1586 return nvme_ns_open(bdev->bd_disk->private_data);
1589 static void nvme_release(struct gendisk *disk, fmode_t mode)
1591 nvme_ns_release(disk->private_data);
1594 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1596 /* some standard values */
1597 geo->heads = 1 << 6;
1598 geo->sectors = 1 << 5;
1599 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1603 #ifdef CONFIG_BLK_DEV_INTEGRITY
1604 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1605 u32 max_integrity_segments)
1607 struct blk_integrity integrity = { };
1609 switch (ns->pi_type) {
1610 case NVME_NS_DPS_PI_TYPE3:
1611 switch (ns->guard_type) {
1612 case NVME_NVM_NS_16B_GUARD:
1613 integrity.profile = &t10_pi_type3_crc;
1614 integrity.tag_size = sizeof(u16) + sizeof(u32);
1615 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1617 case NVME_NVM_NS_64B_GUARD:
1618 integrity.profile = &ext_pi_type3_crc64;
1619 integrity.tag_size = sizeof(u16) + 6;
1620 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1623 integrity.profile = NULL;
1627 case NVME_NS_DPS_PI_TYPE1:
1628 case NVME_NS_DPS_PI_TYPE2:
1629 switch (ns->guard_type) {
1630 case NVME_NVM_NS_16B_GUARD:
1631 integrity.profile = &t10_pi_type1_crc;
1632 integrity.tag_size = sizeof(u16);
1633 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1635 case NVME_NVM_NS_64B_GUARD:
1636 integrity.profile = &ext_pi_type1_crc64;
1637 integrity.tag_size = sizeof(u16);
1638 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1641 integrity.profile = NULL;
1646 integrity.profile = NULL;
1650 integrity.tuple_size = ns->ms;
1651 blk_integrity_register(disk, &integrity);
1652 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1655 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1656 u32 max_integrity_segments)
1659 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1661 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1663 struct nvme_ctrl *ctrl = ns->ctrl;
1664 struct request_queue *queue = disk->queue;
1665 u32 size = queue_logical_block_size(queue);
1667 if (ctrl->max_discard_sectors == 0) {
1668 blk_queue_max_discard_sectors(queue, 0);
1672 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1673 NVME_DSM_MAX_RANGES);
1675 queue->limits.discard_granularity = size;
1677 /* If discard is already enabled, don't reset queue limits */
1678 if (queue->limits.max_discard_sectors)
1681 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1682 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1684 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1685 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1687 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1688 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1691 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1693 return uuid_equal(&a->uuid, &b->uuid) &&
1694 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1695 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1699 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1701 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1702 unsigned lbaf = nvme_lbaf_index(id->flbas);
1703 struct nvme_ctrl *ctrl = ns->ctrl;
1704 struct nvme_command c = { };
1705 struct nvme_id_ns_nvm *nvm;
1710 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1711 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1712 ns->pi_size = sizeof(struct t10_pi_tuple);
1713 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1717 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1721 c.identify.opcode = nvme_admin_identify;
1722 c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1723 c.identify.cns = NVME_ID_CNS_CS_NS;
1724 c.identify.csi = NVME_CSI_NVM;
1726 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1730 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1732 /* no support for storage tag formats right now */
1733 if (nvme_elbaf_sts(elbaf))
1736 ns->guard_type = nvme_elbaf_guard_type(elbaf);
1737 switch (ns->guard_type) {
1738 case NVME_NVM_NS_64B_GUARD:
1739 ns->pi_size = sizeof(struct crc64_pi_tuple);
1741 case NVME_NVM_NS_16B_GUARD:
1742 ns->pi_size = sizeof(struct t10_pi_tuple);
1751 if (ns->pi_size && (first || ns->ms == ns->pi_size))
1752 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1759 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1761 struct nvme_ctrl *ctrl = ns->ctrl;
1763 if (nvme_init_ms(ns, id))
1766 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1767 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1770 if (ctrl->ops->flags & NVME_F_FABRICS) {
1772 * The NVMe over Fabrics specification only supports metadata as
1773 * part of the extended data LBA. We rely on HCA/HBA support to
1774 * remap the separate metadata buffer from the block layer.
1776 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1779 ns->features |= NVME_NS_EXT_LBAS;
1782 * The current fabrics transport drivers support namespace
1783 * metadata formats only if nvme_ns_has_pi() returns true.
1784 * Suppress support for all other formats so the namespace will
1785 * have a 0 capacity and not be usable through the block stack.
1787 * Note, this check will need to be modified if any drivers
1788 * gain the ability to use other metadata formats.
1790 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1791 ns->features |= NVME_NS_METADATA_SUPPORTED;
1794 * For PCIe controllers, we can't easily remap the separate
1795 * metadata buffer from the block layer and thus require a
1796 * separate metadata buffer for block layer metadata/PI support.
1797 * We allow extended LBAs for the passthrough interface, though.
1799 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1800 ns->features |= NVME_NS_EXT_LBAS;
1802 ns->features |= NVME_NS_METADATA_SUPPORTED;
1806 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1807 struct request_queue *q)
1809 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1811 if (ctrl->max_hw_sectors) {
1813 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1815 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1816 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1817 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1819 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1820 blk_queue_dma_alignment(q, 3);
1821 blk_queue_write_cache(q, vwc, vwc);
1824 static void nvme_update_disk_info(struct gendisk *disk,
1825 struct nvme_ns *ns, struct nvme_id_ns *id)
1827 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1828 unsigned short bs = 1 << ns->lba_shift;
1829 u32 atomic_bs, phys_bs, io_opt = 0;
1832 * The block layer can't support LBA sizes larger than the page size
1833 * yet, so catch this early and don't allow block I/O.
1835 if (ns->lba_shift > PAGE_SHIFT) {
1840 blk_integrity_unregister(disk);
1842 atomic_bs = phys_bs = bs;
1843 if (id->nabo == 0) {
1845 * Bit 1 indicates whether NAWUPF is defined for this namespace
1846 * and whether it should be used instead of AWUPF. If NAWUPF ==
1847 * 0 then AWUPF must be used instead.
1849 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1850 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1852 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1855 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1856 /* NPWG = Namespace Preferred Write Granularity */
1857 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1858 /* NOWS = Namespace Optimal Write Size */
1859 io_opt = bs * (1 + le16_to_cpu(id->nows));
1862 blk_queue_logical_block_size(disk->queue, bs);
1864 * Linux filesystems assume writing a single physical block is
1865 * an atomic operation. Hence limit the physical block size to the
1866 * value of the Atomic Write Unit Power Fail parameter.
1868 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1869 blk_queue_io_min(disk->queue, phys_bs);
1870 blk_queue_io_opt(disk->queue, io_opt);
1873 * Register a metadata profile for PI, or the plain non-integrity NVMe
1874 * metadata masquerading as Type 0 if supported, otherwise reject block
1875 * I/O to namespaces with metadata except when the namespace supports
1876 * PI, as it can strip/insert in that case.
1879 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1880 (ns->features & NVME_NS_METADATA_SUPPORTED))
1881 nvme_init_integrity(disk, ns,
1882 ns->ctrl->max_integrity_segments);
1883 else if (!nvme_ns_has_pi(ns))
1887 set_capacity_and_notify(disk, capacity);
1889 nvme_config_discard(disk, ns);
1890 blk_queue_max_write_zeroes_sectors(disk->queue,
1891 ns->ctrl->max_zeroes_sectors);
1894 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1896 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1899 static inline bool nvme_first_scan(struct gendisk *disk)
1901 /* nvme_alloc_ns() scans the disk prior to adding it */
1902 return !disk_live(disk);
1905 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1907 struct nvme_ctrl *ctrl = ns->ctrl;
1910 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1911 is_power_of_2(ctrl->max_hw_sectors))
1912 iob = ctrl->max_hw_sectors;
1914 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1919 if (!is_power_of_2(iob)) {
1920 if (nvme_first_scan(ns->disk))
1921 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1922 ns->disk->disk_name, iob);
1926 if (blk_queue_is_zoned(ns->disk->queue)) {
1927 if (nvme_first_scan(ns->disk))
1928 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1929 ns->disk->disk_name);
1933 blk_queue_chunk_sectors(ns->queue, iob);
1936 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1937 struct nvme_ns_info *info)
1939 blk_mq_freeze_queue(ns->disk->queue);
1940 nvme_set_queue_limits(ns->ctrl, ns->queue);
1941 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1942 blk_mq_unfreeze_queue(ns->disk->queue);
1944 if (nvme_ns_head_multipath(ns->head)) {
1945 blk_mq_freeze_queue(ns->head->disk->queue);
1946 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1947 nvme_mpath_revalidate_paths(ns);
1948 blk_stack_limits(&ns->head->disk->queue->limits,
1949 &ns->queue->limits, 0);
1950 ns->head->disk->flags |= GENHD_FL_HIDDEN;
1951 blk_mq_unfreeze_queue(ns->head->disk->queue);
1954 /* Hide the block-interface for these devices */
1955 ns->disk->flags |= GENHD_FL_HIDDEN;
1956 set_bit(NVME_NS_READY, &ns->flags);
1961 static int nvme_update_ns_info_block(struct nvme_ns *ns,
1962 struct nvme_ns_info *info)
1964 struct nvme_id_ns *id;
1968 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
1972 blk_mq_freeze_queue(ns->disk->queue);
1973 lbaf = nvme_lbaf_index(id->flbas);
1974 ns->lba_shift = id->lbaf[lbaf].ds;
1975 nvme_set_queue_limits(ns->ctrl, ns->queue);
1977 nvme_configure_metadata(ns, id);
1978 nvme_set_chunk_sectors(ns, id);
1979 nvme_update_disk_info(ns->disk, ns, id);
1981 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1982 ret = nvme_update_zone_info(ns, lbaf);
1984 blk_mq_unfreeze_queue(ns->disk->queue);
1990 * Only set the DEAC bit if the device guarantees that reads from
1991 * deallocated data return zeroes. While the DEAC bit does not
1992 * require that, it must be a no-op if reads from deallocated data
1993 * do not return zeroes.
1995 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
1996 ns->features |= NVME_NS_DEAC;
1997 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1998 set_bit(NVME_NS_READY, &ns->flags);
1999 blk_mq_unfreeze_queue(ns->disk->queue);
2001 if (blk_queue_is_zoned(ns->queue)) {
2002 ret = nvme_revalidate_zones(ns);
2003 if (ret && !nvme_first_scan(ns->disk))
2007 if (nvme_ns_head_multipath(ns->head)) {
2008 blk_mq_freeze_queue(ns->head->disk->queue);
2009 nvme_update_disk_info(ns->head->disk, ns, id);
2010 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2011 nvme_mpath_revalidate_paths(ns);
2012 blk_stack_limits(&ns->head->disk->queue->limits,
2013 &ns->queue->limits, 0);
2014 disk_update_readahead(ns->head->disk);
2015 blk_mq_unfreeze_queue(ns->head->disk->queue);
2021 * If probing fails due an unsupported feature, hide the block device,
2022 * but still allow other access.
2024 if (ret == -ENODEV) {
2025 ns->disk->flags |= GENHD_FL_HIDDEN;
2026 set_bit(NVME_NS_READY, &ns->flags);
2033 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2035 switch (info->ids.csi) {
2037 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2038 dev_info(ns->ctrl->device,
2039 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2041 return nvme_update_ns_info_generic(ns, info);
2043 return nvme_update_ns_info_block(ns, info);
2045 return nvme_update_ns_info_block(ns, info);
2047 dev_info(ns->ctrl->device,
2048 "block device for nsid %u not supported (csi %u)\n",
2049 info->nsid, info->ids.csi);
2050 return nvme_update_ns_info_generic(ns, info);
2054 static char nvme_pr_type(enum pr_type type)
2057 case PR_WRITE_EXCLUSIVE:
2059 case PR_EXCLUSIVE_ACCESS:
2061 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2063 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2065 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2067 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2074 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2075 struct nvme_command *c, u8 data[16])
2077 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2078 int srcu_idx = srcu_read_lock(&head->srcu);
2079 struct nvme_ns *ns = nvme_find_path(head);
2080 int ret = -EWOULDBLOCK;
2083 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2084 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2086 srcu_read_unlock(&head->srcu, srcu_idx);
2090 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2093 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2094 return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2097 static int nvme_sc_to_pr_err(int nvme_sc)
2099 if (nvme_is_path_error(nvme_sc))
2100 return PR_STS_PATH_FAILED;
2103 case NVME_SC_SUCCESS:
2104 return PR_STS_SUCCESS;
2105 case NVME_SC_RESERVATION_CONFLICT:
2106 return PR_STS_RESERVATION_CONFLICT;
2107 case NVME_SC_ONCS_NOT_SUPPORTED:
2109 case NVME_SC_BAD_ATTRIBUTES:
2110 case NVME_SC_INVALID_OPCODE:
2111 case NVME_SC_INVALID_FIELD:
2112 case NVME_SC_INVALID_NS:
2115 return PR_STS_IOERR;
2119 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2120 u64 key, u64 sa_key, u8 op)
2122 struct nvme_command c = { };
2123 u8 data[16] = { 0, };
2126 put_unaligned_le64(key, &data[0]);
2127 put_unaligned_le64(sa_key, &data[8]);
2129 c.common.opcode = op;
2130 c.common.cdw10 = cpu_to_le32(cdw10);
2132 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2133 bdev->bd_disk->fops == &nvme_ns_head_ops)
2134 ret = nvme_send_ns_head_pr_command(bdev, &c, data);
2136 ret = nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c,
2141 return nvme_sc_to_pr_err(ret);
2144 static int nvme_pr_register(struct block_device *bdev, u64 old,
2145 u64 new, unsigned flags)
2149 if (flags & ~PR_FL_IGNORE_KEY)
2152 cdw10 = old ? 2 : 0;
2153 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2154 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2155 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2158 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2159 enum pr_type type, unsigned flags)
2163 if (flags & ~PR_FL_IGNORE_KEY)
2166 cdw10 = nvme_pr_type(type) << 8;
2167 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2168 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2171 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2172 enum pr_type type, bool abort)
2174 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2176 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2179 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2181 u32 cdw10 = 1 | (key ? 0 : 1 << 3);
2183 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2186 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2188 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3);
2190 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2193 const struct pr_ops nvme_pr_ops = {
2194 .pr_register = nvme_pr_register,
2195 .pr_reserve = nvme_pr_reserve,
2196 .pr_release = nvme_pr_release,
2197 .pr_preempt = nvme_pr_preempt,
2198 .pr_clear = nvme_pr_clear,
2201 #ifdef CONFIG_BLK_SED_OPAL
2202 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2205 struct nvme_ctrl *ctrl = data;
2206 struct nvme_command cmd = { };
2209 cmd.common.opcode = nvme_admin_security_send;
2211 cmd.common.opcode = nvme_admin_security_recv;
2212 cmd.common.nsid = 0;
2213 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2214 cmd.common.cdw11 = cpu_to_le32(len);
2216 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2217 NVME_QID_ANY, 1, 0);
2220 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2222 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2223 if (!ctrl->opal_dev)
2224 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2225 else if (was_suspended)
2226 opal_unlock_from_suspend(ctrl->opal_dev);
2228 free_opal_dev(ctrl->opal_dev);
2229 ctrl->opal_dev = NULL;
2233 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2236 #endif /* CONFIG_BLK_SED_OPAL */
2238 #ifdef CONFIG_BLK_DEV_ZONED
2239 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2240 unsigned int nr_zones, report_zones_cb cb, void *data)
2242 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2246 #define nvme_report_zones NULL
2247 #endif /* CONFIG_BLK_DEV_ZONED */
2249 static const struct block_device_operations nvme_bdev_ops = {
2250 .owner = THIS_MODULE,
2251 .ioctl = nvme_ioctl,
2252 .compat_ioctl = blkdev_compat_ptr_ioctl,
2254 .release = nvme_release,
2255 .getgeo = nvme_getgeo,
2256 .report_zones = nvme_report_zones,
2257 .pr_ops = &nvme_pr_ops,
2260 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2261 u32 timeout, const char *op)
2263 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2267 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2270 if ((csts & mask) == val)
2273 usleep_range(1000, 2000);
2274 if (fatal_signal_pending(current))
2276 if (time_after(jiffies, timeout_jiffies)) {
2277 dev_err(ctrl->device,
2278 "Device not ready; aborting %s, CSTS=0x%x\n",
2287 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2291 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2293 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2295 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2297 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2302 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2303 NVME_CSTS_SHST_CMPLT,
2304 ctrl->shutdown_timeout, "shutdown");
2306 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2307 msleep(NVME_QUIRK_DELAY_AMOUNT);
2308 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2309 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2311 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2313 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2315 unsigned dev_page_min;
2319 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2321 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2324 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2326 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2327 dev_err(ctrl->device,
2328 "Minimum device page size %u too large for host (%u)\n",
2329 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2333 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2334 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2336 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2338 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2341 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2343 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2348 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2349 ctrl->ctrl_config |= NVME_CC_CRIME;
2350 timeout = NVME_CRTO_CRIMT(crto);
2352 timeout = NVME_CRTO_CRWMT(crto);
2355 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2358 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2359 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2360 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2361 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2365 /* Flush write to device (required if transport is PCI) */
2366 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2370 ctrl->ctrl_config |= NVME_CC_ENABLE;
2371 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2374 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2375 (timeout + 1) / 2, "initialisation");
2377 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2379 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2384 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2387 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2388 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2391 dev_warn_once(ctrl->device,
2392 "could not set timestamp (%d)\n", ret);
2396 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2398 struct nvme_feat_host_behavior *host;
2399 u8 acre = 0, lbafee = 0;
2402 /* Don't bother enabling the feature if retry delay is not reported */
2404 acre = NVME_ENABLE_ACRE;
2405 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2406 lbafee = NVME_ENABLE_LBAFEE;
2408 if (!acre && !lbafee)
2411 host = kzalloc(sizeof(*host), GFP_KERNEL);
2416 host->lbafee = lbafee;
2417 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2418 host, sizeof(*host), NULL);
2424 * The function checks whether the given total (exlat + enlat) latency of
2425 * a power state allows the latter to be used as an APST transition target.
2426 * It does so by comparing the latency to the primary and secondary latency
2427 * tolerances defined by module params. If there's a match, the corresponding
2428 * timeout value is returned and the matching tolerance index (1 or 2) is
2431 static bool nvme_apst_get_transition_time(u64 total_latency,
2432 u64 *transition_time, unsigned *last_index)
2434 if (total_latency <= apst_primary_latency_tol_us) {
2435 if (*last_index == 1)
2438 *transition_time = apst_primary_timeout_ms;
2441 if (apst_secondary_timeout_ms &&
2442 total_latency <= apst_secondary_latency_tol_us) {
2443 if (*last_index <= 2)
2446 *transition_time = apst_secondary_timeout_ms;
2453 * APST (Autonomous Power State Transition) lets us program a table of power
2454 * state transitions that the controller will perform automatically.
2456 * Depending on module params, one of the two supported techniques will be used:
2458 * - If the parameters provide explicit timeouts and tolerances, they will be
2459 * used to build a table with up to 2 non-operational states to transition to.
2460 * The default parameter values were selected based on the values used by
2461 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2462 * regeneration of the APST table in the event of switching between external
2463 * and battery power, the timeouts and tolerances reflect a compromise
2464 * between values used by Microsoft for AC and battery scenarios.
2465 * - If not, we'll configure the table with a simple heuristic: we are willing
2466 * to spend at most 2% of the time transitioning between power states.
2467 * Therefore, when running in any given state, we will enter the next
2468 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2469 * microseconds, as long as that state's exit latency is under the requested
2472 * We will not autonomously enter any non-operational state for which the total
2473 * latency exceeds ps_max_latency_us.
2475 * Users can set ps_max_latency_us to zero to turn off APST.
2477 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2479 struct nvme_feat_auto_pst *table;
2486 unsigned last_lt_index = UINT_MAX;
2489 * If APST isn't supported or if we haven't been initialized yet,
2490 * then don't do anything.
2495 if (ctrl->npss > 31) {
2496 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2500 table = kzalloc(sizeof(*table), GFP_KERNEL);
2504 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2505 /* Turn off APST. */
2506 dev_dbg(ctrl->device, "APST disabled\n");
2511 * Walk through all states from lowest- to highest-power.
2512 * According to the spec, lower-numbered states use more power. NPSS,
2513 * despite the name, is the index of the lowest-power state, not the
2516 for (state = (int)ctrl->npss; state >= 0; state--) {
2517 u64 total_latency_us, exit_latency_us, transition_ms;
2520 table->entries[state] = target;
2523 * Don't allow transitions to the deepest state if it's quirked
2526 if (state == ctrl->npss &&
2527 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2531 * Is this state a useful non-operational state for higher-power
2532 * states to autonomously transition to?
2534 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2537 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2538 if (exit_latency_us > ctrl->ps_max_latency_us)
2541 total_latency_us = exit_latency_us +
2542 le32_to_cpu(ctrl->psd[state].entry_lat);
2545 * This state is good. It can be used as the APST idle target
2546 * for higher power states.
2548 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2549 if (!nvme_apst_get_transition_time(total_latency_us,
2550 &transition_ms, &last_lt_index))
2553 transition_ms = total_latency_us + 19;
2554 do_div(transition_ms, 20);
2555 if (transition_ms > (1 << 24) - 1)
2556 transition_ms = (1 << 24) - 1;
2559 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2562 if (total_latency_us > max_lat_us)
2563 max_lat_us = total_latency_us;
2567 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2569 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2570 max_ps, max_lat_us, (int)sizeof(*table), table);
2574 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2575 table, sizeof(*table), NULL);
2577 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2582 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2584 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2588 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2589 case PM_QOS_LATENCY_ANY:
2597 if (ctrl->ps_max_latency_us != latency) {
2598 ctrl->ps_max_latency_us = latency;
2599 if (ctrl->state == NVME_CTRL_LIVE)
2600 nvme_configure_apst(ctrl);
2604 struct nvme_core_quirk_entry {
2606 * NVMe model and firmware strings are padded with spaces. For
2607 * simplicity, strings in the quirk table are padded with NULLs
2613 unsigned long quirks;
2616 static const struct nvme_core_quirk_entry core_quirks[] = {
2619 * This Toshiba device seems to die using any APST states. See:
2620 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2623 .mn = "THNSF5256GPUK TOSHIBA",
2624 .quirks = NVME_QUIRK_NO_APST,
2628 * This LiteON CL1-3D*-Q11 firmware version has a race
2629 * condition associated with actions related to suspend to idle
2630 * LiteON has resolved the problem in future firmware
2634 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2638 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2639 * aborts I/O during any load, but more easily reproducible
2640 * with discards (fstrim).
2642 * The device is left in a state where it is also not possible
2643 * to use "nvme set-feature" to disable APST, but booting with
2644 * nvme_core.default_ps_max_latency=0 works.
2647 .mn = "KCD6XVUL6T40",
2648 .quirks = NVME_QUIRK_NO_APST,
2652 * The external Samsung X5 SSD fails initialization without a
2653 * delay before checking if it is ready and has a whole set of
2654 * other problems. To make this even more interesting, it
2655 * shares the PCI ID with internal Samsung 970 Evo Plus that
2656 * does not need or want these quirks.
2659 .mn = "Samsung Portable SSD X5",
2660 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2661 NVME_QUIRK_NO_DEEPEST_PS |
2662 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2666 /* match is null-terminated but idstr is space-padded. */
2667 static bool string_matches(const char *idstr, const char *match, size_t len)
2674 matchlen = strlen(match);
2675 WARN_ON_ONCE(matchlen > len);
2677 if (memcmp(idstr, match, matchlen))
2680 for (; matchlen < len; matchlen++)
2681 if (idstr[matchlen] != ' ')
2687 static bool quirk_matches(const struct nvme_id_ctrl *id,
2688 const struct nvme_core_quirk_entry *q)
2690 return q->vid == le16_to_cpu(id->vid) &&
2691 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2692 string_matches(id->fr, q->fr, sizeof(id->fr));
2695 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2696 struct nvme_id_ctrl *id)
2701 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2702 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2703 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2704 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2708 if (ctrl->vs >= NVME_VS(1, 2, 1))
2709 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2713 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2714 * Base Specification 2.0. It is slightly different from the format
2715 * specified there due to historic reasons, and we can't change it now.
2717 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2718 "nqn.2014.08.org.nvmexpress:%04x%04x",
2719 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2720 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2721 off += sizeof(id->sn);
2722 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2723 off += sizeof(id->mn);
2724 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2727 static void nvme_release_subsystem(struct device *dev)
2729 struct nvme_subsystem *subsys =
2730 container_of(dev, struct nvme_subsystem, dev);
2732 if (subsys->instance >= 0)
2733 ida_free(&nvme_instance_ida, subsys->instance);
2737 static void nvme_destroy_subsystem(struct kref *ref)
2739 struct nvme_subsystem *subsys =
2740 container_of(ref, struct nvme_subsystem, ref);
2742 mutex_lock(&nvme_subsystems_lock);
2743 list_del(&subsys->entry);
2744 mutex_unlock(&nvme_subsystems_lock);
2746 ida_destroy(&subsys->ns_ida);
2747 device_del(&subsys->dev);
2748 put_device(&subsys->dev);
2751 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2753 kref_put(&subsys->ref, nvme_destroy_subsystem);
2756 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2758 struct nvme_subsystem *subsys;
2760 lockdep_assert_held(&nvme_subsystems_lock);
2763 * Fail matches for discovery subsystems. This results
2764 * in each discovery controller bound to a unique subsystem.
2765 * This avoids issues with validating controller values
2766 * that can only be true when there is a single unique subsystem.
2767 * There may be multiple and completely independent entities
2768 * that provide discovery controllers.
2770 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2773 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2774 if (strcmp(subsys->subnqn, subsysnqn))
2776 if (!kref_get_unless_zero(&subsys->ref))
2784 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2785 struct device_attribute subsys_attr_##_name = \
2786 __ATTR(_name, _mode, _show, NULL)
2788 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2789 struct device_attribute *attr,
2792 struct nvme_subsystem *subsys =
2793 container_of(dev, struct nvme_subsystem, dev);
2795 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2797 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2799 static ssize_t nvme_subsys_show_type(struct device *dev,
2800 struct device_attribute *attr,
2803 struct nvme_subsystem *subsys =
2804 container_of(dev, struct nvme_subsystem, dev);
2806 switch (subsys->subtype) {
2808 return sysfs_emit(buf, "discovery\n");
2810 return sysfs_emit(buf, "nvm\n");
2812 return sysfs_emit(buf, "reserved\n");
2815 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2817 #define nvme_subsys_show_str_function(field) \
2818 static ssize_t subsys_##field##_show(struct device *dev, \
2819 struct device_attribute *attr, char *buf) \
2821 struct nvme_subsystem *subsys = \
2822 container_of(dev, struct nvme_subsystem, dev); \
2823 return sysfs_emit(buf, "%.*s\n", \
2824 (int)sizeof(subsys->field), subsys->field); \
2826 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2828 nvme_subsys_show_str_function(model);
2829 nvme_subsys_show_str_function(serial);
2830 nvme_subsys_show_str_function(firmware_rev);
2832 static struct attribute *nvme_subsys_attrs[] = {
2833 &subsys_attr_model.attr,
2834 &subsys_attr_serial.attr,
2835 &subsys_attr_firmware_rev.attr,
2836 &subsys_attr_subsysnqn.attr,
2837 &subsys_attr_subsystype.attr,
2838 #ifdef CONFIG_NVME_MULTIPATH
2839 &subsys_attr_iopolicy.attr,
2844 static const struct attribute_group nvme_subsys_attrs_group = {
2845 .attrs = nvme_subsys_attrs,
2848 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2849 &nvme_subsys_attrs_group,
2853 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2855 return ctrl->opts && ctrl->opts->discovery_nqn;
2858 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2859 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2861 struct nvme_ctrl *tmp;
2863 lockdep_assert_held(&nvme_subsystems_lock);
2865 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2866 if (nvme_state_terminal(tmp))
2869 if (tmp->cntlid == ctrl->cntlid) {
2870 dev_err(ctrl->device,
2871 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2872 ctrl->cntlid, dev_name(tmp->device),
2877 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2878 nvme_discovery_ctrl(ctrl))
2881 dev_err(ctrl->device,
2882 "Subsystem does not support multiple controllers\n");
2889 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2891 struct nvme_subsystem *subsys, *found;
2894 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2898 subsys->instance = -1;
2899 mutex_init(&subsys->lock);
2900 kref_init(&subsys->ref);
2901 INIT_LIST_HEAD(&subsys->ctrls);
2902 INIT_LIST_HEAD(&subsys->nsheads);
2903 nvme_init_subnqn(subsys, ctrl, id);
2904 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2905 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2906 subsys->vendor_id = le16_to_cpu(id->vid);
2907 subsys->cmic = id->cmic;
2909 /* Versions prior to 1.4 don't necessarily report a valid type */
2910 if (id->cntrltype == NVME_CTRL_DISC ||
2911 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2912 subsys->subtype = NVME_NQN_DISC;
2914 subsys->subtype = NVME_NQN_NVME;
2916 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2917 dev_err(ctrl->device,
2918 "Subsystem %s is not a discovery controller",
2923 subsys->awupf = le16_to_cpu(id->awupf);
2924 nvme_mpath_default_iopolicy(subsys);
2926 subsys->dev.class = nvme_subsys_class;
2927 subsys->dev.release = nvme_release_subsystem;
2928 subsys->dev.groups = nvme_subsys_attrs_groups;
2929 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2930 device_initialize(&subsys->dev);
2932 mutex_lock(&nvme_subsystems_lock);
2933 found = __nvme_find_get_subsystem(subsys->subnqn);
2935 put_device(&subsys->dev);
2938 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2940 goto out_put_subsystem;
2943 ret = device_add(&subsys->dev);
2945 dev_err(ctrl->device,
2946 "failed to register subsystem device.\n");
2947 put_device(&subsys->dev);
2950 ida_init(&subsys->ns_ida);
2951 list_add_tail(&subsys->entry, &nvme_subsystems);
2954 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2955 dev_name(ctrl->device));
2957 dev_err(ctrl->device,
2958 "failed to create sysfs link from subsystem.\n");
2959 goto out_put_subsystem;
2963 subsys->instance = ctrl->instance;
2964 ctrl->subsys = subsys;
2965 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2966 mutex_unlock(&nvme_subsystems_lock);
2970 nvme_put_subsystem(subsys);
2972 mutex_unlock(&nvme_subsystems_lock);
2976 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2977 void *log, size_t size, u64 offset)
2979 struct nvme_command c = { };
2980 u32 dwlen = nvme_bytes_to_numd(size);
2982 c.get_log_page.opcode = nvme_admin_get_log_page;
2983 c.get_log_page.nsid = cpu_to_le32(nsid);
2984 c.get_log_page.lid = log_page;
2985 c.get_log_page.lsp = lsp;
2986 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2987 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2988 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2989 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2990 c.get_log_page.csi = csi;
2992 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2995 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2996 struct nvme_effects_log **log)
2998 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3004 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3008 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3009 cel, sizeof(*cel), 0);
3015 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3021 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3023 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3025 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3030 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3032 struct nvme_command c = { };
3033 struct nvme_id_ctrl_nvm *id;
3036 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3037 ctrl->max_discard_sectors = UINT_MAX;
3038 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3040 ctrl->max_discard_sectors = 0;
3041 ctrl->max_discard_segments = 0;
3045 * Even though NVMe spec explicitly states that MDTS is not applicable
3046 * to the write-zeroes, we are cautious and limit the size to the
3047 * controllers max_hw_sectors value, which is based on the MDTS field
3048 * and possibly other limiting factors.
3050 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3051 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3052 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3054 ctrl->max_zeroes_sectors = 0;
3056 if (nvme_ctrl_limited_cns(ctrl))
3059 id = kzalloc(sizeof(*id), GFP_KERNEL);
3063 c.identify.opcode = nvme_admin_identify;
3064 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3065 c.identify.csi = NVME_CSI_NVM;
3067 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3072 ctrl->max_discard_segments = id->dmrl;
3073 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3075 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3082 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3084 struct nvme_effects_log *log = ctrl->effects;
3086 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3087 NVME_CMD_EFFECTS_NCC |
3088 NVME_CMD_EFFECTS_CSE_MASK);
3089 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3090 NVME_CMD_EFFECTS_CSE_MASK);
3093 * The spec says the result of a security receive command depends on
3094 * the previous security send command. As such, many vendors log this
3095 * command as one to submitted only when no other commands to the same
3096 * namespace are outstanding. The intention is to tell the host to
3097 * prevent mixing security send and receive.
3099 * This driver can only enforce such exclusive access against IO
3100 * queues, though. We are not readily able to enforce such a rule for
3101 * two commands to the admin queue, which is the only queue that
3102 * matters for this command.
3104 * Rather than blindly freezing the IO queues for this effect that
3105 * doesn't even apply to IO, mask it off.
3107 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3109 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3110 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3111 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3114 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3121 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3122 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3127 if (!ctrl->effects) {
3128 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3131 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3134 nvme_init_known_nvm_effects(ctrl);
3138 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3140 struct nvme_id_ctrl *id;
3142 bool prev_apst_enabled;
3145 ret = nvme_identify_ctrl(ctrl, &id);
3147 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3151 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3152 ctrl->cntlid = le16_to_cpu(id->cntlid);
3154 if (!ctrl->identified) {
3158 * Check for quirks. Quirk can depend on firmware version,
3159 * so, in principle, the set of quirks present can change
3160 * across a reset. As a possible future enhancement, we
3161 * could re-scan for quirks every time we reinitialize
3162 * the device, but we'd have to make sure that the driver
3163 * behaves intelligently if the quirks change.
3165 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3166 if (quirk_matches(id, &core_quirks[i]))
3167 ctrl->quirks |= core_quirks[i].quirks;
3170 ret = nvme_init_subsystem(ctrl, id);
3174 ret = nvme_init_effects(ctrl, id);
3178 memcpy(ctrl->subsys->firmware_rev, id->fr,
3179 sizeof(ctrl->subsys->firmware_rev));
3181 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3182 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3183 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3186 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3187 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3188 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3190 ctrl->oacs = le16_to_cpu(id->oacs);
3191 ctrl->oncs = le16_to_cpu(id->oncs);
3192 ctrl->mtfa = le16_to_cpu(id->mtfa);
3193 ctrl->oaes = le32_to_cpu(id->oaes);
3194 ctrl->wctemp = le16_to_cpu(id->wctemp);
3195 ctrl->cctemp = le16_to_cpu(id->cctemp);
3197 atomic_set(&ctrl->abort_limit, id->acl + 1);
3198 ctrl->vwc = id->vwc;
3200 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3202 max_hw_sectors = UINT_MAX;
3203 ctrl->max_hw_sectors =
3204 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3206 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3207 ctrl->sgls = le32_to_cpu(id->sgls);
3208 ctrl->kas = le16_to_cpu(id->kas);
3209 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3210 ctrl->ctratt = le32_to_cpu(id->ctratt);
3212 ctrl->cntrltype = id->cntrltype;
3213 ctrl->dctype = id->dctype;
3217 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3219 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3220 shutdown_timeout, 60);
3222 if (ctrl->shutdown_timeout != shutdown_timeout)
3223 dev_info(ctrl->device,
3224 "Shutdown timeout set to %u seconds\n",
3225 ctrl->shutdown_timeout);
3227 ctrl->shutdown_timeout = shutdown_timeout;
3229 ctrl->npss = id->npss;
3230 ctrl->apsta = id->apsta;
3231 prev_apst_enabled = ctrl->apst_enabled;
3232 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3233 if (force_apst && id->apsta) {
3234 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3235 ctrl->apst_enabled = true;
3237 ctrl->apst_enabled = false;
3240 ctrl->apst_enabled = id->apsta;
3242 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3244 if (ctrl->ops->flags & NVME_F_FABRICS) {
3245 ctrl->icdoff = le16_to_cpu(id->icdoff);
3246 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3247 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3248 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3251 * In fabrics we need to verify the cntlid matches the
3254 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3255 dev_err(ctrl->device,
3256 "Mismatching cntlid: Connect %u vs Identify "
3258 ctrl->cntlid, le16_to_cpu(id->cntlid));
3263 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3264 dev_err(ctrl->device,
3265 "keep-alive support is mandatory for fabrics\n");
3270 ctrl->hmpre = le32_to_cpu(id->hmpre);
3271 ctrl->hmmin = le32_to_cpu(id->hmmin);
3272 ctrl->hmminds = le32_to_cpu(id->hmminds);
3273 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3276 ret = nvme_mpath_init_identify(ctrl, id);
3280 if (ctrl->apst_enabled && !prev_apst_enabled)
3281 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3282 else if (!ctrl->apst_enabled && prev_apst_enabled)
3283 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3291 * Initialize the cached copies of the Identify data and various controller
3292 * register in our nvme_ctrl structure. This should be called as soon as
3293 * the admin queue is fully up and running.
3295 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3299 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3301 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3305 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3307 if (ctrl->vs >= NVME_VS(1, 1, 0))
3308 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3310 ret = nvme_init_identify(ctrl);
3314 ret = nvme_configure_apst(ctrl);
3318 ret = nvme_configure_timestamp(ctrl);
3322 ret = nvme_configure_host_options(ctrl);
3326 nvme_configure_opal(ctrl, was_suspended);
3328 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3330 * Do not return errors unless we are in a controller reset,
3331 * the controller works perfectly fine without hwmon.
3333 ret = nvme_hwmon_init(ctrl);
3338 ctrl->identified = true;
3342 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3344 static int nvme_dev_open(struct inode *inode, struct file *file)
3346 struct nvme_ctrl *ctrl =
3347 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3349 switch (ctrl->state) {
3350 case NVME_CTRL_LIVE:
3353 return -EWOULDBLOCK;
3356 nvme_get_ctrl(ctrl);
3357 if (!try_module_get(ctrl->ops->module)) {
3358 nvme_put_ctrl(ctrl);
3362 file->private_data = ctrl;
3366 static int nvme_dev_release(struct inode *inode, struct file *file)
3368 struct nvme_ctrl *ctrl =
3369 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3371 module_put(ctrl->ops->module);
3372 nvme_put_ctrl(ctrl);
3376 static const struct file_operations nvme_dev_fops = {
3377 .owner = THIS_MODULE,
3378 .open = nvme_dev_open,
3379 .release = nvme_dev_release,
3380 .unlocked_ioctl = nvme_dev_ioctl,
3381 .compat_ioctl = compat_ptr_ioctl,
3382 .uring_cmd = nvme_dev_uring_cmd,
3385 static ssize_t nvme_sysfs_reset(struct device *dev,
3386 struct device_attribute *attr, const char *buf,
3389 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3392 ret = nvme_reset_ctrl_sync(ctrl);
3397 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3399 static ssize_t nvme_sysfs_rescan(struct device *dev,
3400 struct device_attribute *attr, const char *buf,
3403 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3405 nvme_queue_scan(ctrl);
3408 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3410 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3412 struct gendisk *disk = dev_to_disk(dev);
3414 if (disk->fops == &nvme_bdev_ops)
3415 return nvme_get_ns_from_dev(dev)->head;
3417 return disk->private_data;
3420 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3423 struct nvme_ns_head *head = dev_to_ns_head(dev);
3424 struct nvme_ns_ids *ids = &head->ids;
3425 struct nvme_subsystem *subsys = head->subsys;
3426 int serial_len = sizeof(subsys->serial);
3427 int model_len = sizeof(subsys->model);
3429 if (!uuid_is_null(&ids->uuid))
3430 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3432 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3433 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3435 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3436 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3438 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3439 subsys->serial[serial_len - 1] == '\0'))
3441 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3442 subsys->model[model_len - 1] == '\0'))
3445 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3446 serial_len, subsys->serial, model_len, subsys->model,
3449 static DEVICE_ATTR_RO(wwid);
3451 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3454 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3456 static DEVICE_ATTR_RO(nguid);
3458 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3461 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3463 /* For backward compatibility expose the NGUID to userspace if
3464 * we have no UUID set
3466 if (uuid_is_null(&ids->uuid)) {
3467 dev_warn_ratelimited(dev,
3468 "No UUID available providing old NGUID\n");
3469 return sysfs_emit(buf, "%pU\n", ids->nguid);
3471 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3473 static DEVICE_ATTR_RO(uuid);
3475 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3478 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3480 static DEVICE_ATTR_RO(eui);
3482 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3485 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3487 static DEVICE_ATTR_RO(nsid);
3489 static struct attribute *nvme_ns_id_attrs[] = {
3490 &dev_attr_wwid.attr,
3491 &dev_attr_uuid.attr,
3492 &dev_attr_nguid.attr,
3494 &dev_attr_nsid.attr,
3495 #ifdef CONFIG_NVME_MULTIPATH
3496 &dev_attr_ana_grpid.attr,
3497 &dev_attr_ana_state.attr,
3502 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3503 struct attribute *a, int n)
3505 struct device *dev = container_of(kobj, struct device, kobj);
3506 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3508 if (a == &dev_attr_uuid.attr) {
3509 if (uuid_is_null(&ids->uuid) &&
3510 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3513 if (a == &dev_attr_nguid.attr) {
3514 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3517 if (a == &dev_attr_eui.attr) {
3518 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3521 #ifdef CONFIG_NVME_MULTIPATH
3522 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3523 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3525 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3532 static const struct attribute_group nvme_ns_id_attr_group = {
3533 .attrs = nvme_ns_id_attrs,
3534 .is_visible = nvme_ns_id_attrs_are_visible,
3537 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3538 &nvme_ns_id_attr_group,
3542 #define nvme_show_str_function(field) \
3543 static ssize_t field##_show(struct device *dev, \
3544 struct device_attribute *attr, char *buf) \
3546 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3547 return sysfs_emit(buf, "%.*s\n", \
3548 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3550 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3552 nvme_show_str_function(model);
3553 nvme_show_str_function(serial);
3554 nvme_show_str_function(firmware_rev);
3556 #define nvme_show_int_function(field) \
3557 static ssize_t field##_show(struct device *dev, \
3558 struct device_attribute *attr, char *buf) \
3560 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3561 return sysfs_emit(buf, "%d\n", ctrl->field); \
3563 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3565 nvme_show_int_function(cntlid);
3566 nvme_show_int_function(numa_node);
3567 nvme_show_int_function(queue_count);
3568 nvme_show_int_function(sqsize);
3569 nvme_show_int_function(kato);
3571 static ssize_t nvme_sysfs_delete(struct device *dev,
3572 struct device_attribute *attr, const char *buf,
3575 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3577 if (device_remove_file_self(dev, attr))
3578 nvme_delete_ctrl_sync(ctrl);
3581 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3583 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3584 struct device_attribute *attr,
3587 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3589 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3591 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3593 static ssize_t nvme_sysfs_show_state(struct device *dev,
3594 struct device_attribute *attr,
3597 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3598 static const char *const state_name[] = {
3599 [NVME_CTRL_NEW] = "new",
3600 [NVME_CTRL_LIVE] = "live",
3601 [NVME_CTRL_RESETTING] = "resetting",
3602 [NVME_CTRL_CONNECTING] = "connecting",
3603 [NVME_CTRL_DELETING] = "deleting",
3604 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3605 [NVME_CTRL_DEAD] = "dead",
3608 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3609 state_name[ctrl->state])
3610 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3612 return sysfs_emit(buf, "unknown state\n");
3615 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3617 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3618 struct device_attribute *attr,
3621 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3623 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3625 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3627 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3628 struct device_attribute *attr,
3631 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3633 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3635 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3637 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3638 struct device_attribute *attr,
3641 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3643 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3645 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3647 static ssize_t nvme_sysfs_show_address(struct device *dev,
3648 struct device_attribute *attr,
3651 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3653 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3655 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3657 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3658 struct device_attribute *attr, char *buf)
3660 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3661 struct nvmf_ctrl_options *opts = ctrl->opts;
3663 if (ctrl->opts->max_reconnects == -1)
3664 return sysfs_emit(buf, "off\n");
3665 return sysfs_emit(buf, "%d\n",
3666 opts->max_reconnects * opts->reconnect_delay);
3669 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3670 struct device_attribute *attr, const char *buf, size_t count)
3672 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3673 struct nvmf_ctrl_options *opts = ctrl->opts;
3674 int ctrl_loss_tmo, err;
3676 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3680 if (ctrl_loss_tmo < 0)
3681 opts->max_reconnects = -1;
3683 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3684 opts->reconnect_delay);
3687 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3688 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3690 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3691 struct device_attribute *attr, char *buf)
3693 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3695 if (ctrl->opts->reconnect_delay == -1)
3696 return sysfs_emit(buf, "off\n");
3697 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3700 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3701 struct device_attribute *attr, const char *buf, size_t count)
3703 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3707 err = kstrtou32(buf, 10, &v);
3711 ctrl->opts->reconnect_delay = v;
3714 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3715 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3717 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3718 struct device_attribute *attr, char *buf)
3720 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3722 if (ctrl->opts->fast_io_fail_tmo == -1)
3723 return sysfs_emit(buf, "off\n");
3724 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3727 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3728 struct device_attribute *attr, const char *buf, size_t count)
3730 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3731 struct nvmf_ctrl_options *opts = ctrl->opts;
3732 int fast_io_fail_tmo, err;
3734 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3738 if (fast_io_fail_tmo < 0)
3739 opts->fast_io_fail_tmo = -1;
3741 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3744 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3745 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3747 static ssize_t cntrltype_show(struct device *dev,
3748 struct device_attribute *attr, char *buf)
3750 static const char * const type[] = {
3751 [NVME_CTRL_IO] = "io\n",
3752 [NVME_CTRL_DISC] = "discovery\n",
3753 [NVME_CTRL_ADMIN] = "admin\n",
3755 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3757 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3758 return sysfs_emit(buf, "reserved\n");
3760 return sysfs_emit(buf, type[ctrl->cntrltype]);
3762 static DEVICE_ATTR_RO(cntrltype);
3764 static ssize_t dctype_show(struct device *dev,
3765 struct device_attribute *attr, char *buf)
3767 static const char * const type[] = {
3768 [NVME_DCTYPE_NOT_REPORTED] = "none\n",
3769 [NVME_DCTYPE_DDC] = "ddc\n",
3770 [NVME_DCTYPE_CDC] = "cdc\n",
3772 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3774 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3775 return sysfs_emit(buf, "reserved\n");
3777 return sysfs_emit(buf, type[ctrl->dctype]);
3779 static DEVICE_ATTR_RO(dctype);
3781 #ifdef CONFIG_NVME_AUTH
3782 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3783 struct device_attribute *attr, char *buf)
3785 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3786 struct nvmf_ctrl_options *opts = ctrl->opts;
3788 if (!opts->dhchap_secret)
3789 return sysfs_emit(buf, "none\n");
3790 return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3793 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3794 struct device_attribute *attr, const char *buf, size_t count)
3796 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3797 struct nvmf_ctrl_options *opts = ctrl->opts;
3798 char *dhchap_secret;
3800 if (!ctrl->opts->dhchap_secret)
3804 if (memcmp(buf, "DHHC-1:", 7))
3807 dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3810 memcpy(dhchap_secret, buf, count);
3811 nvme_auth_stop(ctrl);
3812 if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3813 struct nvme_dhchap_key *key, *host_key;
3816 ret = nvme_auth_generate_key(dhchap_secret, &key);
3819 kfree(opts->dhchap_secret);
3820 opts->dhchap_secret = dhchap_secret;
3821 host_key = ctrl->host_key;
3822 mutex_lock(&ctrl->dhchap_auth_mutex);
3823 ctrl->host_key = key;
3824 mutex_unlock(&ctrl->dhchap_auth_mutex);
3825 nvme_auth_free_key(host_key);
3827 /* Start re-authentication */
3828 dev_info(ctrl->device, "re-authenticating controller\n");
3829 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3833 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3834 nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3836 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3837 struct device_attribute *attr, char *buf)
3839 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3840 struct nvmf_ctrl_options *opts = ctrl->opts;
3842 if (!opts->dhchap_ctrl_secret)
3843 return sysfs_emit(buf, "none\n");
3844 return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3847 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3848 struct device_attribute *attr, const char *buf, size_t count)
3850 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3851 struct nvmf_ctrl_options *opts = ctrl->opts;
3852 char *dhchap_secret;
3854 if (!ctrl->opts->dhchap_ctrl_secret)
3858 if (memcmp(buf, "DHHC-1:", 7))
3861 dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3864 memcpy(dhchap_secret, buf, count);
3865 nvme_auth_stop(ctrl);
3866 if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3867 struct nvme_dhchap_key *key, *ctrl_key;
3870 ret = nvme_auth_generate_key(dhchap_secret, &key);
3873 kfree(opts->dhchap_ctrl_secret);
3874 opts->dhchap_ctrl_secret = dhchap_secret;
3875 ctrl_key = ctrl->ctrl_key;
3876 mutex_lock(&ctrl->dhchap_auth_mutex);
3877 ctrl->ctrl_key = key;
3878 mutex_unlock(&ctrl->dhchap_auth_mutex);
3879 nvme_auth_free_key(ctrl_key);
3881 /* Start re-authentication */
3882 dev_info(ctrl->device, "re-authenticating controller\n");
3883 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3887 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3888 nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3891 static struct attribute *nvme_dev_attrs[] = {
3892 &dev_attr_reset_controller.attr,
3893 &dev_attr_rescan_controller.attr,
3894 &dev_attr_model.attr,
3895 &dev_attr_serial.attr,
3896 &dev_attr_firmware_rev.attr,
3897 &dev_attr_cntlid.attr,
3898 &dev_attr_delete_controller.attr,
3899 &dev_attr_transport.attr,
3900 &dev_attr_subsysnqn.attr,
3901 &dev_attr_address.attr,
3902 &dev_attr_state.attr,
3903 &dev_attr_numa_node.attr,
3904 &dev_attr_queue_count.attr,
3905 &dev_attr_sqsize.attr,
3906 &dev_attr_hostnqn.attr,
3907 &dev_attr_hostid.attr,
3908 &dev_attr_ctrl_loss_tmo.attr,
3909 &dev_attr_reconnect_delay.attr,
3910 &dev_attr_fast_io_fail_tmo.attr,
3911 &dev_attr_kato.attr,
3912 &dev_attr_cntrltype.attr,
3913 &dev_attr_dctype.attr,
3914 #ifdef CONFIG_NVME_AUTH
3915 &dev_attr_dhchap_secret.attr,
3916 &dev_attr_dhchap_ctrl_secret.attr,
3921 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3922 struct attribute *a, int n)
3924 struct device *dev = container_of(kobj, struct device, kobj);
3925 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3927 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3929 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3931 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3933 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3935 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3937 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3939 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3941 #ifdef CONFIG_NVME_AUTH
3942 if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
3944 if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
3951 const struct attribute_group nvme_dev_attrs_group = {
3952 .attrs = nvme_dev_attrs,
3953 .is_visible = nvme_dev_attrs_are_visible,
3955 EXPORT_SYMBOL_GPL(nvme_dev_attrs_group);
3957 static const struct attribute_group *nvme_dev_attr_groups[] = {
3958 &nvme_dev_attrs_group,
3962 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3965 struct nvme_ns_head *h;
3967 lockdep_assert_held(&ctrl->subsys->lock);
3969 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3971 * Private namespaces can share NSIDs under some conditions.
3972 * In that case we can't use the same ns_head for namespaces
3973 * with the same NSID.
3975 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3977 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3984 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3985 struct nvme_ns_ids *ids)
3987 bool has_uuid = !uuid_is_null(&ids->uuid);
3988 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3989 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3990 struct nvme_ns_head *h;
3992 lockdep_assert_held(&subsys->lock);
3994 list_for_each_entry(h, &subsys->nsheads, entry) {
3995 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3998 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
4001 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
4008 static void nvme_cdev_rel(struct device *dev)
4010 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
4013 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
4015 cdev_device_del(cdev, cdev_device);
4016 put_device(cdev_device);
4019 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
4020 const struct file_operations *fops, struct module *owner)
4024 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
4027 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
4028 cdev_device->class = nvme_ns_chr_class;
4029 cdev_device->release = nvme_cdev_rel;
4030 device_initialize(cdev_device);
4031 cdev_init(cdev, fops);
4032 cdev->owner = owner;
4033 ret = cdev_device_add(cdev, cdev_device);
4035 put_device(cdev_device);
4040 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
4042 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
4045 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
4047 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
4051 static const struct file_operations nvme_ns_chr_fops = {
4052 .owner = THIS_MODULE,
4053 .open = nvme_ns_chr_open,
4054 .release = nvme_ns_chr_release,
4055 .unlocked_ioctl = nvme_ns_chr_ioctl,
4056 .compat_ioctl = compat_ptr_ioctl,
4057 .uring_cmd = nvme_ns_chr_uring_cmd,
4058 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
4061 static int nvme_add_ns_cdev(struct nvme_ns *ns)
4065 ns->cdev_device.parent = ns->ctrl->device;
4066 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
4067 ns->ctrl->instance, ns->head->instance);
4071 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
4072 ns->ctrl->ops->module);
4075 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
4076 struct nvme_ns_info *info)
4078 struct nvme_ns_head *head;
4079 size_t size = sizeof(*head);
4082 #ifdef CONFIG_NVME_MULTIPATH
4083 size += num_possible_nodes() * sizeof(struct nvme_ns *);
4086 head = kzalloc(size, GFP_KERNEL);
4089 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4092 head->instance = ret;
4093 INIT_LIST_HEAD(&head->list);
4094 ret = init_srcu_struct(&head->srcu);
4096 goto out_ida_remove;
4097 head->subsys = ctrl->subsys;
4098 head->ns_id = info->nsid;
4099 head->ids = info->ids;
4100 head->shared = info->is_shared;
4101 kref_init(&head->ref);
4103 if (head->ids.csi) {
4104 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4106 goto out_cleanup_srcu;
4108 head->effects = ctrl->effects;
4110 ret = nvme_mpath_alloc_disk(ctrl, head);
4112 goto out_cleanup_srcu;
4114 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4116 kref_get(&ctrl->subsys->ref);
4120 cleanup_srcu_struct(&head->srcu);
4122 ida_free(&ctrl->subsys->ns_ida, head->instance);
4127 ret = blk_status_to_errno(nvme_error_status(ret));
4128 return ERR_PTR(ret);
4131 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4132 struct nvme_ns_ids *ids)
4134 struct nvme_subsystem *s;
4138 * Note that this check is racy as we try to avoid holding the global
4139 * lock over the whole ns_head creation. But it is only intended as
4140 * a sanity check anyway.
4142 mutex_lock(&nvme_subsystems_lock);
4143 list_for_each_entry(s, &nvme_subsystems, entry) {
4146 mutex_lock(&s->lock);
4147 ret = nvme_subsys_check_duplicate_ids(s, ids);
4148 mutex_unlock(&s->lock);
4152 mutex_unlock(&nvme_subsystems_lock);
4157 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4159 struct nvme_ctrl *ctrl = ns->ctrl;
4160 struct nvme_ns_head *head = NULL;
4163 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4165 dev_err(ctrl->device,
4166 "globally duplicate IDs for nsid %d\n", info->nsid);
4167 nvme_print_device_info(ctrl);
4171 mutex_lock(&ctrl->subsys->lock);
4172 head = nvme_find_ns_head(ctrl, info->nsid);
4174 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4176 dev_err(ctrl->device,
4177 "duplicate IDs in subsystem for nsid %d\n",
4181 head = nvme_alloc_ns_head(ctrl, info);
4183 ret = PTR_ERR(head);
4188 if (!info->is_shared || !head->shared) {
4189 dev_err(ctrl->device,
4190 "Duplicate unshared namespace %d\n",
4192 goto out_put_ns_head;
4194 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4195 dev_err(ctrl->device,
4196 "IDs don't match for shared namespace %d\n",
4198 goto out_put_ns_head;
4201 if (!multipath && !list_empty(&head->list)) {
4202 dev_warn(ctrl->device,
4203 "Found shared namespace %d, but multipathing not supported.\n",
4205 dev_warn_once(ctrl->device,
4206 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4210 list_add_tail_rcu(&ns->siblings, &head->list);
4212 mutex_unlock(&ctrl->subsys->lock);
4216 nvme_put_ns_head(head);
4218 mutex_unlock(&ctrl->subsys->lock);
4222 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4224 struct nvme_ns *ns, *ret = NULL;
4226 down_read(&ctrl->namespaces_rwsem);
4227 list_for_each_entry(ns, &ctrl->namespaces, list) {
4228 if (ns->head->ns_id == nsid) {
4229 if (!nvme_get_ns(ns))
4234 if (ns->head->ns_id > nsid)
4237 up_read(&ctrl->namespaces_rwsem);
4240 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4243 * Add the namespace to the controller list while keeping the list ordered.
4245 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4247 struct nvme_ns *tmp;
4249 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4250 if (tmp->head->ns_id < ns->head->ns_id) {
4251 list_add(&ns->list, &tmp->list);
4255 list_add(&ns->list, &ns->ctrl->namespaces);
4258 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4261 struct gendisk *disk;
4262 int node = ctrl->numa_node;
4264 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4268 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4271 disk->fops = &nvme_bdev_ops;
4272 disk->private_data = ns;
4275 ns->queue = disk->queue;
4277 if (ctrl->opts && ctrl->opts->data_digest)
4278 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4280 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4281 if (ctrl->ops->supports_pci_p2pdma &&
4282 ctrl->ops->supports_pci_p2pdma(ctrl))
4283 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4286 kref_init(&ns->kref);
4288 if (nvme_init_ns_head(ns, info))
4289 goto out_cleanup_disk;
4292 * If multipathing is enabled, the device name for all disks and not
4293 * just those that represent shared namespaces needs to be based on the
4294 * subsystem instance. Using the controller instance for private
4295 * namespaces could lead to naming collisions between shared and private
4296 * namespaces if they don't use a common numbering scheme.
4298 * If multipathing is not enabled, disk names must use the controller
4299 * instance as shared namespaces will show up as multiple block
4302 if (ns->head->disk) {
4303 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4304 ctrl->instance, ns->head->instance);
4305 disk->flags |= GENHD_FL_HIDDEN;
4306 } else if (multipath) {
4307 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4308 ns->head->instance);
4310 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4311 ns->head->instance);
4314 if (nvme_update_ns_info(ns, info))
4317 down_write(&ctrl->namespaces_rwsem);
4318 nvme_ns_add_to_ctrl_list(ns);
4319 up_write(&ctrl->namespaces_rwsem);
4320 nvme_get_ctrl(ctrl);
4322 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4323 goto out_cleanup_ns_from_list;
4325 if (!nvme_ns_head_multipath(ns->head))
4326 nvme_add_ns_cdev(ns);
4328 nvme_mpath_add_disk(ns, info->anagrpid);
4329 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4333 out_cleanup_ns_from_list:
4334 nvme_put_ctrl(ctrl);
4335 down_write(&ctrl->namespaces_rwsem);
4336 list_del_init(&ns->list);
4337 up_write(&ctrl->namespaces_rwsem);
4339 mutex_lock(&ctrl->subsys->lock);
4340 list_del_rcu(&ns->siblings);
4341 if (list_empty(&ns->head->list))
4342 list_del_init(&ns->head->entry);
4343 mutex_unlock(&ctrl->subsys->lock);
4344 nvme_put_ns_head(ns->head);
4351 static void nvme_ns_remove(struct nvme_ns *ns)
4353 bool last_path = false;
4355 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4358 clear_bit(NVME_NS_READY, &ns->flags);
4359 set_capacity(ns->disk, 0);
4360 nvme_fault_inject_fini(&ns->fault_inject);
4363 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4364 * this ns going back into current_path.
4366 synchronize_srcu(&ns->head->srcu);
4368 /* wait for concurrent submissions */
4369 if (nvme_mpath_clear_current_path(ns))
4370 synchronize_srcu(&ns->head->srcu);
4372 mutex_lock(&ns->ctrl->subsys->lock);
4373 list_del_rcu(&ns->siblings);
4374 if (list_empty(&ns->head->list)) {
4375 list_del_init(&ns->head->entry);
4378 mutex_unlock(&ns->ctrl->subsys->lock);
4380 /* guarantee not available in head->list */
4381 synchronize_srcu(&ns->head->srcu);
4383 if (!nvme_ns_head_multipath(ns->head))
4384 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4385 del_gendisk(ns->disk);
4387 down_write(&ns->ctrl->namespaces_rwsem);
4388 list_del_init(&ns->list);
4389 up_write(&ns->ctrl->namespaces_rwsem);
4392 nvme_mpath_shutdown_disk(ns->head);
4396 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4398 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4406 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4408 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4410 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4411 dev_err(ns->ctrl->device,
4412 "identifiers changed for nsid %d\n", ns->head->ns_id);
4416 ret = nvme_update_ns_info(ns, info);
4419 * Only remove the namespace if we got a fatal error back from the
4420 * device, otherwise ignore the error and just move on.
4422 * TODO: we should probably schedule a delayed retry here.
4424 if (ret > 0 && (ret & NVME_SC_DNR))
4428 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4430 struct nvme_ns_info info = { .nsid = nsid };
4434 if (nvme_identify_ns_descs(ctrl, &info))
4437 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4438 dev_warn(ctrl->device,
4439 "command set not reported for nsid: %d\n", nsid);
4444 * If available try to use the Command Set Idependent Identify Namespace
4445 * data structure to find all the generic information that is needed to
4446 * set up a namespace. If not fall back to the legacy version.
4448 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4449 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4450 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4452 ret = nvme_ns_info_from_identify(ctrl, &info);
4454 if (info.is_removed)
4455 nvme_ns_remove_by_nsid(ctrl, nsid);
4458 * Ignore the namespace if it is not ready. We will get an AEN once it
4459 * becomes ready and restart the scan.
4461 if (ret || !info.is_ready)
4464 ns = nvme_find_get_ns(ctrl, nsid);
4466 nvme_validate_ns(ns, &info);
4469 nvme_alloc_ns(ctrl, &info);
4473 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4476 struct nvme_ns *ns, *next;
4479 down_write(&ctrl->namespaces_rwsem);
4480 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4481 if (ns->head->ns_id > nsid)
4482 list_move_tail(&ns->list, &rm_list);
4484 up_write(&ctrl->namespaces_rwsem);
4486 list_for_each_entry_safe(ns, next, &rm_list, list)
4491 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4493 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4498 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4503 struct nvme_command cmd = {
4504 .identify.opcode = nvme_admin_identify,
4505 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4506 .identify.nsid = cpu_to_le32(prev),
4509 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4510 NVME_IDENTIFY_DATA_SIZE);
4512 dev_warn(ctrl->device,
4513 "Identify NS List failed (status=0x%x)\n", ret);
4517 for (i = 0; i < nr_entries; i++) {
4518 u32 nsid = le32_to_cpu(ns_list[i]);
4520 if (!nsid) /* end of the list? */
4522 nvme_scan_ns(ctrl, nsid);
4523 while (++prev < nsid)
4524 nvme_ns_remove_by_nsid(ctrl, prev);
4528 nvme_remove_invalid_namespaces(ctrl, prev);
4534 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4536 struct nvme_id_ctrl *id;
4539 if (nvme_identify_ctrl(ctrl, &id))
4541 nn = le32_to_cpu(id->nn);
4544 for (i = 1; i <= nn; i++)
4545 nvme_scan_ns(ctrl, i);
4547 nvme_remove_invalid_namespaces(ctrl, nn);
4550 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4552 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4556 log = kzalloc(log_size, GFP_KERNEL);
4561 * We need to read the log to clear the AEN, but we don't want to rely
4562 * on it for the changed namespace information as userspace could have
4563 * raced with us in reading the log page, which could cause us to miss
4566 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4567 NVME_CSI_NVM, log, log_size, 0);
4569 dev_warn(ctrl->device,
4570 "reading changed ns log failed: %d\n", error);
4575 static void nvme_scan_work(struct work_struct *work)
4577 struct nvme_ctrl *ctrl =
4578 container_of(work, struct nvme_ctrl, scan_work);
4581 /* No tagset on a live ctrl means IO queues could not created */
4582 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4586 * Identify controller limits can change at controller reset due to
4587 * new firmware download, even though it is not common we cannot ignore
4588 * such scenario. Controller's non-mdts limits are reported in the unit
4589 * of logical blocks that is dependent on the format of attached
4590 * namespace. Hence re-read the limits at the time of ns allocation.
4592 ret = nvme_init_non_mdts_limits(ctrl);
4594 dev_warn(ctrl->device,
4595 "reading non-mdts-limits failed: %d\n", ret);
4599 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4600 dev_info(ctrl->device, "rescanning namespaces.\n");
4601 nvme_clear_changed_ns_log(ctrl);
4604 mutex_lock(&ctrl->scan_lock);
4605 if (nvme_ctrl_limited_cns(ctrl)) {
4606 nvme_scan_ns_sequential(ctrl);
4609 * Fall back to sequential scan if DNR is set to handle broken
4610 * devices which should support Identify NS List (as per the VS
4611 * they report) but don't actually support it.
4613 ret = nvme_scan_ns_list(ctrl);
4614 if (ret > 0 && ret & NVME_SC_DNR)
4615 nvme_scan_ns_sequential(ctrl);
4617 mutex_unlock(&ctrl->scan_lock);
4621 * This function iterates the namespace list unlocked to allow recovery from
4622 * controller failure. It is up to the caller to ensure the namespace list is
4623 * not modified by scan work while this function is executing.
4625 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4627 struct nvme_ns *ns, *next;
4631 * make sure to requeue I/O to all namespaces as these
4632 * might result from the scan itself and must complete
4633 * for the scan_work to make progress
4635 nvme_mpath_clear_ctrl_paths(ctrl);
4637 /* prevent racing with ns scanning */
4638 flush_work(&ctrl->scan_work);
4641 * The dead states indicates the controller was not gracefully
4642 * disconnected. In that case, we won't be able to flush any data while
4643 * removing the namespaces' disks; fail all the queues now to avoid
4644 * potentially having to clean up the failed sync later.
4646 if (ctrl->state == NVME_CTRL_DEAD) {
4647 nvme_mark_namespaces_dead(ctrl);
4648 nvme_unquiesce_io_queues(ctrl);
4651 /* this is a no-op when called from the controller reset handler */
4652 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4654 down_write(&ctrl->namespaces_rwsem);
4655 list_splice_init(&ctrl->namespaces, &ns_list);
4656 up_write(&ctrl->namespaces_rwsem);
4658 list_for_each_entry_safe(ns, next, &ns_list, list)
4661 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4663 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4665 const struct nvme_ctrl *ctrl =
4666 container_of(dev, struct nvme_ctrl, ctrl_device);
4667 struct nvmf_ctrl_options *opts = ctrl->opts;
4670 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4675 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4679 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4680 opts->trsvcid ?: "none");
4684 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4685 opts->host_traddr ?: "none");
4689 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4690 opts->host_iface ?: "none");
4695 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4697 char *envp[2] = { envdata, NULL };
4699 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4702 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4704 char *envp[2] = { NULL, NULL };
4705 u32 aen_result = ctrl->aen_result;
4707 ctrl->aen_result = 0;
4711 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4714 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4718 static void nvme_async_event_work(struct work_struct *work)
4720 struct nvme_ctrl *ctrl =
4721 container_of(work, struct nvme_ctrl, async_event_work);
4723 nvme_aen_uevent(ctrl);
4726 * The transport drivers must guarantee AER submission here is safe by
4727 * flushing ctrl async_event_work after changing the controller state
4728 * from LIVE and before freeing the admin queue.
4730 if (ctrl->state == NVME_CTRL_LIVE)
4731 ctrl->ops->submit_async_event(ctrl);
4734 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4739 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4745 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4748 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4750 struct nvme_fw_slot_info_log *log;
4752 log = kmalloc(sizeof(*log), GFP_KERNEL);
4756 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4757 log, sizeof(*log), 0))
4758 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4762 static void nvme_fw_act_work(struct work_struct *work)
4764 struct nvme_ctrl *ctrl = container_of(work,
4765 struct nvme_ctrl, fw_act_work);
4766 unsigned long fw_act_timeout;
4769 fw_act_timeout = jiffies +
4770 msecs_to_jiffies(ctrl->mtfa * 100);
4772 fw_act_timeout = jiffies +
4773 msecs_to_jiffies(admin_timeout * 1000);
4775 nvme_quiesce_io_queues(ctrl);
4776 while (nvme_ctrl_pp_status(ctrl)) {
4777 if (time_after(jiffies, fw_act_timeout)) {
4778 dev_warn(ctrl->device,
4779 "Fw activation timeout, reset controller\n");
4780 nvme_try_sched_reset(ctrl);
4786 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4789 nvme_unquiesce_io_queues(ctrl);
4790 /* read FW slot information to clear the AER */
4791 nvme_get_fw_slot_info(ctrl);
4793 queue_work(nvme_wq, &ctrl->async_event_work);
4796 static u32 nvme_aer_type(u32 result)
4798 return result & 0x7;
4801 static u32 nvme_aer_subtype(u32 result)
4803 return (result & 0xff00) >> 8;
4806 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4808 u32 aer_notice_type = nvme_aer_subtype(result);
4809 bool requeue = true;
4811 switch (aer_notice_type) {
4812 case NVME_AER_NOTICE_NS_CHANGED:
4813 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4814 nvme_queue_scan(ctrl);
4816 case NVME_AER_NOTICE_FW_ACT_STARTING:
4818 * We are (ab)using the RESETTING state to prevent subsequent
4819 * recovery actions from interfering with the controller's
4820 * firmware activation.
4822 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4823 nvme_auth_stop(ctrl);
4825 queue_work(nvme_wq, &ctrl->fw_act_work);
4828 #ifdef CONFIG_NVME_MULTIPATH
4829 case NVME_AER_NOTICE_ANA:
4830 if (!ctrl->ana_log_buf)
4832 queue_work(nvme_wq, &ctrl->ana_work);
4835 case NVME_AER_NOTICE_DISC_CHANGED:
4836 ctrl->aen_result = result;
4839 dev_warn(ctrl->device, "async event result %08x\n", result);
4844 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4846 dev_warn(ctrl->device, "resetting controller due to AER\n");
4847 nvme_reset_ctrl(ctrl);
4850 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4851 volatile union nvme_result *res)
4853 u32 result = le32_to_cpu(res->u32);
4854 u32 aer_type = nvme_aer_type(result);
4855 u32 aer_subtype = nvme_aer_subtype(result);
4856 bool requeue = true;
4858 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4861 trace_nvme_async_event(ctrl, result);
4863 case NVME_AER_NOTICE:
4864 requeue = nvme_handle_aen_notice(ctrl, result);
4866 case NVME_AER_ERROR:
4868 * For a persistent internal error, don't run async_event_work
4869 * to submit a new AER. The controller reset will do it.
4871 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4872 nvme_handle_aer_persistent_error(ctrl);
4876 case NVME_AER_SMART:
4879 ctrl->aen_result = result;
4886 queue_work(nvme_wq, &ctrl->async_event_work);
4888 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4890 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4891 const struct blk_mq_ops *ops, unsigned int cmd_size)
4895 memset(set, 0, sizeof(*set));
4897 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4898 if (ctrl->ops->flags & NVME_F_FABRICS)
4899 set->reserved_tags = NVMF_RESERVED_TAGS;
4900 set->numa_node = ctrl->numa_node;
4901 set->flags = BLK_MQ_F_NO_SCHED;
4902 if (ctrl->ops->flags & NVME_F_BLOCKING)
4903 set->flags |= BLK_MQ_F_BLOCKING;
4904 set->cmd_size = cmd_size;
4905 set->driver_data = ctrl;
4906 set->nr_hw_queues = 1;
4907 set->timeout = NVME_ADMIN_TIMEOUT;
4908 ret = blk_mq_alloc_tag_set(set);
4912 ctrl->admin_q = blk_mq_init_queue(set);
4913 if (IS_ERR(ctrl->admin_q)) {
4914 ret = PTR_ERR(ctrl->admin_q);
4915 goto out_free_tagset;
4918 if (ctrl->ops->flags & NVME_F_FABRICS) {
4919 ctrl->fabrics_q = blk_mq_init_queue(set);
4920 if (IS_ERR(ctrl->fabrics_q)) {
4921 ret = PTR_ERR(ctrl->fabrics_q);
4922 goto out_cleanup_admin_q;
4926 ctrl->admin_tagset = set;
4929 out_cleanup_admin_q:
4930 blk_mq_destroy_queue(ctrl->admin_q);
4931 blk_put_queue(ctrl->admin_q);
4933 blk_mq_free_tag_set(set);
4934 ctrl->admin_q = NULL;
4935 ctrl->fabrics_q = NULL;
4938 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4940 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4942 blk_mq_destroy_queue(ctrl->admin_q);
4943 blk_put_queue(ctrl->admin_q);
4944 if (ctrl->ops->flags & NVME_F_FABRICS) {
4945 blk_mq_destroy_queue(ctrl->fabrics_q);
4946 blk_put_queue(ctrl->fabrics_q);
4948 blk_mq_free_tag_set(ctrl->admin_tagset);
4950 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4952 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4953 const struct blk_mq_ops *ops, unsigned int nr_maps,
4954 unsigned int cmd_size)
4958 memset(set, 0, sizeof(*set));
4960 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4962 * Some Apple controllers requires tags to be unique across admin and
4963 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4965 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4966 set->reserved_tags = NVME_AQ_DEPTH;
4967 else if (ctrl->ops->flags & NVME_F_FABRICS)
4968 set->reserved_tags = NVMF_RESERVED_TAGS;
4969 set->numa_node = ctrl->numa_node;
4970 set->flags = BLK_MQ_F_SHOULD_MERGE;
4971 if (ctrl->ops->flags & NVME_F_BLOCKING)
4972 set->flags |= BLK_MQ_F_BLOCKING;
4973 set->cmd_size = cmd_size,
4974 set->driver_data = ctrl;
4975 set->nr_hw_queues = ctrl->queue_count - 1;
4976 set->timeout = NVME_IO_TIMEOUT;
4977 set->nr_maps = nr_maps;
4978 ret = blk_mq_alloc_tag_set(set);
4982 if (ctrl->ops->flags & NVME_F_FABRICS) {
4983 ctrl->connect_q = blk_mq_init_queue(set);
4984 if (IS_ERR(ctrl->connect_q)) {
4985 ret = PTR_ERR(ctrl->connect_q);
4986 goto out_free_tag_set;
4988 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4996 blk_mq_free_tag_set(set);
4997 ctrl->connect_q = NULL;
5000 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
5002 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
5004 if (ctrl->ops->flags & NVME_F_FABRICS) {
5005 blk_mq_destroy_queue(ctrl->connect_q);
5006 blk_put_queue(ctrl->connect_q);
5008 blk_mq_free_tag_set(ctrl->tagset);
5010 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
5012 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
5014 nvme_mpath_stop(ctrl);
5015 nvme_auth_stop(ctrl);
5016 nvme_stop_keep_alive(ctrl);
5017 nvme_stop_failfast_work(ctrl);
5018 flush_work(&ctrl->async_event_work);
5019 cancel_work_sync(&ctrl->fw_act_work);
5020 if (ctrl->ops->stop_ctrl)
5021 ctrl->ops->stop_ctrl(ctrl);
5023 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
5025 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
5027 nvme_start_keep_alive(ctrl);
5029 nvme_enable_aen(ctrl);
5032 * persistent discovery controllers need to send indication to userspace
5033 * to re-read the discovery log page to learn about possible changes
5034 * that were missed. We identify persistent discovery controllers by
5035 * checking that they started once before, hence are reconnecting back.
5037 if (test_and_set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
5038 nvme_discovery_ctrl(ctrl))
5039 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
5041 if (ctrl->queue_count > 1) {
5042 nvme_queue_scan(ctrl);
5043 nvme_unquiesce_io_queues(ctrl);
5044 nvme_mpath_update(ctrl);
5047 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
5049 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5051 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5053 nvme_hwmon_exit(ctrl);
5054 nvme_fault_inject_fini(&ctrl->fault_inject);
5055 dev_pm_qos_hide_latency_tolerance(ctrl->device);
5056 cdev_device_del(&ctrl->cdev, ctrl->device);
5057 nvme_put_ctrl(ctrl);
5059 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5061 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5063 struct nvme_effects_log *cel;
5066 xa_for_each(&ctrl->cels, i, cel) {
5067 xa_erase(&ctrl->cels, i);
5071 xa_destroy(&ctrl->cels);
5074 static void nvme_free_ctrl(struct device *dev)
5076 struct nvme_ctrl *ctrl =
5077 container_of(dev, struct nvme_ctrl, ctrl_device);
5078 struct nvme_subsystem *subsys = ctrl->subsys;
5080 if (!subsys || ctrl->instance != subsys->instance)
5081 ida_free(&nvme_instance_ida, ctrl->instance);
5083 nvme_free_cels(ctrl);
5084 nvme_mpath_uninit(ctrl);
5085 nvme_auth_stop(ctrl);
5086 nvme_auth_free(ctrl);
5087 __free_page(ctrl->discard_page);
5088 free_opal_dev(ctrl->opal_dev);
5091 mutex_lock(&nvme_subsystems_lock);
5092 list_del(&ctrl->subsys_entry);
5093 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5094 mutex_unlock(&nvme_subsystems_lock);
5097 ctrl->ops->free_ctrl(ctrl);
5100 nvme_put_subsystem(subsys);
5104 * Initialize a NVMe controller structures. This needs to be called during
5105 * earliest initialization so that we have the initialized structured around
5108 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5109 const struct nvme_ctrl_ops *ops, unsigned long quirks)
5113 ctrl->state = NVME_CTRL_NEW;
5114 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5115 spin_lock_init(&ctrl->lock);
5116 mutex_init(&ctrl->scan_lock);
5117 INIT_LIST_HEAD(&ctrl->namespaces);
5118 xa_init(&ctrl->cels);
5119 init_rwsem(&ctrl->namespaces_rwsem);
5122 ctrl->quirks = quirks;
5123 ctrl->numa_node = NUMA_NO_NODE;
5124 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5125 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5126 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5127 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5128 init_waitqueue_head(&ctrl->state_wq);
5130 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5131 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5132 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5133 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5135 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5137 ctrl->discard_page = alloc_page(GFP_KERNEL);
5138 if (!ctrl->discard_page) {
5143 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5146 ctrl->instance = ret;
5148 device_initialize(&ctrl->ctrl_device);
5149 ctrl->device = &ctrl->ctrl_device;
5150 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5152 ctrl->device->class = nvme_class;
5153 ctrl->device->parent = ctrl->dev;
5154 if (ops->dev_attr_groups)
5155 ctrl->device->groups = ops->dev_attr_groups;
5157 ctrl->device->groups = nvme_dev_attr_groups;
5158 ctrl->device->release = nvme_free_ctrl;
5159 dev_set_drvdata(ctrl->device, ctrl);
5160 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5162 goto out_release_instance;
5164 nvme_get_ctrl(ctrl);
5165 cdev_init(&ctrl->cdev, &nvme_dev_fops);
5166 ctrl->cdev.owner = ops->module;
5167 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5172 * Initialize latency tolerance controls. The sysfs files won't
5173 * be visible to userspace unless the device actually supports APST.
5175 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5176 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5177 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5179 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5180 nvme_mpath_init_ctrl(ctrl);
5181 ret = nvme_auth_init_ctrl(ctrl);
5187 cdev_device_del(&ctrl->cdev, ctrl->device);
5189 nvme_put_ctrl(ctrl);
5190 kfree_const(ctrl->device->kobj.name);
5191 out_release_instance:
5192 ida_free(&nvme_instance_ida, ctrl->instance);
5194 if (ctrl->discard_page)
5195 __free_page(ctrl->discard_page);
5198 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5200 /* let I/O to all namespaces fail in preparation for surprise removal */
5201 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5205 down_read(&ctrl->namespaces_rwsem);
5206 list_for_each_entry(ns, &ctrl->namespaces, list)
5207 blk_mark_disk_dead(ns->disk);
5208 up_read(&ctrl->namespaces_rwsem);
5210 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5212 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5216 down_read(&ctrl->namespaces_rwsem);
5217 list_for_each_entry(ns, &ctrl->namespaces, list)
5218 blk_mq_unfreeze_queue(ns->queue);
5219 up_read(&ctrl->namespaces_rwsem);
5221 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5223 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5227 down_read(&ctrl->namespaces_rwsem);
5228 list_for_each_entry(ns, &ctrl->namespaces, list) {
5229 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5233 up_read(&ctrl->namespaces_rwsem);
5236 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5238 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5242 down_read(&ctrl->namespaces_rwsem);
5243 list_for_each_entry(ns, &ctrl->namespaces, list)
5244 blk_mq_freeze_queue_wait(ns->queue);
5245 up_read(&ctrl->namespaces_rwsem);
5247 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5249 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5253 down_read(&ctrl->namespaces_rwsem);
5254 list_for_each_entry(ns, &ctrl->namespaces, list)
5255 blk_freeze_queue_start(ns->queue);
5256 up_read(&ctrl->namespaces_rwsem);
5258 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5260 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5264 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5265 blk_mq_quiesce_tagset(ctrl->tagset);
5267 blk_mq_wait_quiesce_done(ctrl->tagset);
5269 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5271 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5275 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5276 blk_mq_unquiesce_tagset(ctrl->tagset);
5278 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5280 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5282 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5283 blk_mq_quiesce_queue(ctrl->admin_q);
5285 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5287 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5289 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5291 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5292 blk_mq_unquiesce_queue(ctrl->admin_q);
5294 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5296 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5300 down_read(&ctrl->namespaces_rwsem);
5301 list_for_each_entry(ns, &ctrl->namespaces, list)
5302 blk_sync_queue(ns->queue);
5303 up_read(&ctrl->namespaces_rwsem);
5305 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5307 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5309 nvme_sync_io_queues(ctrl);
5311 blk_sync_queue(ctrl->admin_q);
5313 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5315 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5317 if (file->f_op != &nvme_dev_fops)
5319 return file->private_data;
5321 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5324 * Check we didn't inadvertently grow the command structure sizes:
5326 static inline void _nvme_check_size(void)
5328 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5329 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5330 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5331 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5332 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5333 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5334 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5335 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5336 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5337 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5338 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5339 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5340 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5341 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5342 NVME_IDENTIFY_DATA_SIZE);
5343 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5344 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5345 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5346 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5347 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5348 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5349 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5350 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5351 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5355 static int __init nvme_core_init(void)
5357 int result = -ENOMEM;
5361 nvme_wq = alloc_workqueue("nvme-wq",
5362 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5366 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5367 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5371 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5372 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5373 if (!nvme_delete_wq)
5374 goto destroy_reset_wq;
5376 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5377 NVME_MINORS, "nvme");
5379 goto destroy_delete_wq;
5381 nvme_class = class_create(THIS_MODULE, "nvme");
5382 if (IS_ERR(nvme_class)) {
5383 result = PTR_ERR(nvme_class);
5384 goto unregister_chrdev;
5386 nvme_class->dev_uevent = nvme_class_uevent;
5388 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
5389 if (IS_ERR(nvme_subsys_class)) {
5390 result = PTR_ERR(nvme_subsys_class);
5394 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5397 goto destroy_subsys_class;
5399 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5400 if (IS_ERR(nvme_ns_chr_class)) {
5401 result = PTR_ERR(nvme_ns_chr_class);
5402 goto unregister_generic_ns;
5405 result = nvme_init_auth();
5407 goto destroy_ns_chr;
5411 class_destroy(nvme_ns_chr_class);
5412 unregister_generic_ns:
5413 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5414 destroy_subsys_class:
5415 class_destroy(nvme_subsys_class);
5417 class_destroy(nvme_class);
5419 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5421 destroy_workqueue(nvme_delete_wq);
5423 destroy_workqueue(nvme_reset_wq);
5425 destroy_workqueue(nvme_wq);
5430 static void __exit nvme_core_exit(void)
5433 class_destroy(nvme_ns_chr_class);
5434 class_destroy(nvme_subsys_class);
5435 class_destroy(nvme_class);
5436 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5437 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5438 destroy_workqueue(nvme_delete_wq);
5439 destroy_workqueue(nvme_reset_wq);
5440 destroy_workqueue(nvme_wq);
5441 ida_destroy(&nvme_ns_chr_minor_ida);
5442 ida_destroy(&nvme_instance_ida);
5445 MODULE_LICENSE("GPL");
5446 MODULE_VERSION("1.0");
5447 module_init(nvme_core_init);
5448 module_exit(nvme_core_exit);