Merge branch 'for-4.11/block' into for-4.11/linus-merge
[platform/kernel/linux-rpi.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61
62 static struct class *nvme_class;
63
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66         int status;
67
68         if (!blk_mq_request_started(req))
69                 return;
70
71         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72                                 "Cancelling I/O %d", req->tag);
73
74         status = NVME_SC_ABORT_REQ;
75         if (blk_queue_dying(req->q))
76                 status |= NVME_SC_DNR;
77         blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82                 enum nvme_ctrl_state new_state)
83 {
84         enum nvme_ctrl_state old_state;
85         bool changed = false;
86
87         spin_lock_irq(&ctrl->lock);
88
89         old_state = ctrl->state;
90         switch (new_state) {
91         case NVME_CTRL_LIVE:
92                 switch (old_state) {
93                 case NVME_CTRL_NEW:
94                 case NVME_CTRL_RESETTING:
95                 case NVME_CTRL_RECONNECTING:
96                         changed = true;
97                         /* FALLTHRU */
98                 default:
99                         break;
100                 }
101                 break;
102         case NVME_CTRL_RESETTING:
103                 switch (old_state) {
104                 case NVME_CTRL_NEW:
105                 case NVME_CTRL_LIVE:
106                 case NVME_CTRL_RECONNECTING:
107                         changed = true;
108                         /* FALLTHRU */
109                 default:
110                         break;
111                 }
112                 break;
113         case NVME_CTRL_RECONNECTING:
114                 switch (old_state) {
115                 case NVME_CTRL_LIVE:
116                         changed = true;
117                         /* FALLTHRU */
118                 default:
119                         break;
120                 }
121                 break;
122         case NVME_CTRL_DELETING:
123                 switch (old_state) {
124                 case NVME_CTRL_LIVE:
125                 case NVME_CTRL_RESETTING:
126                 case NVME_CTRL_RECONNECTING:
127                         changed = true;
128                         /* FALLTHRU */
129                 default:
130                         break;
131                 }
132                 break;
133         case NVME_CTRL_DEAD:
134                 switch (old_state) {
135                 case NVME_CTRL_DELETING:
136                         changed = true;
137                         /* FALLTHRU */
138                 default:
139                         break;
140                 }
141                 break;
142         default:
143                 break;
144         }
145
146         if (changed)
147                 ctrl->state = new_state;
148
149         spin_unlock_irq(&ctrl->lock);
150
151         return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154
155 static void nvme_free_ns(struct kref *kref)
156 {
157         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158
159         if (ns->ndev)
160                 nvme_nvm_unregister(ns);
161
162         if (ns->disk) {
163                 spin_lock(&dev_list_lock);
164                 ns->disk->private_data = NULL;
165                 spin_unlock(&dev_list_lock);
166         }
167
168         put_disk(ns->disk);
169         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
170         nvme_put_ctrl(ns->ctrl);
171         kfree(ns);
172 }
173
174 static void nvme_put_ns(struct nvme_ns *ns)
175 {
176         kref_put(&ns->kref, nvme_free_ns);
177 }
178
179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
180 {
181         struct nvme_ns *ns;
182
183         spin_lock(&dev_list_lock);
184         ns = disk->private_data;
185         if (ns) {
186                 if (!kref_get_unless_zero(&ns->kref))
187                         goto fail;
188                 if (!try_module_get(ns->ctrl->ops->module))
189                         goto fail_put_ns;
190         }
191         spin_unlock(&dev_list_lock);
192
193         return ns;
194
195 fail_put_ns:
196         kref_put(&ns->kref, nvme_free_ns);
197 fail:
198         spin_unlock(&dev_list_lock);
199         return NULL;
200 }
201
202 void nvme_requeue_req(struct request *req)
203 {
204         blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
205 }
206 EXPORT_SYMBOL_GPL(nvme_requeue_req);
207
208 struct request *nvme_alloc_request(struct request_queue *q,
209                 struct nvme_command *cmd, unsigned int flags, int qid)
210 {
211         struct request *req;
212
213         if (qid == NVME_QID_ANY) {
214                 req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
215         } else {
216                 req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
217                                 qid ? qid - 1 : 0);
218         }
219         if (IS_ERR(req))
220                 return req;
221
222         req->cmd_type = REQ_TYPE_DRV_PRIV;
223         req->cmd_flags |= REQ_FAILFAST_DRIVER;
224         nvme_req(req)->cmd = cmd;
225
226         return req;
227 }
228 EXPORT_SYMBOL_GPL(nvme_alloc_request);
229
230 static inline void nvme_setup_flush(struct nvme_ns *ns,
231                 struct nvme_command *cmnd)
232 {
233         memset(cmnd, 0, sizeof(*cmnd));
234         cmnd->common.opcode = nvme_cmd_flush;
235         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
236 }
237
238 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
239                 struct nvme_command *cmnd)
240 {
241         struct nvme_dsm_range *range;
242         unsigned int nr_bytes = blk_rq_bytes(req);
243
244         range = kmalloc(sizeof(*range), GFP_ATOMIC);
245         if (!range)
246                 return BLK_MQ_RQ_QUEUE_BUSY;
247
248         range->cattr = cpu_to_le32(0);
249         range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
250         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
251
252         memset(cmnd, 0, sizeof(*cmnd));
253         cmnd->dsm.opcode = nvme_cmd_dsm;
254         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
255         cmnd->dsm.nr = 0;
256         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
257
258         req->special_vec.bv_page = virt_to_page(range);
259         req->special_vec.bv_offset = offset_in_page(range);
260         req->special_vec.bv_len = sizeof(*range);
261         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
262
263         return BLK_MQ_RQ_QUEUE_OK;
264 }
265
266 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
267                 struct nvme_command *cmnd)
268 {
269         u16 control = 0;
270         u32 dsmgmt = 0;
271
272         if (req->cmd_flags & REQ_FUA)
273                 control |= NVME_RW_FUA;
274         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
275                 control |= NVME_RW_LR;
276
277         if (req->cmd_flags & REQ_RAHEAD)
278                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
279
280         memset(cmnd, 0, sizeof(*cmnd));
281         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
282         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
283         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
284         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
285
286         if (ns->ms) {
287                 switch (ns->pi_type) {
288                 case NVME_NS_DPS_PI_TYPE3:
289                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
290                         break;
291                 case NVME_NS_DPS_PI_TYPE1:
292                 case NVME_NS_DPS_PI_TYPE2:
293                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
294                                         NVME_RW_PRINFO_PRCHK_REF;
295                         cmnd->rw.reftag = cpu_to_le32(
296                                         nvme_block_nr(ns, blk_rq_pos(req)));
297                         break;
298                 }
299                 if (!blk_integrity_rq(req))
300                         control |= NVME_RW_PRINFO_PRACT;
301         }
302
303         cmnd->rw.control = cpu_to_le16(control);
304         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
305 }
306
307 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
308                 struct nvme_command *cmd)
309 {
310         int ret = BLK_MQ_RQ_QUEUE_OK;
311
312         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
313                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
314         else if (req_op(req) == REQ_OP_FLUSH)
315                 nvme_setup_flush(ns, cmd);
316         else if (req_op(req) == REQ_OP_DISCARD)
317                 ret = nvme_setup_discard(ns, req, cmd);
318         else
319                 nvme_setup_rw(ns, req, cmd);
320
321         cmd->common.command_id = req->tag;
322
323         return ret;
324 }
325 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
326
327 /*
328  * Returns 0 on success.  If the result is negative, it's a Linux error code;
329  * if the result is positive, it's an NVM Express status code
330  */
331 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
332                 union nvme_result *result, void *buffer, unsigned bufflen,
333                 unsigned timeout, int qid, int at_head, int flags)
334 {
335         struct request *req;
336         int ret;
337
338         req = nvme_alloc_request(q, cmd, flags, qid);
339         if (IS_ERR(req))
340                 return PTR_ERR(req);
341
342         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
343
344         if (buffer && bufflen) {
345                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
346                 if (ret)
347                         goto out;
348         }
349
350         blk_execute_rq(req->q, NULL, req, at_head);
351         if (result)
352                 *result = nvme_req(req)->result;
353         ret = req->errors;
354  out:
355         blk_mq_free_request(req);
356         return ret;
357 }
358 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
359
360 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
361                 void *buffer, unsigned bufflen)
362 {
363         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
364                         NVME_QID_ANY, 0, 0);
365 }
366 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
367
368 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
369                 void __user *ubuffer, unsigned bufflen,
370                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
371                 u32 *result, unsigned timeout)
372 {
373         bool write = nvme_is_write(cmd);
374         struct nvme_ns *ns = q->queuedata;
375         struct gendisk *disk = ns ? ns->disk : NULL;
376         struct request *req;
377         struct bio *bio = NULL;
378         void *meta = NULL;
379         int ret;
380
381         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
382         if (IS_ERR(req))
383                 return PTR_ERR(req);
384
385         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
386
387         if (ubuffer && bufflen) {
388                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
389                                 GFP_KERNEL);
390                 if (ret)
391                         goto out;
392                 bio = req->bio;
393
394                 if (!disk)
395                         goto submit;
396                 bio->bi_bdev = bdget_disk(disk, 0);
397                 if (!bio->bi_bdev) {
398                         ret = -ENODEV;
399                         goto out_unmap;
400                 }
401
402                 if (meta_buffer && meta_len) {
403                         struct bio_integrity_payload *bip;
404
405                         meta = kmalloc(meta_len, GFP_KERNEL);
406                         if (!meta) {
407                                 ret = -ENOMEM;
408                                 goto out_unmap;
409                         }
410
411                         if (write) {
412                                 if (copy_from_user(meta, meta_buffer,
413                                                 meta_len)) {
414                                         ret = -EFAULT;
415                                         goto out_free_meta;
416                                 }
417                         }
418
419                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
420                         if (IS_ERR(bip)) {
421                                 ret = PTR_ERR(bip);
422                                 goto out_free_meta;
423                         }
424
425                         bip->bip_iter.bi_size = meta_len;
426                         bip->bip_iter.bi_sector = meta_seed;
427
428                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
429                                         meta_len, offset_in_page(meta));
430                         if (ret != meta_len) {
431                                 ret = -ENOMEM;
432                                 goto out_free_meta;
433                         }
434                 }
435         }
436  submit:
437         blk_execute_rq(req->q, disk, req, 0);
438         ret = req->errors;
439         if (result)
440                 *result = le32_to_cpu(nvme_req(req)->result.u32);
441         if (meta && !ret && !write) {
442                 if (copy_to_user(meta_buffer, meta, meta_len))
443                         ret = -EFAULT;
444         }
445  out_free_meta:
446         kfree(meta);
447  out_unmap:
448         if (bio) {
449                 if (disk && bio->bi_bdev)
450                         bdput(bio->bi_bdev);
451                 blk_rq_unmap_user(bio);
452         }
453  out:
454         blk_mq_free_request(req);
455         return ret;
456 }
457
458 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
459                 void __user *ubuffer, unsigned bufflen, u32 *result,
460                 unsigned timeout)
461 {
462         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
463                         result, timeout);
464 }
465
466 static void nvme_keep_alive_end_io(struct request *rq, int error)
467 {
468         struct nvme_ctrl *ctrl = rq->end_io_data;
469
470         blk_mq_free_request(rq);
471
472         if (error) {
473                 dev_err(ctrl->device,
474                         "failed nvme_keep_alive_end_io error=%d\n", error);
475                 return;
476         }
477
478         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
479 }
480
481 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
482 {
483         struct nvme_command c;
484         struct request *rq;
485
486         memset(&c, 0, sizeof(c));
487         c.common.opcode = nvme_admin_keep_alive;
488
489         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
490                         NVME_QID_ANY);
491         if (IS_ERR(rq))
492                 return PTR_ERR(rq);
493
494         rq->timeout = ctrl->kato * HZ;
495         rq->end_io_data = ctrl;
496
497         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
498
499         return 0;
500 }
501
502 static void nvme_keep_alive_work(struct work_struct *work)
503 {
504         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
505                         struct nvme_ctrl, ka_work);
506
507         if (nvme_keep_alive(ctrl)) {
508                 /* allocation failure, reset the controller */
509                 dev_err(ctrl->device, "keep-alive failed\n");
510                 ctrl->ops->reset_ctrl(ctrl);
511                 return;
512         }
513 }
514
515 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
516 {
517         if (unlikely(ctrl->kato == 0))
518                 return;
519
520         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
521         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
522 }
523 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
524
525 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
526 {
527         if (unlikely(ctrl->kato == 0))
528                 return;
529
530         cancel_delayed_work_sync(&ctrl->ka_work);
531 }
532 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
533
534 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
535 {
536         struct nvme_command c = { };
537         int error;
538
539         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
540         c.identify.opcode = nvme_admin_identify;
541         c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
542
543         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
544         if (!*id)
545                 return -ENOMEM;
546
547         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
548                         sizeof(struct nvme_id_ctrl));
549         if (error)
550                 kfree(*id);
551         return error;
552 }
553
554 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
555 {
556         struct nvme_command c = { };
557
558         c.identify.opcode = nvme_admin_identify;
559         c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
560         c.identify.nsid = cpu_to_le32(nsid);
561         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
562 }
563
564 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
565                 struct nvme_id_ns **id)
566 {
567         struct nvme_command c = { };
568         int error;
569
570         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
571         c.identify.opcode = nvme_admin_identify,
572         c.identify.nsid = cpu_to_le32(nsid),
573
574         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
575         if (!*id)
576                 return -ENOMEM;
577
578         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
579                         sizeof(struct nvme_id_ns));
580         if (error)
581                 kfree(*id);
582         return error;
583 }
584
585 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
586                       void *buffer, size_t buflen, u32 *result)
587 {
588         struct nvme_command c;
589         union nvme_result res;
590         int ret;
591
592         memset(&c, 0, sizeof(c));
593         c.features.opcode = nvme_admin_get_features;
594         c.features.nsid = cpu_to_le32(nsid);
595         c.features.fid = cpu_to_le32(fid);
596
597         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
598                         NVME_QID_ANY, 0, 0);
599         if (ret >= 0 && result)
600                 *result = le32_to_cpu(res.u32);
601         return ret;
602 }
603
604 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
605                       void *buffer, size_t buflen, u32 *result)
606 {
607         struct nvme_command c;
608         union nvme_result res;
609         int ret;
610
611         memset(&c, 0, sizeof(c));
612         c.features.opcode = nvme_admin_set_features;
613         c.features.fid = cpu_to_le32(fid);
614         c.features.dword11 = cpu_to_le32(dword11);
615
616         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
617                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
618         if (ret >= 0 && result)
619                 *result = le32_to_cpu(res.u32);
620         return ret;
621 }
622
623 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
624 {
625         struct nvme_command c = { };
626         int error;
627
628         c.common.opcode = nvme_admin_get_log_page,
629         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
630         c.common.cdw10[0] = cpu_to_le32(
631                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
632                          NVME_LOG_SMART),
633
634         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
635         if (!*log)
636                 return -ENOMEM;
637
638         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
639                         sizeof(struct nvme_smart_log));
640         if (error)
641                 kfree(*log);
642         return error;
643 }
644
645 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
646 {
647         u32 q_count = (*count - 1) | ((*count - 1) << 16);
648         u32 result;
649         int status, nr_io_queues;
650
651         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
652                         &result);
653         if (status < 0)
654                 return status;
655
656         /*
657          * Degraded controllers might return an error when setting the queue
658          * count.  We still want to be able to bring them online and offer
659          * access to the admin queue, as that might be only way to fix them up.
660          */
661         if (status > 0) {
662                 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
663                 *count = 0;
664         } else {
665                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
666                 *count = min(*count, nr_io_queues);
667         }
668
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
672
673 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
674 {
675         struct nvme_user_io io;
676         struct nvme_command c;
677         unsigned length, meta_len;
678         void __user *metadata;
679
680         if (copy_from_user(&io, uio, sizeof(io)))
681                 return -EFAULT;
682         if (io.flags)
683                 return -EINVAL;
684
685         switch (io.opcode) {
686         case nvme_cmd_write:
687         case nvme_cmd_read:
688         case nvme_cmd_compare:
689                 break;
690         default:
691                 return -EINVAL;
692         }
693
694         length = (io.nblocks + 1) << ns->lba_shift;
695         meta_len = (io.nblocks + 1) * ns->ms;
696         metadata = (void __user *)(uintptr_t)io.metadata;
697
698         if (ns->ext) {
699                 length += meta_len;
700                 meta_len = 0;
701         } else if (meta_len) {
702                 if ((io.metadata & 3) || !io.metadata)
703                         return -EINVAL;
704         }
705
706         memset(&c, 0, sizeof(c));
707         c.rw.opcode = io.opcode;
708         c.rw.flags = io.flags;
709         c.rw.nsid = cpu_to_le32(ns->ns_id);
710         c.rw.slba = cpu_to_le64(io.slba);
711         c.rw.length = cpu_to_le16(io.nblocks);
712         c.rw.control = cpu_to_le16(io.control);
713         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
714         c.rw.reftag = cpu_to_le32(io.reftag);
715         c.rw.apptag = cpu_to_le16(io.apptag);
716         c.rw.appmask = cpu_to_le16(io.appmask);
717
718         return __nvme_submit_user_cmd(ns->queue, &c,
719                         (void __user *)(uintptr_t)io.addr, length,
720                         metadata, meta_len, io.slba, NULL, 0);
721 }
722
723 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
724                         struct nvme_passthru_cmd __user *ucmd)
725 {
726         struct nvme_passthru_cmd cmd;
727         struct nvme_command c;
728         unsigned timeout = 0;
729         int status;
730
731         if (!capable(CAP_SYS_ADMIN))
732                 return -EACCES;
733         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
734                 return -EFAULT;
735         if (cmd.flags)
736                 return -EINVAL;
737
738         memset(&c, 0, sizeof(c));
739         c.common.opcode = cmd.opcode;
740         c.common.flags = cmd.flags;
741         c.common.nsid = cpu_to_le32(cmd.nsid);
742         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
743         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
744         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
745         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
746         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
747         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
748         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
749         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
750
751         if (cmd.timeout_ms)
752                 timeout = msecs_to_jiffies(cmd.timeout_ms);
753
754         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
755                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
756                         &cmd.result, timeout);
757         if (status >= 0) {
758                 if (put_user(cmd.result, &ucmd->result))
759                         return -EFAULT;
760         }
761
762         return status;
763 }
764
765 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
766                 unsigned int cmd, unsigned long arg)
767 {
768         struct nvme_ns *ns = bdev->bd_disk->private_data;
769
770         switch (cmd) {
771         case NVME_IOCTL_ID:
772                 force_successful_syscall_return();
773                 return ns->ns_id;
774         case NVME_IOCTL_ADMIN_CMD:
775                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
776         case NVME_IOCTL_IO_CMD:
777                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
778         case NVME_IOCTL_SUBMIT_IO:
779                 return nvme_submit_io(ns, (void __user *)arg);
780 #ifdef CONFIG_BLK_DEV_NVME_SCSI
781         case SG_GET_VERSION_NUM:
782                 return nvme_sg_get_version_num((void __user *)arg);
783         case SG_IO:
784                 return nvme_sg_io(ns, (void __user *)arg);
785 #endif
786         default:
787 #ifdef CONFIG_NVM
788                 if (ns->ndev)
789                         return nvme_nvm_ioctl(ns, cmd, arg);
790 #endif
791                 if (is_sed_ioctl(cmd))
792                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
793                                          (void __user *) arg);
794                 return -ENOTTY;
795         }
796 }
797
798 #ifdef CONFIG_COMPAT
799 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
800                         unsigned int cmd, unsigned long arg)
801 {
802         switch (cmd) {
803         case SG_IO:
804                 return -ENOIOCTLCMD;
805         }
806         return nvme_ioctl(bdev, mode, cmd, arg);
807 }
808 #else
809 #define nvme_compat_ioctl       NULL
810 #endif
811
812 static int nvme_open(struct block_device *bdev, fmode_t mode)
813 {
814         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
815 }
816
817 static void nvme_release(struct gendisk *disk, fmode_t mode)
818 {
819         struct nvme_ns *ns = disk->private_data;
820
821         module_put(ns->ctrl->ops->module);
822         nvme_put_ns(ns);
823 }
824
825 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
826 {
827         /* some standard values */
828         geo->heads = 1 << 6;
829         geo->sectors = 1 << 5;
830         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
831         return 0;
832 }
833
834 #ifdef CONFIG_BLK_DEV_INTEGRITY
835 static void nvme_init_integrity(struct nvme_ns *ns)
836 {
837         struct blk_integrity integrity;
838
839         memset(&integrity, 0, sizeof(integrity));
840         switch (ns->pi_type) {
841         case NVME_NS_DPS_PI_TYPE3:
842                 integrity.profile = &t10_pi_type3_crc;
843                 integrity.tag_size = sizeof(u16) + sizeof(u32);
844                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
845                 break;
846         case NVME_NS_DPS_PI_TYPE1:
847         case NVME_NS_DPS_PI_TYPE2:
848                 integrity.profile = &t10_pi_type1_crc;
849                 integrity.tag_size = sizeof(u16);
850                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
851                 break;
852         default:
853                 integrity.profile = NULL;
854                 break;
855         }
856         integrity.tuple_size = ns->ms;
857         blk_integrity_register(ns->disk, &integrity);
858         blk_queue_max_integrity_segments(ns->queue, 1);
859 }
860 #else
861 static void nvme_init_integrity(struct nvme_ns *ns)
862 {
863 }
864 #endif /* CONFIG_BLK_DEV_INTEGRITY */
865
866 static void nvme_config_discard(struct nvme_ns *ns)
867 {
868         struct nvme_ctrl *ctrl = ns->ctrl;
869         u32 logical_block_size = queue_logical_block_size(ns->queue);
870
871         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
872                 ns->queue->limits.discard_zeroes_data = 1;
873         else
874                 ns->queue->limits.discard_zeroes_data = 0;
875
876         ns->queue->limits.discard_alignment = logical_block_size;
877         ns->queue->limits.discard_granularity = logical_block_size;
878         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
879         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
880 }
881
882 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
883 {
884         if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
885                 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
886                 return -ENODEV;
887         }
888
889         if ((*id)->ncap == 0) {
890                 kfree(*id);
891                 return -ENODEV;
892         }
893
894         if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
895                 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
896         if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
897                 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
898
899         return 0;
900 }
901
902 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
903 {
904         struct nvme_ns *ns = disk->private_data;
905         u8 lbaf, pi_type;
906         u16 old_ms;
907         unsigned short bs;
908
909         old_ms = ns->ms;
910         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
911         ns->lba_shift = id->lbaf[lbaf].ds;
912         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
913         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
914
915         /*
916          * If identify namespace failed, use default 512 byte block size so
917          * block layer can use before failing read/write for 0 capacity.
918          */
919         if (ns->lba_shift == 0)
920                 ns->lba_shift = 9;
921         bs = 1 << ns->lba_shift;
922         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
923         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
924                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
925
926         blk_mq_freeze_queue(disk->queue);
927         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
928                                 ns->ms != old_ms ||
929                                 bs != queue_logical_block_size(disk->queue) ||
930                                 (ns->ms && ns->ext)))
931                 blk_integrity_unregister(disk);
932
933         ns->pi_type = pi_type;
934         blk_queue_logical_block_size(ns->queue, bs);
935
936         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
937                 nvme_init_integrity(ns);
938         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
939                 set_capacity(disk, 0);
940         else
941                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
942
943         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
944                 nvme_config_discard(ns);
945         blk_mq_unfreeze_queue(disk->queue);
946 }
947
948 static int nvme_revalidate_disk(struct gendisk *disk)
949 {
950         struct nvme_ns *ns = disk->private_data;
951         struct nvme_id_ns *id = NULL;
952         int ret;
953
954         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
955                 set_capacity(disk, 0);
956                 return -ENODEV;
957         }
958
959         ret = nvme_revalidate_ns(ns, &id);
960         if (ret)
961                 return ret;
962
963         __nvme_revalidate_disk(disk, id);
964         kfree(id);
965
966         return 0;
967 }
968
969 static char nvme_pr_type(enum pr_type type)
970 {
971         switch (type) {
972         case PR_WRITE_EXCLUSIVE:
973                 return 1;
974         case PR_EXCLUSIVE_ACCESS:
975                 return 2;
976         case PR_WRITE_EXCLUSIVE_REG_ONLY:
977                 return 3;
978         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
979                 return 4;
980         case PR_WRITE_EXCLUSIVE_ALL_REGS:
981                 return 5;
982         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
983                 return 6;
984         default:
985                 return 0;
986         }
987 };
988
989 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
990                                 u64 key, u64 sa_key, u8 op)
991 {
992         struct nvme_ns *ns = bdev->bd_disk->private_data;
993         struct nvme_command c;
994         u8 data[16] = { 0, };
995
996         put_unaligned_le64(key, &data[0]);
997         put_unaligned_le64(sa_key, &data[8]);
998
999         memset(&c, 0, sizeof(c));
1000         c.common.opcode = op;
1001         c.common.nsid = cpu_to_le32(ns->ns_id);
1002         c.common.cdw10[0] = cpu_to_le32(cdw10);
1003
1004         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1005 }
1006
1007 static int nvme_pr_register(struct block_device *bdev, u64 old,
1008                 u64 new, unsigned flags)
1009 {
1010         u32 cdw10;
1011
1012         if (flags & ~PR_FL_IGNORE_KEY)
1013                 return -EOPNOTSUPP;
1014
1015         cdw10 = old ? 2 : 0;
1016         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1017         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1018         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1019 }
1020
1021 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1022                 enum pr_type type, unsigned flags)
1023 {
1024         u32 cdw10;
1025
1026         if (flags & ~PR_FL_IGNORE_KEY)
1027                 return -EOPNOTSUPP;
1028
1029         cdw10 = nvme_pr_type(type) << 8;
1030         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1031         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1032 }
1033
1034 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1035                 enum pr_type type, bool abort)
1036 {
1037         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1038         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1039 }
1040
1041 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1042 {
1043         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1044         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1045 }
1046
1047 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1048 {
1049         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1050         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1051 }
1052
1053 static const struct pr_ops nvme_pr_ops = {
1054         .pr_register    = nvme_pr_register,
1055         .pr_reserve     = nvme_pr_reserve,
1056         .pr_release     = nvme_pr_release,
1057         .pr_preempt     = nvme_pr_preempt,
1058         .pr_clear       = nvme_pr_clear,
1059 };
1060
1061 #ifdef CONFIG_BLK_SED_OPAL
1062 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1063                 bool send)
1064 {
1065         struct nvme_ctrl *ctrl = data;
1066         struct nvme_command cmd;
1067
1068         memset(&cmd, 0, sizeof(cmd));
1069         if (send)
1070                 cmd.common.opcode = nvme_admin_security_send;
1071         else
1072                 cmd.common.opcode = nvme_admin_security_recv;
1073         cmd.common.nsid = 0;
1074         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1075         cmd.common.cdw10[1] = cpu_to_le32(len);
1076
1077         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1078                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1081 #endif /* CONFIG_BLK_SED_OPAL */
1082
1083 static const struct block_device_operations nvme_fops = {
1084         .owner          = THIS_MODULE,
1085         .ioctl          = nvme_ioctl,
1086         .compat_ioctl   = nvme_compat_ioctl,
1087         .open           = nvme_open,
1088         .release        = nvme_release,
1089         .getgeo         = nvme_getgeo,
1090         .revalidate_disk= nvme_revalidate_disk,
1091         .pr_ops         = &nvme_pr_ops,
1092 };
1093
1094 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1095 {
1096         unsigned long timeout =
1097                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1098         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1099         int ret;
1100
1101         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1102                 if (csts == ~0)
1103                         return -ENODEV;
1104                 if ((csts & NVME_CSTS_RDY) == bit)
1105                         break;
1106
1107                 msleep(100);
1108                 if (fatal_signal_pending(current))
1109                         return -EINTR;
1110                 if (time_after(jiffies, timeout)) {
1111                         dev_err(ctrl->device,
1112                                 "Device not ready; aborting %s\n", enabled ?
1113                                                 "initialisation" : "reset");
1114                         return -ENODEV;
1115                 }
1116         }
1117
1118         return ret;
1119 }
1120
1121 /*
1122  * If the device has been passed off to us in an enabled state, just clear
1123  * the enabled bit.  The spec says we should set the 'shutdown notification
1124  * bits', but doing so may cause the device to complete commands to the
1125  * admin queue ... and we don't know what memory that might be pointing at!
1126  */
1127 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1128 {
1129         int ret;
1130
1131         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1132         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1133
1134         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1135         if (ret)
1136                 return ret;
1137
1138         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1139                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1140
1141         return nvme_wait_ready(ctrl, cap, false);
1142 }
1143 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1144
1145 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1146 {
1147         /*
1148          * Default to a 4K page size, with the intention to update this
1149          * path in the future to accomodate architectures with differing
1150          * kernel and IO page sizes.
1151          */
1152         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1153         int ret;
1154
1155         if (page_shift < dev_page_min) {
1156                 dev_err(ctrl->device,
1157                         "Minimum device page size %u too large for host (%u)\n",
1158                         1 << dev_page_min, 1 << page_shift);
1159                 return -ENODEV;
1160         }
1161
1162         ctrl->page_size = 1 << page_shift;
1163
1164         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1165         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1166         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1167         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1168         ctrl->ctrl_config |= NVME_CC_ENABLE;
1169
1170         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1171         if (ret)
1172                 return ret;
1173         return nvme_wait_ready(ctrl, cap, true);
1174 }
1175 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1176
1177 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1178 {
1179         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1180         u32 csts;
1181         int ret;
1182
1183         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1184         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1185
1186         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1187         if (ret)
1188                 return ret;
1189
1190         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1191                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1192                         break;
1193
1194                 msleep(100);
1195                 if (fatal_signal_pending(current))
1196                         return -EINTR;
1197                 if (time_after(jiffies, timeout)) {
1198                         dev_err(ctrl->device,
1199                                 "Device shutdown incomplete; abort shutdown\n");
1200                         return -ENODEV;
1201                 }
1202         }
1203
1204         return ret;
1205 }
1206 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1207
1208 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1209                 struct request_queue *q)
1210 {
1211         bool vwc = false;
1212
1213         if (ctrl->max_hw_sectors) {
1214                 u32 max_segments =
1215                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1216
1217                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1218                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1219         }
1220         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1221                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1222         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1223         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1224                 vwc = true;
1225         blk_queue_write_cache(q, vwc, vwc);
1226 }
1227
1228 /*
1229  * Initialize the cached copies of the Identify data and various controller
1230  * register in our nvme_ctrl structure.  This should be called as soon as
1231  * the admin queue is fully up and running.
1232  */
1233 int nvme_init_identify(struct nvme_ctrl *ctrl)
1234 {
1235         struct nvme_id_ctrl *id;
1236         u64 cap;
1237         int ret, page_shift;
1238         u32 max_hw_sectors;
1239
1240         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1241         if (ret) {
1242                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1243                 return ret;
1244         }
1245
1246         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1247         if (ret) {
1248                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1249                 return ret;
1250         }
1251         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1252
1253         if (ctrl->vs >= NVME_VS(1, 1, 0))
1254                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1255
1256         ret = nvme_identify_ctrl(ctrl, &id);
1257         if (ret) {
1258                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1259                 return -EIO;
1260         }
1261
1262         ctrl->oacs = le16_to_cpu(id->oacs);
1263         ctrl->vid = le16_to_cpu(id->vid);
1264         ctrl->oncs = le16_to_cpup(&id->oncs);
1265         atomic_set(&ctrl->abort_limit, id->acl + 1);
1266         ctrl->vwc = id->vwc;
1267         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1268         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1269         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1270         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1271         if (id->mdts)
1272                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1273         else
1274                 max_hw_sectors = UINT_MAX;
1275         ctrl->max_hw_sectors =
1276                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1277
1278         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1279         ctrl->sgls = le32_to_cpu(id->sgls);
1280         ctrl->kas = le16_to_cpu(id->kas);
1281
1282         if (ctrl->ops->is_fabrics) {
1283                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1284                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1285                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1286                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1287
1288                 /*
1289                  * In fabrics we need to verify the cntlid matches the
1290                  * admin connect
1291                  */
1292                 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1293                         ret = -EINVAL;
1294
1295                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1296                         dev_err(ctrl->dev,
1297                                 "keep-alive support is mandatory for fabrics\n");
1298                         ret = -EINVAL;
1299                 }
1300         } else {
1301                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1302         }
1303
1304         kfree(id);
1305         return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(nvme_init_identify);
1308
1309 static int nvme_dev_open(struct inode *inode, struct file *file)
1310 {
1311         struct nvme_ctrl *ctrl;
1312         int instance = iminor(inode);
1313         int ret = -ENODEV;
1314
1315         spin_lock(&dev_list_lock);
1316         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1317                 if (ctrl->instance != instance)
1318                         continue;
1319
1320                 if (!ctrl->admin_q) {
1321                         ret = -EWOULDBLOCK;
1322                         break;
1323                 }
1324                 if (!kref_get_unless_zero(&ctrl->kref))
1325                         break;
1326                 file->private_data = ctrl;
1327                 ret = 0;
1328                 break;
1329         }
1330         spin_unlock(&dev_list_lock);
1331
1332         return ret;
1333 }
1334
1335 static int nvme_dev_release(struct inode *inode, struct file *file)
1336 {
1337         nvme_put_ctrl(file->private_data);
1338         return 0;
1339 }
1340
1341 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1342 {
1343         struct nvme_ns *ns;
1344         int ret;
1345
1346         mutex_lock(&ctrl->namespaces_mutex);
1347         if (list_empty(&ctrl->namespaces)) {
1348                 ret = -ENOTTY;
1349                 goto out_unlock;
1350         }
1351
1352         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1353         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1354                 dev_warn(ctrl->device,
1355                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1356                 ret = -EINVAL;
1357                 goto out_unlock;
1358         }
1359
1360         dev_warn(ctrl->device,
1361                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1362         kref_get(&ns->kref);
1363         mutex_unlock(&ctrl->namespaces_mutex);
1364
1365         ret = nvme_user_cmd(ctrl, ns, argp);
1366         nvme_put_ns(ns);
1367         return ret;
1368
1369 out_unlock:
1370         mutex_unlock(&ctrl->namespaces_mutex);
1371         return ret;
1372 }
1373
1374 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1375                 unsigned long arg)
1376 {
1377         struct nvme_ctrl *ctrl = file->private_data;
1378         void __user *argp = (void __user *)arg;
1379
1380         switch (cmd) {
1381         case NVME_IOCTL_ADMIN_CMD:
1382                 return nvme_user_cmd(ctrl, NULL, argp);
1383         case NVME_IOCTL_IO_CMD:
1384                 return nvme_dev_user_cmd(ctrl, argp);
1385         case NVME_IOCTL_RESET:
1386                 dev_warn(ctrl->device, "resetting controller\n");
1387                 return ctrl->ops->reset_ctrl(ctrl);
1388         case NVME_IOCTL_SUBSYS_RESET:
1389                 return nvme_reset_subsystem(ctrl);
1390         case NVME_IOCTL_RESCAN:
1391                 nvme_queue_scan(ctrl);
1392                 return 0;
1393         default:
1394                 return -ENOTTY;
1395         }
1396 }
1397
1398 static const struct file_operations nvme_dev_fops = {
1399         .owner          = THIS_MODULE,
1400         .open           = nvme_dev_open,
1401         .release        = nvme_dev_release,
1402         .unlocked_ioctl = nvme_dev_ioctl,
1403         .compat_ioctl   = nvme_dev_ioctl,
1404 };
1405
1406 static ssize_t nvme_sysfs_reset(struct device *dev,
1407                                 struct device_attribute *attr, const char *buf,
1408                                 size_t count)
1409 {
1410         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1411         int ret;
1412
1413         ret = ctrl->ops->reset_ctrl(ctrl);
1414         if (ret < 0)
1415                 return ret;
1416         return count;
1417 }
1418 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1419
1420 static ssize_t nvme_sysfs_rescan(struct device *dev,
1421                                 struct device_attribute *attr, const char *buf,
1422                                 size_t count)
1423 {
1424         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1425
1426         nvme_queue_scan(ctrl);
1427         return count;
1428 }
1429 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1430
1431 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1432                                                                 char *buf)
1433 {
1434         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1435         struct nvme_ctrl *ctrl = ns->ctrl;
1436         int serial_len = sizeof(ctrl->serial);
1437         int model_len = sizeof(ctrl->model);
1438
1439         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1440                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1441
1442         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1443                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1444
1445         while (ctrl->serial[serial_len - 1] == ' ')
1446                 serial_len--;
1447         while (ctrl->model[model_len - 1] == ' ')
1448                 model_len--;
1449
1450         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1451                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1452 }
1453 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1454
1455 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1456                                                                 char *buf)
1457 {
1458         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1459         return sprintf(buf, "%pU\n", ns->uuid);
1460 }
1461 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1462
1463 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1464                                                                 char *buf)
1465 {
1466         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1467         return sprintf(buf, "%8phd\n", ns->eui);
1468 }
1469 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1470
1471 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1472                                                                 char *buf)
1473 {
1474         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1475         return sprintf(buf, "%d\n", ns->ns_id);
1476 }
1477 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1478
1479 static struct attribute *nvme_ns_attrs[] = {
1480         &dev_attr_wwid.attr,
1481         &dev_attr_uuid.attr,
1482         &dev_attr_eui.attr,
1483         &dev_attr_nsid.attr,
1484         NULL,
1485 };
1486
1487 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1488                 struct attribute *a, int n)
1489 {
1490         struct device *dev = container_of(kobj, struct device, kobj);
1491         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1492
1493         if (a == &dev_attr_uuid.attr) {
1494                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1495                         return 0;
1496         }
1497         if (a == &dev_attr_eui.attr) {
1498                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1499                         return 0;
1500         }
1501         return a->mode;
1502 }
1503
1504 static const struct attribute_group nvme_ns_attr_group = {
1505         .attrs          = nvme_ns_attrs,
1506         .is_visible     = nvme_ns_attrs_are_visible,
1507 };
1508
1509 #define nvme_show_str_function(field)                                           \
1510 static ssize_t  field##_show(struct device *dev,                                \
1511                             struct device_attribute *attr, char *buf)           \
1512 {                                                                               \
1513         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1514         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1515 }                                                                               \
1516 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1517
1518 #define nvme_show_int_function(field)                                           \
1519 static ssize_t  field##_show(struct device *dev,                                \
1520                             struct device_attribute *attr, char *buf)           \
1521 {                                                                               \
1522         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1523         return sprintf(buf, "%d\n", ctrl->field);       \
1524 }                                                                               \
1525 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1526
1527 nvme_show_str_function(model);
1528 nvme_show_str_function(serial);
1529 nvme_show_str_function(firmware_rev);
1530 nvme_show_int_function(cntlid);
1531
1532 static ssize_t nvme_sysfs_delete(struct device *dev,
1533                                 struct device_attribute *attr, const char *buf,
1534                                 size_t count)
1535 {
1536         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1537
1538         if (device_remove_file_self(dev, attr))
1539                 ctrl->ops->delete_ctrl(ctrl);
1540         return count;
1541 }
1542 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1543
1544 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1545                                          struct device_attribute *attr,
1546                                          char *buf)
1547 {
1548         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1549
1550         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1551 }
1552 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1553
1554 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1555                                          struct device_attribute *attr,
1556                                          char *buf)
1557 {
1558         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1559
1560         return snprintf(buf, PAGE_SIZE, "%s\n",
1561                         ctrl->ops->get_subsysnqn(ctrl));
1562 }
1563 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1564
1565 static ssize_t nvme_sysfs_show_address(struct device *dev,
1566                                          struct device_attribute *attr,
1567                                          char *buf)
1568 {
1569         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1570
1571         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1572 }
1573 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1574
1575 static struct attribute *nvme_dev_attrs[] = {
1576         &dev_attr_reset_controller.attr,
1577         &dev_attr_rescan_controller.attr,
1578         &dev_attr_model.attr,
1579         &dev_attr_serial.attr,
1580         &dev_attr_firmware_rev.attr,
1581         &dev_attr_cntlid.attr,
1582         &dev_attr_delete_controller.attr,
1583         &dev_attr_transport.attr,
1584         &dev_attr_subsysnqn.attr,
1585         &dev_attr_address.attr,
1586         NULL
1587 };
1588
1589 #define CHECK_ATTR(ctrl, a, name)               \
1590         if ((a) == &dev_attr_##name.attr &&     \
1591             !(ctrl)->ops->get_##name)           \
1592                 return 0
1593
1594 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1595                 struct attribute *a, int n)
1596 {
1597         struct device *dev = container_of(kobj, struct device, kobj);
1598         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1599
1600         if (a == &dev_attr_delete_controller.attr) {
1601                 if (!ctrl->ops->delete_ctrl)
1602                         return 0;
1603         }
1604
1605         CHECK_ATTR(ctrl, a, subsysnqn);
1606         CHECK_ATTR(ctrl, a, address);
1607
1608         return a->mode;
1609 }
1610
1611 static struct attribute_group nvme_dev_attrs_group = {
1612         .attrs          = nvme_dev_attrs,
1613         .is_visible     = nvme_dev_attrs_are_visible,
1614 };
1615
1616 static const struct attribute_group *nvme_dev_attr_groups[] = {
1617         &nvme_dev_attrs_group,
1618         NULL,
1619 };
1620
1621 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1622 {
1623         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1624         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1625
1626         return nsa->ns_id - nsb->ns_id;
1627 }
1628
1629 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1630 {
1631         struct nvme_ns *ns, *ret = NULL;
1632
1633         mutex_lock(&ctrl->namespaces_mutex);
1634         list_for_each_entry(ns, &ctrl->namespaces, list) {
1635                 if (ns->ns_id == nsid) {
1636                         kref_get(&ns->kref);
1637                         ret = ns;
1638                         break;
1639                 }
1640                 if (ns->ns_id > nsid)
1641                         break;
1642         }
1643         mutex_unlock(&ctrl->namespaces_mutex);
1644         return ret;
1645 }
1646
1647 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1648 {
1649         struct nvme_ns *ns;
1650         struct gendisk *disk;
1651         struct nvme_id_ns *id;
1652         char disk_name[DISK_NAME_LEN];
1653         int node = dev_to_node(ctrl->dev);
1654
1655         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1656         if (!ns)
1657                 return;
1658
1659         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1660         if (ns->instance < 0)
1661                 goto out_free_ns;
1662
1663         ns->queue = blk_mq_init_queue(ctrl->tagset);
1664         if (IS_ERR(ns->queue))
1665                 goto out_release_instance;
1666         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1667         ns->queue->queuedata = ns;
1668         ns->ctrl = ctrl;
1669
1670         kref_init(&ns->kref);
1671         ns->ns_id = nsid;
1672         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1673
1674         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1675         nvme_set_queue_limits(ctrl, ns->queue);
1676
1677         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1678
1679         if (nvme_revalidate_ns(ns, &id))
1680                 goto out_free_queue;
1681
1682         if (nvme_nvm_ns_supported(ns, id) &&
1683                                 nvme_nvm_register(ns, disk_name, node)) {
1684                 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1685                 goto out_free_id;
1686         }
1687
1688         disk = alloc_disk_node(0, node);
1689         if (!disk)
1690                 goto out_free_id;
1691
1692         disk->fops = &nvme_fops;
1693         disk->private_data = ns;
1694         disk->queue = ns->queue;
1695         disk->flags = GENHD_FL_EXT_DEVT;
1696         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1697         ns->disk = disk;
1698
1699         __nvme_revalidate_disk(disk, id);
1700
1701         mutex_lock(&ctrl->namespaces_mutex);
1702         list_add_tail(&ns->list, &ctrl->namespaces);
1703         mutex_unlock(&ctrl->namespaces_mutex);
1704
1705         kref_get(&ctrl->kref);
1706
1707         kfree(id);
1708
1709         device_add_disk(ctrl->device, ns->disk);
1710         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1711                                         &nvme_ns_attr_group))
1712                 pr_warn("%s: failed to create sysfs group for identification\n",
1713                         ns->disk->disk_name);
1714         if (ns->ndev && nvme_nvm_register_sysfs(ns))
1715                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
1716                         ns->disk->disk_name);
1717         return;
1718  out_free_id:
1719         kfree(id);
1720  out_free_queue:
1721         blk_cleanup_queue(ns->queue);
1722  out_release_instance:
1723         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1724  out_free_ns:
1725         kfree(ns);
1726 }
1727
1728 static void nvme_ns_remove(struct nvme_ns *ns)
1729 {
1730         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1731                 return;
1732
1733         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1734                 if (blk_get_integrity(ns->disk))
1735                         blk_integrity_unregister(ns->disk);
1736                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1737                                         &nvme_ns_attr_group);
1738                 if (ns->ndev)
1739                         nvme_nvm_unregister_sysfs(ns);
1740                 del_gendisk(ns->disk);
1741                 blk_mq_abort_requeue_list(ns->queue);
1742                 blk_cleanup_queue(ns->queue);
1743         }
1744
1745         mutex_lock(&ns->ctrl->namespaces_mutex);
1746         list_del_init(&ns->list);
1747         mutex_unlock(&ns->ctrl->namespaces_mutex);
1748
1749         nvme_put_ns(ns);
1750 }
1751
1752 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1753 {
1754         struct nvme_ns *ns;
1755
1756         ns = nvme_find_get_ns(ctrl, nsid);
1757         if (ns) {
1758                 if (ns->disk && revalidate_disk(ns->disk))
1759                         nvme_ns_remove(ns);
1760                 nvme_put_ns(ns);
1761         } else
1762                 nvme_alloc_ns(ctrl, nsid);
1763 }
1764
1765 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1766                                         unsigned nsid)
1767 {
1768         struct nvme_ns *ns, *next;
1769
1770         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1771                 if (ns->ns_id > nsid)
1772                         nvme_ns_remove(ns);
1773         }
1774 }
1775
1776 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1777 {
1778         struct nvme_ns *ns;
1779         __le32 *ns_list;
1780         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1781         int ret = 0;
1782
1783         ns_list = kzalloc(0x1000, GFP_KERNEL);
1784         if (!ns_list)
1785                 return -ENOMEM;
1786
1787         for (i = 0; i < num_lists; i++) {
1788                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1789                 if (ret)
1790                         goto free;
1791
1792                 for (j = 0; j < min(nn, 1024U); j++) {
1793                         nsid = le32_to_cpu(ns_list[j]);
1794                         if (!nsid)
1795                                 goto out;
1796
1797                         nvme_validate_ns(ctrl, nsid);
1798
1799                         while (++prev < nsid) {
1800                                 ns = nvme_find_get_ns(ctrl, prev);
1801                                 if (ns) {
1802                                         nvme_ns_remove(ns);
1803                                         nvme_put_ns(ns);
1804                                 }
1805                         }
1806                 }
1807                 nn -= j;
1808         }
1809  out:
1810         nvme_remove_invalid_namespaces(ctrl, prev);
1811  free:
1812         kfree(ns_list);
1813         return ret;
1814 }
1815
1816 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1817 {
1818         unsigned i;
1819
1820         for (i = 1; i <= nn; i++)
1821                 nvme_validate_ns(ctrl, i);
1822
1823         nvme_remove_invalid_namespaces(ctrl, nn);
1824 }
1825
1826 static void nvme_scan_work(struct work_struct *work)
1827 {
1828         struct nvme_ctrl *ctrl =
1829                 container_of(work, struct nvme_ctrl, scan_work);
1830         struct nvme_id_ctrl *id;
1831         unsigned nn;
1832
1833         if (ctrl->state != NVME_CTRL_LIVE)
1834                 return;
1835
1836         if (nvme_identify_ctrl(ctrl, &id))
1837                 return;
1838
1839         nn = le32_to_cpu(id->nn);
1840         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1841             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1842                 if (!nvme_scan_ns_list(ctrl, nn))
1843                         goto done;
1844         }
1845         nvme_scan_ns_sequential(ctrl, nn);
1846  done:
1847         mutex_lock(&ctrl->namespaces_mutex);
1848         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1849         mutex_unlock(&ctrl->namespaces_mutex);
1850         kfree(id);
1851 }
1852
1853 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1854 {
1855         /*
1856          * Do not queue new scan work when a controller is reset during
1857          * removal.
1858          */
1859         if (ctrl->state == NVME_CTRL_LIVE)
1860                 schedule_work(&ctrl->scan_work);
1861 }
1862 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1863
1864 /*
1865  * This function iterates the namespace list unlocked to allow recovery from
1866  * controller failure. It is up to the caller to ensure the namespace list is
1867  * not modified by scan work while this function is executing.
1868  */
1869 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1870 {
1871         struct nvme_ns *ns, *next;
1872
1873         /*
1874          * The dead states indicates the controller was not gracefully
1875          * disconnected. In that case, we won't be able to flush any data while
1876          * removing the namespaces' disks; fail all the queues now to avoid
1877          * potentially having to clean up the failed sync later.
1878          */
1879         if (ctrl->state == NVME_CTRL_DEAD)
1880                 nvme_kill_queues(ctrl);
1881
1882         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1883                 nvme_ns_remove(ns);
1884 }
1885 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1886
1887 static void nvme_async_event_work(struct work_struct *work)
1888 {
1889         struct nvme_ctrl *ctrl =
1890                 container_of(work, struct nvme_ctrl, async_event_work);
1891
1892         spin_lock_irq(&ctrl->lock);
1893         while (ctrl->event_limit > 0) {
1894                 int aer_idx = --ctrl->event_limit;
1895
1896                 spin_unlock_irq(&ctrl->lock);
1897                 ctrl->ops->submit_async_event(ctrl, aer_idx);
1898                 spin_lock_irq(&ctrl->lock);
1899         }
1900         spin_unlock_irq(&ctrl->lock);
1901 }
1902
1903 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
1904                 union nvme_result *res)
1905 {
1906         u32 result = le32_to_cpu(res->u32);
1907         bool done = true;
1908
1909         switch (le16_to_cpu(status) >> 1) {
1910         case NVME_SC_SUCCESS:
1911                 done = false;
1912                 /*FALLTHRU*/
1913         case NVME_SC_ABORT_REQ:
1914                 ++ctrl->event_limit;
1915                 schedule_work(&ctrl->async_event_work);
1916                 break;
1917         default:
1918                 break;
1919         }
1920
1921         if (done)
1922                 return;
1923
1924         switch (result & 0xff07) {
1925         case NVME_AER_NOTICE_NS_CHANGED:
1926                 dev_info(ctrl->device, "rescanning\n");
1927                 nvme_queue_scan(ctrl);
1928                 break;
1929         default:
1930                 dev_warn(ctrl->device, "async event result %08x\n", result);
1931         }
1932 }
1933 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1934
1935 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1936 {
1937         ctrl->event_limit = NVME_NR_AERS;
1938         schedule_work(&ctrl->async_event_work);
1939 }
1940 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1941
1942 static DEFINE_IDA(nvme_instance_ida);
1943
1944 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1945 {
1946         int instance, error;
1947
1948         do {
1949                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1950                         return -ENODEV;
1951
1952                 spin_lock(&dev_list_lock);
1953                 error = ida_get_new(&nvme_instance_ida, &instance);
1954                 spin_unlock(&dev_list_lock);
1955         } while (error == -EAGAIN);
1956
1957         if (error)
1958                 return -ENODEV;
1959
1960         ctrl->instance = instance;
1961         return 0;
1962 }
1963
1964 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1965 {
1966         spin_lock(&dev_list_lock);
1967         ida_remove(&nvme_instance_ida, ctrl->instance);
1968         spin_unlock(&dev_list_lock);
1969 }
1970
1971 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1972 {
1973         flush_work(&ctrl->async_event_work);
1974         flush_work(&ctrl->scan_work);
1975         nvme_remove_namespaces(ctrl);
1976
1977         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1978
1979         spin_lock(&dev_list_lock);
1980         list_del(&ctrl->node);
1981         spin_unlock(&dev_list_lock);
1982 }
1983 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1984
1985 static void nvme_free_ctrl(struct kref *kref)
1986 {
1987         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1988
1989         put_device(ctrl->device);
1990         nvme_release_instance(ctrl);
1991         ida_destroy(&ctrl->ns_ida);
1992
1993         ctrl->ops->free_ctrl(ctrl);
1994 }
1995
1996 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1997 {
1998         kref_put(&ctrl->kref, nvme_free_ctrl);
1999 }
2000 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2001
2002 /*
2003  * Initialize a NVMe controller structures.  This needs to be called during
2004  * earliest initialization so that we have the initialized structured around
2005  * during probing.
2006  */
2007 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2008                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2009 {
2010         int ret;
2011
2012         ctrl->state = NVME_CTRL_NEW;
2013         spin_lock_init(&ctrl->lock);
2014         INIT_LIST_HEAD(&ctrl->namespaces);
2015         mutex_init(&ctrl->namespaces_mutex);
2016         kref_init(&ctrl->kref);
2017         ctrl->dev = dev;
2018         ctrl->ops = ops;
2019         ctrl->quirks = quirks;
2020         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2021         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2022
2023         ret = nvme_set_instance(ctrl);
2024         if (ret)
2025                 goto out;
2026
2027         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2028                                 MKDEV(nvme_char_major, ctrl->instance),
2029                                 ctrl, nvme_dev_attr_groups,
2030                                 "nvme%d", ctrl->instance);
2031         if (IS_ERR(ctrl->device)) {
2032                 ret = PTR_ERR(ctrl->device);
2033                 goto out_release_instance;
2034         }
2035         get_device(ctrl->device);
2036         ida_init(&ctrl->ns_ida);
2037
2038         spin_lock(&dev_list_lock);
2039         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2040         spin_unlock(&dev_list_lock);
2041
2042         return 0;
2043 out_release_instance:
2044         nvme_release_instance(ctrl);
2045 out:
2046         return ret;
2047 }
2048 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2049
2050 /**
2051  * nvme_kill_queues(): Ends all namespace queues
2052  * @ctrl: the dead controller that needs to end
2053  *
2054  * Call this function when the driver determines it is unable to get the
2055  * controller in a state capable of servicing IO.
2056  */
2057 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2058 {
2059         struct nvme_ns *ns;
2060
2061         mutex_lock(&ctrl->namespaces_mutex);
2062         list_for_each_entry(ns, &ctrl->namespaces, list) {
2063                 /*
2064                  * Revalidating a dead namespace sets capacity to 0. This will
2065                  * end buffered writers dirtying pages that can't be synced.
2066                  */
2067                 if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2068                         revalidate_disk(ns->disk);
2069
2070                 blk_set_queue_dying(ns->queue);
2071                 blk_mq_abort_requeue_list(ns->queue);
2072                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2073         }
2074         mutex_unlock(&ctrl->namespaces_mutex);
2075 }
2076 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2077
2078 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2079 {
2080         struct nvme_ns *ns;
2081
2082         mutex_lock(&ctrl->namespaces_mutex);
2083         list_for_each_entry(ns, &ctrl->namespaces, list)
2084                 blk_mq_quiesce_queue(ns->queue);
2085         mutex_unlock(&ctrl->namespaces_mutex);
2086 }
2087 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2088
2089 void nvme_start_queues(struct nvme_ctrl *ctrl)
2090 {
2091         struct nvme_ns *ns;
2092
2093         mutex_lock(&ctrl->namespaces_mutex);
2094         list_for_each_entry(ns, &ctrl->namespaces, list) {
2095                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2096                 blk_mq_kick_requeue_list(ns->queue);
2097         }
2098         mutex_unlock(&ctrl->namespaces_mutex);
2099 }
2100 EXPORT_SYMBOL_GPL(nvme_start_queues);
2101
2102 int __init nvme_core_init(void)
2103 {
2104         int result;
2105
2106         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2107                                                         &nvme_dev_fops);
2108         if (result < 0)
2109                 return result;
2110         else if (result > 0)
2111                 nvme_char_major = result;
2112
2113         nvme_class = class_create(THIS_MODULE, "nvme");
2114         if (IS_ERR(nvme_class)) {
2115                 result = PTR_ERR(nvme_class);
2116                 goto unregister_chrdev;
2117         }
2118
2119         return 0;
2120
2121  unregister_chrdev:
2122         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2123         return result;
2124 }
2125
2126 void nvme_core_exit(void)
2127 {
2128         class_destroy(nvme_class);
2129         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2130 }
2131
2132 MODULE_LICENSE("GPL");
2133 MODULE_VERSION("1.0");
2134 module_init(nvme_core_init);
2135 module_exit(nvme_core_exit);