def357eb05869ac36a75525ee5d7ad912ec28332
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00mmio.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52  * Allow hardware encryption to be disabled.
53  */
54 static bool modparam_nohwcrypt = false;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
59 {
60         return modparam_nohwcrypt;
61 }
62
63 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
64 {
65         unsigned int i;
66         u32 reg;
67
68         /*
69          * SOC devices don't support MCU requests.
70          */
71         if (rt2x00_is_soc(rt2x00dev))
72                 return;
73
74         for (i = 0; i < 200; i++) {
75                 rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
76
77                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
78                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
79                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
80                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
81                         break;
82
83                 udelay(REGISTER_BUSY_DELAY);
84         }
85
86         if (i == 200)
87                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
88
89         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
90         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
91 }
92
93 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
94 static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
95 {
96         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
97
98         if (!base_addr)
99                 return -ENOMEM;
100
101         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
102
103         iounmap(base_addr);
104         return 0;
105 }
106 #else
107 static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
108 {
109         return -ENOMEM;
110 }
111 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
112
113 #ifdef CONFIG_PCI
114 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
115 {
116         struct rt2x00_dev *rt2x00dev = eeprom->data;
117         u32 reg;
118
119         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
120
121         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
122         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
123         eeprom->reg_data_clock =
124             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
125         eeprom->reg_chip_select =
126             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
127 }
128
129 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
130 {
131         struct rt2x00_dev *rt2x00dev = eeprom->data;
132         u32 reg = 0;
133
134         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
135         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
136         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
137                            !!eeprom->reg_data_clock);
138         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
139                            !!eeprom->reg_chip_select);
140
141         rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
142 }
143
144 static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
145 {
146         struct eeprom_93cx6 eeprom;
147         u32 reg;
148
149         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
150
151         eeprom.data = rt2x00dev;
152         eeprom.register_read = rt2800pci_eepromregister_read;
153         eeprom.register_write = rt2800pci_eepromregister_write;
154         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
155         {
156         case 0:
157                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
158                 break;
159         case 1:
160                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
161                 break;
162         default:
163                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
164                 break;
165         }
166         eeprom.reg_data_in = 0;
167         eeprom.reg_data_out = 0;
168         eeprom.reg_data_clock = 0;
169         eeprom.reg_chip_select = 0;
170
171         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
172                                EEPROM_SIZE / sizeof(u16));
173
174         return 0;
175 }
176
177 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
178 {
179         return rt2800_efuse_detect(rt2x00dev);
180 }
181
182 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
183 {
184         return rt2800_read_eeprom_efuse(rt2x00dev);
185 }
186 #else
187 static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
188 {
189         return -EOPNOTSUPP;
190 }
191
192 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
193 {
194         return 0;
195 }
196
197 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
198 {
199         return -EOPNOTSUPP;
200 }
201 #endif /* CONFIG_PCI */
202
203 /*
204  * Queue handlers.
205  */
206 static void rt2800pci_start_queue(struct data_queue *queue)
207 {
208         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
209         u32 reg;
210
211         switch (queue->qid) {
212         case QID_RX:
213                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
214                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
215                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
216                 break;
217         case QID_BEACON:
218                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
219                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
220                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
221                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
222                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223
224                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
225                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
226                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
227                 break;
228         default:
229                 break;
230         }
231 }
232
233 static void rt2800pci_kick_queue(struct data_queue *queue)
234 {
235         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
236         struct queue_entry *entry;
237
238         switch (queue->qid) {
239         case QID_AC_VO:
240         case QID_AC_VI:
241         case QID_AC_BE:
242         case QID_AC_BK:
243                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
244                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
245                                           entry->entry_idx);
246                 break;
247         case QID_MGMT:
248                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
249                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
250                                           entry->entry_idx);
251                 break;
252         default:
253                 break;
254         }
255 }
256
257 static void rt2800pci_stop_queue(struct data_queue *queue)
258 {
259         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
260         u32 reg;
261
262         switch (queue->qid) {
263         case QID_RX:
264                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
265                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
266                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
267                 break;
268         case QID_BEACON:
269                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
270                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
271                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
272                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
273                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
274
275                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
276                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
277                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
278
279                 /*
280                  * Wait for current invocation to finish. The tasklet
281                  * won't be scheduled anymore afterwards since we disabled
282                  * the TBTT and PRE TBTT timer.
283                  */
284                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
285                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
286
287                 break;
288         default:
289                 break;
290         }
291 }
292
293 /*
294  * Firmware functions
295  */
296 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
297 {
298         /*
299          * Chip rt3290 use specific 4KB firmware named rt3290.bin.
300          */
301         if (rt2x00_rt(rt2x00dev, RT3290))
302                 return FIRMWARE_RT3290;
303         else
304                 return FIRMWARE_RT2860;
305 }
306
307 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
308                                     const u8 *data, const size_t len)
309 {
310         u32 reg;
311
312         /*
313          * enable Host program ram write selection
314          */
315         reg = 0;
316         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
317         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
318
319         /*
320          * Write firmware to device.
321          */
322         rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
323                                        data, len);
324
325         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
326         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
327
328         rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
329         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
330
331         return 0;
332 }
333
334 /*
335  * Initialization functions.
336  */
337 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
338 {
339         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
340         u32 word;
341
342         if (entry->queue->qid == QID_RX) {
343                 rt2x00_desc_read(entry_priv->desc, 1, &word);
344
345                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
346         } else {
347                 rt2x00_desc_read(entry_priv->desc, 1, &word);
348
349                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
350         }
351 }
352
353 static void rt2800pci_clear_entry(struct queue_entry *entry)
354 {
355         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
356         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
357         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
358         u32 word;
359
360         if (entry->queue->qid == QID_RX) {
361                 rt2x00_desc_read(entry_priv->desc, 0, &word);
362                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
363                 rt2x00_desc_write(entry_priv->desc, 0, word);
364
365                 rt2x00_desc_read(entry_priv->desc, 1, &word);
366                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
367                 rt2x00_desc_write(entry_priv->desc, 1, word);
368
369                 /*
370                  * Set RX IDX in register to inform hardware that we have
371                  * handled this entry and it is available for reuse again.
372                  */
373                 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
374                                           entry->entry_idx);
375         } else {
376                 rt2x00_desc_read(entry_priv->desc, 1, &word);
377                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
378                 rt2x00_desc_write(entry_priv->desc, 1, word);
379         }
380 }
381
382 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
383 {
384         struct queue_entry_priv_mmio *entry_priv;
385
386         /*
387          * Initialize registers.
388          */
389         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
390         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
391                                   entry_priv->desc_dma);
392         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
393                                   rt2x00dev->tx[0].limit);
394         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
395         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
396
397         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
398         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
399                                   entry_priv->desc_dma);
400         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
401                                   rt2x00dev->tx[1].limit);
402         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
403         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
404
405         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
406         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
407                                   entry_priv->desc_dma);
408         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
409                                   rt2x00dev->tx[2].limit);
410         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
411         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
412
413         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
414         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
415                                   entry_priv->desc_dma);
416         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
417                                   rt2x00dev->tx[3].limit);
418         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
419         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
420
421         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
422         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
423         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
424         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
425
426         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
427         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
428         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
429         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
430
431         entry_priv = rt2x00dev->rx->entries[0].priv_data;
432         rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
433                                   entry_priv->desc_dma);
434         rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
435                                   rt2x00dev->rx[0].limit);
436         rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
437                                   rt2x00dev->rx[0].limit - 1);
438         rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
439
440         rt2800_disable_wpdma(rt2x00dev);
441
442         rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
443
444         return 0;
445 }
446
447 /*
448  * Device state switch handlers.
449  */
450 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
451                                  enum dev_state state)
452 {
453         u32 reg;
454         unsigned long flags;
455
456         /*
457          * When interrupts are being enabled, the interrupt registers
458          * should clear the register to assure a clean state.
459          */
460         if (state == STATE_RADIO_IRQ_ON) {
461                 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
462                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
463         }
464
465         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
466         reg = 0;
467         if (state == STATE_RADIO_IRQ_ON) {
468                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
469                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
470                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
471                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
472                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
473         }
474         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
475         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
476
477         if (state == STATE_RADIO_IRQ_OFF) {
478                 /*
479                  * Wait for possibly running tasklets to finish.
480                  */
481                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
482                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
483                 tasklet_kill(&rt2x00dev->autowake_tasklet);
484                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
485                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
486         }
487 }
488
489 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
490 {
491         u32 reg;
492
493         /*
494          * Reset DMA indexes
495          */
496         rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
497         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
498         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
499         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
500         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
501         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
502         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
503         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
504         rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
505
506         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
507         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
508
509         if (rt2x00_is_pcie(rt2x00dev) &&
510             (rt2x00_rt(rt2x00dev, RT3572) ||
511              rt2x00_rt(rt2x00dev, RT5390) ||
512              rt2x00_rt(rt2x00dev, RT5392))) {
513                 rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
514                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
515                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
516                 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
517         }
518
519         rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
520
521         reg = 0;
522         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
523         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
524         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
525
526         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
527
528         return 0;
529 }
530
531 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
532 {
533         int retval;
534
535         /* Wait for DMA, ignore error until we initialize queues. */
536         rt2800_wait_wpdma_ready(rt2x00dev);
537
538         if (unlikely(rt2800pci_init_queues(rt2x00dev)))
539                 return -EIO;
540
541         retval = rt2800_enable_radio(rt2x00dev);
542         if (retval)
543                 return retval;
544
545         /* After resume MCU_BOOT_SIGNAL will trash these. */
546         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
547         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
548
549         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
550         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
551
552         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
553         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
554
555         return retval;
556 }
557
558 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
559 {
560         if (rt2x00_is_soc(rt2x00dev)) {
561                 rt2800_disable_radio(rt2x00dev);
562                 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
563                 rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, 0);
564         }
565 }
566
567 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
568                                enum dev_state state)
569 {
570         if (state == STATE_AWAKE) {
571                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
572                                    0, 0x02);
573                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
574         } else if (state == STATE_SLEEP) {
575                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
576                                           0xffffffff);
577                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
578                                           0xffffffff);
579                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
580                                    0xff, 0x01);
581         }
582
583         return 0;
584 }
585
586 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
587                                       enum dev_state state)
588 {
589         int retval = 0;
590
591         switch (state) {
592         case STATE_RADIO_ON:
593                 retval = rt2800pci_enable_radio(rt2x00dev);
594                 break;
595         case STATE_RADIO_OFF:
596                 /*
597                  * After the radio has been disabled, the device should
598                  * be put to sleep for powersaving.
599                  */
600                 rt2800pci_disable_radio(rt2x00dev);
601                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
602                 break;
603         case STATE_RADIO_IRQ_ON:
604         case STATE_RADIO_IRQ_OFF:
605                 rt2800pci_toggle_irq(rt2x00dev, state);
606                 break;
607         case STATE_DEEP_SLEEP:
608         case STATE_SLEEP:
609         case STATE_STANDBY:
610         case STATE_AWAKE:
611                 retval = rt2800pci_set_state(rt2x00dev, state);
612                 break;
613         default:
614                 retval = -ENOTSUPP;
615                 break;
616         }
617
618         if (unlikely(retval))
619                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
620                       state, retval);
621
622         return retval;
623 }
624
625 /*
626  * TX descriptor initialization
627  */
628 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
629 {
630         return (__le32 *) entry->skb->data;
631 }
632
633 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
634                                     struct txentry_desc *txdesc)
635 {
636         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
637         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
638         __le32 *txd = entry_priv->desc;
639         u32 word;
640
641         /*
642          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
643          * must contains a TXWI structure + 802.11 header + padding + 802.11
644          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
645          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
646          * data. It means that LAST_SEC0 is always 0.
647          */
648
649         /*
650          * Initialize TX descriptor
651          */
652         word = 0;
653         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
654         rt2x00_desc_write(txd, 0, word);
655
656         word = 0;
657         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
658         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
659                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
660         rt2x00_set_field32(&word, TXD_W1_BURST,
661                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
662         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
663         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
664         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
665         rt2x00_desc_write(txd, 1, word);
666
667         word = 0;
668         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
669                            skbdesc->skb_dma + TXWI_DESC_SIZE);
670         rt2x00_desc_write(txd, 2, word);
671
672         word = 0;
673         rt2x00_set_field32(&word, TXD_W3_WIV,
674                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
675         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
676         rt2x00_desc_write(txd, 3, word);
677
678         /*
679          * Register descriptor details in skb frame descriptor.
680          */
681         skbdesc->desc = txd;
682         skbdesc->desc_len = TXD_DESC_SIZE;
683 }
684
685 /*
686  * RX control handlers
687  */
688 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
689                                   struct rxdone_entry_desc *rxdesc)
690 {
691         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
692         __le32 *rxd = entry_priv->desc;
693         u32 word;
694
695         rt2x00_desc_read(rxd, 3, &word);
696
697         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
698                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
699
700         /*
701          * Unfortunately we don't know the cipher type used during
702          * decryption. This prevents us from correct providing
703          * correct statistics through debugfs.
704          */
705         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
706
707         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
708                 /*
709                  * Hardware has stripped IV/EIV data from 802.11 frame during
710                  * decryption. Unfortunately the descriptor doesn't contain
711                  * any fields with the EIV/IV data either, so they can't
712                  * be restored by rt2x00lib.
713                  */
714                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
715
716                 /*
717                  * The hardware has already checked the Michael Mic and has
718                  * stripped it from the frame. Signal this to mac80211.
719                  */
720                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
721
722                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
723                         rxdesc->flags |= RX_FLAG_DECRYPTED;
724                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
725                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
726         }
727
728         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
729                 rxdesc->dev_flags |= RXDONE_MY_BSS;
730
731         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
732                 rxdesc->dev_flags |= RXDONE_L2PAD;
733
734         /*
735          * Process the RXWI structure that is at the start of the buffer.
736          */
737         rt2800_process_rxwi(entry, rxdesc);
738
739         /*
740          * Remove RXWI descriptor from start of buffer.
741          */
742         skb_pull(entry->skb, RXWI_DESC_SIZE);
743 }
744
745 /*
746  * Interrupt functions.
747  */
748 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
749 {
750         struct ieee80211_conf conf = { .flags = 0 };
751         struct rt2x00lib_conf libconf = { .conf = &conf };
752
753         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
754 }
755
756 static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
757 {
758         __le32 *txwi;
759         u32 word;
760         int wcid, tx_wcid;
761
762         wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
763
764         txwi = rt2800_drv_get_txwi(entry);
765         rt2x00_desc_read(txwi, 1, &word);
766         tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
767
768         return (tx_wcid == wcid);
769 }
770
771 static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
772 {
773         u32 status = *(u32 *)data;
774
775         /*
776          * rt2800pci hardware might reorder frames when exchanging traffic
777          * with multiple BA enabled STAs.
778          *
779          * For example, a tx queue
780          *    [ STA1 | STA2 | STA1 | STA2 ]
781          * can result in tx status reports
782          *    [ STA1 | STA1 | STA2 | STA2 ]
783          * when the hw decides to aggregate the frames for STA1 into one AMPDU.
784          *
785          * To mitigate this effect, associate the tx status to the first frame
786          * in the tx queue with a matching wcid.
787          */
788         if (rt2800pci_txdone_entry_check(entry, status) &&
789             !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
790                 /*
791                  * Got a matching frame, associate the tx status with
792                  * the frame
793                  */
794                 entry->status = status;
795                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
796                 return true;
797         }
798
799         /* Check the next frame */
800         return false;
801 }
802
803 static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
804 {
805         u32 status = *(u32 *)data;
806
807         /*
808          * Find the first frame without tx status and assign this status to it
809          * regardless if it matches or not.
810          */
811         if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
812                 /*
813                  * Got a matching frame, associate the tx status with
814                  * the frame
815                  */
816                 entry->status = status;
817                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
818                 return true;
819         }
820
821         /* Check the next frame */
822         return false;
823 }
824 static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
825                                              void *data)
826 {
827         if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
828                 rt2800_txdone_entry(entry, entry->status,
829                                     rt2800pci_get_txwi(entry));
830                 return false;
831         }
832
833         /* No more frames to release */
834         return true;
835 }
836
837 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
838 {
839         struct data_queue *queue;
840         u32 status;
841         u8 qid;
842         int max_tx_done = 16;
843
844         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
845                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
846                 if (unlikely(qid >= QID_RX)) {
847                         /*
848                          * Unknown queue, this shouldn't happen. Just drop
849                          * this tx status.
850                          */
851                         WARNING(rt2x00dev, "Got TX status report with "
852                                            "unexpected pid %u, dropping\n", qid);
853                         break;
854                 }
855
856                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
857                 if (unlikely(queue == NULL)) {
858                         /*
859                          * The queue is NULL, this shouldn't happen. Stop
860                          * processing here and drop the tx status
861                          */
862                         WARNING(rt2x00dev, "Got TX status for an unavailable "
863                                            "queue %u, dropping\n", qid);
864                         break;
865                 }
866
867                 if (unlikely(rt2x00queue_empty(queue))) {
868                         /*
869                          * The queue is empty. Stop processing here
870                          * and drop the tx status.
871                          */
872                         WARNING(rt2x00dev, "Got TX status for an empty "
873                                            "queue %u, dropping\n", qid);
874                         break;
875                 }
876
877                 /*
878                  * Let's associate this tx status with the first
879                  * matching frame.
880                  */
881                 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
882                                                 Q_INDEX, &status,
883                                                 rt2800pci_txdone_find_entry)) {
884                         /*
885                          * We cannot match the tx status to any frame, so just
886                          * use the first one.
887                          */
888                         if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
889                                                         Q_INDEX, &status,
890                                                         rt2800pci_txdone_match_first)) {
891                                 WARNING(rt2x00dev, "No frame found for TX "
892                                                    "status on queue %u, dropping\n",
893                                                    qid);
894                                 break;
895                         }
896                 }
897
898                 /*
899                  * Release all frames with a valid tx status.
900                  */
901                 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
902                                            Q_INDEX, NULL,
903                                            rt2800pci_txdone_release_entries);
904
905                 if (--max_tx_done == 0)
906                         break;
907         }
908
909         return !max_tx_done;
910 }
911
912 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
913                                               struct rt2x00_field32 irq_field)
914 {
915         u32 reg;
916
917         /*
918          * Enable a single interrupt. The interrupt mask register
919          * access needs locking.
920          */
921         spin_lock_irq(&rt2x00dev->irqmask_lock);
922         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
923         rt2x00_set_field32(&reg, irq_field, 1);
924         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
925         spin_unlock_irq(&rt2x00dev->irqmask_lock);
926 }
927
928 static void rt2800pci_txstatus_tasklet(unsigned long data)
929 {
930         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
931         if (rt2800pci_txdone(rt2x00dev))
932                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
933
934         /*
935          * No need to enable the tx status interrupt here as we always
936          * leave it enabled to minimize the possibility of a tx status
937          * register overflow. See comment in interrupt handler.
938          */
939 }
940
941 static void rt2800pci_pretbtt_tasklet(unsigned long data)
942 {
943         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
944         rt2x00lib_pretbtt(rt2x00dev);
945         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
946                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
947 }
948
949 static void rt2800pci_tbtt_tasklet(unsigned long data)
950 {
951         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
952         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
953         u32 reg;
954
955         rt2x00lib_beacondone(rt2x00dev);
956
957         if (rt2x00dev->intf_ap_count) {
958                 /*
959                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
960                  * causing beacon skew and as a result causing problems with
961                  * some powersaving clients over time. Shorten the beacon
962                  * interval every 64 beacons by 64us to mitigate this effect.
963                  */
964                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
965                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
966                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
967                                            (rt2x00dev->beacon_int * 16) - 1);
968                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
969                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
970                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
971                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
972                                            (rt2x00dev->beacon_int * 16));
973                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
974                 }
975                 drv_data->tbtt_tick++;
976                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
977         }
978
979         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
980                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
981 }
982
983 static void rt2800pci_rxdone_tasklet(unsigned long data)
984 {
985         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
986         if (rt2x00mmio_rxdone(rt2x00dev))
987                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
988         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
989                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
990 }
991
992 static void rt2800pci_autowake_tasklet(unsigned long data)
993 {
994         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
995         rt2800pci_wakeup(rt2x00dev);
996         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
997                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
998 }
999
1000 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
1001 {
1002         u32 status;
1003         int i;
1004
1005         /*
1006          * The TX_FIFO_STATUS interrupt needs special care. We should
1007          * read TX_STA_FIFO but we should do it immediately as otherwise
1008          * the register can overflow and we would lose status reports.
1009          *
1010          * Hence, read the TX_STA_FIFO register and copy all tx status
1011          * reports into a kernel FIFO which is handled in the txstatus
1012          * tasklet. We use a tasklet to process the tx status reports
1013          * because we can schedule the tasklet multiple times (when the
1014          * interrupt fires again during tx status processing).
1015          *
1016          * Furthermore we don't disable the TX_FIFO_STATUS
1017          * interrupt here but leave it enabled so that the TX_STA_FIFO
1018          * can also be read while the tx status tasklet gets executed.
1019          *
1020          * Since we have only one producer and one consumer we don't
1021          * need to lock the kfifo.
1022          */
1023         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
1024                 rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
1025
1026                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
1027                         break;
1028
1029                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
1030                         WARNING(rt2x00dev, "TX status FIFO overrun,"
1031                                 "drop tx status report.\n");
1032                         break;
1033                 }
1034         }
1035
1036         /* Schedule the tasklet for processing the tx status. */
1037         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1038 }
1039
1040 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
1041 {
1042         struct rt2x00_dev *rt2x00dev = dev_instance;
1043         u32 reg, mask;
1044
1045         /* Read status and ACK all interrupts */
1046         rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1047         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1048
1049         if (!reg)
1050                 return IRQ_NONE;
1051
1052         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1053                 return IRQ_HANDLED;
1054
1055         /*
1056          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
1057          * for interrupts and interrupt masks we can just use the value of
1058          * INT_SOURCE_CSR to create the interrupt mask.
1059          */
1060         mask = ~reg;
1061
1062         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
1063                 rt2800pci_txstatus_interrupt(rt2x00dev);
1064                 /*
1065                  * Never disable the TX_FIFO_STATUS interrupt.
1066                  */
1067                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
1068         }
1069
1070         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
1071                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
1072
1073         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
1074                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1075
1076         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
1077                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1078
1079         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
1080                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
1081
1082         /*
1083          * Disable all interrupts for which a tasklet was scheduled right now,
1084          * the tasklet will reenable the appropriate interrupts.
1085          */
1086         spin_lock(&rt2x00dev->irqmask_lock);
1087         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1088         reg &= mask;
1089         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1090         spin_unlock(&rt2x00dev->irqmask_lock);
1091
1092         return IRQ_HANDLED;
1093 }
1094
1095 /*
1096  * Device probe functions.
1097  */
1098 static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
1099 {
1100         int retval;
1101
1102         if (rt2x00_is_soc(rt2x00dev))
1103                 retval = rt2800pci_read_eeprom_soc(rt2x00dev);
1104         else if (rt2800pci_efuse_detect(rt2x00dev))
1105                 retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
1106         else
1107                 retval = rt2800pci_read_eeprom_pci(rt2x00dev);
1108
1109         return retval;
1110 }
1111
1112 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1113         .tx                     = rt2x00mac_tx,
1114         .start                  = rt2x00mac_start,
1115         .stop                   = rt2x00mac_stop,
1116         .add_interface          = rt2x00mac_add_interface,
1117         .remove_interface       = rt2x00mac_remove_interface,
1118         .config                 = rt2x00mac_config,
1119         .configure_filter       = rt2x00mac_configure_filter,
1120         .set_key                = rt2x00mac_set_key,
1121         .sw_scan_start          = rt2x00mac_sw_scan_start,
1122         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1123         .get_stats              = rt2x00mac_get_stats,
1124         .get_tkip_seq           = rt2800_get_tkip_seq,
1125         .set_rts_threshold      = rt2800_set_rts_threshold,
1126         .sta_add                = rt2x00mac_sta_add,
1127         .sta_remove             = rt2x00mac_sta_remove,
1128         .bss_info_changed       = rt2x00mac_bss_info_changed,
1129         .conf_tx                = rt2800_conf_tx,
1130         .get_tsf                = rt2800_get_tsf,
1131         .rfkill_poll            = rt2x00mac_rfkill_poll,
1132         .ampdu_action           = rt2800_ampdu_action,
1133         .flush                  = rt2x00mac_flush,
1134         .get_survey             = rt2800_get_survey,
1135         .get_ringparam          = rt2x00mac_get_ringparam,
1136         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1137 };
1138
1139 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1140         .register_read          = rt2x00mmio_register_read,
1141         .register_read_lock     = rt2x00mmio_register_read, /* same for PCI */
1142         .register_write         = rt2x00mmio_register_write,
1143         .register_write_lock    = rt2x00mmio_register_write, /* same for PCI */
1144         .register_multiread     = rt2x00mmio_register_multiread,
1145         .register_multiwrite    = rt2x00mmio_register_multiwrite,
1146         .regbusy_read           = rt2x00mmio_regbusy_read,
1147         .read_eeprom            = rt2800pci_read_eeprom,
1148         .hwcrypt_disabled       = rt2800pci_hwcrypt_disabled,
1149         .drv_write_firmware     = rt2800pci_write_firmware,
1150         .drv_init_registers     = rt2800pci_init_registers,
1151         .drv_get_txwi           = rt2800pci_get_txwi,
1152 };
1153
1154 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1155         .irq_handler            = rt2800pci_interrupt,
1156         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1157         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1158         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1159         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1160         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1161         .probe_hw               = rt2800_probe_hw,
1162         .get_firmware_name      = rt2800pci_get_firmware_name,
1163         .check_firmware         = rt2800_check_firmware,
1164         .load_firmware          = rt2800_load_firmware,
1165         .initialize             = rt2x00mmio_initialize,
1166         .uninitialize           = rt2x00mmio_uninitialize,
1167         .get_entry_state        = rt2800pci_get_entry_state,
1168         .clear_entry            = rt2800pci_clear_entry,
1169         .set_device_state       = rt2800pci_set_device_state,
1170         .rfkill_poll            = rt2800_rfkill_poll,
1171         .link_stats             = rt2800_link_stats,
1172         .reset_tuner            = rt2800_reset_tuner,
1173         .link_tuner             = rt2800_link_tuner,
1174         .gain_calibration       = rt2800_gain_calibration,
1175         .vco_calibration        = rt2800_vco_calibration,
1176         .start_queue            = rt2800pci_start_queue,
1177         .kick_queue             = rt2800pci_kick_queue,
1178         .stop_queue             = rt2800pci_stop_queue,
1179         .flush_queue            = rt2x00mmio_flush_queue,
1180         .write_tx_desc          = rt2800pci_write_tx_desc,
1181         .write_tx_data          = rt2800_write_tx_data,
1182         .write_beacon           = rt2800_write_beacon,
1183         .clear_beacon           = rt2800_clear_beacon,
1184         .fill_rxdone            = rt2800pci_fill_rxdone,
1185         .config_shared_key      = rt2800_config_shared_key,
1186         .config_pairwise_key    = rt2800_config_pairwise_key,
1187         .config_filter          = rt2800_config_filter,
1188         .config_intf            = rt2800_config_intf,
1189         .config_erp             = rt2800_config_erp,
1190         .config_ant             = rt2800_config_ant,
1191         .config                 = rt2800_config,
1192         .sta_add                = rt2800_sta_add,
1193         .sta_remove             = rt2800_sta_remove,
1194 };
1195
1196 static const struct data_queue_desc rt2800pci_queue_rx = {
1197         .entry_num              = 128,
1198         .data_size              = AGGREGATION_SIZE,
1199         .desc_size              = RXD_DESC_SIZE,
1200         .priv_size              = sizeof(struct queue_entry_priv_mmio),
1201 };
1202
1203 static const struct data_queue_desc rt2800pci_queue_tx = {
1204         .entry_num              = 64,
1205         .data_size              = AGGREGATION_SIZE,
1206         .desc_size              = TXD_DESC_SIZE,
1207         .priv_size              = sizeof(struct queue_entry_priv_mmio),
1208 };
1209
1210 static const struct data_queue_desc rt2800pci_queue_bcn = {
1211         .entry_num              = 8,
1212         .data_size              = 0, /* No DMA required for beacons */
1213         .desc_size              = TXWI_DESC_SIZE,
1214         .priv_size              = sizeof(struct queue_entry_priv_mmio),
1215 };
1216
1217 static const struct rt2x00_ops rt2800pci_ops = {
1218         .name                   = KBUILD_MODNAME,
1219         .drv_data_size          = sizeof(struct rt2800_drv_data),
1220         .max_ap_intf            = 8,
1221         .eeprom_size            = EEPROM_SIZE,
1222         .rf_size                = RF_SIZE,
1223         .tx_queues              = NUM_TX_QUEUES,
1224         .extra_tx_headroom      = TXWI_DESC_SIZE,
1225         .rx                     = &rt2800pci_queue_rx,
1226         .tx                     = &rt2800pci_queue_tx,
1227         .bcn                    = &rt2800pci_queue_bcn,
1228         .lib                    = &rt2800pci_rt2x00_ops,
1229         .drv                    = &rt2800pci_rt2800_ops,
1230         .hw                     = &rt2800pci_mac80211_ops,
1231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1232         .debugfs                = &rt2800_rt2x00debug,
1233 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1234 };
1235
1236 /*
1237  * RT2800pci module information.
1238  */
1239 #ifdef CONFIG_PCI
1240 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1241         { PCI_DEVICE(0x1814, 0x0601) },
1242         { PCI_DEVICE(0x1814, 0x0681) },
1243         { PCI_DEVICE(0x1814, 0x0701) },
1244         { PCI_DEVICE(0x1814, 0x0781) },
1245         { PCI_DEVICE(0x1814, 0x3090) },
1246         { PCI_DEVICE(0x1814, 0x3091) },
1247         { PCI_DEVICE(0x1814, 0x3092) },
1248         { PCI_DEVICE(0x1432, 0x7708) },
1249         { PCI_DEVICE(0x1432, 0x7727) },
1250         { PCI_DEVICE(0x1432, 0x7728) },
1251         { PCI_DEVICE(0x1432, 0x7738) },
1252         { PCI_DEVICE(0x1432, 0x7748) },
1253         { PCI_DEVICE(0x1432, 0x7758) },
1254         { PCI_DEVICE(0x1432, 0x7768) },
1255         { PCI_DEVICE(0x1462, 0x891a) },
1256         { PCI_DEVICE(0x1a3b, 0x1059) },
1257 #ifdef CONFIG_RT2800PCI_RT3290
1258         { PCI_DEVICE(0x1814, 0x3290) },
1259 #endif
1260 #ifdef CONFIG_RT2800PCI_RT33XX
1261         { PCI_DEVICE(0x1814, 0x3390) },
1262 #endif
1263 #ifdef CONFIG_RT2800PCI_RT35XX
1264         { PCI_DEVICE(0x1432, 0x7711) },
1265         { PCI_DEVICE(0x1432, 0x7722) },
1266         { PCI_DEVICE(0x1814, 0x3060) },
1267         { PCI_DEVICE(0x1814, 0x3062) },
1268         { PCI_DEVICE(0x1814, 0x3562) },
1269         { PCI_DEVICE(0x1814, 0x3592) },
1270         { PCI_DEVICE(0x1814, 0x3593) },
1271         { PCI_DEVICE(0x1814, 0x359f) },
1272 #endif
1273 #ifdef CONFIG_RT2800PCI_RT53XX
1274         { PCI_DEVICE(0x1814, 0x5360) },
1275         { PCI_DEVICE(0x1814, 0x5362) },
1276         { PCI_DEVICE(0x1814, 0x5390) },
1277         { PCI_DEVICE(0x1814, 0x5392) },
1278         { PCI_DEVICE(0x1814, 0x539a) },
1279         { PCI_DEVICE(0x1814, 0x539b) },
1280         { PCI_DEVICE(0x1814, 0x539f) },
1281 #endif
1282         { 0, }
1283 };
1284 #endif /* CONFIG_PCI */
1285
1286 MODULE_AUTHOR(DRV_PROJECT);
1287 MODULE_VERSION(DRV_VERSION);
1288 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1289 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1290 #ifdef CONFIG_PCI
1291 MODULE_FIRMWARE(FIRMWARE_RT2860);
1292 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1293 #endif /* CONFIG_PCI */
1294 MODULE_LICENSE("GPL");
1295
1296 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1297 static int rt2800soc_probe(struct platform_device *pdev)
1298 {
1299         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1300 }
1301
1302 static struct platform_driver rt2800soc_driver = {
1303         .driver         = {
1304                 .name           = "rt2800_wmac",
1305                 .owner          = THIS_MODULE,
1306                 .mod_name       = KBUILD_MODNAME,
1307         },
1308         .probe          = rt2800soc_probe,
1309         .remove         = rt2x00soc_remove,
1310         .suspend        = rt2x00soc_suspend,
1311         .resume         = rt2x00soc_resume,
1312 };
1313 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
1314
1315 #ifdef CONFIG_PCI
1316 static int rt2800pci_probe(struct pci_dev *pci_dev,
1317                            const struct pci_device_id *id)
1318 {
1319         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1320 }
1321
1322 static struct pci_driver rt2800pci_driver = {
1323         .name           = KBUILD_MODNAME,
1324         .id_table       = rt2800pci_device_table,
1325         .probe          = rt2800pci_probe,
1326         .remove         = rt2x00pci_remove,
1327         .suspend        = rt2x00pci_suspend,
1328         .resume         = rt2x00pci_resume,
1329 };
1330 #endif /* CONFIG_PCI */
1331
1332 static int __init rt2800pci_init(void)
1333 {
1334         int ret = 0;
1335
1336 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1337         ret = platform_driver_register(&rt2800soc_driver);
1338         if (ret)
1339                 return ret;
1340 #endif
1341 #ifdef CONFIG_PCI
1342         ret = pci_register_driver(&rt2800pci_driver);
1343         if (ret) {
1344 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1345                 platform_driver_unregister(&rt2800soc_driver);
1346 #endif
1347                 return ret;
1348         }
1349 #endif
1350
1351         return ret;
1352 }
1353
1354 static void __exit rt2800pci_exit(void)
1355 {
1356 #ifdef CONFIG_PCI
1357         pci_unregister_driver(&rt2800pci_driver);
1358 #endif
1359 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1360         platform_driver_unregister(&rt2800soc_driver);
1361 #endif
1362 }
1363
1364 module_init(rt2800pci_init);
1365 module_exit(rt2800pci_exit);