ARM: dts: msm8916: Add and enable wcnss node
[platform/kernel/linux-exynos.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38         /*
39          * nvdimm bus services need a 'dev' parameter, and we record the device
40          * at init in bb.dev.
41          */
42         return pmem->bb.dev;
43 }
44
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47         return to_nd_region(to_dev(pmem)->parent);
48 }
49
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51                 unsigned int len)
52 {
53         struct device *dev = to_dev(pmem);
54         sector_t sector;
55         long cleared;
56         int rc = 0;
57
58         sector = (offset - pmem->data_offset) / 512;
59
60         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
61         if (cleared < len)
62                 rc = -EIO;
63         if (cleared > 0 && cleared / 512) {
64                 cleared /= 512;
65                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
66                                 (unsigned long long) sector, cleared,
67                                 cleared > 1 ? "s" : "");
68                 badblocks_clear(&pmem->bb, sector, cleared);
69         }
70
71         invalidate_pmem(pmem->virt_addr + offset, len);
72
73         return rc;
74 }
75
76 static void write_pmem(void *pmem_addr, struct page *page,
77                 unsigned int off, unsigned int len)
78 {
79         void *mem = kmap_atomic(page);
80
81         memcpy_to_pmem(pmem_addr, mem + off, len);
82         kunmap_atomic(mem);
83 }
84
85 static int read_pmem(struct page *page, unsigned int off,
86                 void *pmem_addr, unsigned int len)
87 {
88         int rc;
89         void *mem = kmap_atomic(page);
90
91         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
92         kunmap_atomic(mem);
93         return rc;
94 }
95
96 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
97                         unsigned int len, unsigned int off, bool is_write,
98                         sector_t sector)
99 {
100         int rc = 0;
101         bool bad_pmem = false;
102         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
103         void *pmem_addr = pmem->virt_addr + pmem_off;
104
105         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
106                 bad_pmem = true;
107
108         if (!is_write) {
109                 if (unlikely(bad_pmem))
110                         rc = -EIO;
111                 else {
112                         rc = read_pmem(page, off, pmem_addr, len);
113                         flush_dcache_page(page);
114                 }
115         } else {
116                 /*
117                  * Note that we write the data both before and after
118                  * clearing poison.  The write before clear poison
119                  * handles situations where the latest written data is
120                  * preserved and the clear poison operation simply marks
121                  * the address range as valid without changing the data.
122                  * In this case application software can assume that an
123                  * interrupted write will either return the new good
124                  * data or an error.
125                  *
126                  * However, if pmem_clear_poison() leaves the data in an
127                  * indeterminate state we need to perform the write
128                  * after clear poison.
129                  */
130                 flush_dcache_page(page);
131                 write_pmem(pmem_addr, page, off, len);
132                 if (unlikely(bad_pmem)) {
133                         rc = pmem_clear_poison(pmem, pmem_off, len);
134                         write_pmem(pmem_addr, page, off, len);
135                 }
136         }
137
138         return rc;
139 }
140
141 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
142 #ifndef REQ_FLUSH
143 #define REQ_FLUSH REQ_PREFLUSH
144 #endif
145
146 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
147 {
148         int rc = 0;
149         bool do_acct;
150         unsigned long start;
151         struct bio_vec bvec;
152         struct bvec_iter iter;
153         struct pmem_device *pmem = q->queuedata;
154         struct nd_region *nd_region = to_region(pmem);
155
156         if (bio->bi_opf & REQ_FLUSH)
157                 nvdimm_flush(nd_region);
158
159         do_acct = nd_iostat_start(bio, &start);
160         bio_for_each_segment(bvec, bio, iter) {
161                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
162                                 bvec.bv_offset, op_is_write(bio_op(bio)),
163                                 iter.bi_sector);
164                 if (rc) {
165                         bio->bi_error = rc;
166                         break;
167                 }
168         }
169         if (do_acct)
170                 nd_iostat_end(bio, start);
171
172         if (bio->bi_opf & REQ_FUA)
173                 nvdimm_flush(nd_region);
174
175         bio_endio(bio);
176         return BLK_QC_T_NONE;
177 }
178
179 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
180                        struct page *page, bool is_write)
181 {
182         struct pmem_device *pmem = bdev->bd_queue->queuedata;
183         int rc;
184
185         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
186
187         /*
188          * The ->rw_page interface is subtle and tricky.  The core
189          * retries on any error, so we can only invoke page_endio() in
190          * the successful completion case.  Otherwise, we'll see crashes
191          * caused by double completion.
192          */
193         if (rc == 0)
194                 page_endio(page, is_write, 0);
195
196         return rc;
197 }
198
199 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
200 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
201                       void **kaddr, pfn_t *pfn, long size)
202 {
203         struct pmem_device *pmem = bdev->bd_queue->queuedata;
204         resource_size_t offset = sector * 512 + pmem->data_offset;
205
206         if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
207                 return -EIO;
208         *kaddr = pmem->virt_addr + offset;
209         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
210
211         /*
212          * If badblocks are present, limit known good range to the
213          * requested range.
214          */
215         if (unlikely(pmem->bb.count))
216                 return size;
217         return pmem->size - pmem->pfn_pad - offset;
218 }
219
220 static const struct block_device_operations pmem_fops = {
221         .owner =                THIS_MODULE,
222         .rw_page =              pmem_rw_page,
223         .direct_access =        pmem_direct_access,
224         .revalidate_disk =      nvdimm_revalidate_disk,
225 };
226
227 static void pmem_release_queue(void *q)
228 {
229         blk_cleanup_queue(q);
230 }
231
232 static void pmem_release_disk(void *disk)
233 {
234         del_gendisk(disk);
235         put_disk(disk);
236 }
237
238 static int pmem_attach_disk(struct device *dev,
239                 struct nd_namespace_common *ndns)
240 {
241         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
242         struct nd_region *nd_region = to_nd_region(dev->parent);
243         struct vmem_altmap __altmap, *altmap = NULL;
244         struct resource *res = &nsio->res;
245         struct nd_pfn *nd_pfn = NULL;
246         int nid = dev_to_node(dev);
247         struct nd_pfn_sb *pfn_sb;
248         struct pmem_device *pmem;
249         struct resource pfn_res;
250         struct request_queue *q;
251         struct gendisk *disk;
252         void *addr;
253
254         /* while nsio_rw_bytes is active, parse a pfn info block if present */
255         if (is_nd_pfn(dev)) {
256                 nd_pfn = to_nd_pfn(dev);
257                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
258                 if (IS_ERR(altmap))
259                         return PTR_ERR(altmap);
260         }
261
262         /* we're attaching a block device, disable raw namespace access */
263         devm_nsio_disable(dev, nsio);
264
265         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
266         if (!pmem)
267                 return -ENOMEM;
268
269         dev_set_drvdata(dev, pmem);
270         pmem->phys_addr = res->start;
271         pmem->size = resource_size(res);
272         if (nvdimm_has_flush(nd_region) < 0)
273                 dev_warn(dev, "unable to guarantee persistence of writes\n");
274
275         if (!devm_request_mem_region(dev, res->start, resource_size(res),
276                                 dev_name(&ndns->dev))) {
277                 dev_warn(dev, "could not reserve region %pR\n", res);
278                 return -EBUSY;
279         }
280
281         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
282         if (!q)
283                 return -ENOMEM;
284
285         pmem->pfn_flags = PFN_DEV;
286         if (is_nd_pfn(dev)) {
287                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
288                                 altmap);
289                 pfn_sb = nd_pfn->pfn_sb;
290                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
291                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
292                 pmem->pfn_flags |= PFN_MAP;
293                 res = &pfn_res; /* for badblocks populate */
294                 res->start += pmem->data_offset;
295         } else if (pmem_should_map_pages(dev)) {
296                 addr = devm_memremap_pages(dev, &nsio->res,
297                                 &q->q_usage_counter, NULL);
298                 pmem->pfn_flags |= PFN_MAP;
299         } else
300                 addr = devm_memremap(dev, pmem->phys_addr,
301                                 pmem->size, ARCH_MEMREMAP_PMEM);
302
303         /*
304          * At release time the queue must be dead before
305          * devm_memremap_pages is unwound
306          */
307         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
308                 return -ENOMEM;
309
310         if (IS_ERR(addr))
311                 return PTR_ERR(addr);
312         pmem->virt_addr = addr;
313
314         blk_queue_write_cache(q, true, true);
315         blk_queue_make_request(q, pmem_make_request);
316         blk_queue_physical_block_size(q, PAGE_SIZE);
317         blk_queue_max_hw_sectors(q, UINT_MAX);
318         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
319         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
320         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
321         q->queuedata = pmem;
322
323         disk = alloc_disk_node(0, nid);
324         if (!disk)
325                 return -ENOMEM;
326
327         disk->fops              = &pmem_fops;
328         disk->queue             = q;
329         disk->flags             = GENHD_FL_EXT_DEVT;
330         nvdimm_namespace_disk_name(ndns, disk->disk_name);
331         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
332                         / 512);
333         if (devm_init_badblocks(dev, &pmem->bb))
334                 return -ENOMEM;
335         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
336         disk->bb = &pmem->bb;
337         device_add_disk(dev, disk);
338
339         if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
340                 return -ENOMEM;
341
342         revalidate_disk(disk);
343
344         return 0;
345 }
346
347 static int nd_pmem_probe(struct device *dev)
348 {
349         struct nd_namespace_common *ndns;
350
351         ndns = nvdimm_namespace_common_probe(dev);
352         if (IS_ERR(ndns))
353                 return PTR_ERR(ndns);
354
355         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
356                 return -ENXIO;
357
358         if (is_nd_btt(dev))
359                 return nvdimm_namespace_attach_btt(ndns);
360
361         if (is_nd_pfn(dev))
362                 return pmem_attach_disk(dev, ndns);
363
364         /* if we find a valid info-block we'll come back as that personality */
365         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
366                         || nd_dax_probe(dev, ndns) == 0)
367                 return -ENXIO;
368
369         /* ...otherwise we're just a raw pmem device */
370         return pmem_attach_disk(dev, ndns);
371 }
372
373 static int nd_pmem_remove(struct device *dev)
374 {
375         if (is_nd_btt(dev))
376                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
377         nvdimm_flush(to_nd_region(dev->parent));
378
379         return 0;
380 }
381
382 static void nd_pmem_shutdown(struct device *dev)
383 {
384         nvdimm_flush(to_nd_region(dev->parent));
385 }
386
387 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
388 {
389         struct pmem_device *pmem = dev_get_drvdata(dev);
390         struct nd_region *nd_region = to_region(pmem);
391         resource_size_t offset = 0, end_trunc = 0;
392         struct nd_namespace_common *ndns;
393         struct nd_namespace_io *nsio;
394         struct resource res;
395
396         if (event != NVDIMM_REVALIDATE_POISON)
397                 return;
398
399         if (is_nd_btt(dev)) {
400                 struct nd_btt *nd_btt = to_nd_btt(dev);
401
402                 ndns = nd_btt->ndns;
403         } else if (is_nd_pfn(dev)) {
404                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
405                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
406
407                 ndns = nd_pfn->ndns;
408                 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
409                 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
410         } else
411                 ndns = to_ndns(dev);
412
413         nsio = to_nd_namespace_io(&ndns->dev);
414         res.start = nsio->res.start + offset;
415         res.end = nsio->res.end - end_trunc;
416         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
417 }
418
419 MODULE_ALIAS("pmem");
420 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
421 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
422 static struct nd_device_driver nd_pmem_driver = {
423         .probe = nd_pmem_probe,
424         .remove = nd_pmem_remove,
425         .notify = nd_pmem_notify,
426         .shutdown = nd_pmem_shutdown,
427         .drv = {
428                 .name = "nd_pmem",
429         },
430         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
431 };
432
433 static int __init pmem_init(void)
434 {
435         return nd_driver_register(&nd_pmem_driver);
436 }
437 module_init(pmem_init);
438
439 static void pmem_exit(void)
440 {
441         driver_unregister(&nd_pmem_driver.drv);
442 }
443 module_exit(pmem_exit);
444
445 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
446 MODULE_LICENSE("GPL v2");