Merge 6.4-rc5 into usb-next
[platform/kernel/linux-starfive.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 struct nvme_ns_info {
35         struct nvme_ns_ids ids;
36         u32 nsid;
37         __le32 anagrpid;
38         bool is_shared;
39         bool is_readonly;
40         bool is_ready;
41         bool is_removed;
42 };
43
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65                  "max power saving latency for new devices; use PM QOS to change per device");
66
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74         "primary APST timeout in ms");
75
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79         "secondary APST timeout in ms");
80
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84         "primary APST latency tolerance in us");
85
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89         "secondary APST latency tolerance in us");
90
91 /*
92  * nvme_wq - hosts nvme related works that are not reset or delete
93  * nvme_reset_wq - hosts nvme reset works
94  * nvme_delete_wq - hosts nvme delete works
95  *
96  * nvme_wq will host works such as scan, aen handling, fw activation,
97  * keep-alive, periodic reconnects etc. nvme_reset_wq
98  * runs reset works which also flush works hosted on nvme_wq for
99  * serialization purposes. nvme_delete_wq host controller deletion
100  * works which flush reset works for serialization.
101  */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125                                            unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127                                    struct nvme_command *cmd);
128
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131         /*
132          * Only new queue scan work when admin and IO queues are both alive
133          */
134         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135                 queue_work(nvme_wq, &ctrl->scan_work);
136 }
137
138 /*
139  * Use this function to proceed with scheduling reset_work for a controller
140  * that had previously been set to the resetting state. This is intended for
141  * code paths that can't be interrupted by other reset attempts. A hot removal
142  * may prevent this from succeeding.
143  */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146         if (ctrl->state != NVME_CTRL_RESETTING)
147                 return -EBUSY;
148         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149                 return -EBUSY;
150         return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157                         struct nvme_ctrl, failfast_work);
158
159         if (ctrl->state != NVME_CTRL_CONNECTING)
160                 return;
161
162         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163         dev_info(ctrl->device, "failfast expired\n");
164         nvme_kick_requeue_lists(ctrl);
165 }
166
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170                 return;
171
172         schedule_delayed_work(&ctrl->failfast_work,
173                               ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178         if (!ctrl->opts)
179                 return;
180
181         cancel_delayed_work_sync(&ctrl->failfast_work);
182         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184
185
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189                 return -EBUSY;
190         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191                 return -EBUSY;
192         return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198         int ret;
199
200         ret = nvme_reset_ctrl(ctrl);
201         if (!ret) {
202                 flush_work(&ctrl->reset_work);
203                 if (ctrl->state != NVME_CTRL_LIVE)
204                         ret = -ENETRESET;
205         }
206
207         return ret;
208 }
209
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212         dev_info(ctrl->device,
213                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214
215         flush_work(&ctrl->reset_work);
216         nvme_stop_ctrl(ctrl);
217         nvme_remove_namespaces(ctrl);
218         ctrl->ops->delete_ctrl(ctrl);
219         nvme_uninit_ctrl(ctrl);
220 }
221
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224         struct nvme_ctrl *ctrl =
225                 container_of(work, struct nvme_ctrl, delete_work);
226
227         nvme_do_delete_ctrl(ctrl);
228 }
229
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233                 return -EBUSY;
234         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235                 return -EBUSY;
236         return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239
240 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242         /*
243          * Keep a reference until nvme_do_delete_ctrl() complete,
244          * since ->delete_ctrl can free the controller.
245          */
246         nvme_get_ctrl(ctrl);
247         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248                 nvme_do_delete_ctrl(ctrl);
249         nvme_put_ctrl(ctrl);
250 }
251
252 static blk_status_t nvme_error_status(u16 status)
253 {
254         switch (status & 0x7ff) {
255         case NVME_SC_SUCCESS:
256                 return BLK_STS_OK;
257         case NVME_SC_CAP_EXCEEDED:
258                 return BLK_STS_NOSPC;
259         case NVME_SC_LBA_RANGE:
260         case NVME_SC_CMD_INTERRUPTED:
261         case NVME_SC_NS_NOT_READY:
262                 return BLK_STS_TARGET;
263         case NVME_SC_BAD_ATTRIBUTES:
264         case NVME_SC_ONCS_NOT_SUPPORTED:
265         case NVME_SC_INVALID_OPCODE:
266         case NVME_SC_INVALID_FIELD:
267         case NVME_SC_INVALID_NS:
268                 return BLK_STS_NOTSUPP;
269         case NVME_SC_WRITE_FAULT:
270         case NVME_SC_READ_ERROR:
271         case NVME_SC_UNWRITTEN_BLOCK:
272         case NVME_SC_ACCESS_DENIED:
273         case NVME_SC_READ_ONLY:
274         case NVME_SC_COMPARE_FAILED:
275                 return BLK_STS_MEDIUM;
276         case NVME_SC_GUARD_CHECK:
277         case NVME_SC_APPTAG_CHECK:
278         case NVME_SC_REFTAG_CHECK:
279         case NVME_SC_INVALID_PI:
280                 return BLK_STS_PROTECTION;
281         case NVME_SC_RESERVATION_CONFLICT:
282                 return BLK_STS_NEXUS;
283         case NVME_SC_HOST_PATH_ERROR:
284                 return BLK_STS_TRANSPORT;
285         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
287         case NVME_SC_ZONE_TOO_MANY_OPEN:
288                 return BLK_STS_ZONE_OPEN_RESOURCE;
289         default:
290                 return BLK_STS_IOERR;
291         }
292 }
293
294 static void nvme_retry_req(struct request *req)
295 {
296         unsigned long delay = 0;
297         u16 crd;
298
299         /* The mask and shift result must be <= 3 */
300         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301         if (crd)
302                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303
304         nvme_req(req)->retries++;
305         blk_mq_requeue_request(req, false);
306         blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308
309 static void nvme_log_error(struct request *req)
310 {
311         struct nvme_ns *ns = req->q->queuedata;
312         struct nvme_request *nr = nvme_req(req);
313
314         if (ns) {
315                 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316                        ns->disk ? ns->disk->disk_name : "?",
317                        nvme_get_opcode_str(nr->cmd->common.opcode),
318                        nr->cmd->common.opcode,
319                        (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320                        (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321                        nvme_get_error_status_str(nr->status),
322                        nr->status >> 8 & 7,     /* Status Code Type */
323                        nr->status & 0xff,       /* Status Code */
324                        nr->status & NVME_SC_MORE ? "MORE " : "",
325                        nr->status & NVME_SC_DNR  ? "DNR "  : "");
326                 return;
327         }
328
329         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330                            dev_name(nr->ctrl->device),
331                            nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332                            nr->cmd->common.opcode,
333                            nvme_get_error_status_str(nr->status),
334                            nr->status >> 8 & 7, /* Status Code Type */
335                            nr->status & 0xff,   /* Status Code */
336                            nr->status & NVME_SC_MORE ? "MORE " : "",
337                            nr->status & NVME_SC_DNR  ? "DNR "  : "");
338 }
339
340 enum nvme_disposition {
341         COMPLETE,
342         RETRY,
343         FAILOVER,
344         AUTHENTICATE,
345 };
346
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349         if (likely(nvme_req(req)->status == 0))
350                 return COMPLETE;
351
352         if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353                 return AUTHENTICATE;
354
355         if (blk_noretry_request(req) ||
356             (nvme_req(req)->status & NVME_SC_DNR) ||
357             nvme_req(req)->retries >= nvme_max_retries)
358                 return COMPLETE;
359
360         if (req->cmd_flags & REQ_NVME_MPATH) {
361                 if (nvme_is_path_error(nvme_req(req)->status) ||
362                     blk_queue_dying(req->q))
363                         return FAILOVER;
364         } else {
365                 if (blk_queue_dying(req->q))
366                         return COMPLETE;
367         }
368
369         return RETRY;
370 }
371
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375             req_op(req) == REQ_OP_ZONE_APPEND)
376                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
377                         le64_to_cpu(nvme_req(req)->result.u64));
378 }
379
380 static inline void nvme_end_req(struct request *req)
381 {
382         blk_status_t status = nvme_error_status(nvme_req(req)->status);
383
384         if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385                 nvme_log_error(req);
386         nvme_end_req_zoned(req);
387         nvme_trace_bio_complete(req);
388         if (req->cmd_flags & REQ_NVME_MPATH)
389                 nvme_mpath_end_request(req);
390         blk_mq_end_request(req, status);
391 }
392
393 void nvme_complete_rq(struct request *req)
394 {
395         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396
397         trace_nvme_complete_rq(req);
398         nvme_cleanup_cmd(req);
399
400         /*
401          * Completions of long-running commands should not be able to
402          * defer sending of periodic keep alives, since the controller
403          * may have completed processing such commands a long time ago
404          * (arbitrarily close to command submission time).
405          * req->deadline - req->timeout is the command submission time
406          * in jiffies.
407          */
408         if (ctrl->kas &&
409             req->deadline - req->timeout >= ctrl->ka_last_check_time)
410                 ctrl->comp_seen = true;
411
412         switch (nvme_decide_disposition(req)) {
413         case COMPLETE:
414                 nvme_end_req(req);
415                 return;
416         case RETRY:
417                 nvme_retry_req(req);
418                 return;
419         case FAILOVER:
420                 nvme_failover_req(req);
421                 return;
422         case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424                 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425                 nvme_retry_req(req);
426 #else
427                 nvme_end_req(req);
428 #endif
429                 return;
430         }
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433
434 void nvme_complete_batch_req(struct request *req)
435 {
436         trace_nvme_complete_rq(req);
437         nvme_cleanup_cmd(req);
438         nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441
442 /*
443  * Called to unwind from ->queue_rq on a failed command submission so that the
444  * multipathing code gets called to potentially failover to another path.
445  * The caller needs to unwind all transport specific resource allocations and
446  * must return propagate the return value.
447  */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451         blk_mq_set_request_complete(req);
452         nvme_complete_rq(req);
453         return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460                                 "Cancelling I/O %d", req->tag);
461
462         /* don't abort one completed or idle request */
463         if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464                 return true;
465
466         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468         blk_mq_complete_request(req);
469         return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475         if (ctrl->tagset) {
476                 blk_mq_tagset_busy_iter(ctrl->tagset,
477                                 nvme_cancel_request, ctrl);
478                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
479         }
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485         if (ctrl->admin_tagset) {
486                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487                                 nvme_cancel_request, ctrl);
488                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489         }
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494                 enum nvme_ctrl_state new_state)
495 {
496         enum nvme_ctrl_state old_state;
497         unsigned long flags;
498         bool changed = false;
499
500         spin_lock_irqsave(&ctrl->lock, flags);
501
502         old_state = ctrl->state;
503         switch (new_state) {
504         case NVME_CTRL_LIVE:
505                 switch (old_state) {
506                 case NVME_CTRL_NEW:
507                 case NVME_CTRL_RESETTING:
508                 case NVME_CTRL_CONNECTING:
509                         changed = true;
510                         fallthrough;
511                 default:
512                         break;
513                 }
514                 break;
515         case NVME_CTRL_RESETTING:
516                 switch (old_state) {
517                 case NVME_CTRL_NEW:
518                 case NVME_CTRL_LIVE:
519                         changed = true;
520                         fallthrough;
521                 default:
522                         break;
523                 }
524                 break;
525         case NVME_CTRL_CONNECTING:
526                 switch (old_state) {
527                 case NVME_CTRL_NEW:
528                 case NVME_CTRL_RESETTING:
529                         changed = true;
530                         fallthrough;
531                 default:
532                         break;
533                 }
534                 break;
535         case NVME_CTRL_DELETING:
536                 switch (old_state) {
537                 case NVME_CTRL_LIVE:
538                 case NVME_CTRL_RESETTING:
539                 case NVME_CTRL_CONNECTING:
540                         changed = true;
541                         fallthrough;
542                 default:
543                         break;
544                 }
545                 break;
546         case NVME_CTRL_DELETING_NOIO:
547                 switch (old_state) {
548                 case NVME_CTRL_DELETING:
549                 case NVME_CTRL_DEAD:
550                         changed = true;
551                         fallthrough;
552                 default:
553                         break;
554                 }
555                 break;
556         case NVME_CTRL_DEAD:
557                 switch (old_state) {
558                 case NVME_CTRL_DELETING:
559                         changed = true;
560                         fallthrough;
561                 default:
562                         break;
563                 }
564                 break;
565         default:
566                 break;
567         }
568
569         if (changed) {
570                 ctrl->state = new_state;
571                 wake_up_all(&ctrl->state_wq);
572         }
573
574         spin_unlock_irqrestore(&ctrl->lock, flags);
575         if (!changed)
576                 return false;
577
578         if (ctrl->state == NVME_CTRL_LIVE) {
579                 if (old_state == NVME_CTRL_CONNECTING)
580                         nvme_stop_failfast_work(ctrl);
581                 nvme_kick_requeue_lists(ctrl);
582         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
583                 old_state == NVME_CTRL_RESETTING) {
584                 nvme_start_failfast_work(ctrl);
585         }
586         return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589
590 /*
591  * Returns true for sink states that can't ever transition back to live.
592  */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595         switch (ctrl->state) {
596         case NVME_CTRL_NEW:
597         case NVME_CTRL_LIVE:
598         case NVME_CTRL_RESETTING:
599         case NVME_CTRL_CONNECTING:
600                 return false;
601         case NVME_CTRL_DELETING:
602         case NVME_CTRL_DELETING_NOIO:
603         case NVME_CTRL_DEAD:
604                 return true;
605         default:
606                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607                 return true;
608         }
609 }
610
611 /*
612  * Waits for the controller state to be resetting, or returns false if it is
613  * not possible to ever transition to that state.
614  */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617         wait_event(ctrl->state_wq,
618                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619                    nvme_state_terminal(ctrl));
620         return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626         struct nvme_ns_head *head =
627                 container_of(ref, struct nvme_ns_head, ref);
628
629         nvme_mpath_remove_disk(head);
630         ida_free(&head->subsys->ns_ida, head->instance);
631         cleanup_srcu_struct(&head->srcu);
632         nvme_put_subsystem(head->subsys);
633         kfree(head);
634 }
635
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638         return kref_get_unless_zero(&head->ref);
639 }
640
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643         kref_put(&head->ref, nvme_free_ns_head);
644 }
645
646 static void nvme_free_ns(struct kref *kref)
647 {
648         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649
650         put_disk(ns->disk);
651         nvme_put_ns_head(ns->head);
652         nvme_put_ctrl(ns->ctrl);
653         kfree(ns);
654 }
655
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658         return kref_get_unless_zero(&ns->kref);
659 }
660
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663         kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669         nvme_req(req)->status = 0;
670         nvme_req(req)->retries = 0;
671         nvme_req(req)->flags = 0;
672         req->rq_flags |= RQF_DONTPREP;
673 }
674
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678         if (req->q->queuedata)
679                 req->timeout = NVME_IO_TIMEOUT;
680         else /* no queuedata implies admin queue */
681                 req->timeout = NVME_ADMIN_TIMEOUT;
682
683         /* passthru commands should let the driver set the SGL flags */
684         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685
686         req->cmd_flags |= REQ_FAILFAST_DRIVER;
687         if (req->mq_hctx->type == HCTX_TYPE_POLL)
688                 req->cmd_flags |= REQ_POLLED;
689         nvme_clear_nvme_request(req);
690         req->rq_flags |= RQF_QUIET;
691         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694
695 /*
696  * For something we're not in a state to send to the device the default action
697  * is to busy it and retry it after the controller state is recovered.  However,
698  * if the controller is deleting or if anything is marked for failfast or
699  * nvme multipath it is immediately failed.
700  *
701  * Note: commands used to initialize the controller will be marked for failfast.
702  * Note: nvme cli/ioctl commands are marked for failfast.
703  */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705                 struct request *rq)
706 {
707         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708             ctrl->state != NVME_CTRL_DELETING &&
709             ctrl->state != NVME_CTRL_DEAD &&
710             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712                 return BLK_STS_RESOURCE;
713         return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718                 bool queue_live)
719 {
720         struct nvme_request *req = nvme_req(rq);
721
722         /*
723          * currently we have a problem sending passthru commands
724          * on the admin_q if the controller is not LIVE because we can't
725          * make sure that they are going out after the admin connect,
726          * controller enable and/or other commands in the initialization
727          * sequence. until the controller will be LIVE, fail with
728          * BLK_STS_RESOURCE so that they will be rescheduled.
729          */
730         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731                 return false;
732
733         if (ctrl->ops->flags & NVME_F_FABRICS) {
734                 /*
735                  * Only allow commands on a live queue, except for the connect
736                  * command, which is require to set the queue live in the
737                  * appropinquate states.
738                  */
739                 switch (ctrl->state) {
740                 case NVME_CTRL_CONNECTING:
741                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742                             (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745                                 return true;
746                         break;
747                 default:
748                         break;
749                 case NVME_CTRL_DEAD:
750                         return false;
751                 }
752         }
753
754         return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759                 struct nvme_command *cmnd)
760 {
761         memset(cmnd, 0, sizeof(*cmnd));
762         cmnd->common.opcode = nvme_cmd_flush;
763         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767                 struct nvme_command *cmnd)
768 {
769         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770         struct nvme_dsm_range *range;
771         struct bio *bio;
772
773         /*
774          * Some devices do not consider the DSM 'Number of Ranges' field when
775          * determining how much data to DMA. Always allocate memory for maximum
776          * number of segments to prevent device reading beyond end of buffer.
777          */
778         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779
780         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781         if (!range) {
782                 /*
783                  * If we fail allocation our range, fallback to the controller
784                  * discard page. If that's also busy, it's safe to return
785                  * busy, as we know we can make progress once that's freed.
786                  */
787                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788                         return BLK_STS_RESOURCE;
789
790                 range = page_address(ns->ctrl->discard_page);
791         }
792
793         if (queue_max_discard_segments(req->q) == 1) {
794                 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795                 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796
797                 range[0].cattr = cpu_to_le32(0);
798                 range[0].nlb = cpu_to_le32(nlb);
799                 range[0].slba = cpu_to_le64(slba);
800                 n = 1;
801         } else {
802                 __rq_for_each_bio(bio, req) {
803                         u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804                         u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805
806                         if (n < segments) {
807                                 range[n].cattr = cpu_to_le32(0);
808                                 range[n].nlb = cpu_to_le32(nlb);
809                                 range[n].slba = cpu_to_le64(slba);
810                         }
811                         n++;
812                 }
813         }
814
815         if (WARN_ON_ONCE(n != segments)) {
816                 if (virt_to_page(range) == ns->ctrl->discard_page)
817                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818                 else
819                         kfree(range);
820                 return BLK_STS_IOERR;
821         }
822
823         memset(cmnd, 0, sizeof(*cmnd));
824         cmnd->dsm.opcode = nvme_cmd_dsm;
825         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826         cmnd->dsm.nr = cpu_to_le32(segments - 1);
827         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828
829         bvec_set_virt(&req->special_vec, range, alloc_size);
830         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831
832         return BLK_STS_OK;
833 }
834
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836                               struct request *req)
837 {
838         u32 upper, lower;
839         u64 ref48;
840
841         /* both rw and write zeroes share the same reftag format */
842         switch (ns->guard_type) {
843         case NVME_NVM_NS_16B_GUARD:
844                 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845                 break;
846         case NVME_NVM_NS_64B_GUARD:
847                 ref48 = ext_pi_ref_tag(req);
848                 lower = lower_32_bits(ref48);
849                 upper = upper_32_bits(ref48);
850
851                 cmnd->rw.reftag = cpu_to_le32(lower);
852                 cmnd->rw.cdw3 = cpu_to_le32(upper);
853                 break;
854         default:
855                 break;
856         }
857 }
858
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860                 struct request *req, struct nvme_command *cmnd)
861 {
862         memset(cmnd, 0, sizeof(*cmnd));
863
864         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865                 return nvme_setup_discard(ns, req, cmnd);
866
867         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869         cmnd->write_zeroes.slba =
870                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871         cmnd->write_zeroes.length =
872                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873
874         if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876
877         if (nvme_ns_has_pi(ns)) {
878                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879
880                 switch (ns->pi_type) {
881                 case NVME_NS_DPS_PI_TYPE1:
882                 case NVME_NS_DPS_PI_TYPE2:
883                         nvme_set_ref_tag(ns, cmnd, req);
884                         break;
885                 }
886         }
887
888         return BLK_STS_OK;
889 }
890
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892                 struct request *req, struct nvme_command *cmnd,
893                 enum nvme_opcode op)
894 {
895         u16 control = 0;
896         u32 dsmgmt = 0;
897
898         if (req->cmd_flags & REQ_FUA)
899                 control |= NVME_RW_FUA;
900         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901                 control |= NVME_RW_LR;
902
903         if (req->cmd_flags & REQ_RAHEAD)
904                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905
906         cmnd->rw.opcode = op;
907         cmnd->rw.flags = 0;
908         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909         cmnd->rw.cdw2 = 0;
910         cmnd->rw.cdw3 = 0;
911         cmnd->rw.metadata = 0;
912         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914         cmnd->rw.reftag = 0;
915         cmnd->rw.apptag = 0;
916         cmnd->rw.appmask = 0;
917
918         if (ns->ms) {
919                 /*
920                  * If formated with metadata, the block layer always provides a
921                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
922                  * we enable the PRACT bit for protection information or set the
923                  * namespace capacity to zero to prevent any I/O.
924                  */
925                 if (!blk_integrity_rq(req)) {
926                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927                                 return BLK_STS_NOTSUPP;
928                         control |= NVME_RW_PRINFO_PRACT;
929                 }
930
931                 switch (ns->pi_type) {
932                 case NVME_NS_DPS_PI_TYPE3:
933                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
934                         break;
935                 case NVME_NS_DPS_PI_TYPE1:
936                 case NVME_NS_DPS_PI_TYPE2:
937                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
938                                         NVME_RW_PRINFO_PRCHK_REF;
939                         if (op == nvme_cmd_zone_append)
940                                 control |= NVME_RW_APPEND_PIREMAP;
941                         nvme_set_ref_tag(ns, cmnd, req);
942                         break;
943                 }
944         }
945
946         cmnd->rw.control = cpu_to_le16(control);
947         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948         return 0;
949 }
950
951 void nvme_cleanup_cmd(struct request *req)
952 {
953         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955
956                 if (req->special_vec.bv_page == ctrl->discard_page)
957                         clear_bit_unlock(0, &ctrl->discard_page_busy);
958                 else
959                         kfree(bvec_virt(&req->special_vec));
960         }
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966         struct nvme_command *cmd = nvme_req(req)->cmd;
967         blk_status_t ret = BLK_STS_OK;
968
969         if (!(req->rq_flags & RQF_DONTPREP))
970                 nvme_clear_nvme_request(req);
971
972         switch (req_op(req)) {
973         case REQ_OP_DRV_IN:
974         case REQ_OP_DRV_OUT:
975                 /* these are setup prior to execution in nvme_init_request() */
976                 break;
977         case REQ_OP_FLUSH:
978                 nvme_setup_flush(ns, cmd);
979                 break;
980         case REQ_OP_ZONE_RESET_ALL:
981         case REQ_OP_ZONE_RESET:
982                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983                 break;
984         case REQ_OP_ZONE_OPEN:
985                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986                 break;
987         case REQ_OP_ZONE_CLOSE:
988                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989                 break;
990         case REQ_OP_ZONE_FINISH:
991                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992                 break;
993         case REQ_OP_WRITE_ZEROES:
994                 ret = nvme_setup_write_zeroes(ns, req, cmd);
995                 break;
996         case REQ_OP_DISCARD:
997                 ret = nvme_setup_discard(ns, req, cmd);
998                 break;
999         case REQ_OP_READ:
1000                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001                 break;
1002         case REQ_OP_WRITE:
1003                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004                 break;
1005         case REQ_OP_ZONE_APPEND:
1006                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007                 break;
1008         default:
1009                 WARN_ON_ONCE(1);
1010                 return BLK_STS_IOERR;
1011         }
1012
1013         cmd->common.command_id = nvme_cid(req);
1014         trace_nvme_setup_cmd(req, cmd);
1015         return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018
1019 /*
1020  * Return values:
1021  * 0:  success
1022  * >0: nvme controller's cqe status response
1023  * <0: kernel error in lieu of controller response
1024  */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027         blk_status_t status;
1028
1029         status = blk_execute_rq(rq, at_head);
1030         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031                 return -EINTR;
1032         if (nvme_req(rq)->status)
1033                 return nvme_req(rq)->status;
1034         return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037
1038 /*
1039  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1040  * if the result is positive, it's an NVM Express status code
1041  */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043                 union nvme_result *result, void *buffer, unsigned bufflen,
1044                 int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046         struct request *req;
1047         int ret;
1048
1049         if (qid == NVME_QID_ANY)
1050                 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051         else
1052                 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053                                                 qid - 1);
1054
1055         if (IS_ERR(req))
1056                 return PTR_ERR(req);
1057         nvme_init_request(req, cmd);
1058
1059         if (buffer && bufflen) {
1060                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061                 if (ret)
1062                         goto out;
1063         }
1064
1065         ret = nvme_execute_rq(req, at_head);
1066         if (result && ret >= 0)
1067                 *result = nvme_req(req)->result;
1068  out:
1069         blk_mq_free_request(req);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075                 void *buffer, unsigned bufflen)
1076 {
1077         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078                         NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084         u32 effects = 0;
1085
1086         if (ns) {
1087                 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089                         dev_warn_once(ctrl->device,
1090                                 "IO command:%02x has unusual effects:%08x\n",
1091                                 opcode, effects);
1092
1093                 /*
1094                  * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095                  * which would deadlock when done on an I/O command.  Note that
1096                  * We already warn about an unusual effect above.
1097                  */
1098                 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099         } else {
1100                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101         }
1102
1103         return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110
1111         /*
1112          * For simplicity, IO to all namespaces is quiesced even if the command
1113          * effects say only one namespace is affected.
1114          */
1115         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116                 mutex_lock(&ctrl->scan_lock);
1117                 mutex_lock(&ctrl->subsys->lock);
1118                 nvme_mpath_start_freeze(ctrl->subsys);
1119                 nvme_mpath_wait_freeze(ctrl->subsys);
1120                 nvme_start_freeze(ctrl);
1121                 nvme_wait_freeze(ctrl);
1122         }
1123         return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128                        struct nvme_command *cmd, int status)
1129 {
1130         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131                 nvme_unfreeze(ctrl);
1132                 nvme_mpath_unfreeze(ctrl->subsys);
1133                 mutex_unlock(&ctrl->subsys->lock);
1134                 mutex_unlock(&ctrl->scan_lock);
1135         }
1136         if (effects & NVME_CMD_EFFECTS_CCC) {
1137                 dev_info(ctrl->device,
1138 "controller capabilities changed, reset may be required to take effect.\n");
1139         }
1140         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1141                 nvme_queue_scan(ctrl);
1142                 flush_work(&ctrl->scan_work);
1143         }
1144         if (ns)
1145                 return;
1146
1147         switch (cmd->common.opcode) {
1148         case nvme_admin_set_features:
1149                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1150                 case NVME_FEAT_KATO:
1151                         /*
1152                          * Keep alive commands interval on the host should be
1153                          * updated when KATO is modified by Set Features
1154                          * commands.
1155                          */
1156                         if (!status)
1157                                 nvme_update_keep_alive(ctrl, cmd);
1158                         break;
1159                 default:
1160                         break;
1161                 }
1162                 break;
1163         default:
1164                 break;
1165         }
1166 }
1167 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1168
1169 /*
1170  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1171  * 
1172  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1173  *   accounting for transport roundtrip times [..].
1174  */
1175 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1176 {
1177         unsigned long delay = ctrl->kato * HZ / 2;
1178
1179         /*
1180          * When using Traffic Based Keep Alive, we need to run
1181          * nvme_keep_alive_work at twice the normal frequency, as one
1182          * command completion can postpone sending a keep alive command
1183          * by up to twice the delay between runs.
1184          */
1185         if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1186                 delay /= 2;
1187         return delay;
1188 }
1189
1190 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1191 {
1192         queue_delayed_work(nvme_wq, &ctrl->ka_work,
1193                            nvme_keep_alive_work_period(ctrl));
1194 }
1195
1196 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1197                                                  blk_status_t status)
1198 {
1199         struct nvme_ctrl *ctrl = rq->end_io_data;
1200         unsigned long flags;
1201         bool startka = false;
1202         unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1203         unsigned long delay = nvme_keep_alive_work_period(ctrl);
1204
1205         /*
1206          * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1207          * at the desired frequency.
1208          */
1209         if (rtt <= delay) {
1210                 delay -= rtt;
1211         } else {
1212                 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1213                          jiffies_to_msecs(rtt));
1214                 delay = 0;
1215         }
1216
1217         blk_mq_free_request(rq);
1218
1219         if (status) {
1220                 dev_err(ctrl->device,
1221                         "failed nvme_keep_alive_end_io error=%d\n",
1222                                 status);
1223                 return RQ_END_IO_NONE;
1224         }
1225
1226         ctrl->ka_last_check_time = jiffies;
1227         ctrl->comp_seen = false;
1228         spin_lock_irqsave(&ctrl->lock, flags);
1229         if (ctrl->state == NVME_CTRL_LIVE ||
1230             ctrl->state == NVME_CTRL_CONNECTING)
1231                 startka = true;
1232         spin_unlock_irqrestore(&ctrl->lock, flags);
1233         if (startka)
1234                 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1235         return RQ_END_IO_NONE;
1236 }
1237
1238 static void nvme_keep_alive_work(struct work_struct *work)
1239 {
1240         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1241                         struct nvme_ctrl, ka_work);
1242         bool comp_seen = ctrl->comp_seen;
1243         struct request *rq;
1244
1245         ctrl->ka_last_check_time = jiffies;
1246
1247         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1248                 dev_dbg(ctrl->device,
1249                         "reschedule traffic based keep-alive timer\n");
1250                 ctrl->comp_seen = false;
1251                 nvme_queue_keep_alive_work(ctrl);
1252                 return;
1253         }
1254
1255         rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1256                                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1257         if (IS_ERR(rq)) {
1258                 /* allocation failure, reset the controller */
1259                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1260                 nvme_reset_ctrl(ctrl);
1261                 return;
1262         }
1263         nvme_init_request(rq, &ctrl->ka_cmd);
1264
1265         rq->timeout = ctrl->kato * HZ;
1266         rq->end_io = nvme_keep_alive_end_io;
1267         rq->end_io_data = ctrl;
1268         blk_execute_rq_nowait(rq, false);
1269 }
1270
1271 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1272 {
1273         if (unlikely(ctrl->kato == 0))
1274                 return;
1275
1276         nvme_queue_keep_alive_work(ctrl);
1277 }
1278
1279 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1280 {
1281         if (unlikely(ctrl->kato == 0))
1282                 return;
1283
1284         cancel_delayed_work_sync(&ctrl->ka_work);
1285 }
1286 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1287
1288 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1289                                    struct nvme_command *cmd)
1290 {
1291         unsigned int new_kato =
1292                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1293
1294         dev_info(ctrl->device,
1295                  "keep alive interval updated from %u ms to %u ms\n",
1296                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1297
1298         nvme_stop_keep_alive(ctrl);
1299         ctrl->kato = new_kato;
1300         nvme_start_keep_alive(ctrl);
1301 }
1302
1303 /*
1304  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1305  * flag, thus sending any new CNS opcodes has a big chance of not working.
1306  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1307  * (but not for any later version).
1308  */
1309 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1310 {
1311         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1312                 return ctrl->vs < NVME_VS(1, 2, 0);
1313         return ctrl->vs < NVME_VS(1, 1, 0);
1314 }
1315
1316 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1317 {
1318         struct nvme_command c = { };
1319         int error;
1320
1321         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1322         c.identify.opcode = nvme_admin_identify;
1323         c.identify.cns = NVME_ID_CNS_CTRL;
1324
1325         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1326         if (!*id)
1327                 return -ENOMEM;
1328
1329         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1330                         sizeof(struct nvme_id_ctrl));
1331         if (error)
1332                 kfree(*id);
1333         return error;
1334 }
1335
1336 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1337                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1338 {
1339         const char *warn_str = "ctrl returned bogus length:";
1340         void *data = cur;
1341
1342         switch (cur->nidt) {
1343         case NVME_NIDT_EUI64:
1344                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1345                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1346                                  warn_str, cur->nidl);
1347                         return -1;
1348                 }
1349                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1350                         return NVME_NIDT_EUI64_LEN;
1351                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1352                 return NVME_NIDT_EUI64_LEN;
1353         case NVME_NIDT_NGUID:
1354                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1355                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1356                                  warn_str, cur->nidl);
1357                         return -1;
1358                 }
1359                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1360                         return NVME_NIDT_NGUID_LEN;
1361                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1362                 return NVME_NIDT_NGUID_LEN;
1363         case NVME_NIDT_UUID:
1364                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1365                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1366                                  warn_str, cur->nidl);
1367                         return -1;
1368                 }
1369                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1370                         return NVME_NIDT_UUID_LEN;
1371                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1372                 return NVME_NIDT_UUID_LEN;
1373         case NVME_NIDT_CSI:
1374                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1375                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1376                                  warn_str, cur->nidl);
1377                         return -1;
1378                 }
1379                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1380                 *csi_seen = true;
1381                 return NVME_NIDT_CSI_LEN;
1382         default:
1383                 /* Skip unknown types */
1384                 return cur->nidl;
1385         }
1386 }
1387
1388 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1389                 struct nvme_ns_info *info)
1390 {
1391         struct nvme_command c = { };
1392         bool csi_seen = false;
1393         int status, pos, len;
1394         void *data;
1395
1396         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1397                 return 0;
1398         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1399                 return 0;
1400
1401         c.identify.opcode = nvme_admin_identify;
1402         c.identify.nsid = cpu_to_le32(info->nsid);
1403         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1404
1405         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1406         if (!data)
1407                 return -ENOMEM;
1408
1409         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1410                                       NVME_IDENTIFY_DATA_SIZE);
1411         if (status) {
1412                 dev_warn(ctrl->device,
1413                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1414                         info->nsid, status);
1415                 goto free_data;
1416         }
1417
1418         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1419                 struct nvme_ns_id_desc *cur = data + pos;
1420
1421                 if (cur->nidl == 0)
1422                         break;
1423
1424                 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1425                 if (len < 0)
1426                         break;
1427
1428                 len += sizeof(*cur);
1429         }
1430
1431         if (nvme_multi_css(ctrl) && !csi_seen) {
1432                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1433                          info->nsid);
1434                 status = -EINVAL;
1435         }
1436
1437 free_data:
1438         kfree(data);
1439         return status;
1440 }
1441
1442 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1443                         struct nvme_id_ns **id)
1444 {
1445         struct nvme_command c = { };
1446         int error;
1447
1448         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1449         c.identify.opcode = nvme_admin_identify;
1450         c.identify.nsid = cpu_to_le32(nsid);
1451         c.identify.cns = NVME_ID_CNS_NS;
1452
1453         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1454         if (!*id)
1455                 return -ENOMEM;
1456
1457         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1458         if (error) {
1459                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1460                 kfree(*id);
1461         }
1462         return error;
1463 }
1464
1465 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1466                 struct nvme_ns_info *info)
1467 {
1468         struct nvme_ns_ids *ids = &info->ids;
1469         struct nvme_id_ns *id;
1470         int ret;
1471
1472         ret = nvme_identify_ns(ctrl, info->nsid, &id);
1473         if (ret)
1474                 return ret;
1475
1476         if (id->ncap == 0) {
1477                 /* namespace not allocated or attached */
1478                 info->is_removed = true;
1479                 return -ENODEV;
1480         }
1481
1482         info->anagrpid = id->anagrpid;
1483         info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1484         info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1485         info->is_ready = true;
1486         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1487                 dev_info(ctrl->device,
1488                          "Ignoring bogus Namespace Identifiers\n");
1489         } else {
1490                 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1491                     !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1492                         memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1493                 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1494                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1495                         memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1496         }
1497         kfree(id);
1498         return 0;
1499 }
1500
1501 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1502                 struct nvme_ns_info *info)
1503 {
1504         struct nvme_id_ns_cs_indep *id;
1505         struct nvme_command c = {
1506                 .identify.opcode        = nvme_admin_identify,
1507                 .identify.nsid          = cpu_to_le32(info->nsid),
1508                 .identify.cns           = NVME_ID_CNS_NS_CS_INDEP,
1509         };
1510         int ret;
1511
1512         id = kmalloc(sizeof(*id), GFP_KERNEL);
1513         if (!id)
1514                 return -ENOMEM;
1515
1516         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1517         if (!ret) {
1518                 info->anagrpid = id->anagrpid;
1519                 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1520                 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1521                 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1522         }
1523         kfree(id);
1524         return ret;
1525 }
1526
1527 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1528                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1529 {
1530         union nvme_result res = { 0 };
1531         struct nvme_command c = { };
1532         int ret;
1533
1534         c.features.opcode = op;
1535         c.features.fid = cpu_to_le32(fid);
1536         c.features.dword11 = cpu_to_le32(dword11);
1537
1538         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1539                         buffer, buflen, NVME_QID_ANY, 0, 0);
1540         if (ret >= 0 && result)
1541                 *result = le32_to_cpu(res.u32);
1542         return ret;
1543 }
1544
1545 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1546                       unsigned int dword11, void *buffer, size_t buflen,
1547                       u32 *result)
1548 {
1549         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1550                              buflen, result);
1551 }
1552 EXPORT_SYMBOL_GPL(nvme_set_features);
1553
1554 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1555                       unsigned int dword11, void *buffer, size_t buflen,
1556                       u32 *result)
1557 {
1558         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1559                              buflen, result);
1560 }
1561 EXPORT_SYMBOL_GPL(nvme_get_features);
1562
1563 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1564 {
1565         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1566         u32 result;
1567         int status, nr_io_queues;
1568
1569         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1570                         &result);
1571         if (status < 0)
1572                 return status;
1573
1574         /*
1575          * Degraded controllers might return an error when setting the queue
1576          * count.  We still want to be able to bring them online and offer
1577          * access to the admin queue, as that might be only way to fix them up.
1578          */
1579         if (status > 0) {
1580                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1581                 *count = 0;
1582         } else {
1583                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1584                 *count = min(*count, nr_io_queues);
1585         }
1586
1587         return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1590
1591 #define NVME_AEN_SUPPORTED \
1592         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1593          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1594
1595 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1596 {
1597         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1598         int status;
1599
1600         if (!supported_aens)
1601                 return;
1602
1603         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1604                         NULL, 0, &result);
1605         if (status)
1606                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1607                          supported_aens);
1608
1609         queue_work(nvme_wq, &ctrl->async_event_work);
1610 }
1611
1612 static int nvme_ns_open(struct nvme_ns *ns)
1613 {
1614
1615         /* should never be called due to GENHD_FL_HIDDEN */
1616         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1617                 goto fail;
1618         if (!nvme_get_ns(ns))
1619                 goto fail;
1620         if (!try_module_get(ns->ctrl->ops->module))
1621                 goto fail_put_ns;
1622
1623         return 0;
1624
1625 fail_put_ns:
1626         nvme_put_ns(ns);
1627 fail:
1628         return -ENXIO;
1629 }
1630
1631 static void nvme_ns_release(struct nvme_ns *ns)
1632 {
1633
1634         module_put(ns->ctrl->ops->module);
1635         nvme_put_ns(ns);
1636 }
1637
1638 static int nvme_open(struct block_device *bdev, fmode_t mode)
1639 {
1640         return nvme_ns_open(bdev->bd_disk->private_data);
1641 }
1642
1643 static void nvme_release(struct gendisk *disk, fmode_t mode)
1644 {
1645         nvme_ns_release(disk->private_data);
1646 }
1647
1648 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1649 {
1650         /* some standard values */
1651         geo->heads = 1 << 6;
1652         geo->sectors = 1 << 5;
1653         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1654         return 0;
1655 }
1656
1657 #ifdef CONFIG_BLK_DEV_INTEGRITY
1658 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1659                                 u32 max_integrity_segments)
1660 {
1661         struct blk_integrity integrity = { };
1662
1663         switch (ns->pi_type) {
1664         case NVME_NS_DPS_PI_TYPE3:
1665                 switch (ns->guard_type) {
1666                 case NVME_NVM_NS_16B_GUARD:
1667                         integrity.profile = &t10_pi_type3_crc;
1668                         integrity.tag_size = sizeof(u16) + sizeof(u32);
1669                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1670                         break;
1671                 case NVME_NVM_NS_64B_GUARD:
1672                         integrity.profile = &ext_pi_type3_crc64;
1673                         integrity.tag_size = sizeof(u16) + 6;
1674                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1675                         break;
1676                 default:
1677                         integrity.profile = NULL;
1678                         break;
1679                 }
1680                 break;
1681         case NVME_NS_DPS_PI_TYPE1:
1682         case NVME_NS_DPS_PI_TYPE2:
1683                 switch (ns->guard_type) {
1684                 case NVME_NVM_NS_16B_GUARD:
1685                         integrity.profile = &t10_pi_type1_crc;
1686                         integrity.tag_size = sizeof(u16);
1687                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1688                         break;
1689                 case NVME_NVM_NS_64B_GUARD:
1690                         integrity.profile = &ext_pi_type1_crc64;
1691                         integrity.tag_size = sizeof(u16);
1692                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1693                         break;
1694                 default:
1695                         integrity.profile = NULL;
1696                         break;
1697                 }
1698                 break;
1699         default:
1700                 integrity.profile = NULL;
1701                 break;
1702         }
1703
1704         integrity.tuple_size = ns->ms;
1705         blk_integrity_register(disk, &integrity);
1706         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1707 }
1708 #else
1709 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1710                                 u32 max_integrity_segments)
1711 {
1712 }
1713 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1714
1715 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1716 {
1717         struct nvme_ctrl *ctrl = ns->ctrl;
1718         struct request_queue *queue = disk->queue;
1719         u32 size = queue_logical_block_size(queue);
1720
1721         if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1722                 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1723
1724         if (ctrl->max_discard_sectors == 0) {
1725                 blk_queue_max_discard_sectors(queue, 0);
1726                 return;
1727         }
1728
1729         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1730                         NVME_DSM_MAX_RANGES);
1731
1732         queue->limits.discard_granularity = size;
1733
1734         /* If discard is already enabled, don't reset queue limits */
1735         if (queue->limits.max_discard_sectors)
1736                 return;
1737
1738         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1739         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1740
1741         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1742                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1743 }
1744
1745 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1746 {
1747         return uuid_equal(&a->uuid, &b->uuid) &&
1748                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1749                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1750                 a->csi == b->csi;
1751 }
1752
1753 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1754 {
1755         bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1756         unsigned lbaf = nvme_lbaf_index(id->flbas);
1757         struct nvme_ctrl *ctrl = ns->ctrl;
1758         struct nvme_command c = { };
1759         struct nvme_id_ns_nvm *nvm;
1760         int ret = 0;
1761         u32 elbaf;
1762
1763         ns->pi_size = 0;
1764         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1765         if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1766                 ns->pi_size = sizeof(struct t10_pi_tuple);
1767                 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1768                 goto set_pi;
1769         }
1770
1771         nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1772         if (!nvm)
1773                 return -ENOMEM;
1774
1775         c.identify.opcode = nvme_admin_identify;
1776         c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1777         c.identify.cns = NVME_ID_CNS_CS_NS;
1778         c.identify.csi = NVME_CSI_NVM;
1779
1780         ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1781         if (ret)
1782                 goto free_data;
1783
1784         elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1785
1786         /* no support for storage tag formats right now */
1787         if (nvme_elbaf_sts(elbaf))
1788                 goto free_data;
1789
1790         ns->guard_type = nvme_elbaf_guard_type(elbaf);
1791         switch (ns->guard_type) {
1792         case NVME_NVM_NS_64B_GUARD:
1793                 ns->pi_size = sizeof(struct crc64_pi_tuple);
1794                 break;
1795         case NVME_NVM_NS_16B_GUARD:
1796                 ns->pi_size = sizeof(struct t10_pi_tuple);
1797                 break;
1798         default:
1799                 break;
1800         }
1801
1802 free_data:
1803         kfree(nvm);
1804 set_pi:
1805         if (ns->pi_size && (first || ns->ms == ns->pi_size))
1806                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1807         else
1808                 ns->pi_type = 0;
1809
1810         return ret;
1811 }
1812
1813 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1814 {
1815         struct nvme_ctrl *ctrl = ns->ctrl;
1816
1817         if (nvme_init_ms(ns, id))
1818                 return;
1819
1820         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1821         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1822                 return;
1823
1824         if (ctrl->ops->flags & NVME_F_FABRICS) {
1825                 /*
1826                  * The NVMe over Fabrics specification only supports metadata as
1827                  * part of the extended data LBA.  We rely on HCA/HBA support to
1828                  * remap the separate metadata buffer from the block layer.
1829                  */
1830                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1831                         return;
1832
1833                 ns->features |= NVME_NS_EXT_LBAS;
1834
1835                 /*
1836                  * The current fabrics transport drivers support namespace
1837                  * metadata formats only if nvme_ns_has_pi() returns true.
1838                  * Suppress support for all other formats so the namespace will
1839                  * have a 0 capacity and not be usable through the block stack.
1840                  *
1841                  * Note, this check will need to be modified if any drivers
1842                  * gain the ability to use other metadata formats.
1843                  */
1844                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1845                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1846         } else {
1847                 /*
1848                  * For PCIe controllers, we can't easily remap the separate
1849                  * metadata buffer from the block layer and thus require a
1850                  * separate metadata buffer for block layer metadata/PI support.
1851                  * We allow extended LBAs for the passthrough interface, though.
1852                  */
1853                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1854                         ns->features |= NVME_NS_EXT_LBAS;
1855                 else
1856                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1857         }
1858 }
1859
1860 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1861                 struct request_queue *q)
1862 {
1863         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1864
1865         if (ctrl->max_hw_sectors) {
1866                 u32 max_segments =
1867                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1868
1869                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1870                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1871                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1872         }
1873         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1874         blk_queue_dma_alignment(q, 3);
1875         blk_queue_write_cache(q, vwc, vwc);
1876 }
1877
1878 static void nvme_update_disk_info(struct gendisk *disk,
1879                 struct nvme_ns *ns, struct nvme_id_ns *id)
1880 {
1881         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1882         unsigned short bs = 1 << ns->lba_shift;
1883         u32 atomic_bs, phys_bs, io_opt = 0;
1884
1885         /*
1886          * The block layer can't support LBA sizes larger than the page size
1887          * yet, so catch this early and don't allow block I/O.
1888          */
1889         if (ns->lba_shift > PAGE_SHIFT) {
1890                 capacity = 0;
1891                 bs = (1 << 9);
1892         }
1893
1894         blk_integrity_unregister(disk);
1895
1896         atomic_bs = phys_bs = bs;
1897         if (id->nabo == 0) {
1898                 /*
1899                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1900                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1901                  * 0 then AWUPF must be used instead.
1902                  */
1903                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1904                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1905                 else
1906                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1907         }
1908
1909         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1910                 /* NPWG = Namespace Preferred Write Granularity */
1911                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1912                 /* NOWS = Namespace Optimal Write Size */
1913                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1914         }
1915
1916         blk_queue_logical_block_size(disk->queue, bs);
1917         /*
1918          * Linux filesystems assume writing a single physical block is
1919          * an atomic operation. Hence limit the physical block size to the
1920          * value of the Atomic Write Unit Power Fail parameter.
1921          */
1922         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1923         blk_queue_io_min(disk->queue, phys_bs);
1924         blk_queue_io_opt(disk->queue, io_opt);
1925
1926         /*
1927          * Register a metadata profile for PI, or the plain non-integrity NVMe
1928          * metadata masquerading as Type 0 if supported, otherwise reject block
1929          * I/O to namespaces with metadata except when the namespace supports
1930          * PI, as it can strip/insert in that case.
1931          */
1932         if (ns->ms) {
1933                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1934                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1935                         nvme_init_integrity(disk, ns,
1936                                             ns->ctrl->max_integrity_segments);
1937                 else if (!nvme_ns_has_pi(ns))
1938                         capacity = 0;
1939         }
1940
1941         set_capacity_and_notify(disk, capacity);
1942
1943         nvme_config_discard(disk, ns);
1944         blk_queue_max_write_zeroes_sectors(disk->queue,
1945                                            ns->ctrl->max_zeroes_sectors);
1946 }
1947
1948 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1949 {
1950         return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1951 }
1952
1953 static inline bool nvme_first_scan(struct gendisk *disk)
1954 {
1955         /* nvme_alloc_ns() scans the disk prior to adding it */
1956         return !disk_live(disk);
1957 }
1958
1959 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1960 {
1961         struct nvme_ctrl *ctrl = ns->ctrl;
1962         u32 iob;
1963
1964         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1965             is_power_of_2(ctrl->max_hw_sectors))
1966                 iob = ctrl->max_hw_sectors;
1967         else
1968                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1969
1970         if (!iob)
1971                 return;
1972
1973         if (!is_power_of_2(iob)) {
1974                 if (nvme_first_scan(ns->disk))
1975                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1976                                 ns->disk->disk_name, iob);
1977                 return;
1978         }
1979
1980         if (blk_queue_is_zoned(ns->disk->queue)) {
1981                 if (nvme_first_scan(ns->disk))
1982                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1983                                 ns->disk->disk_name);
1984                 return;
1985         }
1986
1987         blk_queue_chunk_sectors(ns->queue, iob);
1988 }
1989
1990 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1991                 struct nvme_ns_info *info)
1992 {
1993         blk_mq_freeze_queue(ns->disk->queue);
1994         nvme_set_queue_limits(ns->ctrl, ns->queue);
1995         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1996         blk_mq_unfreeze_queue(ns->disk->queue);
1997
1998         if (nvme_ns_head_multipath(ns->head)) {
1999                 blk_mq_freeze_queue(ns->head->disk->queue);
2000                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2001                 nvme_mpath_revalidate_paths(ns);
2002                 blk_stack_limits(&ns->head->disk->queue->limits,
2003                                  &ns->queue->limits, 0);
2004                 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2005                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2006         }
2007
2008         /* Hide the block-interface for these devices */
2009         ns->disk->flags |= GENHD_FL_HIDDEN;
2010         set_bit(NVME_NS_READY, &ns->flags);
2011
2012         return 0;
2013 }
2014
2015 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2016                 struct nvme_ns_info *info)
2017 {
2018         struct nvme_id_ns *id;
2019         unsigned lbaf;
2020         int ret;
2021
2022         ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2023         if (ret)
2024                 return ret;
2025
2026         blk_mq_freeze_queue(ns->disk->queue);
2027         lbaf = nvme_lbaf_index(id->flbas);
2028         ns->lba_shift = id->lbaf[lbaf].ds;
2029         nvme_set_queue_limits(ns->ctrl, ns->queue);
2030
2031         nvme_configure_metadata(ns, id);
2032         nvme_set_chunk_sectors(ns, id);
2033         nvme_update_disk_info(ns->disk, ns, id);
2034
2035         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2036                 ret = nvme_update_zone_info(ns, lbaf);
2037                 if (ret) {
2038                         blk_mq_unfreeze_queue(ns->disk->queue);
2039                         goto out;
2040                 }
2041         }
2042
2043         /*
2044          * Only set the DEAC bit if the device guarantees that reads from
2045          * deallocated data return zeroes.  While the DEAC bit does not
2046          * require that, it must be a no-op if reads from deallocated data
2047          * do not return zeroes.
2048          */
2049         if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2050                 ns->features |= NVME_NS_DEAC;
2051         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2052         set_bit(NVME_NS_READY, &ns->flags);
2053         blk_mq_unfreeze_queue(ns->disk->queue);
2054
2055         if (blk_queue_is_zoned(ns->queue)) {
2056                 ret = nvme_revalidate_zones(ns);
2057                 if (ret && !nvme_first_scan(ns->disk))
2058                         goto out;
2059         }
2060
2061         if (nvme_ns_head_multipath(ns->head)) {
2062                 blk_mq_freeze_queue(ns->head->disk->queue);
2063                 nvme_update_disk_info(ns->head->disk, ns, id);
2064                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2065                 nvme_mpath_revalidate_paths(ns);
2066                 blk_stack_limits(&ns->head->disk->queue->limits,
2067                                  &ns->queue->limits, 0);
2068                 disk_update_readahead(ns->head->disk);
2069                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2070         }
2071
2072         ret = 0;
2073 out:
2074         /*
2075          * If probing fails due an unsupported feature, hide the block device,
2076          * but still allow other access.
2077          */
2078         if (ret == -ENODEV) {
2079                 ns->disk->flags |= GENHD_FL_HIDDEN;
2080                 set_bit(NVME_NS_READY, &ns->flags);
2081                 ret = 0;
2082         }
2083         kfree(id);
2084         return ret;
2085 }
2086
2087 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2088 {
2089         switch (info->ids.csi) {
2090         case NVME_CSI_ZNS:
2091                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2092                         dev_info(ns->ctrl->device,
2093         "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2094                                 info->nsid);
2095                         return nvme_update_ns_info_generic(ns, info);
2096                 }
2097                 return nvme_update_ns_info_block(ns, info);
2098         case NVME_CSI_NVM:
2099                 return nvme_update_ns_info_block(ns, info);
2100         default:
2101                 dev_info(ns->ctrl->device,
2102                         "block device for nsid %u not supported (csi %u)\n",
2103                         info->nsid, info->ids.csi);
2104                 return nvme_update_ns_info_generic(ns, info);
2105         }
2106 }
2107
2108 static char nvme_pr_type(enum pr_type type)
2109 {
2110         switch (type) {
2111         case PR_WRITE_EXCLUSIVE:
2112                 return 1;
2113         case PR_EXCLUSIVE_ACCESS:
2114                 return 2;
2115         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2116                 return 3;
2117         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2118                 return 4;
2119         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2120                 return 5;
2121         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2122                 return 6;
2123         default:
2124                 return 0;
2125         }
2126 }
2127
2128 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2129                 struct nvme_command *c, u8 data[16])
2130 {
2131         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2132         int srcu_idx = srcu_read_lock(&head->srcu);
2133         struct nvme_ns *ns = nvme_find_path(head);
2134         int ret = -EWOULDBLOCK;
2135
2136         if (ns) {
2137                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2138                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2139         }
2140         srcu_read_unlock(&head->srcu, srcu_idx);
2141         return ret;
2142 }
2143         
2144 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2145                 u8 data[16])
2146 {
2147         c->common.nsid = cpu_to_le32(ns->head->ns_id);
2148         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2149 }
2150
2151 static int nvme_sc_to_pr_err(int nvme_sc)
2152 {
2153         if (nvme_is_path_error(nvme_sc))
2154                 return PR_STS_PATH_FAILED;
2155
2156         switch (nvme_sc) {
2157         case NVME_SC_SUCCESS:
2158                 return PR_STS_SUCCESS;
2159         case NVME_SC_RESERVATION_CONFLICT:
2160                 return PR_STS_RESERVATION_CONFLICT;
2161         case NVME_SC_ONCS_NOT_SUPPORTED:
2162                 return -EOPNOTSUPP;
2163         case NVME_SC_BAD_ATTRIBUTES:
2164         case NVME_SC_INVALID_OPCODE:
2165         case NVME_SC_INVALID_FIELD:
2166         case NVME_SC_INVALID_NS:
2167                 return -EINVAL;
2168         default:
2169                 return PR_STS_IOERR;
2170         }
2171 }
2172
2173 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2174                                 u64 key, u64 sa_key, u8 op)
2175 {
2176         struct nvme_command c = { };
2177         u8 data[16] = { 0, };
2178         int ret;
2179
2180         put_unaligned_le64(key, &data[0]);
2181         put_unaligned_le64(sa_key, &data[8]);
2182
2183         c.common.opcode = op;
2184         c.common.cdw10 = cpu_to_le32(cdw10);
2185
2186         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2187             bdev->bd_disk->fops == &nvme_ns_head_ops)
2188                 ret = nvme_send_ns_head_pr_command(bdev, &c, data);
2189         else
2190                 ret = nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c,
2191                                               data);
2192         if (ret < 0)
2193                 return ret;
2194
2195         return nvme_sc_to_pr_err(ret);
2196 }
2197
2198 static int nvme_pr_register(struct block_device *bdev, u64 old,
2199                 u64 new, unsigned flags)
2200 {
2201         u32 cdw10;
2202
2203         if (flags & ~PR_FL_IGNORE_KEY)
2204                 return -EOPNOTSUPP;
2205
2206         cdw10 = old ? 2 : 0;
2207         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2208         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2209         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2210 }
2211
2212 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2213                 enum pr_type type, unsigned flags)
2214 {
2215         u32 cdw10;
2216
2217         if (flags & ~PR_FL_IGNORE_KEY)
2218                 return -EOPNOTSUPP;
2219
2220         cdw10 = nvme_pr_type(type) << 8;
2221         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2222         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2223 }
2224
2225 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2226                 enum pr_type type, bool abort)
2227 {
2228         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2229
2230         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2231 }
2232
2233 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2234 {
2235         u32 cdw10 = 1 | (key ? 0 : 1 << 3);
2236
2237         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2238 }
2239
2240 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2241 {
2242         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3);
2243
2244         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2245 }
2246
2247 const struct pr_ops nvme_pr_ops = {
2248         .pr_register    = nvme_pr_register,
2249         .pr_reserve     = nvme_pr_reserve,
2250         .pr_release     = nvme_pr_release,
2251         .pr_preempt     = nvme_pr_preempt,
2252         .pr_clear       = nvme_pr_clear,
2253 };
2254
2255 #ifdef CONFIG_BLK_SED_OPAL
2256 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2257                 bool send)
2258 {
2259         struct nvme_ctrl *ctrl = data;
2260         struct nvme_command cmd = { };
2261
2262         if (send)
2263                 cmd.common.opcode = nvme_admin_security_send;
2264         else
2265                 cmd.common.opcode = nvme_admin_security_recv;
2266         cmd.common.nsid = 0;
2267         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2268         cmd.common.cdw11 = cpu_to_le32(len);
2269
2270         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2271                         NVME_QID_ANY, 1, 0);
2272 }
2273
2274 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2275 {
2276         if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2277                 if (!ctrl->opal_dev)
2278                         ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2279                 else if (was_suspended)
2280                         opal_unlock_from_suspend(ctrl->opal_dev);
2281         } else {
2282                 free_opal_dev(ctrl->opal_dev);
2283                 ctrl->opal_dev = NULL;
2284         }
2285 }
2286 #else
2287 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2288 {
2289 }
2290 #endif /* CONFIG_BLK_SED_OPAL */
2291
2292 #ifdef CONFIG_BLK_DEV_ZONED
2293 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2294                 unsigned int nr_zones, report_zones_cb cb, void *data)
2295 {
2296         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2297                         data);
2298 }
2299 #else
2300 #define nvme_report_zones       NULL
2301 #endif /* CONFIG_BLK_DEV_ZONED */
2302
2303 static const struct block_device_operations nvme_bdev_ops = {
2304         .owner          = THIS_MODULE,
2305         .ioctl          = nvme_ioctl,
2306         .compat_ioctl   = blkdev_compat_ptr_ioctl,
2307         .open           = nvme_open,
2308         .release        = nvme_release,
2309         .getgeo         = nvme_getgeo,
2310         .report_zones   = nvme_report_zones,
2311         .pr_ops         = &nvme_pr_ops,
2312 };
2313
2314 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2315                 u32 timeout, const char *op)
2316 {
2317         unsigned long timeout_jiffies = jiffies + timeout * HZ;
2318         u32 csts;
2319         int ret;
2320
2321         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2322                 if (csts == ~0)
2323                         return -ENODEV;
2324                 if ((csts & mask) == val)
2325                         break;
2326
2327                 usleep_range(1000, 2000);
2328                 if (fatal_signal_pending(current))
2329                         return -EINTR;
2330                 if (time_after(jiffies, timeout_jiffies)) {
2331                         dev_err(ctrl->device,
2332                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2333                                 op, csts);
2334                         return -ENODEV;
2335                 }
2336         }
2337
2338         return ret;
2339 }
2340
2341 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2342 {
2343         int ret;
2344
2345         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2346         if (shutdown)
2347                 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2348         else
2349                 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2350
2351         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2352         if (ret)
2353                 return ret;
2354
2355         if (shutdown) {
2356                 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2357                                        NVME_CSTS_SHST_CMPLT,
2358                                        ctrl->shutdown_timeout, "shutdown");
2359         }
2360         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2361                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2362         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2363                                (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2364 }
2365 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2366
2367 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2368 {
2369         unsigned dev_page_min;
2370         u32 timeout;
2371         int ret;
2372
2373         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2374         if (ret) {
2375                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2376                 return ret;
2377         }
2378         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2379
2380         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2381                 dev_err(ctrl->device,
2382                         "Minimum device page size %u too large for host (%u)\n",
2383                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2384                 return -ENODEV;
2385         }
2386
2387         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2388                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2389         else
2390                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2391
2392         if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2393                 u32 crto;
2394
2395                 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2396                 if (ret) {
2397                         dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2398                                 ret);
2399                         return ret;
2400                 }
2401
2402                 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2403                         ctrl->ctrl_config |= NVME_CC_CRIME;
2404                         timeout = NVME_CRTO_CRIMT(crto);
2405                 } else {
2406                         timeout = NVME_CRTO_CRWMT(crto);
2407                 }
2408         } else {
2409                 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2410         }
2411
2412         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2413         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2414         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2415         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2416         if (ret)
2417                 return ret;
2418
2419         /* Flush write to device (required if transport is PCI) */
2420         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2421         if (ret)
2422                 return ret;
2423
2424         ctrl->ctrl_config |= NVME_CC_ENABLE;
2425         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2426         if (ret)
2427                 return ret;
2428         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2429                                (timeout + 1) / 2, "initialisation");
2430 }
2431 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2432
2433 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2434 {
2435         __le64 ts;
2436         int ret;
2437
2438         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2439                 return 0;
2440
2441         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2442         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2443                         NULL);
2444         if (ret)
2445                 dev_warn_once(ctrl->device,
2446                         "could not set timestamp (%d)\n", ret);
2447         return ret;
2448 }
2449
2450 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2451 {
2452         struct nvme_feat_host_behavior *host;
2453         u8 acre = 0, lbafee = 0;
2454         int ret;
2455
2456         /* Don't bother enabling the feature if retry delay is not reported */
2457         if (ctrl->crdt[0])
2458                 acre = NVME_ENABLE_ACRE;
2459         if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2460                 lbafee = NVME_ENABLE_LBAFEE;
2461
2462         if (!acre && !lbafee)
2463                 return 0;
2464
2465         host = kzalloc(sizeof(*host), GFP_KERNEL);
2466         if (!host)
2467                 return 0;
2468
2469         host->acre = acre;
2470         host->lbafee = lbafee;
2471         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2472                                 host, sizeof(*host), NULL);
2473         kfree(host);
2474         return ret;
2475 }
2476
2477 /*
2478  * The function checks whether the given total (exlat + enlat) latency of
2479  * a power state allows the latter to be used as an APST transition target.
2480  * It does so by comparing the latency to the primary and secondary latency
2481  * tolerances defined by module params. If there's a match, the corresponding
2482  * timeout value is returned and the matching tolerance index (1 or 2) is
2483  * reported.
2484  */
2485 static bool nvme_apst_get_transition_time(u64 total_latency,
2486                 u64 *transition_time, unsigned *last_index)
2487 {
2488         if (total_latency <= apst_primary_latency_tol_us) {
2489                 if (*last_index == 1)
2490                         return false;
2491                 *last_index = 1;
2492                 *transition_time = apst_primary_timeout_ms;
2493                 return true;
2494         }
2495         if (apst_secondary_timeout_ms &&
2496                 total_latency <= apst_secondary_latency_tol_us) {
2497                 if (*last_index <= 2)
2498                         return false;
2499                 *last_index = 2;
2500                 *transition_time = apst_secondary_timeout_ms;
2501                 return true;
2502         }
2503         return false;
2504 }
2505
2506 /*
2507  * APST (Autonomous Power State Transition) lets us program a table of power
2508  * state transitions that the controller will perform automatically.
2509  *
2510  * Depending on module params, one of the two supported techniques will be used:
2511  *
2512  * - If the parameters provide explicit timeouts and tolerances, they will be
2513  *   used to build a table with up to 2 non-operational states to transition to.
2514  *   The default parameter values were selected based on the values used by
2515  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2516  *   regeneration of the APST table in the event of switching between external
2517  *   and battery power, the timeouts and tolerances reflect a compromise
2518  *   between values used by Microsoft for AC and battery scenarios.
2519  * - If not, we'll configure the table with a simple heuristic: we are willing
2520  *   to spend at most 2% of the time transitioning between power states.
2521  *   Therefore, when running in any given state, we will enter the next
2522  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2523  *   microseconds, as long as that state's exit latency is under the requested
2524  *   maximum latency.
2525  *
2526  * We will not autonomously enter any non-operational state for which the total
2527  * latency exceeds ps_max_latency_us.
2528  *
2529  * Users can set ps_max_latency_us to zero to turn off APST.
2530  */
2531 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2532 {
2533         struct nvme_feat_auto_pst *table;
2534         unsigned apste = 0;
2535         u64 max_lat_us = 0;
2536         __le64 target = 0;
2537         int max_ps = -1;
2538         int state;
2539         int ret;
2540         unsigned last_lt_index = UINT_MAX;
2541
2542         /*
2543          * If APST isn't supported or if we haven't been initialized yet,
2544          * then don't do anything.
2545          */
2546         if (!ctrl->apsta)
2547                 return 0;
2548
2549         if (ctrl->npss > 31) {
2550                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2551                 return 0;
2552         }
2553
2554         table = kzalloc(sizeof(*table), GFP_KERNEL);
2555         if (!table)
2556                 return 0;
2557
2558         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2559                 /* Turn off APST. */
2560                 dev_dbg(ctrl->device, "APST disabled\n");
2561                 goto done;
2562         }
2563
2564         /*
2565          * Walk through all states from lowest- to highest-power.
2566          * According to the spec, lower-numbered states use more power.  NPSS,
2567          * despite the name, is the index of the lowest-power state, not the
2568          * number of states.
2569          */
2570         for (state = (int)ctrl->npss; state >= 0; state--) {
2571                 u64 total_latency_us, exit_latency_us, transition_ms;
2572
2573                 if (target)
2574                         table->entries[state] = target;
2575
2576                 /*
2577                  * Don't allow transitions to the deepest state if it's quirked
2578                  * off.
2579                  */
2580                 if (state == ctrl->npss &&
2581                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2582                         continue;
2583
2584                 /*
2585                  * Is this state a useful non-operational state for higher-power
2586                  * states to autonomously transition to?
2587                  */
2588                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2589                         continue;
2590
2591                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2592                 if (exit_latency_us > ctrl->ps_max_latency_us)
2593                         continue;
2594
2595                 total_latency_us = exit_latency_us +
2596                         le32_to_cpu(ctrl->psd[state].entry_lat);
2597
2598                 /*
2599                  * This state is good. It can be used as the APST idle target
2600                  * for higher power states.
2601                  */
2602                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2603                         if (!nvme_apst_get_transition_time(total_latency_us,
2604                                         &transition_ms, &last_lt_index))
2605                                 continue;
2606                 } else {
2607                         transition_ms = total_latency_us + 19;
2608                         do_div(transition_ms, 20);
2609                         if (transition_ms > (1 << 24) - 1)
2610                                 transition_ms = (1 << 24) - 1;
2611                 }
2612
2613                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2614                 if (max_ps == -1)
2615                         max_ps = state;
2616                 if (total_latency_us > max_lat_us)
2617                         max_lat_us = total_latency_us;
2618         }
2619
2620         if (max_ps == -1)
2621                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2622         else
2623                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2624                         max_ps, max_lat_us, (int)sizeof(*table), table);
2625         apste = 1;
2626
2627 done:
2628         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2629                                 table, sizeof(*table), NULL);
2630         if (ret)
2631                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2632         kfree(table);
2633         return ret;
2634 }
2635
2636 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2637 {
2638         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2639         u64 latency;
2640
2641         switch (val) {
2642         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2643         case PM_QOS_LATENCY_ANY:
2644                 latency = U64_MAX;
2645                 break;
2646
2647         default:
2648                 latency = val;
2649         }
2650
2651         if (ctrl->ps_max_latency_us != latency) {
2652                 ctrl->ps_max_latency_us = latency;
2653                 if (ctrl->state == NVME_CTRL_LIVE)
2654                         nvme_configure_apst(ctrl);
2655         }
2656 }
2657
2658 struct nvme_core_quirk_entry {
2659         /*
2660          * NVMe model and firmware strings are padded with spaces.  For
2661          * simplicity, strings in the quirk table are padded with NULLs
2662          * instead.
2663          */
2664         u16 vid;
2665         const char *mn;
2666         const char *fr;
2667         unsigned long quirks;
2668 };
2669
2670 static const struct nvme_core_quirk_entry core_quirks[] = {
2671         {
2672                 /*
2673                  * This Toshiba device seems to die using any APST states.  See:
2674                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2675                  */
2676                 .vid = 0x1179,
2677                 .mn = "THNSF5256GPUK TOSHIBA",
2678                 .quirks = NVME_QUIRK_NO_APST,
2679         },
2680         {
2681                 /*
2682                  * This LiteON CL1-3D*-Q11 firmware version has a race
2683                  * condition associated with actions related to suspend to idle
2684                  * LiteON has resolved the problem in future firmware
2685                  */
2686                 .vid = 0x14a4,
2687                 .fr = "22301111",
2688                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2689         },
2690         {
2691                 /*
2692                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2693                  * aborts I/O during any load, but more easily reproducible
2694                  * with discards (fstrim).
2695                  *
2696                  * The device is left in a state where it is also not possible
2697                  * to use "nvme set-feature" to disable APST, but booting with
2698                  * nvme_core.default_ps_max_latency=0 works.
2699                  */
2700                 .vid = 0x1e0f,
2701                 .mn = "KCD6XVUL6T40",
2702                 .quirks = NVME_QUIRK_NO_APST,
2703         },
2704         {
2705                 /*
2706                  * The external Samsung X5 SSD fails initialization without a
2707                  * delay before checking if it is ready and has a whole set of
2708                  * other problems.  To make this even more interesting, it
2709                  * shares the PCI ID with internal Samsung 970 Evo Plus that
2710                  * does not need or want these quirks.
2711                  */
2712                 .vid = 0x144d,
2713                 .mn = "Samsung Portable SSD X5",
2714                 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2715                           NVME_QUIRK_NO_DEEPEST_PS |
2716                           NVME_QUIRK_IGNORE_DEV_SUBNQN,
2717         }
2718 };
2719
2720 /* match is null-terminated but idstr is space-padded. */
2721 static bool string_matches(const char *idstr, const char *match, size_t len)
2722 {
2723         size_t matchlen;
2724
2725         if (!match)
2726                 return true;
2727
2728         matchlen = strlen(match);
2729         WARN_ON_ONCE(matchlen > len);
2730
2731         if (memcmp(idstr, match, matchlen))
2732                 return false;
2733
2734         for (; matchlen < len; matchlen++)
2735                 if (idstr[matchlen] != ' ')
2736                         return false;
2737
2738         return true;
2739 }
2740
2741 static bool quirk_matches(const struct nvme_id_ctrl *id,
2742                           const struct nvme_core_quirk_entry *q)
2743 {
2744         return q->vid == le16_to_cpu(id->vid) &&
2745                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2746                 string_matches(id->fr, q->fr, sizeof(id->fr));
2747 }
2748
2749 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2750                 struct nvme_id_ctrl *id)
2751 {
2752         size_t nqnlen;
2753         int off;
2754
2755         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2756                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2757                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2758                         strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2759                         return;
2760                 }
2761
2762                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2763                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2764         }
2765
2766         /*
2767          * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2768          * Base Specification 2.0.  It is slightly different from the format
2769          * specified there due to historic reasons, and we can't change it now.
2770          */
2771         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2772                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2773                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2774         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2775         off += sizeof(id->sn);
2776         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2777         off += sizeof(id->mn);
2778         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2779 }
2780
2781 static void nvme_release_subsystem(struct device *dev)
2782 {
2783         struct nvme_subsystem *subsys =
2784                 container_of(dev, struct nvme_subsystem, dev);
2785
2786         if (subsys->instance >= 0)
2787                 ida_free(&nvme_instance_ida, subsys->instance);
2788         kfree(subsys);
2789 }
2790
2791 static void nvme_destroy_subsystem(struct kref *ref)
2792 {
2793         struct nvme_subsystem *subsys =
2794                         container_of(ref, struct nvme_subsystem, ref);
2795
2796         mutex_lock(&nvme_subsystems_lock);
2797         list_del(&subsys->entry);
2798         mutex_unlock(&nvme_subsystems_lock);
2799
2800         ida_destroy(&subsys->ns_ida);
2801         device_del(&subsys->dev);
2802         put_device(&subsys->dev);
2803 }
2804
2805 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2806 {
2807         kref_put(&subsys->ref, nvme_destroy_subsystem);
2808 }
2809
2810 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2811 {
2812         struct nvme_subsystem *subsys;
2813
2814         lockdep_assert_held(&nvme_subsystems_lock);
2815
2816         /*
2817          * Fail matches for discovery subsystems. This results
2818          * in each discovery controller bound to a unique subsystem.
2819          * This avoids issues with validating controller values
2820          * that can only be true when there is a single unique subsystem.
2821          * There may be multiple and completely independent entities
2822          * that provide discovery controllers.
2823          */
2824         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2825                 return NULL;
2826
2827         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2828                 if (strcmp(subsys->subnqn, subsysnqn))
2829                         continue;
2830                 if (!kref_get_unless_zero(&subsys->ref))
2831                         continue;
2832                 return subsys;
2833         }
2834
2835         return NULL;
2836 }
2837
2838 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2839         struct device_attribute subsys_attr_##_name = \
2840                 __ATTR(_name, _mode, _show, NULL)
2841
2842 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2843                                     struct device_attribute *attr,
2844                                     char *buf)
2845 {
2846         struct nvme_subsystem *subsys =
2847                 container_of(dev, struct nvme_subsystem, dev);
2848
2849         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2850 }
2851 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2852
2853 static ssize_t nvme_subsys_show_type(struct device *dev,
2854                                     struct device_attribute *attr,
2855                                     char *buf)
2856 {
2857         struct nvme_subsystem *subsys =
2858                 container_of(dev, struct nvme_subsystem, dev);
2859
2860         switch (subsys->subtype) {
2861         case NVME_NQN_DISC:
2862                 return sysfs_emit(buf, "discovery\n");
2863         case NVME_NQN_NVME:
2864                 return sysfs_emit(buf, "nvm\n");
2865         default:
2866                 return sysfs_emit(buf, "reserved\n");
2867         }
2868 }
2869 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2870
2871 #define nvme_subsys_show_str_function(field)                            \
2872 static ssize_t subsys_##field##_show(struct device *dev,                \
2873                             struct device_attribute *attr, char *buf)   \
2874 {                                                                       \
2875         struct nvme_subsystem *subsys =                                 \
2876                 container_of(dev, struct nvme_subsystem, dev);          \
2877         return sysfs_emit(buf, "%.*s\n",                                \
2878                            (int)sizeof(subsys->field), subsys->field);  \
2879 }                                                                       \
2880 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2881
2882 nvme_subsys_show_str_function(model);
2883 nvme_subsys_show_str_function(serial);
2884 nvme_subsys_show_str_function(firmware_rev);
2885
2886 static struct attribute *nvme_subsys_attrs[] = {
2887         &subsys_attr_model.attr,
2888         &subsys_attr_serial.attr,
2889         &subsys_attr_firmware_rev.attr,
2890         &subsys_attr_subsysnqn.attr,
2891         &subsys_attr_subsystype.attr,
2892 #ifdef CONFIG_NVME_MULTIPATH
2893         &subsys_attr_iopolicy.attr,
2894 #endif
2895         NULL,
2896 };
2897
2898 static const struct attribute_group nvme_subsys_attrs_group = {
2899         .attrs = nvme_subsys_attrs,
2900 };
2901
2902 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2903         &nvme_subsys_attrs_group,
2904         NULL,
2905 };
2906
2907 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2908 {
2909         return ctrl->opts && ctrl->opts->discovery_nqn;
2910 }
2911
2912 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2913                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2914 {
2915         struct nvme_ctrl *tmp;
2916
2917         lockdep_assert_held(&nvme_subsystems_lock);
2918
2919         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2920                 if (nvme_state_terminal(tmp))
2921                         continue;
2922
2923                 if (tmp->cntlid == ctrl->cntlid) {
2924                         dev_err(ctrl->device,
2925                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2926                                 ctrl->cntlid, dev_name(tmp->device),
2927                                 subsys->subnqn);
2928                         return false;
2929                 }
2930
2931                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2932                     nvme_discovery_ctrl(ctrl))
2933                         continue;
2934
2935                 dev_err(ctrl->device,
2936                         "Subsystem does not support multiple controllers\n");
2937                 return false;
2938         }
2939
2940         return true;
2941 }
2942
2943 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2944 {
2945         struct nvme_subsystem *subsys, *found;
2946         int ret;
2947
2948         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2949         if (!subsys)
2950                 return -ENOMEM;
2951
2952         subsys->instance = -1;
2953         mutex_init(&subsys->lock);
2954         kref_init(&subsys->ref);
2955         INIT_LIST_HEAD(&subsys->ctrls);
2956         INIT_LIST_HEAD(&subsys->nsheads);
2957         nvme_init_subnqn(subsys, ctrl, id);
2958         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2959         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2960         subsys->vendor_id = le16_to_cpu(id->vid);
2961         subsys->cmic = id->cmic;
2962
2963         /* Versions prior to 1.4 don't necessarily report a valid type */
2964         if (id->cntrltype == NVME_CTRL_DISC ||
2965             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2966                 subsys->subtype = NVME_NQN_DISC;
2967         else
2968                 subsys->subtype = NVME_NQN_NVME;
2969
2970         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2971                 dev_err(ctrl->device,
2972                         "Subsystem %s is not a discovery controller",
2973                         subsys->subnqn);
2974                 kfree(subsys);
2975                 return -EINVAL;
2976         }
2977         subsys->awupf = le16_to_cpu(id->awupf);
2978         nvme_mpath_default_iopolicy(subsys);
2979
2980         subsys->dev.class = nvme_subsys_class;
2981         subsys->dev.release = nvme_release_subsystem;
2982         subsys->dev.groups = nvme_subsys_attrs_groups;
2983         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2984         device_initialize(&subsys->dev);
2985
2986         mutex_lock(&nvme_subsystems_lock);
2987         found = __nvme_find_get_subsystem(subsys->subnqn);
2988         if (found) {
2989                 put_device(&subsys->dev);
2990                 subsys = found;
2991
2992                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2993                         ret = -EINVAL;
2994                         goto out_put_subsystem;
2995                 }
2996         } else {
2997                 ret = device_add(&subsys->dev);
2998                 if (ret) {
2999                         dev_err(ctrl->device,
3000                                 "failed to register subsystem device.\n");
3001                         put_device(&subsys->dev);
3002                         goto out_unlock;
3003                 }
3004                 ida_init(&subsys->ns_ida);
3005                 list_add_tail(&subsys->entry, &nvme_subsystems);
3006         }
3007
3008         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3009                                 dev_name(ctrl->device));
3010         if (ret) {
3011                 dev_err(ctrl->device,
3012                         "failed to create sysfs link from subsystem.\n");
3013                 goto out_put_subsystem;
3014         }
3015
3016         if (!found)
3017                 subsys->instance = ctrl->instance;
3018         ctrl->subsys = subsys;
3019         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3020         mutex_unlock(&nvme_subsystems_lock);
3021         return 0;
3022
3023 out_put_subsystem:
3024         nvme_put_subsystem(subsys);
3025 out_unlock:
3026         mutex_unlock(&nvme_subsystems_lock);
3027         return ret;
3028 }
3029
3030 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3031                 void *log, size_t size, u64 offset)
3032 {
3033         struct nvme_command c = { };
3034         u32 dwlen = nvme_bytes_to_numd(size);
3035
3036         c.get_log_page.opcode = nvme_admin_get_log_page;
3037         c.get_log_page.nsid = cpu_to_le32(nsid);
3038         c.get_log_page.lid = log_page;
3039         c.get_log_page.lsp = lsp;
3040         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3041         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3042         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3043         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3044         c.get_log_page.csi = csi;
3045
3046         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3047 }
3048
3049 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3050                                 struct nvme_effects_log **log)
3051 {
3052         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3053         int ret;
3054
3055         if (cel)
3056                 goto out;
3057
3058         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3059         if (!cel)
3060                 return -ENOMEM;
3061
3062         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3063                         cel, sizeof(*cel), 0);
3064         if (ret) {
3065                 kfree(cel);
3066                 return ret;
3067         }
3068
3069         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3070 out:
3071         *log = cel;
3072         return 0;
3073 }
3074
3075 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3076 {
3077         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3078
3079         if (check_shl_overflow(1U, units + page_shift - 9, &val))
3080                 return UINT_MAX;
3081         return val;
3082 }
3083
3084 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3085 {
3086         struct nvme_command c = { };
3087         struct nvme_id_ctrl_nvm *id;
3088         int ret;
3089
3090         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3091                 ctrl->max_discard_sectors = UINT_MAX;
3092                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3093         } else {
3094                 ctrl->max_discard_sectors = 0;
3095                 ctrl->max_discard_segments = 0;
3096         }
3097
3098         /*
3099          * Even though NVMe spec explicitly states that MDTS is not applicable
3100          * to the write-zeroes, we are cautious and limit the size to the
3101          * controllers max_hw_sectors value, which is based on the MDTS field
3102          * and possibly other limiting factors.
3103          */
3104         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3105             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3106                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3107         else
3108                 ctrl->max_zeroes_sectors = 0;
3109
3110         if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3111             nvme_ctrl_limited_cns(ctrl))
3112                 return 0;
3113
3114         id = kzalloc(sizeof(*id), GFP_KERNEL);
3115         if (!id)
3116                 return -ENOMEM;
3117
3118         c.identify.opcode = nvme_admin_identify;
3119         c.identify.cns = NVME_ID_CNS_CS_CTRL;
3120         c.identify.csi = NVME_CSI_NVM;
3121
3122         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3123         if (ret)
3124                 goto free_data;
3125
3126         if (id->dmrl)
3127                 ctrl->max_discard_segments = id->dmrl;
3128         ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3129         if (id->wzsl)
3130                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3131
3132 free_data:
3133         kfree(id);
3134         return ret;
3135 }
3136
3137 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3138 {
3139         struct nvme_effects_log *log = ctrl->effects;
3140
3141         log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3142                                                 NVME_CMD_EFFECTS_NCC |
3143                                                 NVME_CMD_EFFECTS_CSE_MASK);
3144         log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3145                                                 NVME_CMD_EFFECTS_CSE_MASK);
3146
3147         /*
3148          * The spec says the result of a security receive command depends on
3149          * the previous security send command. As such, many vendors log this
3150          * command as one to submitted only when no other commands to the same
3151          * namespace are outstanding. The intention is to tell the host to
3152          * prevent mixing security send and receive.
3153          *
3154          * This driver can only enforce such exclusive access against IO
3155          * queues, though. We are not readily able to enforce such a rule for
3156          * two commands to the admin queue, which is the only queue that
3157          * matters for this command.
3158          *
3159          * Rather than blindly freezing the IO queues for this effect that
3160          * doesn't even apply to IO, mask it off.
3161          */
3162         log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3163
3164         log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3165         log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3166         log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3167 }
3168
3169 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3170 {
3171         int ret = 0;
3172
3173         if (ctrl->effects)
3174                 return 0;
3175
3176         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3177                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3178                 if (ret < 0)
3179                         return ret;
3180         }
3181
3182         if (!ctrl->effects) {
3183                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3184                 if (!ctrl->effects)
3185                         return -ENOMEM;
3186                 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3187         }
3188
3189         nvme_init_known_nvm_effects(ctrl);
3190         return 0;
3191 }
3192
3193 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3194 {
3195         struct nvme_id_ctrl *id;
3196         u32 max_hw_sectors;
3197         bool prev_apst_enabled;
3198         int ret;
3199
3200         ret = nvme_identify_ctrl(ctrl, &id);
3201         if (ret) {
3202                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3203                 return -EIO;
3204         }
3205
3206         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3207                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3208
3209         if (!ctrl->identified) {
3210                 unsigned int i;
3211
3212                 /*
3213                  * Check for quirks.  Quirk can depend on firmware version,
3214                  * so, in principle, the set of quirks present can change
3215                  * across a reset.  As a possible future enhancement, we
3216                  * could re-scan for quirks every time we reinitialize
3217                  * the device, but we'd have to make sure that the driver
3218                  * behaves intelligently if the quirks change.
3219                  */
3220                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3221                         if (quirk_matches(id, &core_quirks[i]))
3222                                 ctrl->quirks |= core_quirks[i].quirks;
3223                 }
3224
3225                 ret = nvme_init_subsystem(ctrl, id);
3226                 if (ret)
3227                         goto out_free;
3228
3229                 ret = nvme_init_effects(ctrl, id);
3230                 if (ret)
3231                         goto out_free;
3232         }
3233         memcpy(ctrl->subsys->firmware_rev, id->fr,
3234                sizeof(ctrl->subsys->firmware_rev));
3235
3236         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3237                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3238                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3239         }
3240
3241         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3242         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3243         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3244
3245         ctrl->oacs = le16_to_cpu(id->oacs);
3246         ctrl->oncs = le16_to_cpu(id->oncs);
3247         ctrl->mtfa = le16_to_cpu(id->mtfa);
3248         ctrl->oaes = le32_to_cpu(id->oaes);
3249         ctrl->wctemp = le16_to_cpu(id->wctemp);
3250         ctrl->cctemp = le16_to_cpu(id->cctemp);
3251
3252         atomic_set(&ctrl->abort_limit, id->acl + 1);
3253         ctrl->vwc = id->vwc;
3254         if (id->mdts)
3255                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3256         else
3257                 max_hw_sectors = UINT_MAX;
3258         ctrl->max_hw_sectors =
3259                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3260
3261         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3262         ctrl->sgls = le32_to_cpu(id->sgls);
3263         ctrl->kas = le16_to_cpu(id->kas);
3264         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3265         ctrl->ctratt = le32_to_cpu(id->ctratt);
3266
3267         ctrl->cntrltype = id->cntrltype;
3268         ctrl->dctype = id->dctype;
3269
3270         if (id->rtd3e) {
3271                 /* us -> s */
3272                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3273
3274                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3275                                                  shutdown_timeout, 60);
3276
3277                 if (ctrl->shutdown_timeout != shutdown_timeout)
3278                         dev_info(ctrl->device,
3279                                  "Shutdown timeout set to %u seconds\n",
3280                                  ctrl->shutdown_timeout);
3281         } else
3282                 ctrl->shutdown_timeout = shutdown_timeout;
3283
3284         ctrl->npss = id->npss;
3285         ctrl->apsta = id->apsta;
3286         prev_apst_enabled = ctrl->apst_enabled;
3287         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3288                 if (force_apst && id->apsta) {
3289                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3290                         ctrl->apst_enabled = true;
3291                 } else {
3292                         ctrl->apst_enabled = false;
3293                 }
3294         } else {
3295                 ctrl->apst_enabled = id->apsta;
3296         }
3297         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3298
3299         if (ctrl->ops->flags & NVME_F_FABRICS) {
3300                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3301                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3302                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3303                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3304
3305                 /*
3306                  * In fabrics we need to verify the cntlid matches the
3307                  * admin connect
3308                  */
3309                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3310                         dev_err(ctrl->device,
3311                                 "Mismatching cntlid: Connect %u vs Identify "
3312                                 "%u, rejecting\n",
3313                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3314                         ret = -EINVAL;
3315                         goto out_free;
3316                 }
3317
3318                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3319                         dev_err(ctrl->device,
3320                                 "keep-alive support is mandatory for fabrics\n");
3321                         ret = -EINVAL;
3322                         goto out_free;
3323                 }
3324         } else {
3325                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3326                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3327                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3328                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3329         }
3330
3331         ret = nvme_mpath_init_identify(ctrl, id);
3332         if (ret < 0)
3333                 goto out_free;
3334
3335         if (ctrl->apst_enabled && !prev_apst_enabled)
3336                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3337         else if (!ctrl->apst_enabled && prev_apst_enabled)
3338                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3339
3340 out_free:
3341         kfree(id);
3342         return ret;
3343 }
3344
3345 /*
3346  * Initialize the cached copies of the Identify data and various controller
3347  * register in our nvme_ctrl structure.  This should be called as soon as
3348  * the admin queue is fully up and running.
3349  */
3350 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3351 {
3352         int ret;
3353
3354         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3355         if (ret) {
3356                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3357                 return ret;
3358         }
3359
3360         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3361
3362         if (ctrl->vs >= NVME_VS(1, 1, 0))
3363                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3364
3365         ret = nvme_init_identify(ctrl);
3366         if (ret)
3367                 return ret;
3368
3369         ret = nvme_configure_apst(ctrl);
3370         if (ret < 0)
3371                 return ret;
3372
3373         ret = nvme_configure_timestamp(ctrl);
3374         if (ret < 0)
3375                 return ret;
3376
3377         ret = nvme_configure_host_options(ctrl);
3378         if (ret < 0)
3379                 return ret;
3380
3381         nvme_configure_opal(ctrl, was_suspended);
3382
3383         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3384                 /*
3385                  * Do not return errors unless we are in a controller reset,
3386                  * the controller works perfectly fine without hwmon.
3387                  */
3388                 ret = nvme_hwmon_init(ctrl);
3389                 if (ret == -EINTR)
3390                         return ret;
3391         }
3392
3393         ctrl->identified = true;
3394
3395         return 0;
3396 }
3397 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3398
3399 static int nvme_dev_open(struct inode *inode, struct file *file)
3400 {
3401         struct nvme_ctrl *ctrl =
3402                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3403
3404         switch (ctrl->state) {
3405         case NVME_CTRL_LIVE:
3406                 break;
3407         default:
3408                 return -EWOULDBLOCK;
3409         }
3410
3411         nvme_get_ctrl(ctrl);
3412         if (!try_module_get(ctrl->ops->module)) {
3413                 nvme_put_ctrl(ctrl);
3414                 return -EINVAL;
3415         }
3416
3417         file->private_data = ctrl;
3418         return 0;
3419 }
3420
3421 static int nvme_dev_release(struct inode *inode, struct file *file)
3422 {
3423         struct nvme_ctrl *ctrl =
3424                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3425
3426         module_put(ctrl->ops->module);
3427         nvme_put_ctrl(ctrl);
3428         return 0;
3429 }
3430
3431 static const struct file_operations nvme_dev_fops = {
3432         .owner          = THIS_MODULE,
3433         .open           = nvme_dev_open,
3434         .release        = nvme_dev_release,
3435         .unlocked_ioctl = nvme_dev_ioctl,
3436         .compat_ioctl   = compat_ptr_ioctl,
3437         .uring_cmd      = nvme_dev_uring_cmd,
3438 };
3439
3440 static ssize_t nvme_sysfs_reset(struct device *dev,
3441                                 struct device_attribute *attr, const char *buf,
3442                                 size_t count)
3443 {
3444         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3445         int ret;
3446
3447         ret = nvme_reset_ctrl_sync(ctrl);
3448         if (ret < 0)
3449                 return ret;
3450         return count;
3451 }
3452 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3453
3454 static ssize_t nvme_sysfs_rescan(struct device *dev,
3455                                 struct device_attribute *attr, const char *buf,
3456                                 size_t count)
3457 {
3458         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3459
3460         nvme_queue_scan(ctrl);
3461         return count;
3462 }
3463 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3464
3465 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3466 {
3467         struct gendisk *disk = dev_to_disk(dev);
3468
3469         if (disk->fops == &nvme_bdev_ops)
3470                 return nvme_get_ns_from_dev(dev)->head;
3471         else
3472                 return disk->private_data;
3473 }
3474
3475 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3476                 char *buf)
3477 {
3478         struct nvme_ns_head *head = dev_to_ns_head(dev);
3479         struct nvme_ns_ids *ids = &head->ids;
3480         struct nvme_subsystem *subsys = head->subsys;
3481         int serial_len = sizeof(subsys->serial);
3482         int model_len = sizeof(subsys->model);
3483
3484         if (!uuid_is_null(&ids->uuid))
3485                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3486
3487         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3488                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3489
3490         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3491                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3492
3493         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3494                                   subsys->serial[serial_len - 1] == '\0'))
3495                 serial_len--;
3496         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3497                                  subsys->model[model_len - 1] == '\0'))
3498                 model_len--;
3499
3500         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3501                 serial_len, subsys->serial, model_len, subsys->model,
3502                 head->ns_id);
3503 }
3504 static DEVICE_ATTR_RO(wwid);
3505
3506 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3507                 char *buf)
3508 {
3509         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3510 }
3511 static DEVICE_ATTR_RO(nguid);
3512
3513 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3514                 char *buf)
3515 {
3516         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3517
3518         /* For backward compatibility expose the NGUID to userspace if
3519          * we have no UUID set
3520          */
3521         if (uuid_is_null(&ids->uuid)) {
3522                 dev_warn_ratelimited(dev,
3523                         "No UUID available providing old NGUID\n");
3524                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3525         }
3526         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3527 }
3528 static DEVICE_ATTR_RO(uuid);
3529
3530 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3531                 char *buf)
3532 {
3533         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3534 }
3535 static DEVICE_ATTR_RO(eui);
3536
3537 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3538                 char *buf)
3539 {
3540         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3541 }
3542 static DEVICE_ATTR_RO(nsid);
3543
3544 static struct attribute *nvme_ns_id_attrs[] = {
3545         &dev_attr_wwid.attr,
3546         &dev_attr_uuid.attr,
3547         &dev_attr_nguid.attr,
3548         &dev_attr_eui.attr,
3549         &dev_attr_nsid.attr,
3550 #ifdef CONFIG_NVME_MULTIPATH
3551         &dev_attr_ana_grpid.attr,
3552         &dev_attr_ana_state.attr,
3553 #endif
3554         NULL,
3555 };
3556
3557 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3558                 struct attribute *a, int n)
3559 {
3560         struct device *dev = container_of(kobj, struct device, kobj);
3561         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3562
3563         if (a == &dev_attr_uuid.attr) {
3564                 if (uuid_is_null(&ids->uuid) &&
3565                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3566                         return 0;
3567         }
3568         if (a == &dev_attr_nguid.attr) {
3569                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3570                         return 0;
3571         }
3572         if (a == &dev_attr_eui.attr) {
3573                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3574                         return 0;
3575         }
3576 #ifdef CONFIG_NVME_MULTIPATH
3577         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3578                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3579                         return 0;
3580                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3581                         return 0;
3582         }
3583 #endif
3584         return a->mode;
3585 }
3586
3587 static const struct attribute_group nvme_ns_id_attr_group = {
3588         .attrs          = nvme_ns_id_attrs,
3589         .is_visible     = nvme_ns_id_attrs_are_visible,
3590 };
3591
3592 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3593         &nvme_ns_id_attr_group,
3594         NULL,
3595 };
3596
3597 #define nvme_show_str_function(field)                                           \
3598 static ssize_t  field##_show(struct device *dev,                                \
3599                             struct device_attribute *attr, char *buf)           \
3600 {                                                                               \
3601         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3602         return sysfs_emit(buf, "%.*s\n",                                        \
3603                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3604 }                                                                               \
3605 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3606
3607 nvme_show_str_function(model);
3608 nvme_show_str_function(serial);
3609 nvme_show_str_function(firmware_rev);
3610
3611 #define nvme_show_int_function(field)                                           \
3612 static ssize_t  field##_show(struct device *dev,                                \
3613                             struct device_attribute *attr, char *buf)           \
3614 {                                                                               \
3615         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3616         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3617 }                                                                               \
3618 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3619
3620 nvme_show_int_function(cntlid);
3621 nvme_show_int_function(numa_node);
3622 nvme_show_int_function(queue_count);
3623 nvme_show_int_function(sqsize);
3624 nvme_show_int_function(kato);
3625
3626 static ssize_t nvme_sysfs_delete(struct device *dev,
3627                                 struct device_attribute *attr, const char *buf,
3628                                 size_t count)
3629 {
3630         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3631
3632         if (!test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags))
3633                 return -EBUSY;
3634
3635         if (device_remove_file_self(dev, attr))
3636                 nvme_delete_ctrl_sync(ctrl);
3637         return count;
3638 }
3639 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3640
3641 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3642                                          struct device_attribute *attr,
3643                                          char *buf)
3644 {
3645         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3646
3647         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3648 }
3649 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3650
3651 static ssize_t nvme_sysfs_show_state(struct device *dev,
3652                                      struct device_attribute *attr,
3653                                      char *buf)
3654 {
3655         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3656         static const char *const state_name[] = {
3657                 [NVME_CTRL_NEW]         = "new",
3658                 [NVME_CTRL_LIVE]        = "live",
3659                 [NVME_CTRL_RESETTING]   = "resetting",
3660                 [NVME_CTRL_CONNECTING]  = "connecting",
3661                 [NVME_CTRL_DELETING]    = "deleting",
3662                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3663                 [NVME_CTRL_DEAD]        = "dead",
3664         };
3665
3666         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3667             state_name[ctrl->state])
3668                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3669
3670         return sysfs_emit(buf, "unknown state\n");
3671 }
3672
3673 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3674
3675 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3676                                          struct device_attribute *attr,
3677                                          char *buf)
3678 {
3679         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3680
3681         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3682 }
3683 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3684
3685 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3686                                         struct device_attribute *attr,
3687                                         char *buf)
3688 {
3689         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3690
3691         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3692 }
3693 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3694
3695 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3696                                         struct device_attribute *attr,
3697                                         char *buf)
3698 {
3699         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3700
3701         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3702 }
3703 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3704
3705 static ssize_t nvme_sysfs_show_address(struct device *dev,
3706                                          struct device_attribute *attr,
3707                                          char *buf)
3708 {
3709         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3710
3711         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3712 }
3713 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3714
3715 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3716                 struct device_attribute *attr, char *buf)
3717 {
3718         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3719         struct nvmf_ctrl_options *opts = ctrl->opts;
3720
3721         if (ctrl->opts->max_reconnects == -1)
3722                 return sysfs_emit(buf, "off\n");
3723         return sysfs_emit(buf, "%d\n",
3724                           opts->max_reconnects * opts->reconnect_delay);
3725 }
3726
3727 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3728                 struct device_attribute *attr, const char *buf, size_t count)
3729 {
3730         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3731         struct nvmf_ctrl_options *opts = ctrl->opts;
3732         int ctrl_loss_tmo, err;
3733
3734         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3735         if (err)
3736                 return -EINVAL;
3737
3738         if (ctrl_loss_tmo < 0)
3739                 opts->max_reconnects = -1;
3740         else
3741                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3742                                                 opts->reconnect_delay);
3743         return count;
3744 }
3745 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3746         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3747
3748 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3749                 struct device_attribute *attr, char *buf)
3750 {
3751         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3752
3753         if (ctrl->opts->reconnect_delay == -1)
3754                 return sysfs_emit(buf, "off\n");
3755         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3756 }
3757
3758 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3759                 struct device_attribute *attr, const char *buf, size_t count)
3760 {
3761         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3762         unsigned int v;
3763         int err;
3764
3765         err = kstrtou32(buf, 10, &v);
3766         if (err)
3767                 return err;
3768
3769         ctrl->opts->reconnect_delay = v;
3770         return count;
3771 }
3772 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3773         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3774
3775 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3776                 struct device_attribute *attr, char *buf)
3777 {
3778         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3779
3780         if (ctrl->opts->fast_io_fail_tmo == -1)
3781                 return sysfs_emit(buf, "off\n");
3782         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3783 }
3784
3785 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3786                 struct device_attribute *attr, const char *buf, size_t count)
3787 {
3788         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3789         struct nvmf_ctrl_options *opts = ctrl->opts;
3790         int fast_io_fail_tmo, err;
3791
3792         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3793         if (err)
3794                 return -EINVAL;
3795
3796         if (fast_io_fail_tmo < 0)
3797                 opts->fast_io_fail_tmo = -1;
3798         else
3799                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3800         return count;
3801 }
3802 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3803         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3804
3805 static ssize_t cntrltype_show(struct device *dev,
3806                               struct device_attribute *attr, char *buf)
3807 {
3808         static const char * const type[] = {
3809                 [NVME_CTRL_IO] = "io\n",
3810                 [NVME_CTRL_DISC] = "discovery\n",
3811                 [NVME_CTRL_ADMIN] = "admin\n",
3812         };
3813         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3814
3815         if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3816                 return sysfs_emit(buf, "reserved\n");
3817
3818         return sysfs_emit(buf, type[ctrl->cntrltype]);
3819 }
3820 static DEVICE_ATTR_RO(cntrltype);
3821
3822 static ssize_t dctype_show(struct device *dev,
3823                            struct device_attribute *attr, char *buf)
3824 {
3825         static const char * const type[] = {
3826                 [NVME_DCTYPE_NOT_REPORTED] = "none\n",
3827                 [NVME_DCTYPE_DDC] = "ddc\n",
3828                 [NVME_DCTYPE_CDC] = "cdc\n",
3829         };
3830         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3831
3832         if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3833                 return sysfs_emit(buf, "reserved\n");
3834
3835         return sysfs_emit(buf, type[ctrl->dctype]);
3836 }
3837 static DEVICE_ATTR_RO(dctype);
3838
3839 #ifdef CONFIG_NVME_AUTH
3840 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3841                 struct device_attribute *attr, char *buf)
3842 {
3843         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3844         struct nvmf_ctrl_options *opts = ctrl->opts;
3845
3846         if (!opts->dhchap_secret)
3847                 return sysfs_emit(buf, "none\n");
3848         return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3849 }
3850
3851 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3852                 struct device_attribute *attr, const char *buf, size_t count)
3853 {
3854         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3855         struct nvmf_ctrl_options *opts = ctrl->opts;
3856         char *dhchap_secret;
3857
3858         if (!ctrl->opts->dhchap_secret)
3859                 return -EINVAL;
3860         if (count < 7)
3861                 return -EINVAL;
3862         if (memcmp(buf, "DHHC-1:", 7))
3863                 return -EINVAL;
3864
3865         dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3866         if (!dhchap_secret)
3867                 return -ENOMEM;
3868         memcpy(dhchap_secret, buf, count);
3869         nvme_auth_stop(ctrl);
3870         if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3871                 struct nvme_dhchap_key *key, *host_key;
3872                 int ret;
3873
3874                 ret = nvme_auth_generate_key(dhchap_secret, &key);
3875                 if (ret)
3876                         return ret;
3877                 kfree(opts->dhchap_secret);
3878                 opts->dhchap_secret = dhchap_secret;
3879                 host_key = ctrl->host_key;
3880                 mutex_lock(&ctrl->dhchap_auth_mutex);
3881                 ctrl->host_key = key;
3882                 mutex_unlock(&ctrl->dhchap_auth_mutex);
3883                 nvme_auth_free_key(host_key);
3884         }
3885         /* Start re-authentication */
3886         dev_info(ctrl->device, "re-authenticating controller\n");
3887         queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3888
3889         return count;
3890 }
3891 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3892         nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3893
3894 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3895                 struct device_attribute *attr, char *buf)
3896 {
3897         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3898         struct nvmf_ctrl_options *opts = ctrl->opts;
3899
3900         if (!opts->dhchap_ctrl_secret)
3901                 return sysfs_emit(buf, "none\n");
3902         return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3903 }
3904
3905 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3906                 struct device_attribute *attr, const char *buf, size_t count)
3907 {
3908         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3909         struct nvmf_ctrl_options *opts = ctrl->opts;
3910         char *dhchap_secret;
3911
3912         if (!ctrl->opts->dhchap_ctrl_secret)
3913                 return -EINVAL;
3914         if (count < 7)
3915                 return -EINVAL;
3916         if (memcmp(buf, "DHHC-1:", 7))
3917                 return -EINVAL;
3918
3919         dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3920         if (!dhchap_secret)
3921                 return -ENOMEM;
3922         memcpy(dhchap_secret, buf, count);
3923         nvme_auth_stop(ctrl);
3924         if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3925                 struct nvme_dhchap_key *key, *ctrl_key;
3926                 int ret;
3927
3928                 ret = nvme_auth_generate_key(dhchap_secret, &key);
3929                 if (ret)
3930                         return ret;
3931                 kfree(opts->dhchap_ctrl_secret);
3932                 opts->dhchap_ctrl_secret = dhchap_secret;
3933                 ctrl_key = ctrl->ctrl_key;
3934                 mutex_lock(&ctrl->dhchap_auth_mutex);
3935                 ctrl->ctrl_key = key;
3936                 mutex_unlock(&ctrl->dhchap_auth_mutex);
3937                 nvme_auth_free_key(ctrl_key);
3938         }
3939         /* Start re-authentication */
3940         dev_info(ctrl->device, "re-authenticating controller\n");
3941         queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3942
3943         return count;
3944 }
3945 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3946         nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3947 #endif
3948
3949 static struct attribute *nvme_dev_attrs[] = {
3950         &dev_attr_reset_controller.attr,
3951         &dev_attr_rescan_controller.attr,
3952         &dev_attr_model.attr,
3953         &dev_attr_serial.attr,
3954         &dev_attr_firmware_rev.attr,
3955         &dev_attr_cntlid.attr,
3956         &dev_attr_delete_controller.attr,
3957         &dev_attr_transport.attr,
3958         &dev_attr_subsysnqn.attr,
3959         &dev_attr_address.attr,
3960         &dev_attr_state.attr,
3961         &dev_attr_numa_node.attr,
3962         &dev_attr_queue_count.attr,
3963         &dev_attr_sqsize.attr,
3964         &dev_attr_hostnqn.attr,
3965         &dev_attr_hostid.attr,
3966         &dev_attr_ctrl_loss_tmo.attr,
3967         &dev_attr_reconnect_delay.attr,
3968         &dev_attr_fast_io_fail_tmo.attr,
3969         &dev_attr_kato.attr,
3970         &dev_attr_cntrltype.attr,
3971         &dev_attr_dctype.attr,
3972 #ifdef CONFIG_NVME_AUTH
3973         &dev_attr_dhchap_secret.attr,
3974         &dev_attr_dhchap_ctrl_secret.attr,
3975 #endif
3976         NULL
3977 };
3978
3979 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3980                 struct attribute *a, int n)
3981 {
3982         struct device *dev = container_of(kobj, struct device, kobj);
3983         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3984
3985         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3986                 return 0;
3987         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3988                 return 0;
3989         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3990                 return 0;
3991         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3992                 return 0;
3993         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3994                 return 0;
3995         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3996                 return 0;
3997         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3998                 return 0;
3999 #ifdef CONFIG_NVME_AUTH
4000         if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
4001                 return 0;
4002         if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
4003                 return 0;
4004 #endif
4005
4006         return a->mode;
4007 }
4008
4009 const struct attribute_group nvme_dev_attrs_group = {
4010         .attrs          = nvme_dev_attrs,
4011         .is_visible     = nvme_dev_attrs_are_visible,
4012 };
4013 EXPORT_SYMBOL_GPL(nvme_dev_attrs_group);
4014
4015 static const struct attribute_group *nvme_dev_attr_groups[] = {
4016         &nvme_dev_attrs_group,
4017         NULL,
4018 };
4019
4020 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
4021                 unsigned nsid)
4022 {
4023         struct nvme_ns_head *h;
4024
4025         lockdep_assert_held(&ctrl->subsys->lock);
4026
4027         list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
4028                 /*
4029                  * Private namespaces can share NSIDs under some conditions.
4030                  * In that case we can't use the same ns_head for namespaces
4031                  * with the same NSID.
4032                  */
4033                 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
4034                         continue;
4035                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
4036                         return h;
4037         }
4038
4039         return NULL;
4040 }
4041
4042 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
4043                 struct nvme_ns_ids *ids)
4044 {
4045         bool has_uuid = !uuid_is_null(&ids->uuid);
4046         bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
4047         bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
4048         struct nvme_ns_head *h;
4049
4050         lockdep_assert_held(&subsys->lock);
4051
4052         list_for_each_entry(h, &subsys->nsheads, entry) {
4053                 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
4054                         return -EINVAL;
4055                 if (has_nguid &&
4056                     memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
4057                         return -EINVAL;
4058                 if (has_eui64 &&
4059                     memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
4060                         return -EINVAL;
4061         }
4062
4063         return 0;
4064 }
4065
4066 static void nvme_cdev_rel(struct device *dev)
4067 {
4068         ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
4069 }
4070
4071 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
4072 {
4073         cdev_device_del(cdev, cdev_device);
4074         put_device(cdev_device);
4075 }
4076
4077 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
4078                 const struct file_operations *fops, struct module *owner)
4079 {
4080         int minor, ret;
4081
4082         minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
4083         if (minor < 0)
4084                 return minor;
4085         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
4086         cdev_device->class = nvme_ns_chr_class;
4087         cdev_device->release = nvme_cdev_rel;
4088         device_initialize(cdev_device);
4089         cdev_init(cdev, fops);
4090         cdev->owner = owner;
4091         ret = cdev_device_add(cdev, cdev_device);
4092         if (ret)
4093                 put_device(cdev_device);
4094
4095         return ret;
4096 }
4097
4098 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
4099 {
4100         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
4101 }
4102
4103 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
4104 {
4105         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
4106         return 0;
4107 }
4108
4109 static const struct file_operations nvme_ns_chr_fops = {
4110         .owner          = THIS_MODULE,
4111         .open           = nvme_ns_chr_open,
4112         .release        = nvme_ns_chr_release,
4113         .unlocked_ioctl = nvme_ns_chr_ioctl,
4114         .compat_ioctl   = compat_ptr_ioctl,
4115         .uring_cmd      = nvme_ns_chr_uring_cmd,
4116         .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
4117 };
4118
4119 static int nvme_add_ns_cdev(struct nvme_ns *ns)
4120 {
4121         int ret;
4122
4123         ns->cdev_device.parent = ns->ctrl->device;
4124         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
4125                            ns->ctrl->instance, ns->head->instance);
4126         if (ret)
4127                 return ret;
4128
4129         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
4130                              ns->ctrl->ops->module);
4131 }
4132
4133 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
4134                 struct nvme_ns_info *info)
4135 {
4136         struct nvme_ns_head *head;
4137         size_t size = sizeof(*head);
4138         int ret = -ENOMEM;
4139
4140 #ifdef CONFIG_NVME_MULTIPATH
4141         size += num_possible_nodes() * sizeof(struct nvme_ns *);
4142 #endif
4143
4144         head = kzalloc(size, GFP_KERNEL);
4145         if (!head)
4146                 goto out;
4147         ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4148         if (ret < 0)
4149                 goto out_free_head;
4150         head->instance = ret;
4151         INIT_LIST_HEAD(&head->list);
4152         ret = init_srcu_struct(&head->srcu);
4153         if (ret)
4154                 goto out_ida_remove;
4155         head->subsys = ctrl->subsys;
4156         head->ns_id = info->nsid;
4157         head->ids = info->ids;
4158         head->shared = info->is_shared;
4159         kref_init(&head->ref);
4160
4161         if (head->ids.csi) {
4162                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4163                 if (ret)
4164                         goto out_cleanup_srcu;
4165         } else
4166                 head->effects = ctrl->effects;
4167
4168         ret = nvme_mpath_alloc_disk(ctrl, head);
4169         if (ret)
4170                 goto out_cleanup_srcu;
4171
4172         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4173
4174         kref_get(&ctrl->subsys->ref);
4175
4176         return head;
4177 out_cleanup_srcu:
4178         cleanup_srcu_struct(&head->srcu);
4179 out_ida_remove:
4180         ida_free(&ctrl->subsys->ns_ida, head->instance);
4181 out_free_head:
4182         kfree(head);
4183 out:
4184         if (ret > 0)
4185                 ret = blk_status_to_errno(nvme_error_status(ret));
4186         return ERR_PTR(ret);
4187 }
4188
4189 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4190                 struct nvme_ns_ids *ids)
4191 {
4192         struct nvme_subsystem *s;
4193         int ret = 0;
4194
4195         /*
4196          * Note that this check is racy as we try to avoid holding the global
4197          * lock over the whole ns_head creation.  But it is only intended as
4198          * a sanity check anyway.
4199          */
4200         mutex_lock(&nvme_subsystems_lock);
4201         list_for_each_entry(s, &nvme_subsystems, entry) {
4202                 if (s == this)
4203                         continue;
4204                 mutex_lock(&s->lock);
4205                 ret = nvme_subsys_check_duplicate_ids(s, ids);
4206                 mutex_unlock(&s->lock);
4207                 if (ret)
4208                         break;
4209         }
4210         mutex_unlock(&nvme_subsystems_lock);
4211
4212         return ret;
4213 }
4214
4215 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4216 {
4217         struct nvme_ctrl *ctrl = ns->ctrl;
4218         struct nvme_ns_head *head = NULL;
4219         int ret;
4220
4221         ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4222         if (ret) {
4223                 dev_err(ctrl->device,
4224                         "globally duplicate IDs for nsid %d\n", info->nsid);
4225                 nvme_print_device_info(ctrl);
4226                 return ret;
4227         }
4228
4229         mutex_lock(&ctrl->subsys->lock);
4230         head = nvme_find_ns_head(ctrl, info->nsid);
4231         if (!head) {
4232                 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4233                 if (ret) {
4234                         dev_err(ctrl->device,
4235                                 "duplicate IDs in subsystem for nsid %d\n",
4236                                 info->nsid);
4237                         goto out_unlock;
4238                 }
4239                 head = nvme_alloc_ns_head(ctrl, info);
4240                 if (IS_ERR(head)) {
4241                         ret = PTR_ERR(head);
4242                         goto out_unlock;
4243                 }
4244         } else {
4245                 ret = -EINVAL;
4246                 if (!info->is_shared || !head->shared) {
4247                         dev_err(ctrl->device,
4248                                 "Duplicate unshared namespace %d\n",
4249                                 info->nsid);
4250                         goto out_put_ns_head;
4251                 }
4252                 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4253                         dev_err(ctrl->device,
4254                                 "IDs don't match for shared namespace %d\n",
4255                                         info->nsid);
4256                         goto out_put_ns_head;
4257                 }
4258
4259                 if (!multipath && !list_empty(&head->list)) {
4260                         dev_warn(ctrl->device,
4261                                 "Found shared namespace %d, but multipathing not supported.\n",
4262                                 info->nsid);
4263                         dev_warn_once(ctrl->device,
4264                                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4265                 }
4266         }
4267
4268         list_add_tail_rcu(&ns->siblings, &head->list);
4269         ns->head = head;
4270         mutex_unlock(&ctrl->subsys->lock);
4271         return 0;
4272
4273 out_put_ns_head:
4274         nvme_put_ns_head(head);
4275 out_unlock:
4276         mutex_unlock(&ctrl->subsys->lock);
4277         return ret;
4278 }
4279
4280 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4281 {
4282         struct nvme_ns *ns, *ret = NULL;
4283
4284         down_read(&ctrl->namespaces_rwsem);
4285         list_for_each_entry(ns, &ctrl->namespaces, list) {
4286                 if (ns->head->ns_id == nsid) {
4287                         if (!nvme_get_ns(ns))
4288                                 continue;
4289                         ret = ns;
4290                         break;
4291                 }
4292                 if (ns->head->ns_id > nsid)
4293                         break;
4294         }
4295         up_read(&ctrl->namespaces_rwsem);
4296         return ret;
4297 }
4298 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4299
4300 /*
4301  * Add the namespace to the controller list while keeping the list ordered.
4302  */
4303 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4304 {
4305         struct nvme_ns *tmp;
4306
4307         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4308                 if (tmp->head->ns_id < ns->head->ns_id) {
4309                         list_add(&ns->list, &tmp->list);
4310                         return;
4311                 }
4312         }
4313         list_add(&ns->list, &ns->ctrl->namespaces);
4314 }
4315
4316 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4317 {
4318         struct nvme_ns *ns;
4319         struct gendisk *disk;
4320         int node = ctrl->numa_node;
4321
4322         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4323         if (!ns)
4324                 return;
4325
4326         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4327         if (IS_ERR(disk))
4328                 goto out_free_ns;
4329         disk->fops = &nvme_bdev_ops;
4330         disk->private_data = ns;
4331
4332         ns->disk = disk;
4333         ns->queue = disk->queue;
4334
4335         if (ctrl->opts && ctrl->opts->data_digest)
4336                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4337
4338         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4339         if (ctrl->ops->supports_pci_p2pdma &&
4340             ctrl->ops->supports_pci_p2pdma(ctrl))
4341                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4342
4343         ns->ctrl = ctrl;
4344         kref_init(&ns->kref);
4345
4346         if (nvme_init_ns_head(ns, info))
4347                 goto out_cleanup_disk;
4348
4349         /*
4350          * If multipathing is enabled, the device name for all disks and not
4351          * just those that represent shared namespaces needs to be based on the
4352          * subsystem instance.  Using the controller instance for private
4353          * namespaces could lead to naming collisions between shared and private
4354          * namespaces if they don't use a common numbering scheme.
4355          *
4356          * If multipathing is not enabled, disk names must use the controller
4357          * instance as shared namespaces will show up as multiple block
4358          * devices.
4359          */
4360         if (ns->head->disk) {
4361                 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4362                         ctrl->instance, ns->head->instance);
4363                 disk->flags |= GENHD_FL_HIDDEN;
4364         } else if (multipath) {
4365                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4366                         ns->head->instance);
4367         } else {
4368                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4369                         ns->head->instance);
4370         }
4371
4372         if (nvme_update_ns_info(ns, info))
4373                 goto out_unlink_ns;
4374
4375         down_write(&ctrl->namespaces_rwsem);
4376         nvme_ns_add_to_ctrl_list(ns);
4377         up_write(&ctrl->namespaces_rwsem);
4378         nvme_get_ctrl(ctrl);
4379
4380         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4381                 goto out_cleanup_ns_from_list;
4382
4383         if (!nvme_ns_head_multipath(ns->head))
4384                 nvme_add_ns_cdev(ns);
4385
4386         nvme_mpath_add_disk(ns, info->anagrpid);
4387         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4388
4389         return;
4390
4391  out_cleanup_ns_from_list:
4392         nvme_put_ctrl(ctrl);
4393         down_write(&ctrl->namespaces_rwsem);
4394         list_del_init(&ns->list);
4395         up_write(&ctrl->namespaces_rwsem);
4396  out_unlink_ns:
4397         mutex_lock(&ctrl->subsys->lock);
4398         list_del_rcu(&ns->siblings);
4399         if (list_empty(&ns->head->list))
4400                 list_del_init(&ns->head->entry);
4401         mutex_unlock(&ctrl->subsys->lock);
4402         nvme_put_ns_head(ns->head);
4403  out_cleanup_disk:
4404         put_disk(disk);
4405  out_free_ns:
4406         kfree(ns);
4407 }
4408
4409 static void nvme_ns_remove(struct nvme_ns *ns)
4410 {
4411         bool last_path = false;
4412
4413         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4414                 return;
4415
4416         clear_bit(NVME_NS_READY, &ns->flags);
4417         set_capacity(ns->disk, 0);
4418         nvme_fault_inject_fini(&ns->fault_inject);
4419
4420         /*
4421          * Ensure that !NVME_NS_READY is seen by other threads to prevent
4422          * this ns going back into current_path.
4423          */
4424         synchronize_srcu(&ns->head->srcu);
4425
4426         /* wait for concurrent submissions */
4427         if (nvme_mpath_clear_current_path(ns))
4428                 synchronize_srcu(&ns->head->srcu);
4429
4430         mutex_lock(&ns->ctrl->subsys->lock);
4431         list_del_rcu(&ns->siblings);
4432         if (list_empty(&ns->head->list)) {
4433                 list_del_init(&ns->head->entry);
4434                 last_path = true;
4435         }
4436         mutex_unlock(&ns->ctrl->subsys->lock);
4437
4438         /* guarantee not available in head->list */
4439         synchronize_srcu(&ns->head->srcu);
4440
4441         if (!nvme_ns_head_multipath(ns->head))
4442                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4443         del_gendisk(ns->disk);
4444
4445         down_write(&ns->ctrl->namespaces_rwsem);
4446         list_del_init(&ns->list);
4447         up_write(&ns->ctrl->namespaces_rwsem);
4448
4449         if (last_path)
4450                 nvme_mpath_shutdown_disk(ns->head);
4451         nvme_put_ns(ns);
4452 }
4453
4454 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4455 {
4456         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4457
4458         if (ns) {
4459                 nvme_ns_remove(ns);
4460                 nvme_put_ns(ns);
4461         }
4462 }
4463
4464 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4465 {
4466         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4467
4468         if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4469                 dev_err(ns->ctrl->device,
4470                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4471                 goto out;
4472         }
4473
4474         ret = nvme_update_ns_info(ns, info);
4475 out:
4476         /*
4477          * Only remove the namespace if we got a fatal error back from the
4478          * device, otherwise ignore the error and just move on.
4479          *
4480          * TODO: we should probably schedule a delayed retry here.
4481          */
4482         if (ret > 0 && (ret & NVME_SC_DNR))
4483                 nvme_ns_remove(ns);
4484 }
4485
4486 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4487 {
4488         struct nvme_ns_info info = { .nsid = nsid };
4489         struct nvme_ns *ns;
4490         int ret;
4491
4492         if (nvme_identify_ns_descs(ctrl, &info))
4493                 return;
4494
4495         if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4496                 dev_warn(ctrl->device,
4497                         "command set not reported for nsid: %d\n", nsid);
4498                 return;
4499         }
4500
4501         /*
4502          * If available try to use the Command Set Idependent Identify Namespace
4503          * data structure to find all the generic information that is needed to
4504          * set up a namespace.  If not fall back to the legacy version.
4505          */
4506         if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4507             (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4508                 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4509         else
4510                 ret = nvme_ns_info_from_identify(ctrl, &info);
4511
4512         if (info.is_removed)
4513                 nvme_ns_remove_by_nsid(ctrl, nsid);
4514
4515         /*
4516          * Ignore the namespace if it is not ready. We will get an AEN once it
4517          * becomes ready and restart the scan.
4518          */
4519         if (ret || !info.is_ready)
4520                 return;
4521
4522         ns = nvme_find_get_ns(ctrl, nsid);
4523         if (ns) {
4524                 nvme_validate_ns(ns, &info);
4525                 nvme_put_ns(ns);
4526         } else {
4527                 nvme_alloc_ns(ctrl, &info);
4528         }
4529 }
4530
4531 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4532                                         unsigned nsid)
4533 {
4534         struct nvme_ns *ns, *next;
4535         LIST_HEAD(rm_list);
4536
4537         down_write(&ctrl->namespaces_rwsem);
4538         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4539                 if (ns->head->ns_id > nsid)
4540                         list_move_tail(&ns->list, &rm_list);
4541         }
4542         up_write(&ctrl->namespaces_rwsem);
4543
4544         list_for_each_entry_safe(ns, next, &rm_list, list)
4545                 nvme_ns_remove(ns);
4546
4547 }
4548
4549 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4550 {
4551         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4552         __le32 *ns_list;
4553         u32 prev = 0;
4554         int ret = 0, i;
4555
4556         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4557         if (!ns_list)
4558                 return -ENOMEM;
4559
4560         for (;;) {
4561                 struct nvme_command cmd = {
4562                         .identify.opcode        = nvme_admin_identify,
4563                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4564                         .identify.nsid          = cpu_to_le32(prev),
4565                 };
4566
4567                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4568                                             NVME_IDENTIFY_DATA_SIZE);
4569                 if (ret) {
4570                         dev_warn(ctrl->device,
4571                                 "Identify NS List failed (status=0x%x)\n", ret);
4572                         goto free;
4573                 }
4574
4575                 for (i = 0; i < nr_entries; i++) {
4576                         u32 nsid = le32_to_cpu(ns_list[i]);
4577
4578                         if (!nsid)      /* end of the list? */
4579                                 goto out;
4580                         nvme_scan_ns(ctrl, nsid);
4581                         while (++prev < nsid)
4582                                 nvme_ns_remove_by_nsid(ctrl, prev);
4583                 }
4584         }
4585  out:
4586         nvme_remove_invalid_namespaces(ctrl, prev);
4587  free:
4588         kfree(ns_list);
4589         return ret;
4590 }
4591
4592 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4593 {
4594         struct nvme_id_ctrl *id;
4595         u32 nn, i;
4596
4597         if (nvme_identify_ctrl(ctrl, &id))
4598                 return;
4599         nn = le32_to_cpu(id->nn);
4600         kfree(id);
4601
4602         for (i = 1; i <= nn; i++)
4603                 nvme_scan_ns(ctrl, i);
4604
4605         nvme_remove_invalid_namespaces(ctrl, nn);
4606 }
4607
4608 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4609 {
4610         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4611         __le32 *log;
4612         int error;
4613
4614         log = kzalloc(log_size, GFP_KERNEL);
4615         if (!log)
4616                 return;
4617
4618         /*
4619          * We need to read the log to clear the AEN, but we don't want to rely
4620          * on it for the changed namespace information as userspace could have
4621          * raced with us in reading the log page, which could cause us to miss
4622          * updates.
4623          */
4624         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4625                         NVME_CSI_NVM, log, log_size, 0);
4626         if (error)
4627                 dev_warn(ctrl->device,
4628                         "reading changed ns log failed: %d\n", error);
4629
4630         kfree(log);
4631 }
4632
4633 static void nvme_scan_work(struct work_struct *work)
4634 {
4635         struct nvme_ctrl *ctrl =
4636                 container_of(work, struct nvme_ctrl, scan_work);
4637         int ret;
4638
4639         /* No tagset on a live ctrl means IO queues could not created */
4640         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4641                 return;
4642
4643         /*
4644          * Identify controller limits can change at controller reset due to
4645          * new firmware download, even though it is not common we cannot ignore
4646          * such scenario. Controller's non-mdts limits are reported in the unit
4647          * of logical blocks that is dependent on the format of attached
4648          * namespace. Hence re-read the limits at the time of ns allocation.
4649          */
4650         ret = nvme_init_non_mdts_limits(ctrl);
4651         if (ret < 0) {
4652                 dev_warn(ctrl->device,
4653                         "reading non-mdts-limits failed: %d\n", ret);
4654                 return;
4655         }
4656
4657         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4658                 dev_info(ctrl->device, "rescanning namespaces.\n");
4659                 nvme_clear_changed_ns_log(ctrl);
4660         }
4661
4662         mutex_lock(&ctrl->scan_lock);
4663         if (nvme_ctrl_limited_cns(ctrl)) {
4664                 nvme_scan_ns_sequential(ctrl);
4665         } else {
4666                 /*
4667                  * Fall back to sequential scan if DNR is set to handle broken
4668                  * devices which should support Identify NS List (as per the VS
4669                  * they report) but don't actually support it.
4670                  */
4671                 ret = nvme_scan_ns_list(ctrl);
4672                 if (ret > 0 && ret & NVME_SC_DNR)
4673                         nvme_scan_ns_sequential(ctrl);
4674         }
4675         mutex_unlock(&ctrl->scan_lock);
4676 }
4677
4678 /*
4679  * This function iterates the namespace list unlocked to allow recovery from
4680  * controller failure. It is up to the caller to ensure the namespace list is
4681  * not modified by scan work while this function is executing.
4682  */
4683 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4684 {
4685         struct nvme_ns *ns, *next;
4686         LIST_HEAD(ns_list);
4687
4688         /*
4689          * make sure to requeue I/O to all namespaces as these
4690          * might result from the scan itself and must complete
4691          * for the scan_work to make progress
4692          */
4693         nvme_mpath_clear_ctrl_paths(ctrl);
4694
4695         /* prevent racing with ns scanning */
4696         flush_work(&ctrl->scan_work);
4697
4698         /*
4699          * The dead states indicates the controller was not gracefully
4700          * disconnected. In that case, we won't be able to flush any data while
4701          * removing the namespaces' disks; fail all the queues now to avoid
4702          * potentially having to clean up the failed sync later.
4703          */
4704         if (ctrl->state == NVME_CTRL_DEAD) {
4705                 nvme_mark_namespaces_dead(ctrl);
4706                 nvme_unquiesce_io_queues(ctrl);
4707         }
4708
4709         /* this is a no-op when called from the controller reset handler */
4710         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4711
4712         down_write(&ctrl->namespaces_rwsem);
4713         list_splice_init(&ctrl->namespaces, &ns_list);
4714         up_write(&ctrl->namespaces_rwsem);
4715
4716         list_for_each_entry_safe(ns, next, &ns_list, list)
4717                 nvme_ns_remove(ns);
4718 }
4719 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4720
4721 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4722 {
4723         const struct nvme_ctrl *ctrl =
4724                 container_of(dev, struct nvme_ctrl, ctrl_device);
4725         struct nvmf_ctrl_options *opts = ctrl->opts;
4726         int ret;
4727
4728         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4729         if (ret)
4730                 return ret;
4731
4732         if (opts) {
4733                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4734                 if (ret)
4735                         return ret;
4736
4737                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4738                                 opts->trsvcid ?: "none");
4739                 if (ret)
4740                         return ret;
4741
4742                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4743                                 opts->host_traddr ?: "none");
4744                 if (ret)
4745                         return ret;
4746
4747                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4748                                 opts->host_iface ?: "none");
4749         }
4750         return ret;
4751 }
4752
4753 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4754 {
4755         char *envp[2] = { envdata, NULL };
4756
4757         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4758 }
4759
4760 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4761 {
4762         char *envp[2] = { NULL, NULL };
4763         u32 aen_result = ctrl->aen_result;
4764
4765         ctrl->aen_result = 0;
4766         if (!aen_result)
4767                 return;
4768
4769         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4770         if (!envp[0])
4771                 return;
4772         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4773         kfree(envp[0]);
4774 }
4775
4776 static void nvme_async_event_work(struct work_struct *work)
4777 {
4778         struct nvme_ctrl *ctrl =
4779                 container_of(work, struct nvme_ctrl, async_event_work);
4780
4781         nvme_aen_uevent(ctrl);
4782
4783         /*
4784          * The transport drivers must guarantee AER submission here is safe by
4785          * flushing ctrl async_event_work after changing the controller state
4786          * from LIVE and before freeing the admin queue.
4787         */
4788         if (ctrl->state == NVME_CTRL_LIVE)
4789                 ctrl->ops->submit_async_event(ctrl);
4790 }
4791
4792 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4793 {
4794
4795         u32 csts;
4796
4797         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4798                 return false;
4799
4800         if (csts == ~0)
4801                 return false;
4802
4803         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4804 }
4805
4806 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4807 {
4808         struct nvme_fw_slot_info_log *log;
4809
4810         log = kmalloc(sizeof(*log), GFP_KERNEL);
4811         if (!log)
4812                 return;
4813
4814         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4815                         log, sizeof(*log), 0))
4816                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4817         kfree(log);
4818 }
4819
4820 static void nvme_fw_act_work(struct work_struct *work)
4821 {
4822         struct nvme_ctrl *ctrl = container_of(work,
4823                                 struct nvme_ctrl, fw_act_work);
4824         unsigned long fw_act_timeout;
4825
4826         if (ctrl->mtfa)
4827                 fw_act_timeout = jiffies +
4828                                 msecs_to_jiffies(ctrl->mtfa * 100);
4829         else
4830                 fw_act_timeout = jiffies +
4831                                 msecs_to_jiffies(admin_timeout * 1000);
4832
4833         nvme_quiesce_io_queues(ctrl);
4834         while (nvme_ctrl_pp_status(ctrl)) {
4835                 if (time_after(jiffies, fw_act_timeout)) {
4836                         dev_warn(ctrl->device,
4837                                 "Fw activation timeout, reset controller\n");
4838                         nvme_try_sched_reset(ctrl);
4839                         return;
4840                 }
4841                 msleep(100);
4842         }
4843
4844         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4845                 return;
4846
4847         nvme_unquiesce_io_queues(ctrl);
4848         /* read FW slot information to clear the AER */
4849         nvme_get_fw_slot_info(ctrl);
4850
4851         queue_work(nvme_wq, &ctrl->async_event_work);
4852 }
4853
4854 static u32 nvme_aer_type(u32 result)
4855 {
4856         return result & 0x7;
4857 }
4858
4859 static u32 nvme_aer_subtype(u32 result)
4860 {
4861         return (result & 0xff00) >> 8;
4862 }
4863
4864 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4865 {
4866         u32 aer_notice_type = nvme_aer_subtype(result);
4867         bool requeue = true;
4868
4869         switch (aer_notice_type) {
4870         case NVME_AER_NOTICE_NS_CHANGED:
4871                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4872                 nvme_queue_scan(ctrl);
4873                 break;
4874         case NVME_AER_NOTICE_FW_ACT_STARTING:
4875                 /*
4876                  * We are (ab)using the RESETTING state to prevent subsequent
4877                  * recovery actions from interfering with the controller's
4878                  * firmware activation.
4879                  */
4880                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4881                         nvme_auth_stop(ctrl);
4882                         requeue = false;
4883                         queue_work(nvme_wq, &ctrl->fw_act_work);
4884                 }
4885                 break;
4886 #ifdef CONFIG_NVME_MULTIPATH
4887         case NVME_AER_NOTICE_ANA:
4888                 if (!ctrl->ana_log_buf)
4889                         break;
4890                 queue_work(nvme_wq, &ctrl->ana_work);
4891                 break;
4892 #endif
4893         case NVME_AER_NOTICE_DISC_CHANGED:
4894                 ctrl->aen_result = result;
4895                 break;
4896         default:
4897                 dev_warn(ctrl->device, "async event result %08x\n", result);
4898         }
4899         return requeue;
4900 }
4901
4902 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4903 {
4904         dev_warn(ctrl->device, "resetting controller due to AER\n");
4905         nvme_reset_ctrl(ctrl);
4906 }
4907
4908 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4909                 volatile union nvme_result *res)
4910 {
4911         u32 result = le32_to_cpu(res->u32);
4912         u32 aer_type = nvme_aer_type(result);
4913         u32 aer_subtype = nvme_aer_subtype(result);
4914         bool requeue = true;
4915
4916         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4917                 return;
4918
4919         trace_nvme_async_event(ctrl, result);
4920         switch (aer_type) {
4921         case NVME_AER_NOTICE:
4922                 requeue = nvme_handle_aen_notice(ctrl, result);
4923                 break;
4924         case NVME_AER_ERROR:
4925                 /*
4926                  * For a persistent internal error, don't run async_event_work
4927                  * to submit a new AER. The controller reset will do it.
4928                  */
4929                 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4930                         nvme_handle_aer_persistent_error(ctrl);
4931                         return;
4932                 }
4933                 fallthrough;
4934         case NVME_AER_SMART:
4935         case NVME_AER_CSS:
4936         case NVME_AER_VS:
4937                 ctrl->aen_result = result;
4938                 break;
4939         default:
4940                 break;
4941         }
4942
4943         if (requeue)
4944                 queue_work(nvme_wq, &ctrl->async_event_work);
4945 }
4946 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4947
4948 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4949                 const struct blk_mq_ops *ops, unsigned int cmd_size)
4950 {
4951         int ret;
4952
4953         memset(set, 0, sizeof(*set));
4954         set->ops = ops;
4955         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4956         if (ctrl->ops->flags & NVME_F_FABRICS)
4957                 set->reserved_tags = NVMF_RESERVED_TAGS;
4958         set->numa_node = ctrl->numa_node;
4959         set->flags = BLK_MQ_F_NO_SCHED;
4960         if (ctrl->ops->flags & NVME_F_BLOCKING)
4961                 set->flags |= BLK_MQ_F_BLOCKING;
4962         set->cmd_size = cmd_size;
4963         set->driver_data = ctrl;
4964         set->nr_hw_queues = 1;
4965         set->timeout = NVME_ADMIN_TIMEOUT;
4966         ret = blk_mq_alloc_tag_set(set);
4967         if (ret)
4968                 return ret;
4969
4970         ctrl->admin_q = blk_mq_init_queue(set);
4971         if (IS_ERR(ctrl->admin_q)) {
4972                 ret = PTR_ERR(ctrl->admin_q);
4973                 goto out_free_tagset;
4974         }
4975
4976         if (ctrl->ops->flags & NVME_F_FABRICS) {
4977                 ctrl->fabrics_q = blk_mq_init_queue(set);
4978                 if (IS_ERR(ctrl->fabrics_q)) {
4979                         ret = PTR_ERR(ctrl->fabrics_q);
4980                         goto out_cleanup_admin_q;
4981                 }
4982         }
4983
4984         ctrl->admin_tagset = set;
4985         return 0;
4986
4987 out_cleanup_admin_q:
4988         blk_mq_destroy_queue(ctrl->admin_q);
4989         blk_put_queue(ctrl->admin_q);
4990 out_free_tagset:
4991         blk_mq_free_tag_set(set);
4992         ctrl->admin_q = NULL;
4993         ctrl->fabrics_q = NULL;
4994         return ret;
4995 }
4996 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4997
4998 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4999 {
5000         blk_mq_destroy_queue(ctrl->admin_q);
5001         blk_put_queue(ctrl->admin_q);
5002         if (ctrl->ops->flags & NVME_F_FABRICS) {
5003                 blk_mq_destroy_queue(ctrl->fabrics_q);
5004                 blk_put_queue(ctrl->fabrics_q);
5005         }
5006         blk_mq_free_tag_set(ctrl->admin_tagset);
5007 }
5008 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
5009
5010 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
5011                 const struct blk_mq_ops *ops, unsigned int nr_maps,
5012                 unsigned int cmd_size)
5013 {
5014         int ret;
5015
5016         memset(set, 0, sizeof(*set));
5017         set->ops = ops;
5018         set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
5019         /*
5020          * Some Apple controllers requires tags to be unique across admin and
5021          * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
5022          */
5023         if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
5024                 set->reserved_tags = NVME_AQ_DEPTH;
5025         else if (ctrl->ops->flags & NVME_F_FABRICS)
5026                 set->reserved_tags = NVMF_RESERVED_TAGS;
5027         set->numa_node = ctrl->numa_node;
5028         set->flags = BLK_MQ_F_SHOULD_MERGE;
5029         if (ctrl->ops->flags & NVME_F_BLOCKING)
5030                 set->flags |= BLK_MQ_F_BLOCKING;
5031         set->cmd_size = cmd_size,
5032         set->driver_data = ctrl;
5033         set->nr_hw_queues = ctrl->queue_count - 1;
5034         set->timeout = NVME_IO_TIMEOUT;
5035         set->nr_maps = nr_maps;
5036         ret = blk_mq_alloc_tag_set(set);
5037         if (ret)
5038                 return ret;
5039
5040         if (ctrl->ops->flags & NVME_F_FABRICS) {
5041                 ctrl->connect_q = blk_mq_init_queue(set);
5042                 if (IS_ERR(ctrl->connect_q)) {
5043                         ret = PTR_ERR(ctrl->connect_q);
5044                         goto out_free_tag_set;
5045                 }
5046                 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
5047                                    ctrl->connect_q);
5048         }
5049
5050         ctrl->tagset = set;
5051         return 0;
5052
5053 out_free_tag_set:
5054         blk_mq_free_tag_set(set);
5055         ctrl->connect_q = NULL;
5056         return ret;
5057 }
5058 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
5059
5060 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
5061 {
5062         if (ctrl->ops->flags & NVME_F_FABRICS) {
5063                 blk_mq_destroy_queue(ctrl->connect_q);
5064                 blk_put_queue(ctrl->connect_q);
5065         }
5066         blk_mq_free_tag_set(ctrl->tagset);
5067 }
5068 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
5069
5070 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
5071 {
5072         nvme_mpath_stop(ctrl);
5073         nvme_auth_stop(ctrl);
5074         nvme_stop_keep_alive(ctrl);
5075         nvme_stop_failfast_work(ctrl);
5076         flush_work(&ctrl->async_event_work);
5077         cancel_work_sync(&ctrl->fw_act_work);
5078         if (ctrl->ops->stop_ctrl)
5079                 ctrl->ops->stop_ctrl(ctrl);
5080 }
5081 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
5082
5083 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
5084 {
5085         nvme_start_keep_alive(ctrl);
5086
5087         nvme_enable_aen(ctrl);
5088
5089         /*
5090          * persistent discovery controllers need to send indication to userspace
5091          * to re-read the discovery log page to learn about possible changes
5092          * that were missed. We identify persistent discovery controllers by
5093          * checking that they started once before, hence are reconnecting back.
5094          */
5095         if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
5096             nvme_discovery_ctrl(ctrl))
5097                 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
5098
5099         if (ctrl->queue_count > 1) {
5100                 nvme_queue_scan(ctrl);
5101                 nvme_unquiesce_io_queues(ctrl);
5102                 nvme_mpath_update(ctrl);
5103         }
5104
5105         nvme_change_uevent(ctrl, "NVME_EVENT=connected");
5106         set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
5107 }
5108 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5109
5110 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5111 {
5112         nvme_hwmon_exit(ctrl);
5113         nvme_fault_inject_fini(&ctrl->fault_inject);
5114         dev_pm_qos_hide_latency_tolerance(ctrl->device);
5115         cdev_device_del(&ctrl->cdev, ctrl->device);
5116         nvme_put_ctrl(ctrl);
5117 }
5118 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5119
5120 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5121 {
5122         struct nvme_effects_log *cel;
5123         unsigned long i;
5124
5125         xa_for_each(&ctrl->cels, i, cel) {
5126                 xa_erase(&ctrl->cels, i);
5127                 kfree(cel);
5128         }
5129
5130         xa_destroy(&ctrl->cels);
5131 }
5132
5133 static void nvme_free_ctrl(struct device *dev)
5134 {
5135         struct nvme_ctrl *ctrl =
5136                 container_of(dev, struct nvme_ctrl, ctrl_device);
5137         struct nvme_subsystem *subsys = ctrl->subsys;
5138
5139         if (!subsys || ctrl->instance != subsys->instance)
5140                 ida_free(&nvme_instance_ida, ctrl->instance);
5141
5142         nvme_free_cels(ctrl);
5143         nvme_mpath_uninit(ctrl);
5144         nvme_auth_stop(ctrl);
5145         nvme_auth_free(ctrl);
5146         __free_page(ctrl->discard_page);
5147         free_opal_dev(ctrl->opal_dev);
5148
5149         if (subsys) {
5150                 mutex_lock(&nvme_subsystems_lock);
5151                 list_del(&ctrl->subsys_entry);
5152                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5153                 mutex_unlock(&nvme_subsystems_lock);
5154         }
5155
5156         ctrl->ops->free_ctrl(ctrl);
5157
5158         if (subsys)
5159                 nvme_put_subsystem(subsys);
5160 }
5161
5162 /*
5163  * Initialize a NVMe controller structures.  This needs to be called during
5164  * earliest initialization so that we have the initialized structured around
5165  * during probing.
5166  */
5167 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5168                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
5169 {
5170         int ret;
5171
5172         ctrl->state = NVME_CTRL_NEW;
5173         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5174         spin_lock_init(&ctrl->lock);
5175         mutex_init(&ctrl->scan_lock);
5176         INIT_LIST_HEAD(&ctrl->namespaces);
5177         xa_init(&ctrl->cels);
5178         init_rwsem(&ctrl->namespaces_rwsem);
5179         ctrl->dev = dev;
5180         ctrl->ops = ops;
5181         ctrl->quirks = quirks;
5182         ctrl->numa_node = NUMA_NO_NODE;
5183         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5184         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5185         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5186         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5187         init_waitqueue_head(&ctrl->state_wq);
5188
5189         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5190         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5191         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5192         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5193
5194         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5195                         PAGE_SIZE);
5196         ctrl->discard_page = alloc_page(GFP_KERNEL);
5197         if (!ctrl->discard_page) {
5198                 ret = -ENOMEM;
5199                 goto out;
5200         }
5201
5202         ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5203         if (ret < 0)
5204                 goto out;
5205         ctrl->instance = ret;
5206
5207         device_initialize(&ctrl->ctrl_device);
5208         ctrl->device = &ctrl->ctrl_device;
5209         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5210                         ctrl->instance);
5211         ctrl->device->class = nvme_class;
5212         ctrl->device->parent = ctrl->dev;
5213         if (ops->dev_attr_groups)
5214                 ctrl->device->groups = ops->dev_attr_groups;
5215         else
5216                 ctrl->device->groups = nvme_dev_attr_groups;
5217         ctrl->device->release = nvme_free_ctrl;
5218         dev_set_drvdata(ctrl->device, ctrl);
5219         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5220         if (ret)
5221                 goto out_release_instance;
5222
5223         nvme_get_ctrl(ctrl);
5224         cdev_init(&ctrl->cdev, &nvme_dev_fops);
5225         ctrl->cdev.owner = ops->module;
5226         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5227         if (ret)
5228                 goto out_free_name;
5229
5230         /*
5231          * Initialize latency tolerance controls.  The sysfs files won't
5232          * be visible to userspace unless the device actually supports APST.
5233          */
5234         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5235         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5236                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5237
5238         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5239         nvme_mpath_init_ctrl(ctrl);
5240         ret = nvme_auth_init_ctrl(ctrl);
5241         if (ret)
5242                 goto out_free_cdev;
5243
5244         return 0;
5245 out_free_cdev:
5246         cdev_device_del(&ctrl->cdev, ctrl->device);
5247 out_free_name:
5248         nvme_put_ctrl(ctrl);
5249         kfree_const(ctrl->device->kobj.name);
5250 out_release_instance:
5251         ida_free(&nvme_instance_ida, ctrl->instance);
5252 out:
5253         if (ctrl->discard_page)
5254                 __free_page(ctrl->discard_page);
5255         return ret;
5256 }
5257 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5258
5259 /* let I/O to all namespaces fail in preparation for surprise removal */
5260 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5261 {
5262         struct nvme_ns *ns;
5263
5264         down_read(&ctrl->namespaces_rwsem);
5265         list_for_each_entry(ns, &ctrl->namespaces, list)
5266                 blk_mark_disk_dead(ns->disk);
5267         up_read(&ctrl->namespaces_rwsem);
5268 }
5269 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5270
5271 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5272 {
5273         struct nvme_ns *ns;
5274
5275         down_read(&ctrl->namespaces_rwsem);
5276         list_for_each_entry(ns, &ctrl->namespaces, list)
5277                 blk_mq_unfreeze_queue(ns->queue);
5278         up_read(&ctrl->namespaces_rwsem);
5279 }
5280 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5281
5282 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5283 {
5284         struct nvme_ns *ns;
5285
5286         down_read(&ctrl->namespaces_rwsem);
5287         list_for_each_entry(ns, &ctrl->namespaces, list) {
5288                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5289                 if (timeout <= 0)
5290                         break;
5291         }
5292         up_read(&ctrl->namespaces_rwsem);
5293         return timeout;
5294 }
5295 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5296
5297 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5298 {
5299         struct nvme_ns *ns;
5300
5301         down_read(&ctrl->namespaces_rwsem);
5302         list_for_each_entry(ns, &ctrl->namespaces, list)
5303                 blk_mq_freeze_queue_wait(ns->queue);
5304         up_read(&ctrl->namespaces_rwsem);
5305 }
5306 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5307
5308 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5309 {
5310         struct nvme_ns *ns;
5311
5312         down_read(&ctrl->namespaces_rwsem);
5313         list_for_each_entry(ns, &ctrl->namespaces, list)
5314                 blk_freeze_queue_start(ns->queue);
5315         up_read(&ctrl->namespaces_rwsem);
5316 }
5317 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5318
5319 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5320 {
5321         if (!ctrl->tagset)
5322                 return;
5323         if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5324                 blk_mq_quiesce_tagset(ctrl->tagset);
5325         else
5326                 blk_mq_wait_quiesce_done(ctrl->tagset);
5327 }
5328 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5329
5330 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5331 {
5332         if (!ctrl->tagset)
5333                 return;
5334         if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5335                 blk_mq_unquiesce_tagset(ctrl->tagset);
5336 }
5337 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5338
5339 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5340 {
5341         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5342                 blk_mq_quiesce_queue(ctrl->admin_q);
5343         else
5344                 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5345 }
5346 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5347
5348 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5349 {
5350         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5351                 blk_mq_unquiesce_queue(ctrl->admin_q);
5352 }
5353 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5354
5355 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5356 {
5357         struct nvme_ns *ns;
5358
5359         down_read(&ctrl->namespaces_rwsem);
5360         list_for_each_entry(ns, &ctrl->namespaces, list)
5361                 blk_sync_queue(ns->queue);
5362         up_read(&ctrl->namespaces_rwsem);
5363 }
5364 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5365
5366 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5367 {
5368         nvme_sync_io_queues(ctrl);
5369         if (ctrl->admin_q)
5370                 blk_sync_queue(ctrl->admin_q);
5371 }
5372 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5373
5374 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5375 {
5376         if (file->f_op != &nvme_dev_fops)
5377                 return NULL;
5378         return file->private_data;
5379 }
5380 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5381
5382 /*
5383  * Check we didn't inadvertently grow the command structure sizes:
5384  */
5385 static inline void _nvme_check_size(void)
5386 {
5387         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5388         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5389         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5390         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5391         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5392         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5393         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5394         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5395         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5396         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5397         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5398         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5399         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5400         BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5401                         NVME_IDENTIFY_DATA_SIZE);
5402         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5403         BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5404         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5405         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5406         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5407         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5408         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5409         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5410         BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5411 }
5412
5413
5414 static int __init nvme_core_init(void)
5415 {
5416         int result = -ENOMEM;
5417
5418         _nvme_check_size();
5419
5420         nvme_wq = alloc_workqueue("nvme-wq",
5421                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5422         if (!nvme_wq)
5423                 goto out;
5424
5425         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5426                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5427         if (!nvme_reset_wq)
5428                 goto destroy_wq;
5429
5430         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5431                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5432         if (!nvme_delete_wq)
5433                 goto destroy_reset_wq;
5434
5435         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5436                         NVME_MINORS, "nvme");
5437         if (result < 0)
5438                 goto destroy_delete_wq;
5439
5440         nvme_class = class_create("nvme");
5441         if (IS_ERR(nvme_class)) {
5442                 result = PTR_ERR(nvme_class);
5443                 goto unregister_chrdev;
5444         }
5445         nvme_class->dev_uevent = nvme_class_uevent;
5446
5447         nvme_subsys_class = class_create("nvme-subsystem");
5448         if (IS_ERR(nvme_subsys_class)) {
5449                 result = PTR_ERR(nvme_subsys_class);
5450                 goto destroy_class;
5451         }
5452
5453         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5454                                      "nvme-generic");
5455         if (result < 0)
5456                 goto destroy_subsys_class;
5457
5458         nvme_ns_chr_class = class_create("nvme-generic");
5459         if (IS_ERR(nvme_ns_chr_class)) {
5460                 result = PTR_ERR(nvme_ns_chr_class);
5461                 goto unregister_generic_ns;
5462         }
5463
5464         result = nvme_init_auth();
5465         if (result)
5466                 goto destroy_ns_chr;
5467         return 0;
5468
5469 destroy_ns_chr:
5470         class_destroy(nvme_ns_chr_class);
5471 unregister_generic_ns:
5472         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5473 destroy_subsys_class:
5474         class_destroy(nvme_subsys_class);
5475 destroy_class:
5476         class_destroy(nvme_class);
5477 unregister_chrdev:
5478         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5479 destroy_delete_wq:
5480         destroy_workqueue(nvme_delete_wq);
5481 destroy_reset_wq:
5482         destroy_workqueue(nvme_reset_wq);
5483 destroy_wq:
5484         destroy_workqueue(nvme_wq);
5485 out:
5486         return result;
5487 }
5488
5489 static void __exit nvme_core_exit(void)
5490 {
5491         nvme_exit_auth();
5492         class_destroy(nvme_ns_chr_class);
5493         class_destroy(nvme_subsys_class);
5494         class_destroy(nvme_class);
5495         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5496         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5497         destroy_workqueue(nvme_delete_wq);
5498         destroy_workqueue(nvme_reset_wq);
5499         destroy_workqueue(nvme_wq);
5500         ida_destroy(&nvme_ns_chr_minor_ida);
5501         ida_destroy(&nvme_instance_ida);
5502 }
5503
5504 MODULE_LICENSE("GPL");
5505 MODULE_VERSION("1.0");
5506 module_init(nvme_core_init);
5507 module_exit(nvme_core_exit);