Correct .gbs.conf settings
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / net / wireless / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  *
5  * Portions of this file are derived from the ipw3945 project, as well
6  * as portions of the ieee80211 subsystem header files.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of version 2 of the GNU General Public License as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
20  *
21  * The full GNU General Public License is included in this distribution in the
22  * file called LICENSE.
23  *
24  * Contact Information:
25  *  Intel Linux Wireless <ilw@linux.intel.com>
26  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27  *
28  *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
32
33 #include "iwl-prph.h"
34 #include "iwl-io.h"
35 #include "internal.h"
36 #include "iwl-op-mode.h"
37
38 /******************************************************************************
39  *
40  * RX path functions
41  *
42  ******************************************************************************/
43
44 /*
45  * Rx theory of operation
46  *
47  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48  * each of which point to Receive Buffers to be filled by the NIC.  These get
49  * used not only for Rx frames, but for any command response or notification
50  * from the NIC.  The driver and NIC manage the Rx buffers by means
51  * of indexes into the circular buffer.
52  *
53  * Rx Queue Indexes
54  * The host/firmware share two index registers for managing the Rx buffers.
55  *
56  * The READ index maps to the first position that the firmware may be writing
57  * to -- the driver can read up to (but not including) this position and get
58  * good data.
59  * The READ index is managed by the firmware once the card is enabled.
60  *
61  * The WRITE index maps to the last position the driver has read from -- the
62  * position preceding WRITE is the last slot the firmware can place a packet.
63  *
64  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
65  * WRITE = READ.
66  *
67  * During initialization, the host sets up the READ queue position to the first
68  * INDEX position, and WRITE to the last (READ - 1 wrapped)
69  *
70  * When the firmware places a packet in a buffer, it will advance the READ index
71  * and fire the RX interrupt.  The driver can then query the READ index and
72  * process as many packets as possible, moving the WRITE index forward as it
73  * resets the Rx queue buffers with new memory.
74  *
75  * The management in the driver is as follows:
76  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
77  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
78  *   to replenish the iwl->rxq->rx_free.
79  * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
80  *   iwl->rxq is replenished and the READ INDEX is updated (updating the
81  *   'processed' and 'read' driver indexes as well)
82  * + A received packet is processed and handed to the kernel network stack,
83  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
84  * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
85  *   rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
86  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
87  *   If there were enough free buffers and RX_STALLED is set it is cleared.
88  *
89  *
90  * Driver sequence:
91  *
92  * iwl_rxq_alloc()            Allocates rx_free
93  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
94  *                            iwl_pcie_rxq_restock
95  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
96  *                            queue, updates firmware pointers, and updates
97  *                            the WRITE index.  If insufficient rx_free buffers
98  *                            are available, schedules iwl_pcie_rx_replenish
99  *
100  * -- enable interrupts --
101  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
102  *                            READ INDEX, detaching the SKB from the pool.
103  *                            Moves the packet buffer from queue to rx_used.
104  *                            Calls iwl_pcie_rxq_restock to refill any empty
105  *                            slots.
106  * ...
107  *
108  */
109
110 /*
111  * iwl_rxq_space - Return number of free slots available in queue.
112  */
113 static int iwl_rxq_space(const struct iwl_rxq *rxq)
114 {
115         /* Make sure RX_QUEUE_SIZE is a power of 2 */
116         BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
117
118         /*
119          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
120          * between empty and completely full queues.
121          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
122          * defined for negative dividends.
123          */
124         return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
125 }
126
127 /*
128  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
129  */
130 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
131 {
132         return cpu_to_le32((u32)(dma_addr >> 8));
133 }
134
135 /*
136  * iwl_pcie_rx_stop - stops the Rx DMA
137  */
138 int iwl_pcie_rx_stop(struct iwl_trans *trans)
139 {
140         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
141         return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
142                                    FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
143 }
144
145 /*
146  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
147  */
148 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
149                                     struct iwl_rxq *rxq)
150 {
151         u32 reg;
152
153         spin_lock(&rxq->lock);
154
155         if (rxq->need_update == 0)
156                 goto exit_unlock;
157
158         if (trans->cfg->base_params->shadow_reg_enable) {
159                 /* shadow register enabled */
160                 /* Device expects a multiple of 8 */
161                 rxq->write_actual = (rxq->write & ~0x7);
162                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
163         } else {
164                 /* If power-saving is in use, make sure device is awake */
165                 if (test_bit(STATUS_TPOWER_PMI, &trans->status)) {
166                         reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
167
168                         if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
169                                 IWL_DEBUG_INFO(trans,
170                                         "Rx queue requesting wakeup,"
171                                         " GP1 = 0x%x\n", reg);
172                                 iwl_set_bit(trans, CSR_GP_CNTRL,
173                                         CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
174                                 goto exit_unlock;
175                         }
176
177                         rxq->write_actual = (rxq->write & ~0x7);
178                         iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
179                                            rxq->write_actual);
180
181                 /* Else device is assumed to be awake */
182                 } else {
183                         /* Device expects a multiple of 8 */
184                         rxq->write_actual = (rxq->write & ~0x7);
185                         iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
186                                            rxq->write_actual);
187                 }
188         }
189         rxq->need_update = 0;
190
191  exit_unlock:
192         spin_unlock(&rxq->lock);
193 }
194
195 /*
196  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
197  *
198  * If there are slots in the RX queue that need to be restocked,
199  * and we have free pre-allocated buffers, fill the ranks as much
200  * as we can, pulling from rx_free.
201  *
202  * This moves the 'write' index forward to catch up with 'processed', and
203  * also updates the memory address in the firmware to reference the new
204  * target buffer.
205  */
206 static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
207 {
208         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
209         struct iwl_rxq *rxq = &trans_pcie->rxq;
210         struct iwl_rx_mem_buffer *rxb;
211
212         /*
213          * If the device isn't enabled - not need to try to add buffers...
214          * This can happen when we stop the device and still have an interrupt
215          * pending. We stop the APM before we sync the interrupts because we
216          * have to (see comment there). On the other hand, since the APM is
217          * stopped, we cannot access the HW (in particular not prph).
218          * So don't try to restock if the APM has been already stopped.
219          */
220         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
221                 return;
222
223         spin_lock(&rxq->lock);
224         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
225                 /* The overwritten rxb must be a used one */
226                 rxb = rxq->queue[rxq->write];
227                 BUG_ON(rxb && rxb->page);
228
229                 /* Get next free Rx buffer, remove from free list */
230                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
231                                        list);
232                 list_del(&rxb->list);
233
234                 /* Point to Rx buffer via next RBD in circular buffer */
235                 rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
236                 rxq->queue[rxq->write] = rxb;
237                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
238                 rxq->free_count--;
239         }
240         spin_unlock(&rxq->lock);
241         /* If the pre-allocated buffer pool is dropping low, schedule to
242          * refill it */
243         if (rxq->free_count <= RX_LOW_WATERMARK)
244                 schedule_work(&trans_pcie->rx_replenish);
245
246         /* If we've added more space for the firmware to place data, tell it.
247          * Increment device's write pointer in multiples of 8. */
248         if (rxq->write_actual != (rxq->write & ~0x7)) {
249                 spin_lock(&rxq->lock);
250                 rxq->need_update = 1;
251                 spin_unlock(&rxq->lock);
252                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
253         }
254 }
255
256 /*
257  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
258  *
259  * A used RBD is an Rx buffer that has been given to the stack. To use it again
260  * a page must be allocated and the RBD must point to the page. This function
261  * doesn't change the HW pointer but handles the list of pages that is used by
262  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
263  * allocated buffers.
264  */
265 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority)
266 {
267         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
268         struct iwl_rxq *rxq = &trans_pcie->rxq;
269         struct iwl_rx_mem_buffer *rxb;
270         struct page *page;
271         gfp_t gfp_mask = priority;
272
273         while (1) {
274                 spin_lock(&rxq->lock);
275                 if (list_empty(&rxq->rx_used)) {
276                         spin_unlock(&rxq->lock);
277                         return;
278                 }
279                 spin_unlock(&rxq->lock);
280
281                 if (rxq->free_count > RX_LOW_WATERMARK)
282                         gfp_mask |= __GFP_NOWARN;
283
284                 if (trans_pcie->rx_page_order > 0)
285                         gfp_mask |= __GFP_COMP;
286
287                 /* Alloc a new receive buffer */
288                 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
289                 if (!page) {
290                         if (net_ratelimit())
291                                 IWL_DEBUG_INFO(trans, "alloc_pages failed, "
292                                            "order: %d\n",
293                                            trans_pcie->rx_page_order);
294
295                         if ((rxq->free_count <= RX_LOW_WATERMARK) &&
296                             net_ratelimit())
297                                 IWL_CRIT(trans, "Failed to alloc_pages with %s."
298                                          "Only %u free buffers remaining.\n",
299                                          priority == GFP_ATOMIC ?
300                                          "GFP_ATOMIC" : "GFP_KERNEL",
301                                          rxq->free_count);
302                         /* We don't reschedule replenish work here -- we will
303                          * call the restock method and if it still needs
304                          * more buffers it will schedule replenish */
305                         return;
306                 }
307
308                 spin_lock(&rxq->lock);
309
310                 if (list_empty(&rxq->rx_used)) {
311                         spin_unlock(&rxq->lock);
312                         __free_pages(page, trans_pcie->rx_page_order);
313                         return;
314                 }
315                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
316                                        list);
317                 list_del(&rxb->list);
318                 spin_unlock(&rxq->lock);
319
320                 BUG_ON(rxb->page);
321                 rxb->page = page;
322                 /* Get physical address of the RB */
323                 rxb->page_dma =
324                         dma_map_page(trans->dev, page, 0,
325                                      PAGE_SIZE << trans_pcie->rx_page_order,
326                                      DMA_FROM_DEVICE);
327                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
328                         rxb->page = NULL;
329                         spin_lock(&rxq->lock);
330                         list_add(&rxb->list, &rxq->rx_used);
331                         spin_unlock(&rxq->lock);
332                         __free_pages(page, trans_pcie->rx_page_order);
333                         return;
334                 }
335                 /* dma address must be no more than 36 bits */
336                 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
337                 /* and also 256 byte aligned! */
338                 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
339
340                 spin_lock(&rxq->lock);
341
342                 list_add_tail(&rxb->list, &rxq->rx_free);
343                 rxq->free_count++;
344
345                 spin_unlock(&rxq->lock);
346         }
347 }
348
349 static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
350 {
351         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
352         struct iwl_rxq *rxq = &trans_pcie->rxq;
353         int i;
354
355         lockdep_assert_held(&rxq->lock);
356
357         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
358                 if (!rxq->pool[i].page)
359                         continue;
360                 dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
361                                PAGE_SIZE << trans_pcie->rx_page_order,
362                                DMA_FROM_DEVICE);
363                 __free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
364                 rxq->pool[i].page = NULL;
365         }
366 }
367
368 /*
369  * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
370  *
371  * When moving to rx_free an page is allocated for the slot.
372  *
373  * Also restock the Rx queue via iwl_pcie_rxq_restock.
374  * This is called as a scheduled work item (except for during initialization)
375  */
376 static void iwl_pcie_rx_replenish(struct iwl_trans *trans)
377 {
378         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
379
380         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL);
381
382         spin_lock(&trans_pcie->irq_lock);
383         iwl_pcie_rxq_restock(trans);
384         spin_unlock(&trans_pcie->irq_lock);
385 }
386
387 static void iwl_pcie_rx_replenish_now(struct iwl_trans *trans)
388 {
389         iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC);
390
391         iwl_pcie_rxq_restock(trans);
392 }
393
394 static void iwl_pcie_rx_replenish_work(struct work_struct *data)
395 {
396         struct iwl_trans_pcie *trans_pcie =
397             container_of(data, struct iwl_trans_pcie, rx_replenish);
398
399         iwl_pcie_rx_replenish(trans_pcie->trans);
400 }
401
402 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
403 {
404         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
405         struct iwl_rxq *rxq = &trans_pcie->rxq;
406         struct device *dev = trans->dev;
407
408         memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
409
410         spin_lock_init(&rxq->lock);
411
412         if (WARN_ON(rxq->bd || rxq->rb_stts))
413                 return -EINVAL;
414
415         /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
416         rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
417                                       &rxq->bd_dma, GFP_KERNEL);
418         if (!rxq->bd)
419                 goto err_bd;
420
421         /*Allocate the driver's pointer to receive buffer status */
422         rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
423                                            &rxq->rb_stts_dma, GFP_KERNEL);
424         if (!rxq->rb_stts)
425                 goto err_rb_stts;
426
427         return 0;
428
429 err_rb_stts:
430         dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
431                           rxq->bd, rxq->bd_dma);
432         rxq->bd_dma = 0;
433         rxq->bd = NULL;
434 err_bd:
435         return -ENOMEM;
436 }
437
438 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
439 {
440         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
441         u32 rb_size;
442         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
443
444         if (trans_pcie->rx_buf_size_8k)
445                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
446         else
447                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
448
449         /* Stop Rx DMA */
450         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
451         /* reset and flush pointers */
452         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
453         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
454         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
455
456         /* Reset driver's Rx queue write index */
457         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
458
459         /* Tell device where to find RBD circular buffer in DRAM */
460         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
461                            (u32)(rxq->bd_dma >> 8));
462
463         /* Tell device where in DRAM to update its Rx status */
464         iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
465                            rxq->rb_stts_dma >> 4);
466
467         /* Enable Rx DMA
468          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
469          *      the credit mechanism in 5000 HW RX FIFO
470          * Direct rx interrupts to hosts
471          * Rx buffer size 4 or 8k
472          * RB timeout 0x10
473          * 256 RBDs
474          */
475         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
476                            FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
477                            FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
478                            FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
479                            rb_size|
480                            (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
481                            (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
482
483         /* Set interrupt coalescing timer to default (2048 usecs) */
484         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
485
486         /* W/A for interrupt coalescing bug in 7260 and 3160 */
487         if (trans->cfg->host_interrupt_operation_mode)
488                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
489 }
490
491 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
492 {
493         int i;
494
495         lockdep_assert_held(&rxq->lock);
496
497         INIT_LIST_HEAD(&rxq->rx_free);
498         INIT_LIST_HEAD(&rxq->rx_used);
499         rxq->free_count = 0;
500
501         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
502                 list_add(&rxq->pool[i].list, &rxq->rx_used);
503 }
504
505 int iwl_pcie_rx_init(struct iwl_trans *trans)
506 {
507         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
508         struct iwl_rxq *rxq = &trans_pcie->rxq;
509         int i, err;
510
511         if (!rxq->bd) {
512                 err = iwl_pcie_rx_alloc(trans);
513                 if (err)
514                         return err;
515         }
516
517         spin_lock(&rxq->lock);
518
519         INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work);
520
521         /* free all first - we might be reconfigured for a different size */
522         iwl_pcie_rxq_free_rbs(trans);
523         iwl_pcie_rx_init_rxb_lists(rxq);
524
525         for (i = 0; i < RX_QUEUE_SIZE; i++)
526                 rxq->queue[i] = NULL;
527
528         /* Set us so that we have processed and used all buffers, but have
529          * not restocked the Rx queue with fresh buffers */
530         rxq->read = rxq->write = 0;
531         rxq->write_actual = 0;
532         memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
533         spin_unlock(&rxq->lock);
534
535         iwl_pcie_rx_replenish(trans);
536
537         iwl_pcie_rx_hw_init(trans, rxq);
538
539         spin_lock(&trans_pcie->irq_lock);
540         rxq->need_update = 1;
541         iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
542         spin_unlock(&trans_pcie->irq_lock);
543
544         return 0;
545 }
546
547 void iwl_pcie_rx_free(struct iwl_trans *trans)
548 {
549         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
550         struct iwl_rxq *rxq = &trans_pcie->rxq;
551
552         /*if rxq->bd is NULL, it means that nothing has been allocated,
553          * exit now */
554         if (!rxq->bd) {
555                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
556                 return;
557         }
558
559         cancel_work_sync(&trans_pcie->rx_replenish);
560
561         spin_lock(&rxq->lock);
562         iwl_pcie_rxq_free_rbs(trans);
563         spin_unlock(&rxq->lock);
564
565         dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
566                           rxq->bd, rxq->bd_dma);
567         rxq->bd_dma = 0;
568         rxq->bd = NULL;
569
570         if (rxq->rb_stts)
571                 dma_free_coherent(trans->dev,
572                                   sizeof(struct iwl_rb_status),
573                                   rxq->rb_stts, rxq->rb_stts_dma);
574         else
575                 IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
576         rxq->rb_stts_dma = 0;
577         rxq->rb_stts = NULL;
578 }
579
580 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
581                                 struct iwl_rx_mem_buffer *rxb)
582 {
583         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
584         struct iwl_rxq *rxq = &trans_pcie->rxq;
585         struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
586         bool page_stolen = false;
587         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
588         u32 offset = 0;
589
590         if (WARN_ON(!rxb))
591                 return;
592
593         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
594
595         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
596                 struct iwl_rx_packet *pkt;
597                 struct iwl_device_cmd *cmd;
598                 u16 sequence;
599                 bool reclaim;
600                 int index, cmd_index, err, len;
601                 struct iwl_rx_cmd_buffer rxcb = {
602                         ._offset = offset,
603                         ._rx_page_order = trans_pcie->rx_page_order,
604                         ._page = rxb->page,
605                         ._page_stolen = false,
606                         .truesize = max_len,
607                 };
608
609                 pkt = rxb_addr(&rxcb);
610
611                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
612                         break;
613
614                 IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n",
615                         rxcb._offset, get_cmd_string(trans_pcie, pkt->hdr.cmd),
616                         pkt->hdr.cmd);
617
618                 len = iwl_rx_packet_len(pkt);
619                 len += sizeof(u32); /* account for status word */
620                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
621                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
622
623                 /* Reclaim a command buffer only if this packet is a response
624                  *   to a (driver-originated) command.
625                  * If the packet (e.g. Rx frame) originated from uCode,
626                  *   there is no command buffer to reclaim.
627                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
628                  *   but apparently a few don't get set; catch them here. */
629                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
630                 if (reclaim) {
631                         int i;
632
633                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
634                                 if (trans_pcie->no_reclaim_cmds[i] ==
635                                                         pkt->hdr.cmd) {
636                                         reclaim = false;
637                                         break;
638                                 }
639                         }
640                 }
641
642                 sequence = le16_to_cpu(pkt->hdr.sequence);
643                 index = SEQ_TO_INDEX(sequence);
644                 cmd_index = get_cmd_index(&txq->q, index);
645
646                 if (reclaim)
647                         cmd = txq->entries[cmd_index].cmd;
648                 else
649                         cmd = NULL;
650
651                 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
652
653                 if (reclaim) {
654                         kfree(txq->entries[cmd_index].free_buf);
655                         txq->entries[cmd_index].free_buf = NULL;
656                 }
657
658                 /*
659                  * After here, we should always check rxcb._page_stolen,
660                  * if it is true then one of the handlers took the page.
661                  */
662
663                 if (reclaim) {
664                         /* Invoke any callbacks, transfer the buffer to caller,
665                          * and fire off the (possibly) blocking
666                          * iwl_trans_send_cmd()
667                          * as we reclaim the driver command queue */
668                         if (!rxcb._page_stolen)
669                                 iwl_pcie_hcmd_complete(trans, &rxcb, err);
670                         else
671                                 IWL_WARN(trans, "Claim null rxb?\n");
672                 }
673
674                 page_stolen |= rxcb._page_stolen;
675                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
676         }
677
678         /* page was stolen from us -- free our reference */
679         if (page_stolen) {
680                 __free_pages(rxb->page, trans_pcie->rx_page_order);
681                 rxb->page = NULL;
682         }
683
684         /* Reuse the page if possible. For notification packets and
685          * SKBs that fail to Rx correctly, add them back into the
686          * rx_free list for reuse later. */
687         spin_lock(&rxq->lock);
688         if (rxb->page != NULL) {
689                 rxb->page_dma =
690                         dma_map_page(trans->dev, rxb->page, 0,
691                                      PAGE_SIZE << trans_pcie->rx_page_order,
692                                      DMA_FROM_DEVICE);
693                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
694                         /*
695                          * free the page(s) as well to not break
696                          * the invariant that the items on the used
697                          * list have no page(s)
698                          */
699                         __free_pages(rxb->page, trans_pcie->rx_page_order);
700                         rxb->page = NULL;
701                         list_add_tail(&rxb->list, &rxq->rx_used);
702                 } else {
703                         list_add_tail(&rxb->list, &rxq->rx_free);
704                         rxq->free_count++;
705                 }
706         } else
707                 list_add_tail(&rxb->list, &rxq->rx_used);
708         spin_unlock(&rxq->lock);
709 }
710
711 /*
712  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
713  */
714 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
715 {
716         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
717         struct iwl_rxq *rxq = &trans_pcie->rxq;
718         u32 r, i;
719         u8 fill_rx = 0;
720         u32 count = 8;
721         int total_empty;
722
723         /* uCode's read index (stored in shared DRAM) indicates the last Rx
724          * buffer that the driver may process (last buffer filled by ucode). */
725         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
726         i = rxq->read;
727
728         /* Rx interrupt, but nothing sent from uCode */
729         if (i == r)
730                 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
731
732         /* calculate total frames need to be restock after handling RX */
733         total_empty = r - rxq->write_actual;
734         if (total_empty < 0)
735                 total_empty += RX_QUEUE_SIZE;
736
737         if (total_empty > (RX_QUEUE_SIZE / 2))
738                 fill_rx = 1;
739
740         while (i != r) {
741                 struct iwl_rx_mem_buffer *rxb;
742
743                 rxb = rxq->queue[i];
744                 rxq->queue[i] = NULL;
745
746                 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
747                              r, i, rxb);
748                 iwl_pcie_rx_handle_rb(trans, rxb);
749
750                 i = (i + 1) & RX_QUEUE_MASK;
751                 /* If there are a lot of unused frames,
752                  * restock the Rx queue so ucode wont assert. */
753                 if (fill_rx) {
754                         count++;
755                         if (count >= 8) {
756                                 rxq->read = i;
757                                 iwl_pcie_rx_replenish_now(trans);
758                                 count = 0;
759                         }
760                 }
761         }
762
763         /* Backtrack one entry */
764         rxq->read = i;
765         if (fill_rx)
766                 iwl_pcie_rx_replenish_now(trans);
767         else
768                 iwl_pcie_rxq_restock(trans);
769 }
770
771 /*
772  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
773  */
774 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
775 {
776         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
777
778         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
779         if (trans->cfg->internal_wimax_coex &&
780             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
781                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
782              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
783                             APMG_PS_CTRL_VAL_RESET_REQ))) {
784                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
785                 iwl_op_mode_wimax_active(trans->op_mode);
786                 wake_up(&trans_pcie->wait_command_queue);
787                 return;
788         }
789
790         iwl_pcie_dump_csr(trans);
791         iwl_dump_fh(trans, NULL);
792
793         local_bh_disable();
794         /* The STATUS_FW_ERROR bit is set in this function. This must happen
795          * before we wake up the command caller, to ensure a proper cleanup. */
796         iwl_trans_fw_error(trans);
797         local_bh_enable();
798
799         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
800         wake_up(&trans_pcie->wait_command_queue);
801 }
802
803 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
804 {
805         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
806         u32 inta;
807
808         lockdep_assert_held(&trans_pcie->irq_lock);
809
810         trace_iwlwifi_dev_irq(trans->dev);
811
812         /* Discover which interrupts are active/pending */
813         inta = iwl_read32(trans, CSR_INT);
814
815         /* the thread will service interrupts and re-enable them */
816         return inta;
817 }
818
819 /* a device (PCI-E) page is 4096 bytes long */
820 #define ICT_SHIFT       12
821 #define ICT_SIZE        (1 << ICT_SHIFT)
822 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
823
824 /* interrupt handler using ict table, with this interrupt driver will
825  * stop using INTA register to get device's interrupt, reading this register
826  * is expensive, device will write interrupts in ICT dram table, increment
827  * index then will fire interrupt to driver, driver will OR all ICT table
828  * entries from current index up to table entry with 0 value. the result is
829  * the interrupt we need to service, driver will set the entries back to 0 and
830  * set index.
831  */
832 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
833 {
834         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
835         u32 inta;
836         u32 val = 0;
837         u32 read;
838
839         trace_iwlwifi_dev_irq(trans->dev);
840
841         /* Ignore interrupt if there's nothing in NIC to service.
842          * This may be due to IRQ shared with another device,
843          * or due to sporadic interrupts thrown from our NIC. */
844         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
845         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
846         if (!read)
847                 return 0;
848
849         /*
850          * Collect all entries up to the first 0, starting from ict_index;
851          * note we already read at ict_index.
852          */
853         do {
854                 val |= read;
855                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
856                                 trans_pcie->ict_index, read);
857                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
858                 trans_pcie->ict_index =
859                         iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT);
860
861                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
862                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
863                                            read);
864         } while (read);
865
866         /* We should not get this value, just ignore it. */
867         if (val == 0xffffffff)
868                 val = 0;
869
870         /*
871          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
872          * (bit 15 before shifting it to 31) to clear when using interrupt
873          * coalescing. fortunately, bits 18 and 19 stay set when this happens
874          * so we use them to decide on the real state of the Rx bit.
875          * In order words, bit 15 is set if bit 18 or bit 19 are set.
876          */
877         if (val & 0xC0000)
878                 val |= 0x8000;
879
880         inta = (0xff & val) | ((0xff00 & val) << 16);
881         return inta;
882 }
883
884 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
885 {
886         struct iwl_trans *trans = dev_id;
887         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
888         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
889         u32 inta = 0;
890         u32 handled = 0;
891         u32 i;
892
893         lock_map_acquire(&trans->sync_cmd_lockdep_map);
894
895         spin_lock(&trans_pcie->irq_lock);
896
897         /* dram interrupt table not set yet,
898          * use legacy interrupt.
899          */
900         if (likely(trans_pcie->use_ict))
901                 inta = iwl_pcie_int_cause_ict(trans);
902         else
903                 inta = iwl_pcie_int_cause_non_ict(trans);
904
905         if (iwl_have_debug_level(IWL_DL_ISR)) {
906                 IWL_DEBUG_ISR(trans,
907                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
908                               inta, trans_pcie->inta_mask,
909                               iwl_read32(trans, CSR_INT_MASK),
910                               iwl_read32(trans, CSR_FH_INT_STATUS));
911                 if (inta & (~trans_pcie->inta_mask))
912                         IWL_DEBUG_ISR(trans,
913                                       "We got a masked interrupt (0x%08x)\n",
914                                       inta & (~trans_pcie->inta_mask));
915         }
916
917         inta &= trans_pcie->inta_mask;
918
919         /*
920          * Ignore interrupt if there's nothing in NIC to service.
921          * This may be due to IRQ shared with another device,
922          * or due to sporadic interrupts thrown from our NIC.
923          */
924         if (unlikely(!inta)) {
925                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
926                 /*
927                  * Re-enable interrupts here since we don't
928                  * have anything to service
929                  */
930                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
931                         iwl_enable_interrupts(trans);
932                 spin_unlock(&trans_pcie->irq_lock);
933                 lock_map_release(&trans->sync_cmd_lockdep_map);
934                 return IRQ_NONE;
935         }
936
937         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
938                 /*
939                  * Hardware disappeared. It might have
940                  * already raised an interrupt.
941                  */
942                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
943                 spin_unlock(&trans_pcie->irq_lock);
944                 goto out;
945         }
946
947         /* Ack/clear/reset pending uCode interrupts.
948          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
949          */
950         /* There is a hardware bug in the interrupt mask function that some
951          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
952          * they are disabled in the CSR_INT_MASK register. Furthermore the
953          * ICT interrupt handling mechanism has another bug that might cause
954          * these unmasked interrupts fail to be detected. We workaround the
955          * hardware bugs here by ACKing all the possible interrupts so that
956          * interrupt coalescing can still be achieved.
957          */
958         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
959
960         if (iwl_have_debug_level(IWL_DL_ISR))
961                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
962                               inta, iwl_read32(trans, CSR_INT_MASK));
963
964         spin_unlock(&trans_pcie->irq_lock);
965
966         /* Now service all interrupt bits discovered above. */
967         if (inta & CSR_INT_BIT_HW_ERR) {
968                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
969
970                 /* Tell the device to stop sending interrupts */
971                 iwl_disable_interrupts(trans);
972
973                 isr_stats->hw++;
974                 iwl_pcie_irq_handle_error(trans);
975
976                 handled |= CSR_INT_BIT_HW_ERR;
977
978                 goto out;
979         }
980
981         if (iwl_have_debug_level(IWL_DL_ISR)) {
982                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
983                 if (inta & CSR_INT_BIT_SCD) {
984                         IWL_DEBUG_ISR(trans,
985                                       "Scheduler finished to transmit the frame/frames.\n");
986                         isr_stats->sch++;
987                 }
988
989                 /* Alive notification via Rx interrupt will do the real work */
990                 if (inta & CSR_INT_BIT_ALIVE) {
991                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
992                         isr_stats->alive++;
993                 }
994         }
995
996         /* Safely ignore these bits for debug checks below */
997         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
998
999         /* HW RF KILL switch toggled */
1000         if (inta & CSR_INT_BIT_RF_KILL) {
1001                 bool hw_rfkill;
1002
1003                 hw_rfkill = iwl_is_rfkill_set(trans);
1004                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1005                          hw_rfkill ? "disable radio" : "enable radio");
1006
1007                 isr_stats->rfkill++;
1008
1009                 iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
1010                 if (hw_rfkill) {
1011                         set_bit(STATUS_RFKILL, &trans->status);
1012                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1013                                                &trans->status))
1014                                 IWL_DEBUG_RF_KILL(trans,
1015                                                   "Rfkill while SYNC HCMD in flight\n");
1016                         wake_up(&trans_pcie->wait_command_queue);
1017                 } else {
1018                         clear_bit(STATUS_RFKILL, &trans->status);
1019                 }
1020
1021                 handled |= CSR_INT_BIT_RF_KILL;
1022         }
1023
1024         /* Chip got too hot and stopped itself */
1025         if (inta & CSR_INT_BIT_CT_KILL) {
1026                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1027                 isr_stats->ctkill++;
1028                 handled |= CSR_INT_BIT_CT_KILL;
1029         }
1030
1031         /* Error detected by uCode */
1032         if (inta & CSR_INT_BIT_SW_ERR) {
1033                 IWL_ERR(trans, "Microcode SW error detected. "
1034                         " Restarting 0x%X.\n", inta);
1035                 isr_stats->sw++;
1036                 iwl_pcie_irq_handle_error(trans);
1037                 handled |= CSR_INT_BIT_SW_ERR;
1038         }
1039
1040         /* uCode wakes up after power-down sleep */
1041         if (inta & CSR_INT_BIT_WAKEUP) {
1042                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1043                 iwl_pcie_rxq_inc_wr_ptr(trans, &trans_pcie->rxq);
1044                 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1045                         iwl_pcie_txq_inc_wr_ptr(trans, &trans_pcie->txq[i]);
1046
1047                 isr_stats->wakeup++;
1048
1049                 handled |= CSR_INT_BIT_WAKEUP;
1050         }
1051
1052         /* All uCode command responses, including Tx command responses,
1053          * Rx "responses" (frame-received notification), and other
1054          * notifications from uCode come through here*/
1055         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1056                     CSR_INT_BIT_RX_PERIODIC)) {
1057                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1058                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1059                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1060                         iwl_write32(trans, CSR_FH_INT_STATUS,
1061                                         CSR_FH_INT_RX_MASK);
1062                 }
1063                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1064                         handled |= CSR_INT_BIT_RX_PERIODIC;
1065                         iwl_write32(trans,
1066                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1067                 }
1068                 /* Sending RX interrupt require many steps to be done in the
1069                  * the device:
1070                  * 1- write interrupt to current index in ICT table.
1071                  * 2- dma RX frame.
1072                  * 3- update RX shared data to indicate last write index.
1073                  * 4- send interrupt.
1074                  * This could lead to RX race, driver could receive RX interrupt
1075                  * but the shared data changes does not reflect this;
1076                  * periodic interrupt will detect any dangling Rx activity.
1077                  */
1078
1079                 /* Disable periodic interrupt; we use it as just a one-shot. */
1080                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1081                             CSR_INT_PERIODIC_DIS);
1082
1083                 iwl_pcie_rx_handle(trans);
1084
1085                 /*
1086                  * Enable periodic interrupt in 8 msec only if we received
1087                  * real RX interrupt (instead of just periodic int), to catch
1088                  * any dangling Rx interrupt.  If it was just the periodic
1089                  * interrupt, there was no dangling Rx activity, and no need
1090                  * to extend the periodic interrupt; one-shot is enough.
1091                  */
1092                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1093                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1094                                    CSR_INT_PERIODIC_ENA);
1095
1096                 isr_stats->rx++;
1097         }
1098
1099         /* This "Tx" DMA channel is used only for loading uCode */
1100         if (inta & CSR_INT_BIT_FH_TX) {
1101                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1102                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1103                 isr_stats->tx++;
1104                 handled |= CSR_INT_BIT_FH_TX;
1105                 /* Wake up uCode load routine, now that load is complete */
1106                 trans_pcie->ucode_write_complete = true;
1107                 wake_up(&trans_pcie->ucode_write_waitq);
1108         }
1109
1110         if (inta & ~handled) {
1111                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1112                 isr_stats->unhandled++;
1113         }
1114
1115         if (inta & ~(trans_pcie->inta_mask)) {
1116                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1117                          inta & ~trans_pcie->inta_mask);
1118         }
1119
1120         /* Re-enable all interrupts */
1121         /* only Re-enable if disabled by irq */
1122         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1123                 iwl_enable_interrupts(trans);
1124         /* Re-enable RF_KILL if it occurred */
1125         else if (handled & CSR_INT_BIT_RF_KILL)
1126                 iwl_enable_rfkill_int(trans);
1127
1128 out:
1129         lock_map_release(&trans->sync_cmd_lockdep_map);
1130         return IRQ_HANDLED;
1131 }
1132
1133 /******************************************************************************
1134  *
1135  * ICT functions
1136  *
1137  ******************************************************************************/
1138
1139 /* Free dram table */
1140 void iwl_pcie_free_ict(struct iwl_trans *trans)
1141 {
1142         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1143
1144         if (trans_pcie->ict_tbl) {
1145                 dma_free_coherent(trans->dev, ICT_SIZE,
1146                                   trans_pcie->ict_tbl,
1147                                   trans_pcie->ict_tbl_dma);
1148                 trans_pcie->ict_tbl = NULL;
1149                 trans_pcie->ict_tbl_dma = 0;
1150         }
1151 }
1152
1153 /*
1154  * allocate dram shared table, it is an aligned memory
1155  * block of ICT_SIZE.
1156  * also reset all data related to ICT table interrupt.
1157  */
1158 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1159 {
1160         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1161
1162         trans_pcie->ict_tbl =
1163                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1164                                    &trans_pcie->ict_tbl_dma,
1165                                    GFP_KERNEL);
1166         if (!trans_pcie->ict_tbl)
1167                 return -ENOMEM;
1168
1169         /* just an API sanity check ... it is guaranteed to be aligned */
1170         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1171                 iwl_pcie_free_ict(trans);
1172                 return -EINVAL;
1173         }
1174
1175         IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n",
1176                       (unsigned long long)trans_pcie->ict_tbl_dma,
1177                       trans_pcie->ict_tbl);
1178
1179         return 0;
1180 }
1181
1182 /* Device is going up inform it about using ICT interrupt table,
1183  * also we need to tell the driver to start using ICT interrupt.
1184  */
1185 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1186 {
1187         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1188         u32 val;
1189
1190         if (!trans_pcie->ict_tbl)
1191                 return;
1192
1193         spin_lock(&trans_pcie->irq_lock);
1194         iwl_disable_interrupts(trans);
1195
1196         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1197
1198         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1199
1200         val |= CSR_DRAM_INT_TBL_ENABLE;
1201         val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
1202
1203         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1204
1205         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1206         trans_pcie->use_ict = true;
1207         trans_pcie->ict_index = 0;
1208         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1209         iwl_enable_interrupts(trans);
1210         spin_unlock(&trans_pcie->irq_lock);
1211 }
1212
1213 /* Device is going down disable ict interrupt usage */
1214 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1215 {
1216         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1217
1218         spin_lock(&trans_pcie->irq_lock);
1219         trans_pcie->use_ict = false;
1220         spin_unlock(&trans_pcie->irq_lock);
1221 }
1222
1223 irqreturn_t iwl_pcie_isr(int irq, void *data)
1224 {
1225         struct iwl_trans *trans = data;
1226
1227         if (!trans)
1228                 return IRQ_NONE;
1229
1230         /* Disable (but don't clear!) interrupts here to avoid
1231          * back-to-back ISRs and sporadic interrupts from our NIC.
1232          * If we have something to service, the tasklet will re-enable ints.
1233          * If we *don't* have something, we'll re-enable before leaving here.
1234          */
1235         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1236
1237         return IRQ_WAKE_THREAD;
1238 }