2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
48 #include "rt2800pci.h"
51 * Allow hardware encryption to be disabled.
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
63 * SOC devices don't support MCU requests.
65 if (rt2x00_is_soc(rt2x00dev))
68 for (i = 0; i < 200; i++) {
69 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, ®);
71 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
77 udelay(REGISTER_BUSY_DELAY);
81 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
83 rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
90 void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
92 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
105 struct rt2x00_dev *rt2x00dev = eeprom->data;
108 rt2800_register_read(rt2x00dev, E2PROM_CSR, ®);
110 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112 eeprom->reg_data_clock =
113 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114 eeprom->reg_chip_select =
115 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
120 struct rt2x00_dev *rt2x00dev = eeprom->data;
123 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
126 !!eeprom->reg_data_clock);
127 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
128 !!eeprom->reg_chip_select);
130 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
135 struct eeprom_93cx6 eeprom;
138 rt2800_register_read(rt2x00dev, E2PROM_CSR, ®);
140 eeprom.data = rt2x00dev;
141 eeprom.register_read = rt2800pci_eepromregister_read;
142 eeprom.register_write = rt2800pci_eepromregister_write;
143 switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
146 eeprom.width = PCI_EEPROM_WIDTH_93C46;
149 eeprom.width = PCI_EEPROM_WIDTH_93C66;
152 eeprom.width = PCI_EEPROM_WIDTH_93C86;
155 eeprom.reg_data_in = 0;
156 eeprom.reg_data_out = 0;
157 eeprom.reg_data_clock = 0;
158 eeprom.reg_chip_select = 0;
160 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161 EEPROM_SIZE / sizeof(u16));
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
166 return rt2800_efuse_detect(rt2x00dev);
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
171 rt2800_read_eeprom_efuse(rt2x00dev);
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
186 #endif /* CONFIG_PCI */
191 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
193 return FIRMWARE_RT2860;
196 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
197 const u8 *data, const size_t len)
202 * enable Host program ram write selection
205 rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
206 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
209 * Write firmware to device.
211 rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
214 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
215 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
217 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
218 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
224 * Initialization functions.
226 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
228 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
231 if (entry->queue->qid == QID_RX) {
232 rt2x00_desc_read(entry_priv->desc, 1, &word);
234 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
236 rt2x00_desc_read(entry_priv->desc, 1, &word);
238 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
242 static void rt2800pci_clear_entry(struct queue_entry *entry)
244 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
245 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
246 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
249 if (entry->queue->qid == QID_RX) {
250 rt2x00_desc_read(entry_priv->desc, 0, &word);
251 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
252 rt2x00_desc_write(entry_priv->desc, 0, word);
254 rt2x00_desc_read(entry_priv->desc, 1, &word);
255 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
256 rt2x00_desc_write(entry_priv->desc, 1, word);
259 * Set RX IDX in register to inform hardware that we have
260 * handled this entry and it is available for reuse again.
262 rt2800_register_write(rt2x00dev, RX_CRX_IDX,
265 rt2x00_desc_read(entry_priv->desc, 1, &word);
266 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
267 rt2x00_desc_write(entry_priv->desc, 1, word);
271 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
273 struct queue_entry_priv_pci *entry_priv;
277 * Initialize registers.
279 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
280 rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
281 rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
282 rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
283 rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
285 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
286 rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
287 rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
288 rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
289 rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
291 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
292 rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
293 rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
294 rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
295 rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
297 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
298 rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
299 rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
300 rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
301 rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
303 entry_priv = rt2x00dev->rx->entries[0].priv_data;
304 rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
305 rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
306 rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
307 rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
310 * Enable global DMA configuration
312 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
313 rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
314 rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
315 rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
316 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
318 rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
324 * Device state switch handlers.
326 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
327 enum dev_state state)
331 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
332 rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX,
333 (state == STATE_RADIO_RX_ON));
334 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
337 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
338 enum dev_state state)
340 int mask = (state == STATE_RADIO_IRQ_ON) ||
341 (state == STATE_RADIO_IRQ_ON_ISR);
345 * When interrupts are being enabled, the interrupt registers
346 * should clear the register to assure a clean state.
348 if (state == STATE_RADIO_IRQ_ON) {
349 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
350 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
353 rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®);
354 rt2x00_set_field32(®, INT_MASK_CSR_RXDELAYINT, 0);
355 rt2x00_set_field32(®, INT_MASK_CSR_TXDELAYINT, 0);
356 rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, mask);
357 rt2x00_set_field32(®, INT_MASK_CSR_AC0_DMA_DONE, 0);
358 rt2x00_set_field32(®, INT_MASK_CSR_AC1_DMA_DONE, 0);
359 rt2x00_set_field32(®, INT_MASK_CSR_AC2_DMA_DONE, 0);
360 rt2x00_set_field32(®, INT_MASK_CSR_AC3_DMA_DONE, 0);
361 rt2x00_set_field32(®, INT_MASK_CSR_HCCA_DMA_DONE, 0);
362 rt2x00_set_field32(®, INT_MASK_CSR_MGMT_DMA_DONE, 0);
363 rt2x00_set_field32(®, INT_MASK_CSR_MCU_COMMAND, 0);
364 rt2x00_set_field32(®, INT_MASK_CSR_RXTX_COHERENT, 0);
365 rt2x00_set_field32(®, INT_MASK_CSR_TBTT, mask);
366 rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, mask);
367 rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, mask);
368 rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, mask);
369 rt2x00_set_field32(®, INT_MASK_CSR_GPTIMER, 0);
370 rt2x00_set_field32(®, INT_MASK_CSR_RX_COHERENT, 0);
371 rt2x00_set_field32(®, INT_MASK_CSR_TX_COHERENT, 0);
372 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
375 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
382 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
383 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
384 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
385 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
386 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
387 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
388 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
389 rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
390 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
392 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
393 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
395 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
397 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
398 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
399 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
400 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
402 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
407 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
409 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
410 rt2800pci_init_queues(rt2x00dev)))
413 return rt2800_enable_radio(rt2x00dev);
416 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
420 rt2800_disable_radio(rt2x00dev);
422 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
424 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
425 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
426 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
427 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
428 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
429 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
430 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
431 rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
432 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
434 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
435 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
438 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
439 enum dev_state state)
442 * Always put the device to sleep (even when we intend to wakeup!)
443 * if the device is booting and wasn't asleep it will return
444 * failure when attempting to wakeup.
446 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
448 if (state == STATE_AWAKE) {
449 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
450 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
456 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
457 enum dev_state state)
464 * Before the radio can be enabled, the device first has
465 * to be woken up. After that it needs a bit of time
466 * to be fully awake and then the radio can be enabled.
468 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
470 retval = rt2800pci_enable_radio(rt2x00dev);
472 case STATE_RADIO_OFF:
474 * After the radio has been disabled, the device should
475 * be put to sleep for powersaving.
477 rt2800pci_disable_radio(rt2x00dev);
478 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
480 case STATE_RADIO_RX_ON:
481 case STATE_RADIO_RX_OFF:
482 rt2800pci_toggle_rx(rt2x00dev, state);
484 case STATE_RADIO_IRQ_ON:
485 case STATE_RADIO_IRQ_ON_ISR:
486 case STATE_RADIO_IRQ_OFF:
487 case STATE_RADIO_IRQ_OFF_ISR:
488 rt2800pci_toggle_irq(rt2x00dev, state);
490 case STATE_DEEP_SLEEP:
494 retval = rt2800pci_set_state(rt2x00dev, state);
501 if (unlikely(retval))
502 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
509 * TX descriptor initialization
511 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
513 return (__le32 *) entry->skb->data;
516 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
517 struct txentry_desc *txdesc)
519 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
520 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
521 __le32 *txd = entry_priv->desc;
525 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
526 * must contains a TXWI structure + 802.11 header + padding + 802.11
527 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
528 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
529 * data. It means that LAST_SEC0 is always 0.
533 * Initialize TX descriptor
535 rt2x00_desc_read(txd, 0, &word);
536 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
537 rt2x00_desc_write(txd, 0, word);
539 rt2x00_desc_read(txd, 1, &word);
540 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
541 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
542 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
543 rt2x00_set_field32(&word, TXD_W1_BURST,
544 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
545 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
546 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
547 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
548 rt2x00_desc_write(txd, 1, word);
550 rt2x00_desc_read(txd, 2, &word);
551 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
552 skbdesc->skb_dma + TXWI_DESC_SIZE);
553 rt2x00_desc_write(txd, 2, word);
555 rt2x00_desc_read(txd, 3, &word);
556 rt2x00_set_field32(&word, TXD_W3_WIV,
557 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
558 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
559 rt2x00_desc_write(txd, 3, word);
562 * Register descriptor details in skb frame descriptor.
565 skbdesc->desc_len = TXD_DESC_SIZE;
569 * TX data initialization
571 static void rt2800pci_kick_tx_queue(struct data_queue *queue)
573 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
574 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
577 if (queue->qid == QID_MGMT)
582 rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
585 static void rt2800pci_kill_tx_queue(struct data_queue *queue)
587 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
590 if (queue->qid == QID_BEACON) {
591 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
592 rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
593 rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
594 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
595 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
599 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
600 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
601 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
602 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
603 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
604 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
608 * RX control handlers
610 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
611 struct rxdone_entry_desc *rxdesc)
613 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
614 __le32 *rxd = entry_priv->desc;
617 rt2x00_desc_read(rxd, 3, &word);
619 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
620 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
623 * Unfortunately we don't know the cipher type used during
624 * decryption. This prevents us from correct providing
625 * correct statistics through debugfs.
627 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
629 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
631 * Hardware has stripped IV/EIV data from 802.11 frame during
632 * decryption. Unfortunately the descriptor doesn't contain
633 * any fields with the EIV/IV data either, so they can't
634 * be restored by rt2x00lib.
636 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
638 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
639 rxdesc->flags |= RX_FLAG_DECRYPTED;
640 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
641 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
644 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
645 rxdesc->dev_flags |= RXDONE_MY_BSS;
647 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
648 rxdesc->dev_flags |= RXDONE_L2PAD;
651 * Process the RXWI structure that is at the start of the buffer.
653 rt2800_process_rxwi(entry, rxdesc);
657 * Interrupt functions.
659 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
661 struct ieee80211_conf conf = { .flags = 0 };
662 struct rt2x00lib_conf libconf = { .conf = &conf };
664 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
667 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
669 struct data_queue *queue;
670 struct queue_entry *entry;
674 while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
675 /* Now remove the tx status from the FIFO */
676 if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
677 sizeof(status)) != sizeof(status)) {
682 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
685 * Unknown queue, this shouldn't happen. Just drop
688 WARNING(rt2x00dev, "Got TX status report with "
689 "unexpected pid %u, dropping", qid);
693 queue = rt2x00queue_get_queue(rt2x00dev, qid);
694 if (unlikely(queue == NULL)) {
696 * The queue is NULL, this shouldn't happen. Stop
697 * processing here and drop the tx status
699 WARNING(rt2x00dev, "Got TX status for an unavailable "
700 "queue %u, dropping", qid);
704 if (rt2x00queue_empty(queue)) {
706 * The queue is empty. Stop processing here
707 * and drop the tx status.
709 WARNING(rt2x00dev, "Got TX status for an empty "
710 "queue %u, dropping", qid);
714 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
715 rt2800_txdone_entry(entry, status);
719 static void rt2800pci_txstatus_tasklet(unsigned long data)
721 rt2800pci_txdone((struct rt2x00_dev *)data);
724 static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
726 struct rt2x00_dev *rt2x00dev = dev_instance;
727 u32 reg = rt2x00dev->irqvalue[0];
730 * 1 - Pre TBTT interrupt.
732 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
733 rt2x00lib_pretbtt(rt2x00dev);
736 * 2 - Beacondone interrupt.
738 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
739 rt2x00lib_beacondone(rt2x00dev);
742 * 3 - Rx ring done interrupt.
744 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
745 rt2x00pci_rxdone(rt2x00dev);
748 * 4 - Auto wakeup interrupt.
750 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
751 rt2800pci_wakeup(rt2x00dev);
753 /* Enable interrupts again. */
754 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
755 STATE_RADIO_IRQ_ON_ISR);
760 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
766 * The TX_FIFO_STATUS interrupt needs special care. We should
767 * read TX_STA_FIFO but we should do it immediately as otherwise
768 * the register can overflow and we would lose status reports.
770 * Hence, read the TX_STA_FIFO register and copy all tx status
771 * reports into a kernel FIFO which is handled in the txstatus
772 * tasklet. We use a tasklet to process the tx status reports
773 * because we can schedule the tasklet multiple times (when the
774 * interrupt fires again during tx status processing).
776 * Furthermore we don't disable the TX_FIFO_STATUS
777 * interrupt here but leave it enabled so that the TX_STA_FIFO
778 * can also be read while the interrupt thread gets executed.
780 * Since we have only one producer and one consumer we don't
781 * need to lock the kfifo.
783 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
784 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
786 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
789 if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
790 WARNING(rt2x00dev, "TX status FIFO overrun,"
791 " drop tx status report.\n");
795 if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
796 sizeof(status)) != sizeof(status)) {
797 WARNING(rt2x00dev, "TX status FIFO overrun,"
798 "drop tx status report.\n");
803 /* Schedule the tasklet for processing the tx status. */
804 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
807 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
809 struct rt2x00_dev *rt2x00dev = dev_instance;
811 irqreturn_t ret = IRQ_HANDLED;
813 /* Read status and ACK all interrupts */
814 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
815 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
820 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
823 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
824 rt2800pci_txstatus_interrupt(rt2x00dev);
826 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
827 rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
828 rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
829 rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
831 * All other interrupts are handled in the interrupt thread.
832 * Store irqvalue for use in the interrupt thread.
834 rt2x00dev->irqvalue[0] = reg;
837 * Disable interrupts, will be enabled again in the
840 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
841 STATE_RADIO_IRQ_OFF_ISR);
844 * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
847 rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®);
848 rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1);
849 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
851 ret = IRQ_WAKE_THREAD;
858 * Device probe functions.
860 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
863 * Read EEPROM into buffer
865 if (rt2x00_is_soc(rt2x00dev))
866 rt2800pci_read_eeprom_soc(rt2x00dev);
867 else if (rt2800pci_efuse_detect(rt2x00dev))
868 rt2800pci_read_eeprom_efuse(rt2x00dev);
870 rt2800pci_read_eeprom_pci(rt2x00dev);
872 return rt2800_validate_eeprom(rt2x00dev);
875 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
880 * Allocate eeprom data.
882 retval = rt2800pci_validate_eeprom(rt2x00dev);
886 retval = rt2800_init_eeprom(rt2x00dev);
891 * Initialize hw specifications.
893 retval = rt2800_probe_hw_mode(rt2x00dev);
898 * This device has multiple filters for control frames
899 * and has a separate filter for PS Poll frames.
901 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
902 __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
905 * This device has a pre tbtt interrupt and thus fetches
906 * a new beacon directly prior to transmission.
908 __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
911 * This device requires firmware.
913 if (!rt2x00_is_soc(rt2x00dev))
914 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
915 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
916 __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
917 __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
918 __set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
919 if (!modparam_nohwcrypt)
920 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
921 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
924 * Set the rssi offset.
926 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
931 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
933 .start = rt2x00mac_start,
934 .stop = rt2x00mac_stop,
935 .add_interface = rt2x00mac_add_interface,
936 .remove_interface = rt2x00mac_remove_interface,
937 .config = rt2x00mac_config,
938 .configure_filter = rt2x00mac_configure_filter,
939 .set_key = rt2x00mac_set_key,
940 .sw_scan_start = rt2x00mac_sw_scan_start,
941 .sw_scan_complete = rt2x00mac_sw_scan_complete,
942 .get_stats = rt2x00mac_get_stats,
943 .get_tkip_seq = rt2800_get_tkip_seq,
944 .set_rts_threshold = rt2800_set_rts_threshold,
945 .bss_info_changed = rt2x00mac_bss_info_changed,
946 .conf_tx = rt2800_conf_tx,
947 .get_tsf = rt2800_get_tsf,
948 .rfkill_poll = rt2x00mac_rfkill_poll,
949 .ampdu_action = rt2800_ampdu_action,
950 .flush = rt2x00mac_flush,
951 .get_survey = rt2800_get_survey,
954 static const struct rt2800_ops rt2800pci_rt2800_ops = {
955 .register_read = rt2x00pci_register_read,
956 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
957 .register_write = rt2x00pci_register_write,
958 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
959 .register_multiread = rt2x00pci_register_multiread,
960 .register_multiwrite = rt2x00pci_register_multiwrite,
961 .regbusy_read = rt2x00pci_regbusy_read,
962 .drv_write_firmware = rt2800pci_write_firmware,
963 .drv_init_registers = rt2800pci_init_registers,
964 .drv_get_txwi = rt2800pci_get_txwi,
967 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
968 .irq_handler = rt2800pci_interrupt,
969 .irq_handler_thread = rt2800pci_interrupt_thread,
970 .txstatus_tasklet = rt2800pci_txstatus_tasklet,
971 .probe_hw = rt2800pci_probe_hw,
972 .get_firmware_name = rt2800pci_get_firmware_name,
973 .check_firmware = rt2800_check_firmware,
974 .load_firmware = rt2800_load_firmware,
975 .initialize = rt2x00pci_initialize,
976 .uninitialize = rt2x00pci_uninitialize,
977 .get_entry_state = rt2800pci_get_entry_state,
978 .clear_entry = rt2800pci_clear_entry,
979 .set_device_state = rt2800pci_set_device_state,
980 .rfkill_poll = rt2800_rfkill_poll,
981 .link_stats = rt2800_link_stats,
982 .reset_tuner = rt2800_reset_tuner,
983 .link_tuner = rt2800_link_tuner,
984 .write_tx_desc = rt2800pci_write_tx_desc,
985 .write_tx_data = rt2800_write_tx_data,
986 .write_beacon = rt2800_write_beacon,
987 .kick_tx_queue = rt2800pci_kick_tx_queue,
988 .kill_tx_queue = rt2800pci_kill_tx_queue,
989 .fill_rxdone = rt2800pci_fill_rxdone,
990 .config_shared_key = rt2800_config_shared_key,
991 .config_pairwise_key = rt2800_config_pairwise_key,
992 .config_filter = rt2800_config_filter,
993 .config_intf = rt2800_config_intf,
994 .config_erp = rt2800_config_erp,
995 .config_ant = rt2800_config_ant,
996 .config = rt2800_config,
999 static const struct data_queue_desc rt2800pci_queue_rx = {
1001 .data_size = AGGREGATION_SIZE,
1002 .desc_size = RXD_DESC_SIZE,
1003 .priv_size = sizeof(struct queue_entry_priv_pci),
1006 static const struct data_queue_desc rt2800pci_queue_tx = {
1008 .data_size = AGGREGATION_SIZE,
1009 .desc_size = TXD_DESC_SIZE,
1010 .priv_size = sizeof(struct queue_entry_priv_pci),
1013 static const struct data_queue_desc rt2800pci_queue_bcn = {
1015 .data_size = 0, /* No DMA required for beacons */
1016 .desc_size = TXWI_DESC_SIZE,
1017 .priv_size = sizeof(struct queue_entry_priv_pci),
1020 static const struct rt2x00_ops rt2800pci_ops = {
1021 .name = KBUILD_MODNAME,
1024 .eeprom_size = EEPROM_SIZE,
1026 .tx_queues = NUM_TX_QUEUES,
1027 .extra_tx_headroom = TXWI_DESC_SIZE,
1028 .rx = &rt2800pci_queue_rx,
1029 .tx = &rt2800pci_queue_tx,
1030 .bcn = &rt2800pci_queue_bcn,
1031 .lib = &rt2800pci_rt2x00_ops,
1032 .drv = &rt2800pci_rt2800_ops,
1033 .hw = &rt2800pci_mac80211_ops,
1034 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1035 .debugfs = &rt2800_rt2x00debug,
1036 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1040 * RT2800pci module information.
1043 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1044 { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1045 { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1046 { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1047 { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1048 { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1049 { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1050 { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1051 { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1052 { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1053 { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1054 { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1055 { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1056 { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1057 { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1058 { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1059 { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1060 #ifdef CONFIG_RT2800PCI_RT33XX
1061 { PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
1063 #ifdef CONFIG_RT2800PCI_RT35XX
1064 { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1065 { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1066 { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1067 { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1068 { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1072 #endif /* CONFIG_PCI */
1074 MODULE_AUTHOR(DRV_PROJECT);
1075 MODULE_VERSION(DRV_VERSION);
1076 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1077 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1079 MODULE_FIRMWARE(FIRMWARE_RT2860);
1080 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1081 #endif /* CONFIG_PCI */
1082 MODULE_LICENSE("GPL");
1084 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1085 static int rt2800soc_probe(struct platform_device *pdev)
1087 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1090 static struct platform_driver rt2800soc_driver = {
1092 .name = "rt2800_wmac",
1093 .owner = THIS_MODULE,
1094 .mod_name = KBUILD_MODNAME,
1096 .probe = rt2800soc_probe,
1097 .remove = __devexit_p(rt2x00soc_remove),
1098 .suspend = rt2x00soc_suspend,
1099 .resume = rt2x00soc_resume,
1101 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1104 static struct pci_driver rt2800pci_driver = {
1105 .name = KBUILD_MODNAME,
1106 .id_table = rt2800pci_device_table,
1107 .probe = rt2x00pci_probe,
1108 .remove = __devexit_p(rt2x00pci_remove),
1109 .suspend = rt2x00pci_suspend,
1110 .resume = rt2x00pci_resume,
1112 #endif /* CONFIG_PCI */
1114 static int __init rt2800pci_init(void)
1118 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1119 ret = platform_driver_register(&rt2800soc_driver);
1124 ret = pci_register_driver(&rt2800pci_driver);
1126 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1127 platform_driver_unregister(&rt2800soc_driver);
1136 static void __exit rt2800pci_exit(void)
1139 pci_unregister_driver(&rt2800pci_driver);
1141 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1142 platform_driver_unregister(&rt2800soc_driver);
1146 module_init(rt2800pci_init);
1147 module_exit(rt2800pci_exit);