Merge branch 'worklym' into jh7110_dev_5.15
[platform/kernel/linux-starfive.git] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "btt.h"
31 #include "pfn.h"
32 #include "nd.h"
33
34 static struct device *to_dev(struct pmem_device *pmem)
35 {
36         /*
37          * nvdimm bus services need a 'dev' parameter, and we record the device
38          * at init in bb.dev.
39          */
40         return pmem->bb.dev;
41 }
42
43 static struct nd_region *to_region(struct pmem_device *pmem)
44 {
45         return to_nd_region(to_dev(pmem)->parent);
46 }
47
48 static void hwpoison_clear(struct pmem_device *pmem,
49                 phys_addr_t phys, unsigned int len)
50 {
51         unsigned long pfn_start, pfn_end, pfn;
52
53         /* only pmem in the linear map supports HWPoison */
54         if (is_vmalloc_addr(pmem->virt_addr))
55                 return;
56
57         pfn_start = PHYS_PFN(phys);
58         pfn_end = pfn_start + PHYS_PFN(len);
59         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
60                 struct page *page = pfn_to_page(pfn);
61
62                 /*
63                  * Note, no need to hold a get_dev_pagemap() reference
64                  * here since we're in the driver I/O path and
65                  * outstanding I/O requests pin the dev_pagemap.
66                  */
67                 if (test_and_clear_pmem_poison(page))
68                         clear_mce_nospec(pfn);
69         }
70 }
71
72 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
73                 phys_addr_t offset, unsigned int len)
74 {
75         struct device *dev = to_dev(pmem);
76         sector_t sector;
77         long cleared;
78         blk_status_t rc = BLK_STS_OK;
79
80         sector = (offset - pmem->data_offset) / 512;
81
82         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
83         if (cleared < len)
84                 rc = BLK_STS_IOERR;
85         if (cleared > 0 && cleared / 512) {
86                 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
87                 cleared /= 512;
88                 dev_dbg(dev, "%#llx clear %ld sector%s\n",
89                                 (unsigned long long) sector, cleared,
90                                 cleared > 1 ? "s" : "");
91                 badblocks_clear(&pmem->bb, sector, cleared);
92                 if (pmem->bb_state)
93                         sysfs_notify_dirent(pmem->bb_state);
94         }
95
96         arch_invalidate_pmem(pmem->virt_addr + offset, len);
97
98         return rc;
99 }
100
101 static void write_pmem(void *pmem_addr, struct page *page,
102                 unsigned int off, unsigned int len)
103 {
104         unsigned int chunk;
105         void *mem;
106
107         while (len) {
108                 mem = kmap_atomic(page);
109                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
110                 memcpy_flushcache(pmem_addr, mem + off, chunk);
111                 kunmap_atomic(mem);
112                 len -= chunk;
113                 off = 0;
114                 page++;
115                 pmem_addr += chunk;
116         }
117 }
118
119 static blk_status_t read_pmem(struct page *page, unsigned int off,
120                 void *pmem_addr, unsigned int len)
121 {
122         unsigned int chunk;
123         unsigned long rem;
124         void *mem;
125
126         while (len) {
127                 mem = kmap_atomic(page);
128                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
129                 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
130                 kunmap_atomic(mem);
131                 if (rem)
132                         return BLK_STS_IOERR;
133                 len -= chunk;
134                 off = 0;
135                 page++;
136                 pmem_addr += chunk;
137         }
138         return BLK_STS_OK;
139 }
140
141 static blk_status_t pmem_do_read(struct pmem_device *pmem,
142                         struct page *page, unsigned int page_off,
143                         sector_t sector, unsigned int len)
144 {
145         blk_status_t rc;
146         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
147         void *pmem_addr = pmem->virt_addr + pmem_off;
148
149         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
150                 return BLK_STS_IOERR;
151
152         rc = read_pmem(page, page_off, pmem_addr, len);
153         flush_dcache_page(page);
154         return rc;
155 }
156
157 static blk_status_t pmem_do_write(struct pmem_device *pmem,
158                         struct page *page, unsigned int page_off,
159                         sector_t sector, unsigned int len)
160 {
161         blk_status_t rc = BLK_STS_OK;
162         bool bad_pmem = false;
163         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
164         void *pmem_addr = pmem->virt_addr + pmem_off;
165
166         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
167                 bad_pmem = true;
168
169         /*
170          * Note that we write the data both before and after
171          * clearing poison.  The write before clear poison
172          * handles situations where the latest written data is
173          * preserved and the clear poison operation simply marks
174          * the address range as valid without changing the data.
175          * In this case application software can assume that an
176          * interrupted write will either return the new good
177          * data or an error.
178          *
179          * However, if pmem_clear_poison() leaves the data in an
180          * indeterminate state we need to perform the write
181          * after clear poison.
182          */
183         flush_dcache_page(page);
184         write_pmem(pmem_addr, page, page_off, len);
185         if (unlikely(bad_pmem)) {
186                 rc = pmem_clear_poison(pmem, pmem_off, len);
187                 write_pmem(pmem_addr, page, page_off, len);
188         }
189
190         return rc;
191 }
192
193 static blk_qc_t pmem_submit_bio(struct bio *bio)
194 {
195         int ret = 0;
196         blk_status_t rc = 0;
197         bool do_acct;
198         unsigned long start;
199         struct bio_vec bvec;
200         struct bvec_iter iter;
201         struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
202         struct nd_region *nd_region = to_region(pmem);
203
204         if (bio->bi_opf & REQ_PREFLUSH)
205                 ret = nvdimm_flush(nd_region, bio);
206
207         do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
208         if (do_acct)
209                 start = bio_start_io_acct(bio);
210         bio_for_each_segment(bvec, bio, iter) {
211                 if (op_is_write(bio_op(bio)))
212                         rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
213                                 iter.bi_sector, bvec.bv_len);
214                 else
215                         rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
216                                 iter.bi_sector, bvec.bv_len);
217                 if (rc) {
218                         bio->bi_status = rc;
219                         break;
220                 }
221         }
222         if (do_acct)
223                 bio_end_io_acct(bio, start);
224
225         if (bio->bi_opf & REQ_FUA)
226                 ret = nvdimm_flush(nd_region, bio);
227
228         if (ret)
229                 bio->bi_status = errno_to_blk_status(ret);
230
231         bio_endio(bio);
232         return BLK_QC_T_NONE;
233 }
234
235 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
236                        struct page *page, unsigned int op)
237 {
238         struct pmem_device *pmem = bdev->bd_disk->private_data;
239         blk_status_t rc;
240
241         if (op_is_write(op))
242                 rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
243         else
244                 rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
245         /*
246          * The ->rw_page interface is subtle and tricky.  The core
247          * retries on any error, so we can only invoke page_endio() in
248          * the successful completion case.  Otherwise, we'll see crashes
249          * caused by double completion.
250          */
251         if (rc == 0)
252                 page_endio(page, op_is_write(op), 0);
253
254         return blk_status_to_errno(rc);
255 }
256
257 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
258 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
259                 long nr_pages, void **kaddr, pfn_t *pfn)
260 {
261         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
262
263         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
264                                         PFN_PHYS(nr_pages))))
265                 return -EIO;
266
267         if (kaddr)
268                 *kaddr = pmem->virt_addr + offset;
269         if (pfn)
270                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
271
272         /*
273          * If badblocks are present, limit known good range to the
274          * requested range.
275          */
276         if (unlikely(pmem->bb.count))
277                 return nr_pages;
278         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
279 }
280
281 static const struct block_device_operations pmem_fops = {
282         .owner =                THIS_MODULE,
283         .submit_bio =           pmem_submit_bio,
284         .rw_page =              pmem_rw_page,
285 };
286
287 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
288                                     size_t nr_pages)
289 {
290         struct pmem_device *pmem = dax_get_private(dax_dev);
291
292         return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
293                                    PFN_PHYS(pgoff) >> SECTOR_SHIFT,
294                                    PAGE_SIZE));
295 }
296
297 static long pmem_dax_direct_access(struct dax_device *dax_dev,
298                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
299 {
300         struct pmem_device *pmem = dax_get_private(dax_dev);
301
302         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
303 }
304
305 /*
306  * Use the 'no check' versions of copy_from_iter_flushcache() and
307  * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
308  * checking, both file offset and device offset, is handled by
309  * dax_iomap_actor()
310  */
311 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
312                 void *addr, size_t bytes, struct iov_iter *i)
313 {
314         return _copy_from_iter_flushcache(addr, bytes, i);
315 }
316
317 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
318                 void *addr, size_t bytes, struct iov_iter *i)
319 {
320         return _copy_mc_to_iter(addr, bytes, i);
321 }
322
323 static const struct dax_operations pmem_dax_ops = {
324         .direct_access = pmem_dax_direct_access,
325         .dax_supported = generic_fsdax_supported,
326         .copy_from_iter = pmem_copy_from_iter,
327         .copy_to_iter = pmem_copy_to_iter,
328         .zero_page_range = pmem_dax_zero_page_range,
329 };
330
331 static const struct attribute_group *pmem_attribute_groups[] = {
332         &dax_attribute_group,
333         NULL,
334 };
335
336 static void pmem_release_disk(void *__pmem)
337 {
338         struct pmem_device *pmem = __pmem;
339
340         kill_dax(pmem->dax_dev);
341         put_dax(pmem->dax_dev);
342         del_gendisk(pmem->disk);
343
344         blk_cleanup_disk(pmem->disk);
345 }
346
347 static int pmem_attach_disk(struct device *dev,
348                 struct nd_namespace_common *ndns)
349 {
350         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
351         struct nd_region *nd_region = to_nd_region(dev->parent);
352         int nid = dev_to_node(dev), fua;
353         struct resource *res = &nsio->res;
354         struct range bb_range;
355         struct nd_pfn *nd_pfn = NULL;
356         struct dax_device *dax_dev;
357         struct nd_pfn_sb *pfn_sb;
358         struct pmem_device *pmem;
359         struct request_queue *q;
360         struct gendisk *disk;
361         void *addr;
362         int rc;
363         unsigned long flags = 0UL;
364
365         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
366         if (!pmem)
367                 return -ENOMEM;
368
369         rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
370         if (rc)
371                 return rc;
372
373         /* while nsio_rw_bytes is active, parse a pfn info block if present */
374         if (is_nd_pfn(dev)) {
375                 nd_pfn = to_nd_pfn(dev);
376                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
377                 if (rc)
378                         return rc;
379         }
380
381         /* we're attaching a block device, disable raw namespace access */
382         devm_namespace_disable(dev, ndns);
383
384         dev_set_drvdata(dev, pmem);
385         pmem->phys_addr = res->start;
386         pmem->size = resource_size(res);
387         fua = nvdimm_has_flush(nd_region);
388         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
389                 dev_warn(dev, "unable to guarantee persistence of writes\n");
390                 fua = 0;
391         }
392
393         if (!devm_request_mem_region(dev, res->start, resource_size(res),
394                                 dev_name(&ndns->dev))) {
395                 dev_warn(dev, "could not reserve region %pR\n", res);
396                 return -EBUSY;
397         }
398
399         disk = blk_alloc_disk(nid);
400         if (!disk)
401                 return -ENOMEM;
402         q = disk->queue;
403
404         pmem->disk = disk;
405         pmem->pgmap.owner = pmem;
406         pmem->pfn_flags = PFN_DEV;
407         if (is_nd_pfn(dev)) {
408                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
409                 addr = devm_memremap_pages(dev, &pmem->pgmap);
410                 pfn_sb = nd_pfn->pfn_sb;
411                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
412                 pmem->pfn_pad = resource_size(res) -
413                         range_len(&pmem->pgmap.range);
414                 pmem->pfn_flags |= PFN_MAP;
415                 bb_range = pmem->pgmap.range;
416                 bb_range.start += pmem->data_offset;
417         } else if (pmem_should_map_pages(dev)) {
418                 pmem->pgmap.range.start = res->start;
419                 pmem->pgmap.range.end = res->end;
420                 pmem->pgmap.nr_range = 1;
421                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
422                 addr = devm_memremap_pages(dev, &pmem->pgmap);
423                 pmem->pfn_flags |= PFN_MAP;
424                 bb_range = pmem->pgmap.range;
425         } else {
426                 addr = devm_memremap(dev, pmem->phys_addr,
427                                 pmem->size, ARCH_MEMREMAP_PMEM);
428                 bb_range.start =  res->start;
429                 bb_range.end = res->end;
430         }
431
432         if (IS_ERR(addr))
433                 return PTR_ERR(addr);
434         pmem->virt_addr = addr;
435
436         blk_queue_write_cache(q, true, fua);
437         blk_queue_physical_block_size(q, PAGE_SIZE);
438         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
439         blk_queue_max_hw_sectors(q, UINT_MAX);
440         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
441         if (pmem->pfn_flags & PFN_MAP)
442                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
443
444         disk->fops              = &pmem_fops;
445         disk->private_data      = pmem;
446         nvdimm_namespace_disk_name(ndns, disk->disk_name);
447         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
448                         / 512);
449         if (devm_init_badblocks(dev, &pmem->bb))
450                 return -ENOMEM;
451         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
452         disk->bb = &pmem->bb;
453
454         if (is_nvdimm_sync(nd_region))
455                 flags = DAXDEV_F_SYNC;
456         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
457         if (IS_ERR(dax_dev)) {
458                 return PTR_ERR(dax_dev);
459         }
460         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
461         pmem->dax_dev = dax_dev;
462
463         device_add_disk(dev, disk, pmem_attribute_groups);
464         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
465                 return -ENOMEM;
466
467         nvdimm_check_and_set_ro(disk);
468
469         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
470                                           "badblocks");
471         if (!pmem->bb_state)
472                 dev_warn(dev, "'badblocks' notification disabled\n");
473
474         return 0;
475 }
476
477 static int nd_pmem_probe(struct device *dev)
478 {
479         int ret;
480         struct nd_namespace_common *ndns;
481
482         ndns = nvdimm_namespace_common_probe(dev);
483         if (IS_ERR(ndns))
484                 return PTR_ERR(ndns);
485
486         if (is_nd_btt(dev))
487                 return nvdimm_namespace_attach_btt(ndns);
488
489         if (is_nd_pfn(dev))
490                 return pmem_attach_disk(dev, ndns);
491
492         ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
493         if (ret)
494                 return ret;
495
496         ret = nd_btt_probe(dev, ndns);
497         if (ret == 0)
498                 return -ENXIO;
499
500         /*
501          * We have two failure conditions here, there is no
502          * info reserver block or we found a valid info reserve block
503          * but failed to initialize the pfn superblock.
504          *
505          * For the first case consider namespace as a raw pmem namespace
506          * and attach a disk.
507          *
508          * For the latter, consider this a success and advance the namespace
509          * seed.
510          */
511         ret = nd_pfn_probe(dev, ndns);
512         if (ret == 0)
513                 return -ENXIO;
514         else if (ret == -EOPNOTSUPP)
515                 return ret;
516
517         ret = nd_dax_probe(dev, ndns);
518         if (ret == 0)
519                 return -ENXIO;
520         else if (ret == -EOPNOTSUPP)
521                 return ret;
522
523         /* probe complete, attach handles namespace enabling */
524         devm_namespace_disable(dev, ndns);
525
526         return pmem_attach_disk(dev, ndns);
527 }
528
529 static void nd_pmem_remove(struct device *dev)
530 {
531         struct pmem_device *pmem = dev_get_drvdata(dev);
532
533         if (is_nd_btt(dev))
534                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
535         else {
536                 /*
537                  * Note, this assumes nd_device_lock() context to not
538                  * race nd_pmem_notify()
539                  */
540                 sysfs_put(pmem->bb_state);
541                 pmem->bb_state = NULL;
542         }
543         nvdimm_flush(to_nd_region(dev->parent), NULL);
544 }
545
546 static void nd_pmem_shutdown(struct device *dev)
547 {
548         nvdimm_flush(to_nd_region(dev->parent), NULL);
549 }
550
551 static void pmem_revalidate_poison(struct device *dev)
552 {
553         struct nd_region *nd_region;
554         resource_size_t offset = 0, end_trunc = 0;
555         struct nd_namespace_common *ndns;
556         struct nd_namespace_io *nsio;
557         struct badblocks *bb;
558         struct range range;
559         struct kernfs_node *bb_state;
560
561         if (is_nd_btt(dev)) {
562                 struct nd_btt *nd_btt = to_nd_btt(dev);
563
564                 ndns = nd_btt->ndns;
565                 nd_region = to_nd_region(ndns->dev.parent);
566                 nsio = to_nd_namespace_io(&ndns->dev);
567                 bb = &nsio->bb;
568                 bb_state = NULL;
569         } else {
570                 struct pmem_device *pmem = dev_get_drvdata(dev);
571
572                 nd_region = to_region(pmem);
573                 bb = &pmem->bb;
574                 bb_state = pmem->bb_state;
575
576                 if (is_nd_pfn(dev)) {
577                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
578                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
579
580                         ndns = nd_pfn->ndns;
581                         offset = pmem->data_offset +
582                                         __le32_to_cpu(pfn_sb->start_pad);
583                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
584                 } else {
585                         ndns = to_ndns(dev);
586                 }
587
588                 nsio = to_nd_namespace_io(&ndns->dev);
589         }
590
591         range.start = nsio->res.start + offset;
592         range.end = nsio->res.end - end_trunc;
593         nvdimm_badblocks_populate(nd_region, bb, &range);
594         if (bb_state)
595                 sysfs_notify_dirent(bb_state);
596 }
597
598 static void pmem_revalidate_region(struct device *dev)
599 {
600         struct pmem_device *pmem;
601
602         if (is_nd_btt(dev)) {
603                 struct nd_btt *nd_btt = to_nd_btt(dev);
604                 struct btt *btt = nd_btt->btt;
605
606                 nvdimm_check_and_set_ro(btt->btt_disk);
607                 return;
608         }
609
610         pmem = dev_get_drvdata(dev);
611         nvdimm_check_and_set_ro(pmem->disk);
612 }
613
614 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
615 {
616         switch (event) {
617         case NVDIMM_REVALIDATE_POISON:
618                 pmem_revalidate_poison(dev);
619                 break;
620         case NVDIMM_REVALIDATE_REGION:
621                 pmem_revalidate_region(dev);
622                 break;
623         default:
624                 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
625                 break;
626         }
627 }
628
629 MODULE_ALIAS("pmem");
630 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
631 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
632 static struct nd_device_driver nd_pmem_driver = {
633         .probe = nd_pmem_probe,
634         .remove = nd_pmem_remove,
635         .notify = nd_pmem_notify,
636         .shutdown = nd_pmem_shutdown,
637         .drv = {
638                 .name = "nd_pmem",
639         },
640         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
641 };
642
643 module_nd_driver(nd_pmem_driver);
644
645 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
646 MODULE_LICENSE("GPL v2");