rt2x00: separte clearing entry from rt2x00lib_txdone
[platform/kernel/linux-rpi.git] / drivers / net / wireless / ralink / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 /*
21         Module: rt2x00lib
22         Abstract: rt2x00 generic device routines.
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90
91         /*
92          * Start watchdog monitoring.
93          */
94         rt2x00link_start_watchdog(rt2x00dev);
95
96         return 0;
97 }
98
99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
100 {
101         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
102                 return;
103
104         /*
105          * Stop watchdog monitoring.
106          */
107         rt2x00link_stop_watchdog(rt2x00dev);
108
109         /*
110          * Stop all queues
111          */
112         rt2x00link_stop_tuner(rt2x00dev);
113         rt2x00queue_stop_queues(rt2x00dev);
114         rt2x00queue_flush_queues(rt2x00dev, true);
115
116         /*
117          * Disable radio.
118          */
119         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
120         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
121         rt2x00led_led_activity(rt2x00dev, false);
122         rt2x00leds_led_radio(rt2x00dev, false);
123 }
124
125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
126                                           struct ieee80211_vif *vif)
127 {
128         struct rt2x00_dev *rt2x00dev = data;
129         struct rt2x00_intf *intf = vif_to_intf(vif);
130
131         /*
132          * It is possible the radio was disabled while the work had been
133          * scheduled. If that happens we should return here immediately,
134          * note that in the spinlock protected area above the delayed_flags
135          * have been cleared correctly.
136          */
137         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
141                 mutex_lock(&intf->beacon_skb_mutex);
142                 rt2x00queue_update_beacon(rt2x00dev, vif);
143                 mutex_unlock(&intf->beacon_skb_mutex);
144         }
145 }
146
147 static void rt2x00lib_intf_scheduled(struct work_struct *work)
148 {
149         struct rt2x00_dev *rt2x00dev =
150             container_of(work, struct rt2x00_dev, intf_work);
151
152         /*
153          * Iterate over each interface and perform the
154          * requested configurations.
155          */
156         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
157                                             IEEE80211_IFACE_ITER_RESUME_ALL,
158                                             rt2x00lib_intf_scheduled_iter,
159                                             rt2x00dev);
160 }
161
162 static void rt2x00lib_autowakeup(struct work_struct *work)
163 {
164         struct rt2x00_dev *rt2x00dev =
165             container_of(work, struct rt2x00_dev, autowakeup_work.work);
166
167         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
168                 return;
169
170         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
171                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
172         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
173 }
174
175 /*
176  * Interrupt context handlers.
177  */
178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
179                                      struct ieee80211_vif *vif)
180 {
181         struct ieee80211_tx_control control = {};
182         struct rt2x00_dev *rt2x00dev = data;
183         struct sk_buff *skb;
184
185         /*
186          * Only AP mode interfaces do broad- and multicast buffering
187          */
188         if (vif->type != NL80211_IFTYPE_AP)
189                 return;
190
191         /*
192          * Send out buffered broad- and multicast frames
193          */
194         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195         while (skb) {
196                 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
197                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         }
199 }
200
201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
202                                         struct ieee80211_vif *vif)
203 {
204         struct rt2x00_dev *rt2x00dev = data;
205
206         if (vif->type != NL80211_IFTYPE_AP &&
207             vif->type != NL80211_IFTYPE_ADHOC &&
208             vif->type != NL80211_IFTYPE_MESH_POINT &&
209             vif->type != NL80211_IFTYPE_WDS)
210                 return;
211
212         /*
213          * Update the beacon without locking. This is safe on PCI devices
214          * as they only update the beacon periodically here. This should
215          * never be called for USB devices.
216          */
217         WARN_ON(rt2x00_is_usb(rt2x00dev));
218         rt2x00queue_update_beacon(rt2x00dev, vif);
219 }
220
221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
222 {
223         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
224                 return;
225
226         /* send buffered bc/mc frames out for every bssid */
227         ieee80211_iterate_active_interfaces_atomic(
228                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229                 rt2x00lib_bc_buffer_iter, rt2x00dev);
230         /*
231          * Devices with pre tbtt interrupt don't need to update the beacon
232          * here as they will fetch the next beacon directly prior to
233          * transmission.
234          */
235         if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
236                 return;
237
238         /* fetch next beacon */
239         ieee80211_iterate_active_interfaces_atomic(
240                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241                 rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
244
245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
246 {
247         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
248                 return;
249
250         /* fetch next beacon */
251         ieee80211_iterate_active_interfaces_atomic(
252                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
253                 rt2x00lib_beaconupdate_iter, rt2x00dev);
254 }
255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
256
257 void rt2x00lib_dmastart(struct queue_entry *entry)
258 {
259         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
260         rt2x00queue_index_inc(entry, Q_INDEX);
261 }
262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
263
264 void rt2x00lib_dmadone(struct queue_entry *entry)
265 {
266         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
267         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
268         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
269 }
270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
271
272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
273 {
274         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
275         struct ieee80211_bar *bar = (void *) entry->skb->data;
276         struct rt2x00_bar_list_entry *bar_entry;
277         int ret;
278
279         if (likely(!ieee80211_is_back_req(bar->frame_control)))
280                 return 0;
281
282         /*
283          * Unlike all other frames, the status report for BARs does
284          * not directly come from the hardware as it is incapable of
285          * matching a BA to a previously send BAR. The hardware will
286          * report all BARs as if they weren't acked at all.
287          *
288          * Instead the RX-path will scan for incoming BAs and set the
289          * block_acked flag if it sees one that was likely caused by
290          * a BAR from us.
291          *
292          * Remove remaining BARs here and return their status for
293          * TX done processing.
294          */
295         ret = 0;
296         rcu_read_lock();
297         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
298                 if (bar_entry->entry != entry)
299                         continue;
300
301                 spin_lock_bh(&rt2x00dev->bar_list_lock);
302                 /* Return whether this BAR was blockacked or not */
303                 ret = bar_entry->block_acked;
304                 /* Remove the BAR from our checklist */
305                 list_del_rcu(&bar_entry->list);
306                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
307                 kfree_rcu(bar_entry, head);
308
309                 break;
310         }
311         rcu_read_unlock();
312
313         return ret;
314 }
315
316 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
317                                      struct ieee80211_tx_info *tx_info,
318                                      struct skb_frame_desc *skbdesc,
319                                      struct txdone_entry_desc *txdesc,
320                                      bool success)
321 {
322         u8 rate_idx, rate_flags, retry_rates;
323         int i;
324
325         rate_idx = skbdesc->tx_rate_idx;
326         rate_flags = skbdesc->tx_rate_flags;
327         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
328             (txdesc->retry + 1) : 1;
329
330         /*
331          * Initialize TX status
332          */
333         memset(&tx_info->status, 0, sizeof(tx_info->status));
334         tx_info->status.ack_signal = 0;
335
336         /*
337          * Frame was send with retries, hardware tried
338          * different rates to send out the frame, at each
339          * retry it lowered the rate 1 step except when the
340          * lowest rate was used.
341          */
342         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
343                 tx_info->status.rates[i].idx = rate_idx - i;
344                 tx_info->status.rates[i].flags = rate_flags;
345
346                 if (rate_idx - i == 0) {
347                         /*
348                          * The lowest rate (index 0) was used until the
349                          * number of max retries was reached.
350                          */
351                         tx_info->status.rates[i].count = retry_rates - i;
352                         i++;
353                         break;
354                 }
355                 tx_info->status.rates[i].count = 1;
356         }
357         if (i < (IEEE80211_TX_MAX_RATES - 1))
358                 tx_info->status.rates[i].idx = -1; /* terminate */
359
360         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
361                 if (success)
362                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
363                 else
364                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
365         }
366
367         /*
368          * Every single frame has it's own tx status, hence report
369          * every frame as ampdu of size 1.
370          *
371          * TODO: if we can find out how many frames were aggregated
372          * by the hw we could provide the real ampdu_len to mac80211
373          * which would allow the rc algorithm to better decide on
374          * which rates are suitable.
375          */
376         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
377             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
378                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
379                 tx_info->status.ampdu_len = 1;
380                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
381
382                 if (!success)
383                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
384         }
385
386         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
387                 if (success)
388                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
389                 else
390                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
391         }
392 }
393
394 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
395                                   struct queue_entry *entry)
396 {
397         /*
398          * Make this entry available for reuse.
399          */
400         entry->skb = NULL;
401         entry->flags = 0;
402
403         rt2x00dev->ops->lib->clear_entry(entry);
404
405         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
406
407         /*
408          * If the data queue was below the threshold before the txdone
409          * handler we must make sure the packet queue in the mac80211 stack
410          * is reenabled when the txdone handler has finished. This has to be
411          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
412          * before it was stopped.
413          */
414         spin_lock_bh(&entry->queue->tx_lock);
415         if (!rt2x00queue_threshold(entry->queue))
416                 rt2x00queue_unpause_queue(entry->queue);
417         spin_unlock_bh(&entry->queue->tx_lock);
418 }
419
420 void rt2x00lib_txdone(struct queue_entry *entry,
421                       struct txdone_entry_desc *txdesc)
422 {
423         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
424         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
425         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
426         u8 skbdesc_flags = skbdesc->flags;
427         unsigned int header_length;
428         bool success;
429
430         /*
431          * Unmap the skb.
432          */
433         rt2x00queue_unmap_skb(entry);
434
435         /*
436          * Remove the extra tx headroom from the skb.
437          */
438         skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
439
440         /*
441          * Signal that the TX descriptor is no longer in the skb.
442          */
443         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
444
445         /*
446          * Determine the length of 802.11 header.
447          */
448         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
449
450         /*
451          * Remove L2 padding which was added during
452          */
453         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
454                 rt2x00queue_remove_l2pad(entry->skb, header_length);
455
456         /*
457          * If the IV/EIV data was stripped from the frame before it was
458          * passed to the hardware, we should now reinsert it again because
459          * mac80211 will expect the same data to be present it the
460          * frame as it was passed to us.
461          */
462         if (rt2x00_has_cap_hw_crypto(rt2x00dev))
463                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
464
465         /*
466          * Send frame to debugfs immediately, after this call is completed
467          * we are going to overwrite the skb->cb array.
468          */
469         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
470
471         /*
472          * Determine if the frame has been successfully transmitted and
473          * remove BARs from our check list while checking for their
474          * TX status.
475          */
476         success =
477             rt2x00lib_txdone_bar_status(entry) ||
478             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
479             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
480
481         /*
482          * Update TX statistics.
483          */
484         rt2x00dev->link.qual.tx_success += success;
485         rt2x00dev->link.qual.tx_failed += !success;
486
487         rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
488
489         /*
490          * Only send the status report to mac80211 when it's a frame
491          * that originated in mac80211. If this was a extra frame coming
492          * through a mac80211 library call (RTS/CTS) then we should not
493          * send the status report back.
494          */
495         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
496                 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
497                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
498                 else
499                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
500         } else {
501                 dev_kfree_skb_any(entry->skb);
502         }
503
504         rt2x00lib_clear_entry(rt2x00dev, entry);
505 }
506 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
507
508 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
509 {
510         struct txdone_entry_desc txdesc;
511
512         txdesc.flags = 0;
513         __set_bit(status, &txdesc.flags);
514         txdesc.retry = 0;
515
516         rt2x00lib_txdone(entry, &txdesc);
517 }
518 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
519
520 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
521 {
522         struct ieee80211_mgmt *mgmt = (void *)data;
523         u8 *pos, *end;
524
525         pos = (u8 *)mgmt->u.beacon.variable;
526         end = data + len;
527         while (pos < end) {
528                 if (pos + 2 + pos[1] > end)
529                         return NULL;
530
531                 if (pos[0] == ie)
532                         return pos;
533
534                 pos += 2 + pos[1];
535         }
536
537         return NULL;
538 }
539
540 static void rt2x00lib_sleep(struct work_struct *work)
541 {
542         struct rt2x00_dev *rt2x00dev =
543             container_of(work, struct rt2x00_dev, sleep_work);
544
545         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
546                 return;
547
548         /*
549          * Check again is powersaving is enabled, to prevent races from delayed
550          * work execution.
551          */
552         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
553                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
554                                  IEEE80211_CONF_CHANGE_PS);
555 }
556
557 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
558                                       struct sk_buff *skb,
559                                       struct rxdone_entry_desc *rxdesc)
560 {
561         struct rt2x00_bar_list_entry *entry;
562         struct ieee80211_bar *ba = (void *)skb->data;
563
564         if (likely(!ieee80211_is_back(ba->frame_control)))
565                 return;
566
567         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
568                 return;
569
570         rcu_read_lock();
571         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
572
573                 if (ba->start_seq_num != entry->start_seq_num)
574                         continue;
575
576 #define TID_CHECK(a, b) (                                               \
577         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
578         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
579
580                 if (!TID_CHECK(ba->control, entry->control))
581                         continue;
582
583 #undef TID_CHECK
584
585                 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
586                         continue;
587
588                 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
589                         continue;
590
591                 /* Mark BAR since we received the according BA */
592                 spin_lock_bh(&rt2x00dev->bar_list_lock);
593                 entry->block_acked = 1;
594                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
595                 break;
596         }
597         rcu_read_unlock();
598
599 }
600
601 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
602                                       struct sk_buff *skb,
603                                       struct rxdone_entry_desc *rxdesc)
604 {
605         struct ieee80211_hdr *hdr = (void *) skb->data;
606         struct ieee80211_tim_ie *tim_ie;
607         u8 *tim;
608         u8 tim_len;
609         bool cam;
610
611         /* If this is not a beacon, or if mac80211 has no powersaving
612          * configured, or if the device is already in powersaving mode
613          * we can exit now. */
614         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
615                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
616                 return;
617
618         /* min. beacon length + FCS_LEN */
619         if (skb->len <= 40 + FCS_LEN)
620                 return;
621
622         /* and only beacons from the associated BSSID, please */
623         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
624             !rt2x00dev->aid)
625                 return;
626
627         rt2x00dev->last_beacon = jiffies;
628
629         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
630         if (!tim)
631                 return;
632
633         if (tim[1] < sizeof(*tim_ie))
634                 return;
635
636         tim_len = tim[1];
637         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
638
639         /* Check whenever the PHY can be turned off again. */
640
641         /* 1. What about buffered unicast traffic for our AID? */
642         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
643
644         /* 2. Maybe the AP wants to send multicast/broadcast data? */
645         cam |= (tim_ie->bitmap_ctrl & 0x01);
646
647         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
648                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
649 }
650
651 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
652                                         struct rxdone_entry_desc *rxdesc)
653 {
654         struct ieee80211_supported_band *sband;
655         const struct rt2x00_rate *rate;
656         unsigned int i;
657         int signal = rxdesc->signal;
658         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
659
660         switch (rxdesc->rate_mode) {
661         case RATE_MODE_CCK:
662         case RATE_MODE_OFDM:
663                 /*
664                  * For non-HT rates the MCS value needs to contain the
665                  * actually used rate modulation (CCK or OFDM).
666                  */
667                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
668                         signal = RATE_MCS(rxdesc->rate_mode, signal);
669
670                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
671                 for (i = 0; i < sband->n_bitrates; i++) {
672                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
673                         if (((type == RXDONE_SIGNAL_PLCP) &&
674                              (rate->plcp == signal)) ||
675                             ((type == RXDONE_SIGNAL_BITRATE) &&
676                               (rate->bitrate == signal)) ||
677                             ((type == RXDONE_SIGNAL_MCS) &&
678                               (rate->mcs == signal))) {
679                                 return i;
680                         }
681                 }
682                 break;
683         case RATE_MODE_HT_MIX:
684         case RATE_MODE_HT_GREENFIELD:
685                 if (signal >= 0 && signal <= 76)
686                         return signal;
687                 break;
688         default:
689                 break;
690         }
691
692         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
693                     rxdesc->rate_mode, signal, type);
694         return 0;
695 }
696
697 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
698 {
699         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
700         struct rxdone_entry_desc rxdesc;
701         struct sk_buff *skb;
702         struct ieee80211_rx_status *rx_status;
703         unsigned int header_length;
704         int rate_idx;
705
706         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
707             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
708                 goto submit_entry;
709
710         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
711                 goto submit_entry;
712
713         /*
714          * Allocate a new sk_buffer. If no new buffer available, drop the
715          * received frame and reuse the existing buffer.
716          */
717         skb = rt2x00queue_alloc_rxskb(entry, gfp);
718         if (!skb)
719                 goto submit_entry;
720
721         /*
722          * Unmap the skb.
723          */
724         rt2x00queue_unmap_skb(entry);
725
726         /*
727          * Extract the RXD details.
728          */
729         memset(&rxdesc, 0, sizeof(rxdesc));
730         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
731
732         /*
733          * Check for valid size in case we get corrupted descriptor from
734          * hardware.
735          */
736         if (unlikely(rxdesc.size == 0 ||
737                      rxdesc.size > entry->queue->data_size)) {
738                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
739                            rxdesc.size, entry->queue->data_size);
740                 dev_kfree_skb(entry->skb);
741                 goto renew_skb;
742         }
743
744         /*
745          * The data behind the ieee80211 header must be
746          * aligned on a 4 byte boundary.
747          */
748         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
749
750         /*
751          * Hardware might have stripped the IV/EIV/ICV data,
752          * in that case it is possible that the data was
753          * provided separately (through hardware descriptor)
754          * in which case we should reinsert the data into the frame.
755          */
756         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
757             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
758                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
759                                           &rxdesc);
760         else if (header_length &&
761                  (rxdesc.size > header_length) &&
762                  (rxdesc.dev_flags & RXDONE_L2PAD))
763                 rt2x00queue_remove_l2pad(entry->skb, header_length);
764
765         /* Trim buffer to correct size */
766         skb_trim(entry->skb, rxdesc.size);
767
768         /*
769          * Translate the signal to the correct bitrate index.
770          */
771         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
772         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
773             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
774                 rxdesc.flags |= RX_FLAG_HT;
775
776         /*
777          * Check if this is a beacon, and more frames have been
778          * buffered while we were in powersaving mode.
779          */
780         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
781
782         /*
783          * Check for incoming BlockAcks to match to the BlockAckReqs
784          * we've send out.
785          */
786         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
787
788         /*
789          * Update extra components
790          */
791         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
792         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
793         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
794
795         /*
796          * Initialize RX status information, and send frame
797          * to mac80211.
798          */
799         rx_status = IEEE80211_SKB_RXCB(entry->skb);
800
801         /* Ensure that all fields of rx_status are initialized
802          * properly. The skb->cb array was used for driver
803          * specific informations, so rx_status might contain
804          * garbage.
805          */
806         memset(rx_status, 0, sizeof(*rx_status));
807
808         rx_status->mactime = rxdesc.timestamp;
809         rx_status->band = rt2x00dev->curr_band;
810         rx_status->freq = rt2x00dev->curr_freq;
811         rx_status->rate_idx = rate_idx;
812         rx_status->signal = rxdesc.rssi;
813         rx_status->flag = rxdesc.flags;
814         rx_status->antenna = rt2x00dev->link.ant.active.rx;
815
816         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
817
818 renew_skb:
819         /*
820          * Replace the skb with the freshly allocated one.
821          */
822         entry->skb = skb;
823
824 submit_entry:
825         entry->flags = 0;
826         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
827         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
828             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
829                 rt2x00dev->ops->lib->clear_entry(entry);
830 }
831 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
832
833 /*
834  * Driver initialization handlers.
835  */
836 const struct rt2x00_rate rt2x00_supported_rates[12] = {
837         {
838                 .flags = DEV_RATE_CCK,
839                 .bitrate = 10,
840                 .ratemask = BIT(0),
841                 .plcp = 0x00,
842                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
843         },
844         {
845                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
846                 .bitrate = 20,
847                 .ratemask = BIT(1),
848                 .plcp = 0x01,
849                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
850         },
851         {
852                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
853                 .bitrate = 55,
854                 .ratemask = BIT(2),
855                 .plcp = 0x02,
856                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
857         },
858         {
859                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
860                 .bitrate = 110,
861                 .ratemask = BIT(3),
862                 .plcp = 0x03,
863                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
864         },
865         {
866                 .flags = DEV_RATE_OFDM,
867                 .bitrate = 60,
868                 .ratemask = BIT(4),
869                 .plcp = 0x0b,
870                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
871         },
872         {
873                 .flags = DEV_RATE_OFDM,
874                 .bitrate = 90,
875                 .ratemask = BIT(5),
876                 .plcp = 0x0f,
877                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
878         },
879         {
880                 .flags = DEV_RATE_OFDM,
881                 .bitrate = 120,
882                 .ratemask = BIT(6),
883                 .plcp = 0x0a,
884                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
885         },
886         {
887                 .flags = DEV_RATE_OFDM,
888                 .bitrate = 180,
889                 .ratemask = BIT(7),
890                 .plcp = 0x0e,
891                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
892         },
893         {
894                 .flags = DEV_RATE_OFDM,
895                 .bitrate = 240,
896                 .ratemask = BIT(8),
897                 .plcp = 0x09,
898                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
899         },
900         {
901                 .flags = DEV_RATE_OFDM,
902                 .bitrate = 360,
903                 .ratemask = BIT(9),
904                 .plcp = 0x0d,
905                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
906         },
907         {
908                 .flags = DEV_RATE_OFDM,
909                 .bitrate = 480,
910                 .ratemask = BIT(10),
911                 .plcp = 0x08,
912                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
913         },
914         {
915                 .flags = DEV_RATE_OFDM,
916                 .bitrate = 540,
917                 .ratemask = BIT(11),
918                 .plcp = 0x0c,
919                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
920         },
921 };
922
923 static void rt2x00lib_channel(struct ieee80211_channel *entry,
924                               const int channel, const int tx_power,
925                               const int value)
926 {
927         /* XXX: this assumption about the band is wrong for 802.11j */
928         entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
929         entry->center_freq = ieee80211_channel_to_frequency(channel,
930                                                             entry->band);
931         entry->hw_value = value;
932         entry->max_power = tx_power;
933         entry->max_antenna_gain = 0xff;
934 }
935
936 static void rt2x00lib_rate(struct ieee80211_rate *entry,
937                            const u16 index, const struct rt2x00_rate *rate)
938 {
939         entry->flags = 0;
940         entry->bitrate = rate->bitrate;
941         entry->hw_value = index;
942         entry->hw_value_short = index;
943
944         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
945                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
946 }
947
948 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
949 {
950         const char *mac_addr;
951
952         mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
953         if (mac_addr)
954                 ether_addr_copy(eeprom_mac_addr, mac_addr);
955
956         if (!is_valid_ether_addr(eeprom_mac_addr)) {
957                 eth_random_addr(eeprom_mac_addr);
958                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
959         }
960 }
961 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
962
963 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
964                                     struct hw_mode_spec *spec)
965 {
966         struct ieee80211_hw *hw = rt2x00dev->hw;
967         struct ieee80211_channel *channels;
968         struct ieee80211_rate *rates;
969         unsigned int num_rates;
970         unsigned int i;
971
972         num_rates = 0;
973         if (spec->supported_rates & SUPPORT_RATE_CCK)
974                 num_rates += 4;
975         if (spec->supported_rates & SUPPORT_RATE_OFDM)
976                 num_rates += 8;
977
978         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
979         if (!channels)
980                 return -ENOMEM;
981
982         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
983         if (!rates)
984                 goto exit_free_channels;
985
986         /*
987          * Initialize Rate list.
988          */
989         for (i = 0; i < num_rates; i++)
990                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
991
992         /*
993          * Initialize Channel list.
994          */
995         for (i = 0; i < spec->num_channels; i++) {
996                 rt2x00lib_channel(&channels[i],
997                                   spec->channels[i].channel,
998                                   spec->channels_info[i].max_power, i);
999         }
1000
1001         /*
1002          * Intitialize 802.11b, 802.11g
1003          * Rates: CCK, OFDM.
1004          * Channels: 2.4 GHz
1005          */
1006         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1007                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1008                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1009                 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1010                 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1011                 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1012                     &rt2x00dev->bands[NL80211_BAND_2GHZ];
1013                 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1014                        &spec->ht, sizeof(spec->ht));
1015         }
1016
1017         /*
1018          * Intitialize 802.11a
1019          * Rates: OFDM.
1020          * Channels: OFDM, UNII, HiperLAN2.
1021          */
1022         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1023                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1024                     spec->num_channels - 14;
1025                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1026                     num_rates - 4;
1027                 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1028                 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1029                 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1030                     &rt2x00dev->bands[NL80211_BAND_5GHZ];
1031                 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1032                        &spec->ht, sizeof(spec->ht));
1033         }
1034
1035         return 0;
1036
1037  exit_free_channels:
1038         kfree(channels);
1039         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1040         return -ENOMEM;
1041 }
1042
1043 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1044 {
1045         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1046                 ieee80211_unregister_hw(rt2x00dev->hw);
1047
1048         if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1049                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1050                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1051                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1052                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1053         }
1054
1055         kfree(rt2x00dev->spec.channels_info);
1056 }
1057
1058 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1059 {
1060         struct hw_mode_spec *spec = &rt2x00dev->spec;
1061         int status;
1062
1063         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1064                 return 0;
1065
1066         /*
1067          * Initialize HW modes.
1068          */
1069         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1070         if (status)
1071                 return status;
1072
1073         /*
1074          * Initialize HW fields.
1075          */
1076         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1077
1078         /*
1079          * Initialize extra TX headroom required.
1080          */
1081         rt2x00dev->hw->extra_tx_headroom =
1082                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1083                       rt2x00dev->extra_tx_headroom);
1084
1085         /*
1086          * Take TX headroom required for alignment into account.
1087          */
1088         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1089                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1090         else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1091                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1092
1093         /*
1094          * Tell mac80211 about the size of our private STA structure.
1095          */
1096         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1097
1098         /*
1099          * Allocate tx status FIFO for driver use.
1100          */
1101         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1102                 /*
1103                  * Allocate the txstatus fifo. In the worst case the tx
1104                  * status fifo has to hold the tx status of all entries
1105                  * in all tx queues. Hence, calculate the kfifo size as
1106                  * tx_queues * entry_num and round up to the nearest
1107                  * power of 2.
1108                  */
1109                 int kfifo_size =
1110                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1111                                            rt2x00dev->tx->limit *
1112                                            sizeof(u32));
1113
1114                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1115                                      GFP_KERNEL);
1116                 if (status)
1117                         return status;
1118         }
1119
1120         /*
1121          * Initialize tasklets if used by the driver. Tasklets are
1122          * disabled until the interrupts are turned on. The driver
1123          * has to handle that.
1124          */
1125 #define RT2X00_TASKLET_INIT(taskletname) \
1126         if (rt2x00dev->ops->lib->taskletname) { \
1127                 tasklet_init(&rt2x00dev->taskletname, \
1128                              rt2x00dev->ops->lib->taskletname, \
1129                              (unsigned long)rt2x00dev); \
1130         }
1131
1132         RT2X00_TASKLET_INIT(txstatus_tasklet);
1133         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1134         RT2X00_TASKLET_INIT(tbtt_tasklet);
1135         RT2X00_TASKLET_INIT(rxdone_tasklet);
1136         RT2X00_TASKLET_INIT(autowake_tasklet);
1137
1138 #undef RT2X00_TASKLET_INIT
1139
1140         /*
1141          * Register HW.
1142          */
1143         status = ieee80211_register_hw(rt2x00dev->hw);
1144         if (status)
1145                 return status;
1146
1147         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * Initialization/uninitialization handlers.
1154  */
1155 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1156 {
1157         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1158                 return;
1159
1160         /*
1161          * Stop rfkill polling.
1162          */
1163         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1164                 rt2x00rfkill_unregister(rt2x00dev);
1165
1166         /*
1167          * Allow the HW to uninitialize.
1168          */
1169         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1170
1171         /*
1172          * Free allocated queue entries.
1173          */
1174         rt2x00queue_uninitialize(rt2x00dev);
1175 }
1176
1177 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1178 {
1179         int status;
1180
1181         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1182                 return 0;
1183
1184         /*
1185          * Allocate all queue entries.
1186          */
1187         status = rt2x00queue_initialize(rt2x00dev);
1188         if (status)
1189                 return status;
1190
1191         /*
1192          * Initialize the device.
1193          */
1194         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1195         if (status) {
1196                 rt2x00queue_uninitialize(rt2x00dev);
1197                 return status;
1198         }
1199
1200         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1201
1202         /*
1203          * Start rfkill polling.
1204          */
1205         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1206                 rt2x00rfkill_register(rt2x00dev);
1207
1208         return 0;
1209 }
1210
1211 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1212 {
1213         int retval;
1214
1215         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1216                 return 0;
1217
1218         /*
1219          * If this is the first interface which is added,
1220          * we should load the firmware now.
1221          */
1222         retval = rt2x00lib_load_firmware(rt2x00dev);
1223         if (retval)
1224                 return retval;
1225
1226         /*
1227          * Initialize the device.
1228          */
1229         retval = rt2x00lib_initialize(rt2x00dev);
1230         if (retval)
1231                 return retval;
1232
1233         rt2x00dev->intf_ap_count = 0;
1234         rt2x00dev->intf_sta_count = 0;
1235         rt2x00dev->intf_associated = 0;
1236
1237         /* Enable the radio */
1238         retval = rt2x00lib_enable_radio(rt2x00dev);
1239         if (retval)
1240                 return retval;
1241
1242         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1243
1244         return 0;
1245 }
1246
1247 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1248 {
1249         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1250                 return;
1251
1252         /*
1253          * Perhaps we can add something smarter here,
1254          * but for now just disabling the radio should do.
1255          */
1256         rt2x00lib_disable_radio(rt2x00dev);
1257
1258         rt2x00dev->intf_ap_count = 0;
1259         rt2x00dev->intf_sta_count = 0;
1260         rt2x00dev->intf_associated = 0;
1261 }
1262
1263 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1264 {
1265         struct ieee80211_iface_limit *if_limit;
1266         struct ieee80211_iface_combination *if_combination;
1267
1268         if (rt2x00dev->ops->max_ap_intf < 2)
1269                 return;
1270
1271         /*
1272          * Build up AP interface limits structure.
1273          */
1274         if_limit = &rt2x00dev->if_limits_ap;
1275         if_limit->max = rt2x00dev->ops->max_ap_intf;
1276         if_limit->types = BIT(NL80211_IFTYPE_AP);
1277 #ifdef CONFIG_MAC80211_MESH
1278         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1279 #endif
1280
1281         /*
1282          * Build up AP interface combinations structure.
1283          */
1284         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1285         if_combination->limits = if_limit;
1286         if_combination->n_limits = 1;
1287         if_combination->max_interfaces = if_limit->max;
1288         if_combination->num_different_channels = 1;
1289
1290         /*
1291          * Finally, specify the possible combinations to mac80211.
1292          */
1293         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1294         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1295 }
1296
1297 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1298 {
1299         if (WARN_ON(!rt2x00dev->tx))
1300                 return 0;
1301
1302         if (rt2x00_is_usb(rt2x00dev))
1303                 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1304
1305         return rt2x00dev->tx[0].winfo_size;
1306 }
1307
1308 /*
1309  * driver allocation handlers.
1310  */
1311 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1312 {
1313         int retval = -ENOMEM;
1314
1315         /*
1316          * Set possible interface combinations.
1317          */
1318         rt2x00lib_set_if_combinations(rt2x00dev);
1319
1320         /*
1321          * Allocate the driver data memory, if necessary.
1322          */
1323         if (rt2x00dev->ops->drv_data_size > 0) {
1324                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1325                                               GFP_KERNEL);
1326                 if (!rt2x00dev->drv_data) {
1327                         retval = -ENOMEM;
1328                         goto exit;
1329                 }
1330         }
1331
1332         spin_lock_init(&rt2x00dev->irqmask_lock);
1333         mutex_init(&rt2x00dev->csr_mutex);
1334         mutex_init(&rt2x00dev->conf_mutex);
1335         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1336         spin_lock_init(&rt2x00dev->bar_list_lock);
1337
1338         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1339
1340         /*
1341          * Make room for rt2x00_intf inside the per-interface
1342          * structure ieee80211_vif.
1343          */
1344         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1345
1346         /*
1347          * rt2x00 devices can only use the last n bits of the MAC address
1348          * for virtual interfaces.
1349          */
1350         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1351                 (rt2x00dev->ops->max_ap_intf - 1);
1352
1353         /*
1354          * Initialize work.
1355          */
1356         rt2x00dev->workqueue =
1357             alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1358         if (!rt2x00dev->workqueue) {
1359                 retval = -ENOMEM;
1360                 goto exit;
1361         }
1362
1363         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1364         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1365         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1366
1367         /*
1368          * Let the driver probe the device to detect the capabilities.
1369          */
1370         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1371         if (retval) {
1372                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1373                 goto exit;
1374         }
1375
1376         /*
1377          * Allocate queue array.
1378          */
1379         retval = rt2x00queue_allocate(rt2x00dev);
1380         if (retval)
1381                 goto exit;
1382
1383         /* Cache TX headroom value */
1384         rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1385
1386         /*
1387          * Determine which operating modes are supported, all modes
1388          * which require beaconing, depend on the availability of
1389          * beacon entries.
1390          */
1391         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1392         if (rt2x00dev->bcn->limit > 0)
1393                 rt2x00dev->hw->wiphy->interface_modes |=
1394                     BIT(NL80211_IFTYPE_ADHOC) |
1395 #ifdef CONFIG_MAC80211_MESH
1396                     BIT(NL80211_IFTYPE_MESH_POINT) |
1397 #endif
1398 #ifdef CONFIG_WIRELESS_WDS
1399                     BIT(NL80211_IFTYPE_WDS) |
1400 #endif
1401                     BIT(NL80211_IFTYPE_AP);
1402
1403         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1404
1405         /*
1406          * Initialize ieee80211 structure.
1407          */
1408         retval = rt2x00lib_probe_hw(rt2x00dev);
1409         if (retval) {
1410                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1411                 goto exit;
1412         }
1413
1414         /*
1415          * Register extra components.
1416          */
1417         rt2x00link_register(rt2x00dev);
1418         rt2x00leds_register(rt2x00dev);
1419         rt2x00debug_register(rt2x00dev);
1420
1421         /*
1422          * Start rfkill polling.
1423          */
1424         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1425                 rt2x00rfkill_register(rt2x00dev);
1426
1427         return 0;
1428
1429 exit:
1430         rt2x00lib_remove_dev(rt2x00dev);
1431
1432         return retval;
1433 }
1434 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1435
1436 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1437 {
1438         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1439
1440         /*
1441          * Stop rfkill polling.
1442          */
1443         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1444                 rt2x00rfkill_unregister(rt2x00dev);
1445
1446         /*
1447          * Disable radio.
1448          */
1449         rt2x00lib_disable_radio(rt2x00dev);
1450
1451         /*
1452          * Stop all work.
1453          */
1454         cancel_work_sync(&rt2x00dev->intf_work);
1455         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1456         cancel_work_sync(&rt2x00dev->sleep_work);
1457
1458         /*
1459          * Kill the tx status tasklet.
1460          */
1461         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1462         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1463         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1464         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1465         tasklet_kill(&rt2x00dev->autowake_tasklet);
1466
1467         /*
1468          * Uninitialize device.
1469          */
1470         rt2x00lib_uninitialize(rt2x00dev);
1471
1472         if (rt2x00dev->workqueue)
1473                 destroy_workqueue(rt2x00dev->workqueue);
1474
1475         /*
1476          * Free the tx status fifo.
1477          */
1478         kfifo_free(&rt2x00dev->txstatus_fifo);
1479
1480         /*
1481          * Free extra components
1482          */
1483         rt2x00debug_deregister(rt2x00dev);
1484         rt2x00leds_unregister(rt2x00dev);
1485
1486         /*
1487          * Free ieee80211_hw memory.
1488          */
1489         rt2x00lib_remove_hw(rt2x00dev);
1490
1491         /*
1492          * Free firmware image.
1493          */
1494         rt2x00lib_free_firmware(rt2x00dev);
1495
1496         /*
1497          * Free queue structures.
1498          */
1499         rt2x00queue_free(rt2x00dev);
1500
1501         /*
1502          * Free the driver data.
1503          */
1504         kfree(rt2x00dev->drv_data);
1505 }
1506 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1507
1508 /*
1509  * Device state handlers
1510  */
1511 #ifdef CONFIG_PM
1512 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1513 {
1514         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1515
1516         /*
1517          * Prevent mac80211 from accessing driver while suspended.
1518          */
1519         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1520                 return 0;
1521
1522         /*
1523          * Cleanup as much as possible.
1524          */
1525         rt2x00lib_uninitialize(rt2x00dev);
1526
1527         /*
1528          * Suspend/disable extra components.
1529          */
1530         rt2x00leds_suspend(rt2x00dev);
1531         rt2x00debug_deregister(rt2x00dev);
1532
1533         /*
1534          * Set device mode to sleep for power management,
1535          * on some hardware this call seems to consistently fail.
1536          * From the specifications it is hard to tell why it fails,
1537          * and if this is a "bad thing".
1538          * Overall it is safe to just ignore the failure and
1539          * continue suspending. The only downside is that the
1540          * device will not be in optimal power save mode, but with
1541          * the radio and the other components already disabled the
1542          * device is as good as disabled.
1543          */
1544         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1545                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1546
1547         return 0;
1548 }
1549 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1550
1551 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1552 {
1553         rt2x00_dbg(rt2x00dev, "Waking up\n");
1554
1555         /*
1556          * Restore/enable extra components.
1557          */
1558         rt2x00debug_register(rt2x00dev);
1559         rt2x00leds_resume(rt2x00dev);
1560
1561         /*
1562          * We are ready again to receive requests from mac80211.
1563          */
1564         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1565
1566         return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1569 #endif /* CONFIG_PM */
1570
1571 /*
1572  * rt2x00lib module information.
1573  */
1574 MODULE_AUTHOR(DRV_PROJECT);
1575 MODULE_VERSION(DRV_VERSION);
1576 MODULE_DESCRIPTION("rt2x00 library");
1577 MODULE_LICENSE("GPL");