rt2x00: separte filling tx status from rt2x00lib_txdone
[platform/kernel/linux-rpi.git] / drivers / net / wireless / ralink / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 /*
21         Module: rt2x00lib
22         Abstract: rt2x00 generic device routines.
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90
91         /*
92          * Start watchdog monitoring.
93          */
94         rt2x00link_start_watchdog(rt2x00dev);
95
96         return 0;
97 }
98
99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
100 {
101         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
102                 return;
103
104         /*
105          * Stop watchdog monitoring.
106          */
107         rt2x00link_stop_watchdog(rt2x00dev);
108
109         /*
110          * Stop all queues
111          */
112         rt2x00link_stop_tuner(rt2x00dev);
113         rt2x00queue_stop_queues(rt2x00dev);
114         rt2x00queue_flush_queues(rt2x00dev, true);
115
116         /*
117          * Disable radio.
118          */
119         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
120         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
121         rt2x00led_led_activity(rt2x00dev, false);
122         rt2x00leds_led_radio(rt2x00dev, false);
123 }
124
125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
126                                           struct ieee80211_vif *vif)
127 {
128         struct rt2x00_dev *rt2x00dev = data;
129         struct rt2x00_intf *intf = vif_to_intf(vif);
130
131         /*
132          * It is possible the radio was disabled while the work had been
133          * scheduled. If that happens we should return here immediately,
134          * note that in the spinlock protected area above the delayed_flags
135          * have been cleared correctly.
136          */
137         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
141                 mutex_lock(&intf->beacon_skb_mutex);
142                 rt2x00queue_update_beacon(rt2x00dev, vif);
143                 mutex_unlock(&intf->beacon_skb_mutex);
144         }
145 }
146
147 static void rt2x00lib_intf_scheduled(struct work_struct *work)
148 {
149         struct rt2x00_dev *rt2x00dev =
150             container_of(work, struct rt2x00_dev, intf_work);
151
152         /*
153          * Iterate over each interface and perform the
154          * requested configurations.
155          */
156         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
157                                             IEEE80211_IFACE_ITER_RESUME_ALL,
158                                             rt2x00lib_intf_scheduled_iter,
159                                             rt2x00dev);
160 }
161
162 static void rt2x00lib_autowakeup(struct work_struct *work)
163 {
164         struct rt2x00_dev *rt2x00dev =
165             container_of(work, struct rt2x00_dev, autowakeup_work.work);
166
167         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
168                 return;
169
170         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
171                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
172         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
173 }
174
175 /*
176  * Interrupt context handlers.
177  */
178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
179                                      struct ieee80211_vif *vif)
180 {
181         struct ieee80211_tx_control control = {};
182         struct rt2x00_dev *rt2x00dev = data;
183         struct sk_buff *skb;
184
185         /*
186          * Only AP mode interfaces do broad- and multicast buffering
187          */
188         if (vif->type != NL80211_IFTYPE_AP)
189                 return;
190
191         /*
192          * Send out buffered broad- and multicast frames
193          */
194         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195         while (skb) {
196                 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
197                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         }
199 }
200
201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
202                                         struct ieee80211_vif *vif)
203 {
204         struct rt2x00_dev *rt2x00dev = data;
205
206         if (vif->type != NL80211_IFTYPE_AP &&
207             vif->type != NL80211_IFTYPE_ADHOC &&
208             vif->type != NL80211_IFTYPE_MESH_POINT &&
209             vif->type != NL80211_IFTYPE_WDS)
210                 return;
211
212         /*
213          * Update the beacon without locking. This is safe on PCI devices
214          * as they only update the beacon periodically here. This should
215          * never be called for USB devices.
216          */
217         WARN_ON(rt2x00_is_usb(rt2x00dev));
218         rt2x00queue_update_beacon(rt2x00dev, vif);
219 }
220
221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
222 {
223         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
224                 return;
225
226         /* send buffered bc/mc frames out for every bssid */
227         ieee80211_iterate_active_interfaces_atomic(
228                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229                 rt2x00lib_bc_buffer_iter, rt2x00dev);
230         /*
231          * Devices with pre tbtt interrupt don't need to update the beacon
232          * here as they will fetch the next beacon directly prior to
233          * transmission.
234          */
235         if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
236                 return;
237
238         /* fetch next beacon */
239         ieee80211_iterate_active_interfaces_atomic(
240                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241                 rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
244
245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
246 {
247         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
248                 return;
249
250         /* fetch next beacon */
251         ieee80211_iterate_active_interfaces_atomic(
252                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
253                 rt2x00lib_beaconupdate_iter, rt2x00dev);
254 }
255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
256
257 void rt2x00lib_dmastart(struct queue_entry *entry)
258 {
259         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
260         rt2x00queue_index_inc(entry, Q_INDEX);
261 }
262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
263
264 void rt2x00lib_dmadone(struct queue_entry *entry)
265 {
266         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
267         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
268         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
269 }
270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
271
272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
273 {
274         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
275         struct ieee80211_bar *bar = (void *) entry->skb->data;
276         struct rt2x00_bar_list_entry *bar_entry;
277         int ret;
278
279         if (likely(!ieee80211_is_back_req(bar->frame_control)))
280                 return 0;
281
282         /*
283          * Unlike all other frames, the status report for BARs does
284          * not directly come from the hardware as it is incapable of
285          * matching a BA to a previously send BAR. The hardware will
286          * report all BARs as if they weren't acked at all.
287          *
288          * Instead the RX-path will scan for incoming BAs and set the
289          * block_acked flag if it sees one that was likely caused by
290          * a BAR from us.
291          *
292          * Remove remaining BARs here and return their status for
293          * TX done processing.
294          */
295         ret = 0;
296         rcu_read_lock();
297         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
298                 if (bar_entry->entry != entry)
299                         continue;
300
301                 spin_lock_bh(&rt2x00dev->bar_list_lock);
302                 /* Return whether this BAR was blockacked or not */
303                 ret = bar_entry->block_acked;
304                 /* Remove the BAR from our checklist */
305                 list_del_rcu(&bar_entry->list);
306                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
307                 kfree_rcu(bar_entry, head);
308
309                 break;
310         }
311         rcu_read_unlock();
312
313         return ret;
314 }
315
316 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
317                                      struct ieee80211_tx_info *tx_info,
318                                      struct skb_frame_desc *skbdesc,
319                                      struct txdone_entry_desc *txdesc,
320                                      bool success)
321 {
322         u8 rate_idx, rate_flags, retry_rates;
323         int i;
324
325         rate_idx = skbdesc->tx_rate_idx;
326         rate_flags = skbdesc->tx_rate_flags;
327         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
328             (txdesc->retry + 1) : 1;
329
330         /*
331          * Initialize TX status
332          */
333         memset(&tx_info->status, 0, sizeof(tx_info->status));
334         tx_info->status.ack_signal = 0;
335
336         /*
337          * Frame was send with retries, hardware tried
338          * different rates to send out the frame, at each
339          * retry it lowered the rate 1 step except when the
340          * lowest rate was used.
341          */
342         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
343                 tx_info->status.rates[i].idx = rate_idx - i;
344                 tx_info->status.rates[i].flags = rate_flags;
345
346                 if (rate_idx - i == 0) {
347                         /*
348                          * The lowest rate (index 0) was used until the
349                          * number of max retries was reached.
350                          */
351                         tx_info->status.rates[i].count = retry_rates - i;
352                         i++;
353                         break;
354                 }
355                 tx_info->status.rates[i].count = 1;
356         }
357         if (i < (IEEE80211_TX_MAX_RATES - 1))
358                 tx_info->status.rates[i].idx = -1; /* terminate */
359
360         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
361                 if (success)
362                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
363                 else
364                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
365         }
366
367         /*
368          * Every single frame has it's own tx status, hence report
369          * every frame as ampdu of size 1.
370          *
371          * TODO: if we can find out how many frames were aggregated
372          * by the hw we could provide the real ampdu_len to mac80211
373          * which would allow the rc algorithm to better decide on
374          * which rates are suitable.
375          */
376         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
377             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
378                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
379                 tx_info->status.ampdu_len = 1;
380                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
381
382                 if (!success)
383                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
384         }
385
386         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
387                 if (success)
388                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
389                 else
390                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
391         }
392 }
393
394 void rt2x00lib_txdone(struct queue_entry *entry,
395                       struct txdone_entry_desc *txdesc)
396 {
397         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
398         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
399         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
400         u8 skbdesc_flags = skbdesc->flags;
401         unsigned int header_length;
402         bool success;
403
404         /*
405          * Unmap the skb.
406          */
407         rt2x00queue_unmap_skb(entry);
408
409         /*
410          * Remove the extra tx headroom from the skb.
411          */
412         skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
413
414         /*
415          * Signal that the TX descriptor is no longer in the skb.
416          */
417         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
418
419         /*
420          * Determine the length of 802.11 header.
421          */
422         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
423
424         /*
425          * Remove L2 padding which was added during
426          */
427         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
428                 rt2x00queue_remove_l2pad(entry->skb, header_length);
429
430         /*
431          * If the IV/EIV data was stripped from the frame before it was
432          * passed to the hardware, we should now reinsert it again because
433          * mac80211 will expect the same data to be present it the
434          * frame as it was passed to us.
435          */
436         if (rt2x00_has_cap_hw_crypto(rt2x00dev))
437                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
438
439         /*
440          * Send frame to debugfs immediately, after this call is completed
441          * we are going to overwrite the skb->cb array.
442          */
443         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
444
445         /*
446          * Determine if the frame has been successfully transmitted and
447          * remove BARs from our check list while checking for their
448          * TX status.
449          */
450         success =
451             rt2x00lib_txdone_bar_status(entry) ||
452             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
453             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
454
455         /*
456          * Update TX statistics.
457          */
458         rt2x00dev->link.qual.tx_success += success;
459         rt2x00dev->link.qual.tx_failed += !success;
460
461         rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
462
463         /*
464          * Only send the status report to mac80211 when it's a frame
465          * that originated in mac80211. If this was a extra frame coming
466          * through a mac80211 library call (RTS/CTS) then we should not
467          * send the status report back.
468          */
469         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
470                 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
471                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
472                 else
473                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
474         } else
475                 dev_kfree_skb_any(entry->skb);
476
477         /*
478          * Make this entry available for reuse.
479          */
480         entry->skb = NULL;
481         entry->flags = 0;
482
483         rt2x00dev->ops->lib->clear_entry(entry);
484
485         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
486
487         /*
488          * If the data queue was below the threshold before the txdone
489          * handler we must make sure the packet queue in the mac80211 stack
490          * is reenabled when the txdone handler has finished. This has to be
491          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
492          * before it was stopped.
493          */
494         spin_lock_bh(&entry->queue->tx_lock);
495         if (!rt2x00queue_threshold(entry->queue))
496                 rt2x00queue_unpause_queue(entry->queue);
497         spin_unlock_bh(&entry->queue->tx_lock);
498 }
499 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
500
501 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
502 {
503         struct txdone_entry_desc txdesc;
504
505         txdesc.flags = 0;
506         __set_bit(status, &txdesc.flags);
507         txdesc.retry = 0;
508
509         rt2x00lib_txdone(entry, &txdesc);
510 }
511 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
512
513 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
514 {
515         struct ieee80211_mgmt *mgmt = (void *)data;
516         u8 *pos, *end;
517
518         pos = (u8 *)mgmt->u.beacon.variable;
519         end = data + len;
520         while (pos < end) {
521                 if (pos + 2 + pos[1] > end)
522                         return NULL;
523
524                 if (pos[0] == ie)
525                         return pos;
526
527                 pos += 2 + pos[1];
528         }
529
530         return NULL;
531 }
532
533 static void rt2x00lib_sleep(struct work_struct *work)
534 {
535         struct rt2x00_dev *rt2x00dev =
536             container_of(work, struct rt2x00_dev, sleep_work);
537
538         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
539                 return;
540
541         /*
542          * Check again is powersaving is enabled, to prevent races from delayed
543          * work execution.
544          */
545         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
546                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
547                                  IEEE80211_CONF_CHANGE_PS);
548 }
549
550 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
551                                       struct sk_buff *skb,
552                                       struct rxdone_entry_desc *rxdesc)
553 {
554         struct rt2x00_bar_list_entry *entry;
555         struct ieee80211_bar *ba = (void *)skb->data;
556
557         if (likely(!ieee80211_is_back(ba->frame_control)))
558                 return;
559
560         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
561                 return;
562
563         rcu_read_lock();
564         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
565
566                 if (ba->start_seq_num != entry->start_seq_num)
567                         continue;
568
569 #define TID_CHECK(a, b) (                                               \
570         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
571         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
572
573                 if (!TID_CHECK(ba->control, entry->control))
574                         continue;
575
576 #undef TID_CHECK
577
578                 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
579                         continue;
580
581                 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
582                         continue;
583
584                 /* Mark BAR since we received the according BA */
585                 spin_lock_bh(&rt2x00dev->bar_list_lock);
586                 entry->block_acked = 1;
587                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
588                 break;
589         }
590         rcu_read_unlock();
591
592 }
593
594 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
595                                       struct sk_buff *skb,
596                                       struct rxdone_entry_desc *rxdesc)
597 {
598         struct ieee80211_hdr *hdr = (void *) skb->data;
599         struct ieee80211_tim_ie *tim_ie;
600         u8 *tim;
601         u8 tim_len;
602         bool cam;
603
604         /* If this is not a beacon, or if mac80211 has no powersaving
605          * configured, or if the device is already in powersaving mode
606          * we can exit now. */
607         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
608                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
609                 return;
610
611         /* min. beacon length + FCS_LEN */
612         if (skb->len <= 40 + FCS_LEN)
613                 return;
614
615         /* and only beacons from the associated BSSID, please */
616         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
617             !rt2x00dev->aid)
618                 return;
619
620         rt2x00dev->last_beacon = jiffies;
621
622         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
623         if (!tim)
624                 return;
625
626         if (tim[1] < sizeof(*tim_ie))
627                 return;
628
629         tim_len = tim[1];
630         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
631
632         /* Check whenever the PHY can be turned off again. */
633
634         /* 1. What about buffered unicast traffic for our AID? */
635         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
636
637         /* 2. Maybe the AP wants to send multicast/broadcast data? */
638         cam |= (tim_ie->bitmap_ctrl & 0x01);
639
640         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
641                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
642 }
643
644 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
645                                         struct rxdone_entry_desc *rxdesc)
646 {
647         struct ieee80211_supported_band *sband;
648         const struct rt2x00_rate *rate;
649         unsigned int i;
650         int signal = rxdesc->signal;
651         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
652
653         switch (rxdesc->rate_mode) {
654         case RATE_MODE_CCK:
655         case RATE_MODE_OFDM:
656                 /*
657                  * For non-HT rates the MCS value needs to contain the
658                  * actually used rate modulation (CCK or OFDM).
659                  */
660                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
661                         signal = RATE_MCS(rxdesc->rate_mode, signal);
662
663                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
664                 for (i = 0; i < sband->n_bitrates; i++) {
665                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
666                         if (((type == RXDONE_SIGNAL_PLCP) &&
667                              (rate->plcp == signal)) ||
668                             ((type == RXDONE_SIGNAL_BITRATE) &&
669                               (rate->bitrate == signal)) ||
670                             ((type == RXDONE_SIGNAL_MCS) &&
671                               (rate->mcs == signal))) {
672                                 return i;
673                         }
674                 }
675                 break;
676         case RATE_MODE_HT_MIX:
677         case RATE_MODE_HT_GREENFIELD:
678                 if (signal >= 0 && signal <= 76)
679                         return signal;
680                 break;
681         default:
682                 break;
683         }
684
685         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
686                     rxdesc->rate_mode, signal, type);
687         return 0;
688 }
689
690 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
691 {
692         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
693         struct rxdone_entry_desc rxdesc;
694         struct sk_buff *skb;
695         struct ieee80211_rx_status *rx_status;
696         unsigned int header_length;
697         int rate_idx;
698
699         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
700             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
701                 goto submit_entry;
702
703         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
704                 goto submit_entry;
705
706         /*
707          * Allocate a new sk_buffer. If no new buffer available, drop the
708          * received frame and reuse the existing buffer.
709          */
710         skb = rt2x00queue_alloc_rxskb(entry, gfp);
711         if (!skb)
712                 goto submit_entry;
713
714         /*
715          * Unmap the skb.
716          */
717         rt2x00queue_unmap_skb(entry);
718
719         /*
720          * Extract the RXD details.
721          */
722         memset(&rxdesc, 0, sizeof(rxdesc));
723         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
724
725         /*
726          * Check for valid size in case we get corrupted descriptor from
727          * hardware.
728          */
729         if (unlikely(rxdesc.size == 0 ||
730                      rxdesc.size > entry->queue->data_size)) {
731                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
732                            rxdesc.size, entry->queue->data_size);
733                 dev_kfree_skb(entry->skb);
734                 goto renew_skb;
735         }
736
737         /*
738          * The data behind the ieee80211 header must be
739          * aligned on a 4 byte boundary.
740          */
741         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
742
743         /*
744          * Hardware might have stripped the IV/EIV/ICV data,
745          * in that case it is possible that the data was
746          * provided separately (through hardware descriptor)
747          * in which case we should reinsert the data into the frame.
748          */
749         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
750             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
751                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
752                                           &rxdesc);
753         else if (header_length &&
754                  (rxdesc.size > header_length) &&
755                  (rxdesc.dev_flags & RXDONE_L2PAD))
756                 rt2x00queue_remove_l2pad(entry->skb, header_length);
757
758         /* Trim buffer to correct size */
759         skb_trim(entry->skb, rxdesc.size);
760
761         /*
762          * Translate the signal to the correct bitrate index.
763          */
764         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
765         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
766             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
767                 rxdesc.flags |= RX_FLAG_HT;
768
769         /*
770          * Check if this is a beacon, and more frames have been
771          * buffered while we were in powersaving mode.
772          */
773         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
774
775         /*
776          * Check for incoming BlockAcks to match to the BlockAckReqs
777          * we've send out.
778          */
779         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
780
781         /*
782          * Update extra components
783          */
784         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
785         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
786         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
787
788         /*
789          * Initialize RX status information, and send frame
790          * to mac80211.
791          */
792         rx_status = IEEE80211_SKB_RXCB(entry->skb);
793
794         /* Ensure that all fields of rx_status are initialized
795          * properly. The skb->cb array was used for driver
796          * specific informations, so rx_status might contain
797          * garbage.
798          */
799         memset(rx_status, 0, sizeof(*rx_status));
800
801         rx_status->mactime = rxdesc.timestamp;
802         rx_status->band = rt2x00dev->curr_band;
803         rx_status->freq = rt2x00dev->curr_freq;
804         rx_status->rate_idx = rate_idx;
805         rx_status->signal = rxdesc.rssi;
806         rx_status->flag = rxdesc.flags;
807         rx_status->antenna = rt2x00dev->link.ant.active.rx;
808
809         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
810
811 renew_skb:
812         /*
813          * Replace the skb with the freshly allocated one.
814          */
815         entry->skb = skb;
816
817 submit_entry:
818         entry->flags = 0;
819         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
820         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
821             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
822                 rt2x00dev->ops->lib->clear_entry(entry);
823 }
824 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
825
826 /*
827  * Driver initialization handlers.
828  */
829 const struct rt2x00_rate rt2x00_supported_rates[12] = {
830         {
831                 .flags = DEV_RATE_CCK,
832                 .bitrate = 10,
833                 .ratemask = BIT(0),
834                 .plcp = 0x00,
835                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
836         },
837         {
838                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
839                 .bitrate = 20,
840                 .ratemask = BIT(1),
841                 .plcp = 0x01,
842                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
843         },
844         {
845                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
846                 .bitrate = 55,
847                 .ratemask = BIT(2),
848                 .plcp = 0x02,
849                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
850         },
851         {
852                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
853                 .bitrate = 110,
854                 .ratemask = BIT(3),
855                 .plcp = 0x03,
856                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
857         },
858         {
859                 .flags = DEV_RATE_OFDM,
860                 .bitrate = 60,
861                 .ratemask = BIT(4),
862                 .plcp = 0x0b,
863                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
864         },
865         {
866                 .flags = DEV_RATE_OFDM,
867                 .bitrate = 90,
868                 .ratemask = BIT(5),
869                 .plcp = 0x0f,
870                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
871         },
872         {
873                 .flags = DEV_RATE_OFDM,
874                 .bitrate = 120,
875                 .ratemask = BIT(6),
876                 .plcp = 0x0a,
877                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
878         },
879         {
880                 .flags = DEV_RATE_OFDM,
881                 .bitrate = 180,
882                 .ratemask = BIT(7),
883                 .plcp = 0x0e,
884                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
885         },
886         {
887                 .flags = DEV_RATE_OFDM,
888                 .bitrate = 240,
889                 .ratemask = BIT(8),
890                 .plcp = 0x09,
891                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
892         },
893         {
894                 .flags = DEV_RATE_OFDM,
895                 .bitrate = 360,
896                 .ratemask = BIT(9),
897                 .plcp = 0x0d,
898                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
899         },
900         {
901                 .flags = DEV_RATE_OFDM,
902                 .bitrate = 480,
903                 .ratemask = BIT(10),
904                 .plcp = 0x08,
905                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
906         },
907         {
908                 .flags = DEV_RATE_OFDM,
909                 .bitrate = 540,
910                 .ratemask = BIT(11),
911                 .plcp = 0x0c,
912                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
913         },
914 };
915
916 static void rt2x00lib_channel(struct ieee80211_channel *entry,
917                               const int channel, const int tx_power,
918                               const int value)
919 {
920         /* XXX: this assumption about the band is wrong for 802.11j */
921         entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
922         entry->center_freq = ieee80211_channel_to_frequency(channel,
923                                                             entry->band);
924         entry->hw_value = value;
925         entry->max_power = tx_power;
926         entry->max_antenna_gain = 0xff;
927 }
928
929 static void rt2x00lib_rate(struct ieee80211_rate *entry,
930                            const u16 index, const struct rt2x00_rate *rate)
931 {
932         entry->flags = 0;
933         entry->bitrate = rate->bitrate;
934         entry->hw_value = index;
935         entry->hw_value_short = index;
936
937         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
938                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
939 }
940
941 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
942 {
943         const char *mac_addr;
944
945         mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
946         if (mac_addr)
947                 ether_addr_copy(eeprom_mac_addr, mac_addr);
948
949         if (!is_valid_ether_addr(eeprom_mac_addr)) {
950                 eth_random_addr(eeprom_mac_addr);
951                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
952         }
953 }
954 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
955
956 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
957                                     struct hw_mode_spec *spec)
958 {
959         struct ieee80211_hw *hw = rt2x00dev->hw;
960         struct ieee80211_channel *channels;
961         struct ieee80211_rate *rates;
962         unsigned int num_rates;
963         unsigned int i;
964
965         num_rates = 0;
966         if (spec->supported_rates & SUPPORT_RATE_CCK)
967                 num_rates += 4;
968         if (spec->supported_rates & SUPPORT_RATE_OFDM)
969                 num_rates += 8;
970
971         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
972         if (!channels)
973                 return -ENOMEM;
974
975         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
976         if (!rates)
977                 goto exit_free_channels;
978
979         /*
980          * Initialize Rate list.
981          */
982         for (i = 0; i < num_rates; i++)
983                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
984
985         /*
986          * Initialize Channel list.
987          */
988         for (i = 0; i < spec->num_channels; i++) {
989                 rt2x00lib_channel(&channels[i],
990                                   spec->channels[i].channel,
991                                   spec->channels_info[i].max_power, i);
992         }
993
994         /*
995          * Intitialize 802.11b, 802.11g
996          * Rates: CCK, OFDM.
997          * Channels: 2.4 GHz
998          */
999         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1000                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1001                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1002                 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1003                 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1004                 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1005                     &rt2x00dev->bands[NL80211_BAND_2GHZ];
1006                 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1007                        &spec->ht, sizeof(spec->ht));
1008         }
1009
1010         /*
1011          * Intitialize 802.11a
1012          * Rates: OFDM.
1013          * Channels: OFDM, UNII, HiperLAN2.
1014          */
1015         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1016                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1017                     spec->num_channels - 14;
1018                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1019                     num_rates - 4;
1020                 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1021                 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1022                 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1023                     &rt2x00dev->bands[NL80211_BAND_5GHZ];
1024                 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1025                        &spec->ht, sizeof(spec->ht));
1026         }
1027
1028         return 0;
1029
1030  exit_free_channels:
1031         kfree(channels);
1032         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1033         return -ENOMEM;
1034 }
1035
1036 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1037 {
1038         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1039                 ieee80211_unregister_hw(rt2x00dev->hw);
1040
1041         if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1042                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1043                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1044                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1045                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1046         }
1047
1048         kfree(rt2x00dev->spec.channels_info);
1049 }
1050
1051 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1052 {
1053         struct hw_mode_spec *spec = &rt2x00dev->spec;
1054         int status;
1055
1056         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1057                 return 0;
1058
1059         /*
1060          * Initialize HW modes.
1061          */
1062         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1063         if (status)
1064                 return status;
1065
1066         /*
1067          * Initialize HW fields.
1068          */
1069         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1070
1071         /*
1072          * Initialize extra TX headroom required.
1073          */
1074         rt2x00dev->hw->extra_tx_headroom =
1075                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1076                       rt2x00dev->extra_tx_headroom);
1077
1078         /*
1079          * Take TX headroom required for alignment into account.
1080          */
1081         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1082                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1083         else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1084                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1085
1086         /*
1087          * Tell mac80211 about the size of our private STA structure.
1088          */
1089         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1090
1091         /*
1092          * Allocate tx status FIFO for driver use.
1093          */
1094         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1095                 /*
1096                  * Allocate the txstatus fifo. In the worst case the tx
1097                  * status fifo has to hold the tx status of all entries
1098                  * in all tx queues. Hence, calculate the kfifo size as
1099                  * tx_queues * entry_num and round up to the nearest
1100                  * power of 2.
1101                  */
1102                 int kfifo_size =
1103                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1104                                            rt2x00dev->tx->limit *
1105                                            sizeof(u32));
1106
1107                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1108                                      GFP_KERNEL);
1109                 if (status)
1110                         return status;
1111         }
1112
1113         /*
1114          * Initialize tasklets if used by the driver. Tasklets are
1115          * disabled until the interrupts are turned on. The driver
1116          * has to handle that.
1117          */
1118 #define RT2X00_TASKLET_INIT(taskletname) \
1119         if (rt2x00dev->ops->lib->taskletname) { \
1120                 tasklet_init(&rt2x00dev->taskletname, \
1121                              rt2x00dev->ops->lib->taskletname, \
1122                              (unsigned long)rt2x00dev); \
1123         }
1124
1125         RT2X00_TASKLET_INIT(txstatus_tasklet);
1126         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1127         RT2X00_TASKLET_INIT(tbtt_tasklet);
1128         RT2X00_TASKLET_INIT(rxdone_tasklet);
1129         RT2X00_TASKLET_INIT(autowake_tasklet);
1130
1131 #undef RT2X00_TASKLET_INIT
1132
1133         /*
1134          * Register HW.
1135          */
1136         status = ieee80211_register_hw(rt2x00dev->hw);
1137         if (status)
1138                 return status;
1139
1140         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1141
1142         return 0;
1143 }
1144
1145 /*
1146  * Initialization/uninitialization handlers.
1147  */
1148 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1149 {
1150         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1151                 return;
1152
1153         /*
1154          * Stop rfkill polling.
1155          */
1156         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1157                 rt2x00rfkill_unregister(rt2x00dev);
1158
1159         /*
1160          * Allow the HW to uninitialize.
1161          */
1162         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1163
1164         /*
1165          * Free allocated queue entries.
1166          */
1167         rt2x00queue_uninitialize(rt2x00dev);
1168 }
1169
1170 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1171 {
1172         int status;
1173
1174         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1175                 return 0;
1176
1177         /*
1178          * Allocate all queue entries.
1179          */
1180         status = rt2x00queue_initialize(rt2x00dev);
1181         if (status)
1182                 return status;
1183
1184         /*
1185          * Initialize the device.
1186          */
1187         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1188         if (status) {
1189                 rt2x00queue_uninitialize(rt2x00dev);
1190                 return status;
1191         }
1192
1193         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1194
1195         /*
1196          * Start rfkill polling.
1197          */
1198         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1199                 rt2x00rfkill_register(rt2x00dev);
1200
1201         return 0;
1202 }
1203
1204 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1205 {
1206         int retval;
1207
1208         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1209                 return 0;
1210
1211         /*
1212          * If this is the first interface which is added,
1213          * we should load the firmware now.
1214          */
1215         retval = rt2x00lib_load_firmware(rt2x00dev);
1216         if (retval)
1217                 return retval;
1218
1219         /*
1220          * Initialize the device.
1221          */
1222         retval = rt2x00lib_initialize(rt2x00dev);
1223         if (retval)
1224                 return retval;
1225
1226         rt2x00dev->intf_ap_count = 0;
1227         rt2x00dev->intf_sta_count = 0;
1228         rt2x00dev->intf_associated = 0;
1229
1230         /* Enable the radio */
1231         retval = rt2x00lib_enable_radio(rt2x00dev);
1232         if (retval)
1233                 return retval;
1234
1235         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1236
1237         return 0;
1238 }
1239
1240 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1241 {
1242         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1243                 return;
1244
1245         /*
1246          * Perhaps we can add something smarter here,
1247          * but for now just disabling the radio should do.
1248          */
1249         rt2x00lib_disable_radio(rt2x00dev);
1250
1251         rt2x00dev->intf_ap_count = 0;
1252         rt2x00dev->intf_sta_count = 0;
1253         rt2x00dev->intf_associated = 0;
1254 }
1255
1256 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1257 {
1258         struct ieee80211_iface_limit *if_limit;
1259         struct ieee80211_iface_combination *if_combination;
1260
1261         if (rt2x00dev->ops->max_ap_intf < 2)
1262                 return;
1263
1264         /*
1265          * Build up AP interface limits structure.
1266          */
1267         if_limit = &rt2x00dev->if_limits_ap;
1268         if_limit->max = rt2x00dev->ops->max_ap_intf;
1269         if_limit->types = BIT(NL80211_IFTYPE_AP);
1270 #ifdef CONFIG_MAC80211_MESH
1271         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1272 #endif
1273
1274         /*
1275          * Build up AP interface combinations structure.
1276          */
1277         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1278         if_combination->limits = if_limit;
1279         if_combination->n_limits = 1;
1280         if_combination->max_interfaces = if_limit->max;
1281         if_combination->num_different_channels = 1;
1282
1283         /*
1284          * Finally, specify the possible combinations to mac80211.
1285          */
1286         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1287         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1288 }
1289
1290 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1291 {
1292         if (WARN_ON(!rt2x00dev->tx))
1293                 return 0;
1294
1295         if (rt2x00_is_usb(rt2x00dev))
1296                 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1297
1298         return rt2x00dev->tx[0].winfo_size;
1299 }
1300
1301 /*
1302  * driver allocation handlers.
1303  */
1304 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1305 {
1306         int retval = -ENOMEM;
1307
1308         /*
1309          * Set possible interface combinations.
1310          */
1311         rt2x00lib_set_if_combinations(rt2x00dev);
1312
1313         /*
1314          * Allocate the driver data memory, if necessary.
1315          */
1316         if (rt2x00dev->ops->drv_data_size > 0) {
1317                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1318                                               GFP_KERNEL);
1319                 if (!rt2x00dev->drv_data) {
1320                         retval = -ENOMEM;
1321                         goto exit;
1322                 }
1323         }
1324
1325         spin_lock_init(&rt2x00dev->irqmask_lock);
1326         mutex_init(&rt2x00dev->csr_mutex);
1327         mutex_init(&rt2x00dev->conf_mutex);
1328         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1329         spin_lock_init(&rt2x00dev->bar_list_lock);
1330
1331         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1332
1333         /*
1334          * Make room for rt2x00_intf inside the per-interface
1335          * structure ieee80211_vif.
1336          */
1337         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1338
1339         /*
1340          * rt2x00 devices can only use the last n bits of the MAC address
1341          * for virtual interfaces.
1342          */
1343         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1344                 (rt2x00dev->ops->max_ap_intf - 1);
1345
1346         /*
1347          * Initialize work.
1348          */
1349         rt2x00dev->workqueue =
1350             alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1351         if (!rt2x00dev->workqueue) {
1352                 retval = -ENOMEM;
1353                 goto exit;
1354         }
1355
1356         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1357         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1358         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1359
1360         /*
1361          * Let the driver probe the device to detect the capabilities.
1362          */
1363         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1364         if (retval) {
1365                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1366                 goto exit;
1367         }
1368
1369         /*
1370          * Allocate queue array.
1371          */
1372         retval = rt2x00queue_allocate(rt2x00dev);
1373         if (retval)
1374                 goto exit;
1375
1376         /* Cache TX headroom value */
1377         rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1378
1379         /*
1380          * Determine which operating modes are supported, all modes
1381          * which require beaconing, depend on the availability of
1382          * beacon entries.
1383          */
1384         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1385         if (rt2x00dev->bcn->limit > 0)
1386                 rt2x00dev->hw->wiphy->interface_modes |=
1387                     BIT(NL80211_IFTYPE_ADHOC) |
1388 #ifdef CONFIG_MAC80211_MESH
1389                     BIT(NL80211_IFTYPE_MESH_POINT) |
1390 #endif
1391 #ifdef CONFIG_WIRELESS_WDS
1392                     BIT(NL80211_IFTYPE_WDS) |
1393 #endif
1394                     BIT(NL80211_IFTYPE_AP);
1395
1396         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1397
1398         /*
1399          * Initialize ieee80211 structure.
1400          */
1401         retval = rt2x00lib_probe_hw(rt2x00dev);
1402         if (retval) {
1403                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1404                 goto exit;
1405         }
1406
1407         /*
1408          * Register extra components.
1409          */
1410         rt2x00link_register(rt2x00dev);
1411         rt2x00leds_register(rt2x00dev);
1412         rt2x00debug_register(rt2x00dev);
1413
1414         /*
1415          * Start rfkill polling.
1416          */
1417         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1418                 rt2x00rfkill_register(rt2x00dev);
1419
1420         return 0;
1421
1422 exit:
1423         rt2x00lib_remove_dev(rt2x00dev);
1424
1425         return retval;
1426 }
1427 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1428
1429 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1430 {
1431         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1432
1433         /*
1434          * Stop rfkill polling.
1435          */
1436         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1437                 rt2x00rfkill_unregister(rt2x00dev);
1438
1439         /*
1440          * Disable radio.
1441          */
1442         rt2x00lib_disable_radio(rt2x00dev);
1443
1444         /*
1445          * Stop all work.
1446          */
1447         cancel_work_sync(&rt2x00dev->intf_work);
1448         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1449         cancel_work_sync(&rt2x00dev->sleep_work);
1450
1451         /*
1452          * Kill the tx status tasklet.
1453          */
1454         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1455         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1456         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1457         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1458         tasklet_kill(&rt2x00dev->autowake_tasklet);
1459
1460         /*
1461          * Uninitialize device.
1462          */
1463         rt2x00lib_uninitialize(rt2x00dev);
1464
1465         if (rt2x00dev->workqueue)
1466                 destroy_workqueue(rt2x00dev->workqueue);
1467
1468         /*
1469          * Free the tx status fifo.
1470          */
1471         kfifo_free(&rt2x00dev->txstatus_fifo);
1472
1473         /*
1474          * Free extra components
1475          */
1476         rt2x00debug_deregister(rt2x00dev);
1477         rt2x00leds_unregister(rt2x00dev);
1478
1479         /*
1480          * Free ieee80211_hw memory.
1481          */
1482         rt2x00lib_remove_hw(rt2x00dev);
1483
1484         /*
1485          * Free firmware image.
1486          */
1487         rt2x00lib_free_firmware(rt2x00dev);
1488
1489         /*
1490          * Free queue structures.
1491          */
1492         rt2x00queue_free(rt2x00dev);
1493
1494         /*
1495          * Free the driver data.
1496          */
1497         kfree(rt2x00dev->drv_data);
1498 }
1499 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1500
1501 /*
1502  * Device state handlers
1503  */
1504 #ifdef CONFIG_PM
1505 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1506 {
1507         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1508
1509         /*
1510          * Prevent mac80211 from accessing driver while suspended.
1511          */
1512         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1513                 return 0;
1514
1515         /*
1516          * Cleanup as much as possible.
1517          */
1518         rt2x00lib_uninitialize(rt2x00dev);
1519
1520         /*
1521          * Suspend/disable extra components.
1522          */
1523         rt2x00leds_suspend(rt2x00dev);
1524         rt2x00debug_deregister(rt2x00dev);
1525
1526         /*
1527          * Set device mode to sleep for power management,
1528          * on some hardware this call seems to consistently fail.
1529          * From the specifications it is hard to tell why it fails,
1530          * and if this is a "bad thing".
1531          * Overall it is safe to just ignore the failure and
1532          * continue suspending. The only downside is that the
1533          * device will not be in optimal power save mode, but with
1534          * the radio and the other components already disabled the
1535          * device is as good as disabled.
1536          */
1537         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1538                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1539
1540         return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1543
1544 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1545 {
1546         rt2x00_dbg(rt2x00dev, "Waking up\n");
1547
1548         /*
1549          * Restore/enable extra components.
1550          */
1551         rt2x00debug_register(rt2x00dev);
1552         rt2x00leds_resume(rt2x00dev);
1553
1554         /*
1555          * We are ready again to receive requests from mac80211.
1556          */
1557         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1558
1559         return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1562 #endif /* CONFIG_PM */
1563
1564 /*
1565  * rt2x00lib module information.
1566  */
1567 MODULE_AUTHOR(DRV_PROJECT);
1568 MODULE_VERSION(DRV_VERSION);
1569 MODULE_DESCRIPTION("rt2x00 library");
1570 MODULE_LICENSE("GPL");