Merge tag 'libnvdimm-for-4.19_misc' of gitolite.kernel.org:pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include <linux/backing-dev.h>
35 #include "pmem.h"
36 #include "pfn.h"
37 #include "nd.h"
38 #include "nd-core.h"
39
40 static struct device *to_dev(struct pmem_device *pmem)
41 {
42         /*
43          * nvdimm bus services need a 'dev' parameter, and we record the device
44          * at init in bb.dev.
45          */
46         return pmem->bb.dev;
47 }
48
49 static struct nd_region *to_region(struct pmem_device *pmem)
50 {
51         return to_nd_region(to_dev(pmem)->parent);
52 }
53
54 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
55                 phys_addr_t offset, unsigned int len)
56 {
57         struct device *dev = to_dev(pmem);
58         sector_t sector;
59         long cleared;
60         blk_status_t rc = BLK_STS_OK;
61
62         sector = (offset - pmem->data_offset) / 512;
63
64         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
65         if (cleared < len)
66                 rc = BLK_STS_IOERR;
67         if (cleared > 0 && cleared / 512) {
68                 cleared /= 512;
69                 dev_dbg(dev, "%#llx clear %ld sector%s\n",
70                                 (unsigned long long) sector, cleared,
71                                 cleared > 1 ? "s" : "");
72                 badblocks_clear(&pmem->bb, sector, cleared);
73                 if (pmem->bb_state)
74                         sysfs_notify_dirent(pmem->bb_state);
75         }
76
77         arch_invalidate_pmem(pmem->virt_addr + offset, len);
78
79         return rc;
80 }
81
82 static void write_pmem(void *pmem_addr, struct page *page,
83                 unsigned int off, unsigned int len)
84 {
85         unsigned int chunk;
86         void *mem;
87
88         while (len) {
89                 mem = kmap_atomic(page);
90                 chunk = min_t(unsigned int, len, PAGE_SIZE);
91                 memcpy_flushcache(pmem_addr, mem + off, chunk);
92                 kunmap_atomic(mem);
93                 len -= chunk;
94                 off = 0;
95                 page++;
96                 pmem_addr += PAGE_SIZE;
97         }
98 }
99
100 static blk_status_t read_pmem(struct page *page, unsigned int off,
101                 void *pmem_addr, unsigned int len)
102 {
103         unsigned int chunk;
104         unsigned long rem;
105         void *mem;
106
107         while (len) {
108                 mem = kmap_atomic(page);
109                 chunk = min_t(unsigned int, len, PAGE_SIZE);
110                 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
111                 kunmap_atomic(mem);
112                 if (rem)
113                         return BLK_STS_IOERR;
114                 len -= chunk;
115                 off = 0;
116                 page++;
117                 pmem_addr += PAGE_SIZE;
118         }
119         return BLK_STS_OK;
120 }
121
122 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
123                         unsigned int len, unsigned int off, unsigned int op,
124                         sector_t sector)
125 {
126         blk_status_t rc = BLK_STS_OK;
127         bool bad_pmem = false;
128         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
129         void *pmem_addr = pmem->virt_addr + pmem_off;
130
131         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
132                 bad_pmem = true;
133
134         if (!op_is_write(op)) {
135                 if (unlikely(bad_pmem))
136                         rc = BLK_STS_IOERR;
137                 else {
138                         rc = read_pmem(page, off, pmem_addr, len);
139                         flush_dcache_page(page);
140                 }
141         } else {
142                 /*
143                  * Note that we write the data both before and after
144                  * clearing poison.  The write before clear poison
145                  * handles situations where the latest written data is
146                  * preserved and the clear poison operation simply marks
147                  * the address range as valid without changing the data.
148                  * In this case application software can assume that an
149                  * interrupted write will either return the new good
150                  * data or an error.
151                  *
152                  * However, if pmem_clear_poison() leaves the data in an
153                  * indeterminate state we need to perform the write
154                  * after clear poison.
155                  */
156                 flush_dcache_page(page);
157                 write_pmem(pmem_addr, page, off, len);
158                 if (unlikely(bad_pmem)) {
159                         rc = pmem_clear_poison(pmem, pmem_off, len);
160                         write_pmem(pmem_addr, page, off, len);
161                 }
162         }
163
164         return rc;
165 }
166
167 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
168 {
169         blk_status_t rc = 0;
170         bool do_acct;
171         unsigned long start;
172         struct bio_vec bvec;
173         struct bvec_iter iter;
174         struct pmem_device *pmem = q->queuedata;
175         struct nd_region *nd_region = to_region(pmem);
176
177         if (bio->bi_opf & REQ_PREFLUSH)
178                 nvdimm_flush(nd_region);
179
180         do_acct = nd_iostat_start(bio, &start);
181         bio_for_each_segment(bvec, bio, iter) {
182                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
183                                 bvec.bv_offset, bio_op(bio), iter.bi_sector);
184                 if (rc) {
185                         bio->bi_status = rc;
186                         break;
187                 }
188         }
189         if (do_acct)
190                 nd_iostat_end(bio, start);
191
192         if (bio->bi_opf & REQ_FUA)
193                 nvdimm_flush(nd_region);
194
195         bio_endio(bio);
196         return BLK_QC_T_NONE;
197 }
198
199 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
200                        struct page *page, unsigned int op)
201 {
202         struct pmem_device *pmem = bdev->bd_queue->queuedata;
203         blk_status_t rc;
204
205         rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
206                           0, op, sector);
207
208         /*
209          * The ->rw_page interface is subtle and tricky.  The core
210          * retries on any error, so we can only invoke page_endio() in
211          * the successful completion case.  Otherwise, we'll see crashes
212          * caused by double completion.
213          */
214         if (rc == 0)
215                 page_endio(page, op_is_write(op), 0);
216
217         return blk_status_to_errno(rc);
218 }
219
220 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
221 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
222                 long nr_pages, void **kaddr, pfn_t *pfn)
223 {
224         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
225
226         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
227                                         PFN_PHYS(nr_pages))))
228                 return -EIO;
229
230         if (kaddr)
231                 *kaddr = pmem->virt_addr + offset;
232         if (pfn)
233                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
234
235         /*
236          * If badblocks are present, limit known good range to the
237          * requested range.
238          */
239         if (unlikely(pmem->bb.count))
240                 return nr_pages;
241         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
242 }
243
244 static const struct block_device_operations pmem_fops = {
245         .owner =                THIS_MODULE,
246         .rw_page =              pmem_rw_page,
247         .revalidate_disk =      nvdimm_revalidate_disk,
248 };
249
250 static long pmem_dax_direct_access(struct dax_device *dax_dev,
251                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
252 {
253         struct pmem_device *pmem = dax_get_private(dax_dev);
254
255         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
256 }
257
258 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
259                 void *addr, size_t bytes, struct iov_iter *i)
260 {
261         return copy_from_iter_flushcache(addr, bytes, i);
262 }
263
264 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
265                 void *addr, size_t bytes, struct iov_iter *i)
266 {
267         return copy_to_iter_mcsafe(addr, bytes, i);
268 }
269
270 static const struct dax_operations pmem_dax_ops = {
271         .direct_access = pmem_dax_direct_access,
272         .copy_from_iter = pmem_copy_from_iter,
273         .copy_to_iter = pmem_copy_to_iter,
274 };
275
276 static const struct attribute_group *pmem_attribute_groups[] = {
277         &dax_attribute_group,
278         NULL,
279 };
280
281 static void pmem_release_queue(void *q)
282 {
283         blk_cleanup_queue(q);
284 }
285
286 static void pmem_freeze_queue(void *q)
287 {
288         blk_freeze_queue_start(q);
289 }
290
291 static void pmem_release_disk(void *__pmem)
292 {
293         struct pmem_device *pmem = __pmem;
294
295         kill_dax(pmem->dax_dev);
296         put_dax(pmem->dax_dev);
297         del_gendisk(pmem->disk);
298         put_disk(pmem->disk);
299 }
300
301 static void pmem_release_pgmap_ops(void *__pgmap)
302 {
303         dev_pagemap_put_ops();
304 }
305
306 static void fsdax_pagefree(struct page *page, void *data)
307 {
308         wake_up_var(&page->_refcount);
309 }
310
311 static int setup_pagemap_fsdax(struct device *dev, struct dev_pagemap *pgmap)
312 {
313         dev_pagemap_get_ops();
314         if (devm_add_action_or_reset(dev, pmem_release_pgmap_ops, pgmap))
315                 return -ENOMEM;
316         pgmap->type = MEMORY_DEVICE_FS_DAX;
317         pgmap->page_free = fsdax_pagefree;
318
319         return 0;
320 }
321
322 static int pmem_attach_disk(struct device *dev,
323                 struct nd_namespace_common *ndns)
324 {
325         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
326         struct nd_region *nd_region = to_nd_region(dev->parent);
327         int nid = dev_to_node(dev), fua;
328         struct resource *res = &nsio->res;
329         struct resource bb_res;
330         struct nd_pfn *nd_pfn = NULL;
331         struct dax_device *dax_dev;
332         struct nd_pfn_sb *pfn_sb;
333         struct pmem_device *pmem;
334         struct request_queue *q;
335         struct device *gendev;
336         struct gendisk *disk;
337         void *addr;
338         int rc;
339
340         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
341         if (!pmem)
342                 return -ENOMEM;
343
344         /* while nsio_rw_bytes is active, parse a pfn info block if present */
345         if (is_nd_pfn(dev)) {
346                 nd_pfn = to_nd_pfn(dev);
347                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
348                 if (rc)
349                         return rc;
350         }
351
352         /* we're attaching a block device, disable raw namespace access */
353         devm_nsio_disable(dev, nsio);
354
355         dev_set_drvdata(dev, pmem);
356         pmem->phys_addr = res->start;
357         pmem->size = resource_size(res);
358         fua = nvdimm_has_flush(nd_region);
359         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
360                 dev_warn(dev, "unable to guarantee persistence of writes\n");
361                 fua = 0;
362         }
363
364         if (!devm_request_mem_region(dev, res->start, resource_size(res),
365                                 dev_name(&ndns->dev))) {
366                 dev_warn(dev, "could not reserve region %pR\n", res);
367                 return -EBUSY;
368         }
369
370         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL);
371         if (!q)
372                 return -ENOMEM;
373
374         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
375                 return -ENOMEM;
376
377         pmem->pfn_flags = PFN_DEV;
378         pmem->pgmap.ref = &q->q_usage_counter;
379         if (is_nd_pfn(dev)) {
380                 if (setup_pagemap_fsdax(dev, &pmem->pgmap))
381                         return -ENOMEM;
382                 addr = devm_memremap_pages(dev, &pmem->pgmap);
383                 pfn_sb = nd_pfn->pfn_sb;
384                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
385                 pmem->pfn_pad = resource_size(res) -
386                         resource_size(&pmem->pgmap.res);
387                 pmem->pfn_flags |= PFN_MAP;
388                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
389                 bb_res.start += pmem->data_offset;
390         } else if (pmem_should_map_pages(dev)) {
391                 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
392                 pmem->pgmap.altmap_valid = false;
393                 if (setup_pagemap_fsdax(dev, &pmem->pgmap))
394                         return -ENOMEM;
395                 addr = devm_memremap_pages(dev, &pmem->pgmap);
396                 pmem->pfn_flags |= PFN_MAP;
397                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
398         } else
399                 addr = devm_memremap(dev, pmem->phys_addr,
400                                 pmem->size, ARCH_MEMREMAP_PMEM);
401
402         /*
403          * At release time the queue must be frozen before
404          * devm_memremap_pages is unwound
405          */
406         if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
407                 return -ENOMEM;
408
409         if (IS_ERR(addr))
410                 return PTR_ERR(addr);
411         pmem->virt_addr = addr;
412
413         blk_queue_write_cache(q, true, fua);
414         blk_queue_make_request(q, pmem_make_request);
415         blk_queue_physical_block_size(q, PAGE_SIZE);
416         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
417         blk_queue_max_hw_sectors(q, UINT_MAX);
418         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
419         if (pmem->pfn_flags & PFN_MAP)
420                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
421         q->queuedata = pmem;
422
423         disk = alloc_disk_node(0, nid);
424         if (!disk)
425                 return -ENOMEM;
426         pmem->disk = disk;
427
428         disk->fops              = &pmem_fops;
429         disk->queue             = q;
430         disk->flags             = GENHD_FL_EXT_DEVT;
431         disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
432         nvdimm_namespace_disk_name(ndns, disk->disk_name);
433         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
434                         / 512);
435         if (devm_init_badblocks(dev, &pmem->bb))
436                 return -ENOMEM;
437         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
438         disk->bb = &pmem->bb;
439
440         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
441         if (!dax_dev) {
442                 put_disk(disk);
443                 return -ENOMEM;
444         }
445         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
446         pmem->dax_dev = dax_dev;
447
448         gendev = disk_to_dev(disk);
449         gendev->groups = pmem_attribute_groups;
450
451         device_add_disk(dev, disk);
452         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
453                 return -ENOMEM;
454
455         revalidate_disk(disk);
456
457         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
458                                           "badblocks");
459         if (!pmem->bb_state)
460                 dev_warn(dev, "'badblocks' notification disabled\n");
461
462         return 0;
463 }
464
465 static int nd_pmem_probe(struct device *dev)
466 {
467         struct nd_namespace_common *ndns;
468
469         ndns = nvdimm_namespace_common_probe(dev);
470         if (IS_ERR(ndns))
471                 return PTR_ERR(ndns);
472
473         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
474                 return -ENXIO;
475
476         if (is_nd_btt(dev))
477                 return nvdimm_namespace_attach_btt(ndns);
478
479         if (is_nd_pfn(dev))
480                 return pmem_attach_disk(dev, ndns);
481
482         /* if we find a valid info-block we'll come back as that personality */
483         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
484                         || nd_dax_probe(dev, ndns) == 0)
485                 return -ENXIO;
486
487         /* ...otherwise we're just a raw pmem device */
488         return pmem_attach_disk(dev, ndns);
489 }
490
491 static int nd_pmem_remove(struct device *dev)
492 {
493         struct pmem_device *pmem = dev_get_drvdata(dev);
494
495         if (is_nd_btt(dev))
496                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
497         else {
498                 /*
499                  * Note, this assumes device_lock() context to not race
500                  * nd_pmem_notify()
501                  */
502                 sysfs_put(pmem->bb_state);
503                 pmem->bb_state = NULL;
504         }
505         nvdimm_flush(to_nd_region(dev->parent));
506
507         return 0;
508 }
509
510 static void nd_pmem_shutdown(struct device *dev)
511 {
512         nvdimm_flush(to_nd_region(dev->parent));
513 }
514
515 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
516 {
517         struct nd_region *nd_region;
518         resource_size_t offset = 0, end_trunc = 0;
519         struct nd_namespace_common *ndns;
520         struct nd_namespace_io *nsio;
521         struct resource res;
522         struct badblocks *bb;
523         struct kernfs_node *bb_state;
524
525         if (event != NVDIMM_REVALIDATE_POISON)
526                 return;
527
528         if (is_nd_btt(dev)) {
529                 struct nd_btt *nd_btt = to_nd_btt(dev);
530
531                 ndns = nd_btt->ndns;
532                 nd_region = to_nd_region(ndns->dev.parent);
533                 nsio = to_nd_namespace_io(&ndns->dev);
534                 bb = &nsio->bb;
535                 bb_state = NULL;
536         } else {
537                 struct pmem_device *pmem = dev_get_drvdata(dev);
538
539                 nd_region = to_region(pmem);
540                 bb = &pmem->bb;
541                 bb_state = pmem->bb_state;
542
543                 if (is_nd_pfn(dev)) {
544                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
545                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
546
547                         ndns = nd_pfn->ndns;
548                         offset = pmem->data_offset +
549                                         __le32_to_cpu(pfn_sb->start_pad);
550                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
551                 } else {
552                         ndns = to_ndns(dev);
553                 }
554
555                 nsio = to_nd_namespace_io(&ndns->dev);
556         }
557
558         res.start = nsio->res.start + offset;
559         res.end = nsio->res.end - end_trunc;
560         nvdimm_badblocks_populate(nd_region, bb, &res);
561         if (bb_state)
562                 sysfs_notify_dirent(bb_state);
563 }
564
565 MODULE_ALIAS("pmem");
566 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
567 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
568 static struct nd_device_driver nd_pmem_driver = {
569         .probe = nd_pmem_probe,
570         .remove = nd_pmem_remove,
571         .notify = nd_pmem_notify,
572         .shutdown = nd_pmem_shutdown,
573         .drv = {
574                 .name = "nd_pmem",
575         },
576         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
577 };
578
579 module_nd_driver(nd_pmem_driver);
580
581 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
582 MODULE_LICENSE("GPL v2");