2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
26 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
29 #include <linux/io-64-nonatomic-hi-lo.h>
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 struct nd_region_data *ndrd)
39 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
42 struct resource *res = &nvdimm->flush_wpq[i];
43 unsigned long pfn = PHYS_PFN(res->start);
44 void __iomem *flush_page;
46 /* check if flush hints share a page */
47 for (j = 0; j < i; j++) {
48 struct resource *res_j = &nvdimm->flush_wpq[j];
49 unsigned long pfn_j = PHYS_PFN(res_j->start);
56 flush_page = (void __iomem *) ((unsigned long)
57 ndrd_get_flush_wpq(ndrd, dimm, j)
60 flush_page = devm_nvdimm_ioremap(dev,
61 PFN_PHYS(pfn), PAGE_SIZE);
64 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
65 + (res->start & ~PAGE_MASK));
71 int nd_region_activate(struct nd_region *nd_region)
73 int i, j, num_flush = 0;
74 struct nd_region_data *ndrd;
75 struct device *dev = &nd_region->dev;
76 size_t flush_data_size = sizeof(void *);
78 nvdimm_bus_lock(&nd_region->dev);
79 for (i = 0; i < nd_region->ndr_mappings; i++) {
80 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
81 struct nvdimm *nvdimm = nd_mapping->nvdimm;
83 /* at least one null hint slot per-dimm for the "no-hint" case */
84 flush_data_size += sizeof(void *);
85 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
86 if (!nvdimm->num_flush)
88 flush_data_size += nvdimm->num_flush * sizeof(void *);
90 nvdimm_bus_unlock(&nd_region->dev);
92 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
95 dev_set_drvdata(dev, ndrd);
100 ndrd->hints_shift = ilog2(num_flush);
101 for (i = 0; i < nd_region->ndr_mappings; i++) {
102 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103 struct nvdimm *nvdimm = nd_mapping->nvdimm;
104 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
111 * Clear out entries that are duplicates. This should prevent the
114 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
115 /* ignore if NULL already */
116 if (!ndrd_get_flush_wpq(ndrd, i, 0))
119 for (j = i + 1; j < nd_region->ndr_mappings; j++)
120 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
121 ndrd_get_flush_wpq(ndrd, j, 0))
122 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
128 static void nd_region_release(struct device *dev)
130 struct nd_region *nd_region = to_nd_region(dev);
133 for (i = 0; i < nd_region->ndr_mappings; i++) {
134 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
135 struct nvdimm *nvdimm = nd_mapping->nvdimm;
137 put_device(&nvdimm->dev);
139 free_percpu(nd_region->lane);
140 ida_simple_remove(®ion_ida, nd_region->id);
142 kfree(to_nd_blk_region(dev));
147 static struct device_type nd_blk_device_type = {
149 .release = nd_region_release,
152 static struct device_type nd_pmem_device_type = {
154 .release = nd_region_release,
157 static struct device_type nd_volatile_device_type = {
158 .name = "nd_volatile",
159 .release = nd_region_release,
162 bool is_nd_pmem(struct device *dev)
164 return dev ? dev->type == &nd_pmem_device_type : false;
167 bool is_nd_blk(struct device *dev)
169 return dev ? dev->type == &nd_blk_device_type : false;
172 struct nd_region *to_nd_region(struct device *dev)
174 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
176 WARN_ON(dev->type->release != nd_region_release);
179 EXPORT_SYMBOL_GPL(to_nd_region);
181 struct nd_blk_region *to_nd_blk_region(struct device *dev)
183 struct nd_region *nd_region = to_nd_region(dev);
185 WARN_ON(!is_nd_blk(dev));
186 return container_of(nd_region, struct nd_blk_region, nd_region);
188 EXPORT_SYMBOL_GPL(to_nd_blk_region);
190 void *nd_region_provider_data(struct nd_region *nd_region)
192 return nd_region->provider_data;
194 EXPORT_SYMBOL_GPL(nd_region_provider_data);
196 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
198 return ndbr->blk_provider_data;
200 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
202 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
204 ndbr->blk_provider_data = data;
206 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
209 * nd_region_to_nstype() - region to an integer namespace type
210 * @nd_region: region-device to interrogate
212 * This is the 'nstype' attribute of a region as well, an input to the
213 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
214 * namespace devices with namespace drivers.
216 int nd_region_to_nstype(struct nd_region *nd_region)
218 if (is_nd_pmem(&nd_region->dev)) {
221 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
222 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
223 struct nvdimm *nvdimm = nd_mapping->nvdimm;
225 if (test_bit(NDD_ALIASING, &nvdimm->flags))
229 return ND_DEVICE_NAMESPACE_PMEM;
231 return ND_DEVICE_NAMESPACE_IO;
232 } else if (is_nd_blk(&nd_region->dev)) {
233 return ND_DEVICE_NAMESPACE_BLK;
238 EXPORT_SYMBOL(nd_region_to_nstype);
240 static ssize_t size_show(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct nd_region *nd_region = to_nd_region(dev);
244 unsigned long long size = 0;
246 if (is_nd_pmem(dev)) {
247 size = nd_region->ndr_size;
248 } else if (nd_region->ndr_mappings == 1) {
249 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
251 size = nd_mapping->size;
254 return sprintf(buf, "%llu\n", size);
256 static DEVICE_ATTR_RO(size);
258 static ssize_t deep_flush_show(struct device *dev,
259 struct device_attribute *attr, char *buf)
261 struct nd_region *nd_region = to_nd_region(dev);
264 * NOTE: in the nvdimm_has_flush() error case this attribute is
267 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
270 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
271 const char *buf, size_t len)
274 int rc = strtobool(buf, &flush);
275 struct nd_region *nd_region = to_nd_region(dev);
281 nvdimm_flush(nd_region);
285 static DEVICE_ATTR_RW(deep_flush);
287 static ssize_t mappings_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
290 struct nd_region *nd_region = to_nd_region(dev);
292 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
294 static DEVICE_ATTR_RO(mappings);
296 static ssize_t nstype_show(struct device *dev,
297 struct device_attribute *attr, char *buf)
299 struct nd_region *nd_region = to_nd_region(dev);
301 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
303 static DEVICE_ATTR_RO(nstype);
305 static ssize_t set_cookie_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
308 struct nd_region *nd_region = to_nd_region(dev);
309 struct nd_interleave_set *nd_set = nd_region->nd_set;
311 if (is_nd_pmem(dev) && nd_set)
312 /* pass, should be precluded by region_visible */;
316 return sprintf(buf, "%#llx\n", nd_set->cookie);
318 static DEVICE_ATTR_RO(set_cookie);
320 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
322 resource_size_t blk_max_overlap = 0, available, overlap;
325 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
329 overlap = blk_max_overlap;
330 for (i = 0; i < nd_region->ndr_mappings; i++) {
331 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
332 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
334 /* if a dimm is disabled the available capacity is zero */
338 if (is_nd_pmem(&nd_region->dev)) {
339 available += nd_pmem_available_dpa(nd_region,
340 nd_mapping, &overlap);
341 if (overlap > blk_max_overlap) {
342 blk_max_overlap = overlap;
345 } else if (is_nd_blk(&nd_region->dev))
346 available += nd_blk_available_dpa(nd_region);
352 static ssize_t available_size_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
355 struct nd_region *nd_region = to_nd_region(dev);
356 unsigned long long available = 0;
359 * Flush in-flight updates and grab a snapshot of the available
360 * size. Of course, this value is potentially invalidated the
361 * memory nvdimm_bus_lock() is dropped, but that's userspace's
362 * problem to not race itself.
364 nvdimm_bus_lock(dev);
365 wait_nvdimm_bus_probe_idle(dev);
366 available = nd_region_available_dpa(nd_region);
367 nvdimm_bus_unlock(dev);
369 return sprintf(buf, "%llu\n", available);
371 static DEVICE_ATTR_RO(available_size);
373 static ssize_t init_namespaces_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
376 struct nd_region_data *ndrd = dev_get_drvdata(dev);
379 nvdimm_bus_lock(dev);
381 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
384 nvdimm_bus_unlock(dev);
388 static DEVICE_ATTR_RO(init_namespaces);
390 static ssize_t namespace_seed_show(struct device *dev,
391 struct device_attribute *attr, char *buf)
393 struct nd_region *nd_region = to_nd_region(dev);
396 nvdimm_bus_lock(dev);
397 if (nd_region->ns_seed)
398 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
400 rc = sprintf(buf, "\n");
401 nvdimm_bus_unlock(dev);
404 static DEVICE_ATTR_RO(namespace_seed);
406 static ssize_t btt_seed_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
409 struct nd_region *nd_region = to_nd_region(dev);
412 nvdimm_bus_lock(dev);
413 if (nd_region->btt_seed)
414 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
416 rc = sprintf(buf, "\n");
417 nvdimm_bus_unlock(dev);
421 static DEVICE_ATTR_RO(btt_seed);
423 static ssize_t pfn_seed_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
426 struct nd_region *nd_region = to_nd_region(dev);
429 nvdimm_bus_lock(dev);
430 if (nd_region->pfn_seed)
431 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
433 rc = sprintf(buf, "\n");
434 nvdimm_bus_unlock(dev);
438 static DEVICE_ATTR_RO(pfn_seed);
440 static ssize_t dax_seed_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
443 struct nd_region *nd_region = to_nd_region(dev);
446 nvdimm_bus_lock(dev);
447 if (nd_region->dax_seed)
448 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
450 rc = sprintf(buf, "\n");
451 nvdimm_bus_unlock(dev);
455 static DEVICE_ATTR_RO(dax_seed);
457 static ssize_t read_only_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
460 struct nd_region *nd_region = to_nd_region(dev);
462 return sprintf(buf, "%d\n", nd_region->ro);
465 static ssize_t read_only_store(struct device *dev,
466 struct device_attribute *attr, const char *buf, size_t len)
469 int rc = strtobool(buf, &ro);
470 struct nd_region *nd_region = to_nd_region(dev);
478 static DEVICE_ATTR_RW(read_only);
480 static ssize_t region_badblocks_show(struct device *dev,
481 struct device_attribute *attr, char *buf)
483 struct nd_region *nd_region = to_nd_region(dev);
485 return badblocks_show(&nd_region->bb, buf, 0);
488 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
490 static ssize_t resource_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
493 struct nd_region *nd_region = to_nd_region(dev);
495 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
497 static DEVICE_ATTR_RO(resource);
499 static struct attribute *nd_region_attributes[] = {
501 &dev_attr_nstype.attr,
502 &dev_attr_mappings.attr,
503 &dev_attr_btt_seed.attr,
504 &dev_attr_pfn_seed.attr,
505 &dev_attr_dax_seed.attr,
506 &dev_attr_deep_flush.attr,
507 &dev_attr_read_only.attr,
508 &dev_attr_set_cookie.attr,
509 &dev_attr_available_size.attr,
510 &dev_attr_namespace_seed.attr,
511 &dev_attr_init_namespaces.attr,
512 &dev_attr_badblocks.attr,
513 &dev_attr_resource.attr,
517 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
519 struct device *dev = container_of(kobj, typeof(*dev), kobj);
520 struct nd_region *nd_region = to_nd_region(dev);
521 struct nd_interleave_set *nd_set = nd_region->nd_set;
522 int type = nd_region_to_nstype(nd_region);
524 if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
527 if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
530 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
533 if (!is_nd_pmem(dev) && a == &dev_attr_resource.attr)
536 if (a == &dev_attr_deep_flush.attr) {
537 int has_flush = nvdimm_has_flush(nd_region);
541 else if (has_flush == 0)
547 if (a != &dev_attr_set_cookie.attr
548 && a != &dev_attr_available_size.attr)
551 if ((type == ND_DEVICE_NAMESPACE_PMEM
552 || type == ND_DEVICE_NAMESPACE_BLK)
553 && a == &dev_attr_available_size.attr)
555 else if (is_nd_pmem(dev) && nd_set)
561 struct attribute_group nd_region_attribute_group = {
562 .attrs = nd_region_attributes,
563 .is_visible = region_visible,
565 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
567 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
569 struct nd_interleave_set *nd_set = nd_region->nd_set;
572 return nd_set->cookie;
576 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
578 struct nd_interleave_set *nd_set = nd_region->nd_set;
581 return nd_set->altcookie;
585 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
587 struct nd_label_ent *label_ent, *e;
589 lockdep_assert_held(&nd_mapping->lock);
590 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
591 list_del(&label_ent->list);
597 * Upon successful probe/remove, take/release a reference on the
598 * associated interleave set (if present), and plant new btt + namespace
599 * seeds. Also, on the removal of a BLK region, notify the provider to
600 * disable the region.
602 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
603 struct device *dev, bool probe)
605 struct nd_region *nd_region;
607 if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
610 nd_region = to_nd_region(dev);
611 for (i = 0; i < nd_region->ndr_mappings; i++) {
612 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
613 struct nvdimm_drvdata *ndd = nd_mapping->ndd;
614 struct nvdimm *nvdimm = nd_mapping->nvdimm;
616 mutex_lock(&nd_mapping->lock);
617 nd_mapping_free_labels(nd_mapping);
618 mutex_unlock(&nd_mapping->lock);
621 nd_mapping->ndd = NULL;
623 atomic_dec(&nvdimm->busy);
629 if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
631 nd_region = to_nd_region(dev->parent);
632 nvdimm_bus_lock(dev);
633 if (nd_region->ns_seed == dev)
634 nd_region_create_ns_seed(nd_region);
635 nvdimm_bus_unlock(dev);
637 if (is_nd_btt(dev) && probe) {
638 struct nd_btt *nd_btt = to_nd_btt(dev);
640 nd_region = to_nd_region(dev->parent);
641 nvdimm_bus_lock(dev);
642 if (nd_region->btt_seed == dev)
643 nd_region_create_btt_seed(nd_region);
644 if (nd_region->ns_seed == &nd_btt->ndns->dev)
645 nd_region_create_ns_seed(nd_region);
646 nvdimm_bus_unlock(dev);
648 if (is_nd_pfn(dev) && probe) {
649 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
651 nd_region = to_nd_region(dev->parent);
652 nvdimm_bus_lock(dev);
653 if (nd_region->pfn_seed == dev)
654 nd_region_create_pfn_seed(nd_region);
655 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
656 nd_region_create_ns_seed(nd_region);
657 nvdimm_bus_unlock(dev);
659 if (is_nd_dax(dev) && probe) {
660 struct nd_dax *nd_dax = to_nd_dax(dev);
662 nd_region = to_nd_region(dev->parent);
663 nvdimm_bus_lock(dev);
664 if (nd_region->dax_seed == dev)
665 nd_region_create_dax_seed(nd_region);
666 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
667 nd_region_create_ns_seed(nd_region);
668 nvdimm_bus_unlock(dev);
672 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
674 nd_region_notify_driver_action(nvdimm_bus, dev, true);
677 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
679 nd_region_notify_driver_action(nvdimm_bus, dev, false);
682 static ssize_t mappingN(struct device *dev, char *buf, int n)
684 struct nd_region *nd_region = to_nd_region(dev);
685 struct nd_mapping *nd_mapping;
686 struct nvdimm *nvdimm;
688 if (n >= nd_region->ndr_mappings)
690 nd_mapping = &nd_region->mapping[n];
691 nvdimm = nd_mapping->nvdimm;
693 return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
694 nd_mapping->start, nd_mapping->size);
697 #define REGION_MAPPING(idx) \
698 static ssize_t mapping##idx##_show(struct device *dev, \
699 struct device_attribute *attr, char *buf) \
701 return mappingN(dev, buf, idx); \
703 static DEVICE_ATTR_RO(mapping##idx)
706 * 32 should be enough for a while, even in the presence of socket
707 * interleave a 32-way interleave set is a degenerate case.
742 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
744 struct device *dev = container_of(kobj, struct device, kobj);
745 struct nd_region *nd_region = to_nd_region(dev);
747 if (n < nd_region->ndr_mappings)
752 static struct attribute *mapping_attributes[] = {
753 &dev_attr_mapping0.attr,
754 &dev_attr_mapping1.attr,
755 &dev_attr_mapping2.attr,
756 &dev_attr_mapping3.attr,
757 &dev_attr_mapping4.attr,
758 &dev_attr_mapping5.attr,
759 &dev_attr_mapping6.attr,
760 &dev_attr_mapping7.attr,
761 &dev_attr_mapping8.attr,
762 &dev_attr_mapping9.attr,
763 &dev_attr_mapping10.attr,
764 &dev_attr_mapping11.attr,
765 &dev_attr_mapping12.attr,
766 &dev_attr_mapping13.attr,
767 &dev_attr_mapping14.attr,
768 &dev_attr_mapping15.attr,
769 &dev_attr_mapping16.attr,
770 &dev_attr_mapping17.attr,
771 &dev_attr_mapping18.attr,
772 &dev_attr_mapping19.attr,
773 &dev_attr_mapping20.attr,
774 &dev_attr_mapping21.attr,
775 &dev_attr_mapping22.attr,
776 &dev_attr_mapping23.attr,
777 &dev_attr_mapping24.attr,
778 &dev_attr_mapping25.attr,
779 &dev_attr_mapping26.attr,
780 &dev_attr_mapping27.attr,
781 &dev_attr_mapping28.attr,
782 &dev_attr_mapping29.attr,
783 &dev_attr_mapping30.attr,
784 &dev_attr_mapping31.attr,
788 struct attribute_group nd_mapping_attribute_group = {
789 .is_visible = mapping_visible,
790 .attrs = mapping_attributes,
792 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
794 int nd_blk_region_init(struct nd_region *nd_region)
796 struct device *dev = &nd_region->dev;
797 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
802 if (nd_region->ndr_mappings < 1) {
803 dev_err(dev, "invalid BLK region\n");
807 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
811 * nd_region_acquire_lane - allocate and lock a lane
812 * @nd_region: region id and number of lanes possible
814 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
815 * We optimize for the common case where there are 256 lanes, one
816 * per-cpu. For larger systems we need to lock to share lanes. For now
817 * this implementation assumes the cost of maintaining an allocator for
818 * free lanes is on the order of the lock hold time, so it implements a
819 * static lane = cpu % num_lanes mapping.
821 * In the case of a BTT instance on top of a BLK namespace a lane may be
822 * acquired recursively. We lock on the first instance.
824 * In the case of a BTT instance on top of PMEM, we only acquire a lane
825 * for the BTT metadata updates.
827 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
829 unsigned int cpu, lane;
832 if (nd_region->num_lanes < nr_cpu_ids) {
833 struct nd_percpu_lane *ndl_lock, *ndl_count;
835 lane = cpu % nd_region->num_lanes;
836 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
837 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
838 if (ndl_count->count++ == 0)
839 spin_lock(&ndl_lock->lock);
845 EXPORT_SYMBOL(nd_region_acquire_lane);
847 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
849 if (nd_region->num_lanes < nr_cpu_ids) {
850 unsigned int cpu = get_cpu();
851 struct nd_percpu_lane *ndl_lock, *ndl_count;
853 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
854 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
855 if (--ndl_count->count == 0)
856 spin_unlock(&ndl_lock->lock);
861 EXPORT_SYMBOL(nd_region_release_lane);
863 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
864 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
867 struct nd_region *nd_region;
873 for (i = 0; i < ndr_desc->num_mappings; i++) {
874 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
875 struct nvdimm *nvdimm = mapping->nvdimm;
877 if ((mapping->start | mapping->size) % SZ_4K) {
878 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
879 caller, dev_name(&nvdimm->dev), i);
884 if (test_bit(NDD_UNARMED, &nvdimm->flags))
888 if (dev_type == &nd_blk_device_type) {
889 struct nd_blk_region_desc *ndbr_desc;
890 struct nd_blk_region *ndbr;
892 ndbr_desc = to_blk_region_desc(ndr_desc);
893 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
894 * ndr_desc->num_mappings,
897 nd_region = &ndbr->nd_region;
898 ndbr->enable = ndbr_desc->enable;
899 ndbr->do_io = ndbr_desc->do_io;
903 nd_region = kzalloc(sizeof(struct nd_region)
904 + sizeof(struct nd_mapping)
905 * ndr_desc->num_mappings,
907 region_buf = nd_region;
912 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL);
913 if (nd_region->id < 0)
916 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
917 if (!nd_region->lane)
920 for (i = 0; i < nr_cpu_ids; i++) {
921 struct nd_percpu_lane *ndl;
923 ndl = per_cpu_ptr(nd_region->lane, i);
924 spin_lock_init(&ndl->lock);
928 for (i = 0; i < ndr_desc->num_mappings; i++) {
929 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
930 struct nvdimm *nvdimm = mapping->nvdimm;
932 nd_region->mapping[i].nvdimm = nvdimm;
933 nd_region->mapping[i].start = mapping->start;
934 nd_region->mapping[i].size = mapping->size;
935 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
936 mutex_init(&nd_region->mapping[i].lock);
938 get_device(&nvdimm->dev);
940 nd_region->ndr_mappings = ndr_desc->num_mappings;
941 nd_region->provider_data = ndr_desc->provider_data;
942 nd_region->nd_set = ndr_desc->nd_set;
943 nd_region->num_lanes = ndr_desc->num_lanes;
944 nd_region->flags = ndr_desc->flags;
946 nd_region->numa_node = ndr_desc->numa_node;
947 ida_init(&nd_region->ns_ida);
948 ida_init(&nd_region->btt_ida);
949 ida_init(&nd_region->pfn_ida);
950 ida_init(&nd_region->dax_ida);
951 dev = &nd_region->dev;
952 dev_set_name(dev, "region%d", nd_region->id);
953 dev->parent = &nvdimm_bus->dev;
954 dev->type = dev_type;
955 dev->groups = ndr_desc->attr_groups;
956 nd_region->ndr_size = resource_size(ndr_desc->res);
957 nd_region->ndr_start = ndr_desc->res->start;
958 nd_device_register(dev);
963 ida_simple_remove(®ion_ida, nd_region->id);
969 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
970 struct nd_region_desc *ndr_desc)
972 ndr_desc->num_lanes = ND_MAX_LANES;
973 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
976 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
978 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
979 struct nd_region_desc *ndr_desc)
981 if (ndr_desc->num_mappings > 1)
983 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
984 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
987 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
989 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
990 struct nd_region_desc *ndr_desc)
992 ndr_desc->num_lanes = ND_MAX_LANES;
993 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
996 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
999 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1000 * @nd_region: blk or interleaved pmem region
1002 void nvdimm_flush(struct nd_region *nd_region)
1004 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1008 * Try to encourage some diversity in flush hint addresses
1009 * across cpus assuming a limited number of flush hints.
1011 idx = this_cpu_read(flush_idx);
1012 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1015 * The first wmb() is needed to 'sfence' all previous writes
1016 * such that they are architecturally visible for the platform
1017 * buffer flush. Note that we've already arranged for pmem
1018 * writes to avoid the cache via arch_memcpy_to_pmem(). The
1019 * final wmb() ensures ordering for the NVDIMM flush write.
1022 for (i = 0; i < nd_region->ndr_mappings; i++)
1023 if (ndrd_get_flush_wpq(ndrd, i, 0))
1024 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1027 EXPORT_SYMBOL_GPL(nvdimm_flush);
1030 * nvdimm_has_flush - determine write flushing requirements
1031 * @nd_region: blk or interleaved pmem region
1033 * Returns 1 if writes require flushing
1034 * Returns 0 if writes do not require flushing
1035 * Returns -ENXIO if flushing capability can not be determined
1037 int nvdimm_has_flush(struct nd_region *nd_region)
1041 /* no nvdimm == flushing capability unknown */
1042 if (nd_region->ndr_mappings == 0)
1045 for (i = 0; i < nd_region->ndr_mappings; i++) {
1046 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1047 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1049 /* flush hints present / available */
1050 if (nvdimm->num_flush)
1055 * The platform defines dimm devices without hints, assume
1056 * platform persistence mechanism like ADR
1060 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1062 void __exit nd_region_devs_exit(void)
1064 ida_destroy(®ion_ida);