1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include <linux/sched.h>
34 #include <linux/slab.h>
44 #ifdef CONFIG_IPW2200_DEBUG
50 #ifdef CONFIG_IPW2200_MONITOR
56 #ifdef CONFIG_IPW2200_PROMISCUOUS
62 #ifdef CONFIG_IPW2200_RADIOTAP
68 #ifdef CONFIG_IPW2200_QOS
74 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
75 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
76 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
77 #define DRV_VERSION IPW2200_VERSION
79 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
81 MODULE_DESCRIPTION(DRV_DESCRIPTION);
82 MODULE_VERSION(DRV_VERSION);
83 MODULE_AUTHOR(DRV_COPYRIGHT);
84 MODULE_LICENSE("GPL");
85 MODULE_FIRMWARE("ipw2200-ibss.fw");
86 #ifdef CONFIG_IPW2200_MONITOR
87 MODULE_FIRMWARE("ipw2200-sniffer.fw");
89 MODULE_FIRMWARE("ipw2200-bss.fw");
91 static int cmdlog = 0;
93 static int default_channel = 0;
94 static int network_mode = 0;
96 static u32 ipw_debug_level;
98 static int auto_create = 1;
99 static int led_support = 0;
100 static int disable = 0;
101 static int bt_coexist = 0;
102 static int hwcrypto = 0;
103 static int roaming = 1;
104 static const char ipw_modes[] = {
107 static int antenna = CFG_SYS_ANTENNA_BOTH;
109 #ifdef CONFIG_IPW2200_PROMISCUOUS
110 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
113 static struct ieee80211_rate ipw2200_rates[] = {
115 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
116 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
117 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
128 #define ipw2200_a_rates (ipw2200_rates + 4)
129 #define ipw2200_num_a_rates 8
130 #define ipw2200_bg_rates (ipw2200_rates + 0)
131 #define ipw2200_num_bg_rates 12
133 #ifdef CONFIG_IPW2200_QOS
134 static int qos_enable = 0;
135 static int qos_burst_enable = 0;
136 static int qos_no_ack_mask = 0;
137 static int burst_duration_CCK = 0;
138 static int burst_duration_OFDM = 0;
140 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
141 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
142 QOS_TX3_CW_MIN_OFDM},
143 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
144 QOS_TX3_CW_MAX_OFDM},
145 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
146 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
147 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
148 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
151 static struct libipw_qos_parameters def_qos_parameters_CCK = {
152 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
154 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
156 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
157 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
158 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
159 QOS_TX3_TXOP_LIMIT_CCK}
162 static struct libipw_qos_parameters def_parameters_OFDM = {
163 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
164 DEF_TX3_CW_MIN_OFDM},
165 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
166 DEF_TX3_CW_MAX_OFDM},
167 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
168 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
169 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
170 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
173 static struct libipw_qos_parameters def_parameters_CCK = {
174 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
176 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
178 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
179 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
180 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
181 DEF_TX3_TXOP_LIMIT_CCK}
184 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
186 static int from_priority_to_tx_queue[] = {
187 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
188 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
191 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
193 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
195 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
197 #endif /* CONFIG_IPW2200_QOS */
199 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
200 static void ipw_remove_current_network(struct ipw_priv *priv);
201 static void ipw_rx(struct ipw_priv *priv);
202 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
203 struct clx2_tx_queue *txq, int qindex);
204 static int ipw_queue_reset(struct ipw_priv *priv);
206 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
209 static void ipw_tx_queue_free(struct ipw_priv *);
211 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
212 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
213 static void ipw_rx_queue_replenish(void *);
214 static int ipw_up(struct ipw_priv *);
215 static void ipw_bg_up(struct work_struct *work);
216 static void ipw_down(struct ipw_priv *);
217 static void ipw_bg_down(struct work_struct *work);
218 static int ipw_config(struct ipw_priv *);
219 static int init_supported_rates(struct ipw_priv *priv,
220 struct ipw_supported_rates *prates);
221 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
222 static void ipw_send_wep_keys(struct ipw_priv *, int);
224 static int snprint_line(char *buf, size_t count,
225 const u8 * data, u32 len, u32 ofs)
230 out = snprintf(buf, count, "%08X", ofs);
232 for (l = 0, i = 0; i < 2; i++) {
233 out += snprintf(buf + out, count - out, " ");
234 for (j = 0; j < 8 && l < len; j++, l++)
235 out += snprintf(buf + out, count - out, "%02X ",
238 out += snprintf(buf + out, count - out, " ");
241 out += snprintf(buf + out, count - out, " ");
242 for (l = 0, i = 0; i < 2; i++) {
243 out += snprintf(buf + out, count - out, " ");
244 for (j = 0; j < 8 && l < len; j++, l++) {
245 c = data[(i * 8 + j)];
246 if (!isascii(c) || !isprint(c))
249 out += snprintf(buf + out, count - out, "%c", c);
253 out += snprintf(buf + out, count - out, " ");
259 static void printk_buf(int level, const u8 * data, u32 len)
263 if (!(ipw_debug_level & level))
267 snprint_line(line, sizeof(line), &data[ofs],
269 printk(KERN_DEBUG "%s\n", line);
271 len -= min(len, 16U);
275 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
281 while (size && len) {
282 out = snprint_line(output, size, &data[ofs],
283 min_t(size_t, len, 16U), ofs);
288 len -= min_t(size_t, len, 16U);
294 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
296 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
298 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
299 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
300 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
302 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
303 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
304 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
306 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
307 __LINE__, (u32) (b), (u32) (c));
308 _ipw_write_reg8(a, b, c);
311 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
312 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
313 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
315 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
316 __LINE__, (u32) (b), (u32) (c));
317 _ipw_write_reg16(a, b, c);
320 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
321 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
322 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
324 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
325 __LINE__, (u32) (b), (u32) (c));
326 _ipw_write_reg32(a, b, c);
329 /* 8-bit direct write (low 4K) */
330 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
333 writeb(val, ipw->hw_base + ofs);
336 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
337 #define ipw_write8(ipw, ofs, val) do { \
338 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
339 __LINE__, (u32)(ofs), (u32)(val)); \
340 _ipw_write8(ipw, ofs, val); \
343 /* 16-bit direct write (low 4K) */
344 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
347 writew(val, ipw->hw_base + ofs);
350 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
351 #define ipw_write16(ipw, ofs, val) do { \
352 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
353 __LINE__, (u32)(ofs), (u32)(val)); \
354 _ipw_write16(ipw, ofs, val); \
357 /* 32-bit direct write (low 4K) */
358 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
361 writel(val, ipw->hw_base + ofs);
364 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_write32(ipw, ofs, val) do { \
366 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
367 __LINE__, (u32)(ofs), (u32)(val)); \
368 _ipw_write32(ipw, ofs, val); \
371 /* 8-bit direct read (low 4K) */
372 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
374 return readb(ipw->hw_base + ofs);
377 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read8(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
381 _ipw_read8(ipw, ofs); \
384 /* 16-bit direct read (low 4K) */
385 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
387 return readw(ipw->hw_base + ofs);
390 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
391 #define ipw_read16(ipw, ofs) ({ \
392 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
394 _ipw_read16(ipw, ofs); \
397 /* 32-bit direct read (low 4K) */
398 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
400 return readl(ipw->hw_base + ofs);
403 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
404 #define ipw_read32(ipw, ofs) ({ \
405 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
407 _ipw_read32(ipw, ofs); \
410 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
411 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
412 #define ipw_read_indirect(a, b, c, d) ({ \
413 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
414 __LINE__, (u32)(b), (u32)(d)); \
415 _ipw_read_indirect(a, b, c, d); \
418 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
419 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
421 #define ipw_write_indirect(a, b, c, d) do { \
422 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
423 __LINE__, (u32)(b), (u32)(d)); \
424 _ipw_write_indirect(a, b, c, d); \
427 /* 32-bit indirect write (above 4K) */
428 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
430 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
431 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
432 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
435 /* 8-bit indirect write (above 4K) */
436 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
438 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
439 u32 dif_len = reg - aligned_addr;
441 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
442 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
443 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
446 /* 16-bit indirect write (above 4K) */
447 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
449 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
450 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
452 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
453 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
454 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
457 /* 8-bit indirect read (above 4K) */
458 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
461 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
462 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
463 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
464 return (word >> ((reg & 0x3) * 8)) & 0xff;
467 /* 32-bit indirect read (above 4K) */
468 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
472 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
474 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
475 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
476 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
480 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
481 /* for area above 1st 4K of SRAM/reg space */
482 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
485 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
486 u32 dif_len = addr - aligned_addr;
489 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
495 /* Read the first dword (or portion) byte by byte */
496 if (unlikely(dif_len)) {
497 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
498 /* Start reading at aligned_addr + dif_len */
499 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
500 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
504 /* Read all of the middle dwords as dwords, with auto-increment */
505 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
506 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
507 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
509 /* Read the last dword (or portion) byte by byte */
511 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
512 for (i = 0; num > 0; i++, num--)
513 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
517 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
518 /* for area above 1st 4K of SRAM/reg space */
519 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
522 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
523 u32 dif_len = addr - aligned_addr;
526 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
532 /* Write the first dword (or portion) byte by byte */
533 if (unlikely(dif_len)) {
534 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
535 /* Start writing at aligned_addr + dif_len */
536 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
537 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
541 /* Write all of the middle dwords as dwords, with auto-increment */
542 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
543 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
544 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
546 /* Write the last dword (or portion) byte by byte */
548 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
549 for (i = 0; num > 0; i++, num--, buf++)
550 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
554 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
555 /* for 1st 4K of SRAM/regs space */
556 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
559 memcpy_toio((priv->hw_base + addr), buf, num);
562 /* Set bit(s) in low 4K of SRAM/regs */
563 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
565 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
568 /* Clear bit(s) in low 4K of SRAM/regs */
569 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
571 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
574 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
576 if (priv->status & STATUS_INT_ENABLED)
578 priv->status |= STATUS_INT_ENABLED;
579 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
582 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
584 if (!(priv->status & STATUS_INT_ENABLED))
586 priv->status &= ~STATUS_INT_ENABLED;
587 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
590 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
594 spin_lock_irqsave(&priv->irq_lock, flags);
595 __ipw_enable_interrupts(priv);
596 spin_unlock_irqrestore(&priv->irq_lock, flags);
599 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
603 spin_lock_irqsave(&priv->irq_lock, flags);
604 __ipw_disable_interrupts(priv);
605 spin_unlock_irqrestore(&priv->irq_lock, flags);
608 static char *ipw_error_desc(u32 val)
611 case IPW_FW_ERROR_OK:
613 case IPW_FW_ERROR_FAIL:
615 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
616 return "MEMORY_UNDERFLOW";
617 case IPW_FW_ERROR_MEMORY_OVERFLOW:
618 return "MEMORY_OVERFLOW";
619 case IPW_FW_ERROR_BAD_PARAM:
621 case IPW_FW_ERROR_BAD_CHECKSUM:
622 return "BAD_CHECKSUM";
623 case IPW_FW_ERROR_NMI_INTERRUPT:
624 return "NMI_INTERRUPT";
625 case IPW_FW_ERROR_BAD_DATABASE:
626 return "BAD_DATABASE";
627 case IPW_FW_ERROR_ALLOC_FAIL:
629 case IPW_FW_ERROR_DMA_UNDERRUN:
630 return "DMA_UNDERRUN";
631 case IPW_FW_ERROR_DMA_STATUS:
633 case IPW_FW_ERROR_DINO_ERROR:
635 case IPW_FW_ERROR_EEPROM_ERROR:
636 return "EEPROM_ERROR";
637 case IPW_FW_ERROR_SYSASSERT:
639 case IPW_FW_ERROR_FATAL_ERROR:
640 return "FATAL_ERROR";
642 return "UNKNOWN_ERROR";
646 static void ipw_dump_error_log(struct ipw_priv *priv,
647 struct ipw_fw_error *error)
652 IPW_ERROR("Error allocating and capturing error log. "
653 "Nothing to dump.\n");
657 IPW_ERROR("Start IPW Error Log Dump:\n");
658 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
659 error->status, error->config);
661 for (i = 0; i < error->elem_len; i++)
662 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 ipw_error_desc(error->elem[i].desc),
665 error->elem[i].blink1,
666 error->elem[i].blink2,
667 error->elem[i].link1,
668 error->elem[i].link2, error->elem[i].data);
669 for (i = 0; i < error->log_len; i++)
670 IPW_ERROR("%i\t0x%08x\t%i\n",
672 error->log[i].data, error->log[i].event);
675 static inline int ipw_is_init(struct ipw_priv *priv)
677 return (priv->status & STATUS_INIT) ? 1 : 0;
680 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
682 u32 addr, field_info, field_len, field_count, total_len;
684 IPW_DEBUG_ORD("ordinal = %i\n", ord);
686 if (!priv || !val || !len) {
687 IPW_DEBUG_ORD("Invalid argument\n");
691 /* verify device ordinal tables have been initialized */
692 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
693 IPW_DEBUG_ORD("Access ordinals before initialization\n");
697 switch (IPW_ORD_TABLE_ID_MASK & ord) {
698 case IPW_ORD_TABLE_0_MASK:
700 * TABLE 0: Direct access to a table of 32 bit values
702 * This is a very simple table with the data directly
703 * read from the table
706 /* remove the table id from the ordinal */
707 ord &= IPW_ORD_TABLE_VALUE_MASK;
710 if (ord > priv->table0_len) {
711 IPW_DEBUG_ORD("ordinal value (%i) longer then "
712 "max (%i)\n", ord, priv->table0_len);
716 /* verify we have enough room to store the value */
717 if (*len < sizeof(u32)) {
718 IPW_DEBUG_ORD("ordinal buffer length too small, "
719 "need %zd\n", sizeof(u32));
723 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
724 ord, priv->table0_addr + (ord << 2));
728 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
731 case IPW_ORD_TABLE_1_MASK:
733 * TABLE 1: Indirect access to a table of 32 bit values
735 * This is a fairly large table of u32 values each
736 * representing starting addr for the data (which is
740 /* remove the table id from the ordinal */
741 ord &= IPW_ORD_TABLE_VALUE_MASK;
744 if (ord > priv->table1_len) {
745 IPW_DEBUG_ORD("ordinal value too long\n");
749 /* verify we have enough room to store the value */
750 if (*len < sizeof(u32)) {
751 IPW_DEBUG_ORD("ordinal buffer length too small, "
752 "need %zd\n", sizeof(u32));
757 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
761 case IPW_ORD_TABLE_2_MASK:
763 * TABLE 2: Indirect access to a table of variable sized values
765 * This table consist of six values, each containing
766 * - dword containing the starting offset of the data
767 * - dword containing the lengh in the first 16bits
768 * and the count in the second 16bits
771 /* remove the table id from the ordinal */
772 ord &= IPW_ORD_TABLE_VALUE_MASK;
775 if (ord > priv->table2_len) {
776 IPW_DEBUG_ORD("ordinal value too long\n");
780 /* get the address of statistic */
781 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
783 /* get the second DW of statistics ;
784 * two 16-bit words - first is length, second is count */
787 priv->table2_addr + (ord << 3) +
790 /* get each entry length */
791 field_len = *((u16 *) & field_info);
793 /* get number of entries */
794 field_count = *(((u16 *) & field_info) + 1);
796 /* abort if not enough memory */
797 total_len = field_len * field_count;
798 if (total_len > *len) {
807 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
808 "field_info = 0x%08x\n",
809 addr, total_len, field_info);
810 ipw_read_indirect(priv, addr, val, total_len);
814 IPW_DEBUG_ORD("Invalid ordinal!\n");
822 static void ipw_init_ordinals(struct ipw_priv *priv)
824 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
825 priv->table0_len = ipw_read32(priv, priv->table0_addr);
827 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
828 priv->table0_addr, priv->table0_len);
830 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
831 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
833 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
834 priv->table1_addr, priv->table1_len);
836 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
837 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
838 priv->table2_len &= 0x0000ffff; /* use first two bytes */
840 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
841 priv->table2_addr, priv->table2_len);
845 static u32 ipw_register_toggle(u32 reg)
847 reg &= ~IPW_START_STANDBY;
848 if (reg & IPW_GATE_ODMA)
849 reg &= ~IPW_GATE_ODMA;
850 if (reg & IPW_GATE_IDMA)
851 reg &= ~IPW_GATE_IDMA;
852 if (reg & IPW_GATE_ADMA)
853 reg &= ~IPW_GATE_ADMA;
859 * - On radio ON, turn on any LEDs that require to be on during start
860 * - On initialization, start unassociated blink
861 * - On association, disable unassociated blink
862 * - On disassociation, start unassociated blink
863 * - On radio OFF, turn off any LEDs started during radio on
866 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
867 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
868 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
870 static void ipw_led_link_on(struct ipw_priv *priv)
875 /* If configured to not use LEDs, or nic_type is 1,
876 * then we don't toggle a LINK led */
877 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
880 spin_lock_irqsave(&priv->lock, flags);
882 if (!(priv->status & STATUS_RF_KILL_MASK) &&
883 !(priv->status & STATUS_LED_LINK_ON)) {
884 IPW_DEBUG_LED("Link LED On\n");
885 led = ipw_read_reg32(priv, IPW_EVENT_REG);
886 led |= priv->led_association_on;
888 led = ipw_register_toggle(led);
890 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
891 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893 priv->status |= STATUS_LED_LINK_ON;
895 /* If we aren't associated, schedule turning the LED off */
896 if (!(priv->status & STATUS_ASSOCIATED))
897 queue_delayed_work(priv->workqueue,
902 spin_unlock_irqrestore(&priv->lock, flags);
905 static void ipw_bg_led_link_on(struct work_struct *work)
907 struct ipw_priv *priv =
908 container_of(work, struct ipw_priv, led_link_on.work);
909 mutex_lock(&priv->mutex);
910 ipw_led_link_on(priv);
911 mutex_unlock(&priv->mutex);
914 static void ipw_led_link_off(struct ipw_priv *priv)
919 /* If configured not to use LEDs, or nic type is 1,
920 * then we don't goggle the LINK led. */
921 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
924 spin_lock_irqsave(&priv->lock, flags);
926 if (priv->status & STATUS_LED_LINK_ON) {
927 led = ipw_read_reg32(priv, IPW_EVENT_REG);
928 led &= priv->led_association_off;
929 led = ipw_register_toggle(led);
931 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
932 ipw_write_reg32(priv, IPW_EVENT_REG, led);
934 IPW_DEBUG_LED("Link LED Off\n");
936 priv->status &= ~STATUS_LED_LINK_ON;
938 /* If we aren't associated and the radio is on, schedule
939 * turning the LED on (blink while unassociated) */
940 if (!(priv->status & STATUS_RF_KILL_MASK) &&
941 !(priv->status & STATUS_ASSOCIATED))
942 queue_delayed_work(priv->workqueue, &priv->led_link_on,
947 spin_unlock_irqrestore(&priv->lock, flags);
950 static void ipw_bg_led_link_off(struct work_struct *work)
952 struct ipw_priv *priv =
953 container_of(work, struct ipw_priv, led_link_off.work);
954 mutex_lock(&priv->mutex);
955 ipw_led_link_off(priv);
956 mutex_unlock(&priv->mutex);
959 static void __ipw_led_activity_on(struct ipw_priv *priv)
963 if (priv->config & CFG_NO_LED)
966 if (priv->status & STATUS_RF_KILL_MASK)
969 if (!(priv->status & STATUS_LED_ACT_ON)) {
970 led = ipw_read_reg32(priv, IPW_EVENT_REG);
971 led |= priv->led_activity_on;
973 led = ipw_register_toggle(led);
975 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
976 ipw_write_reg32(priv, IPW_EVENT_REG, led);
978 IPW_DEBUG_LED("Activity LED On\n");
980 priv->status |= STATUS_LED_ACT_ON;
982 cancel_delayed_work(&priv->led_act_off);
983 queue_delayed_work(priv->workqueue, &priv->led_act_off,
986 /* Reschedule LED off for full time period */
987 cancel_delayed_work(&priv->led_act_off);
988 queue_delayed_work(priv->workqueue, &priv->led_act_off,
994 void ipw_led_activity_on(struct ipw_priv *priv)
997 spin_lock_irqsave(&priv->lock, flags);
998 __ipw_led_activity_on(priv);
999 spin_unlock_irqrestore(&priv->lock, flags);
1003 static void ipw_led_activity_off(struct ipw_priv *priv)
1005 unsigned long flags;
1008 if (priv->config & CFG_NO_LED)
1011 spin_lock_irqsave(&priv->lock, flags);
1013 if (priv->status & STATUS_LED_ACT_ON) {
1014 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1015 led &= priv->led_activity_off;
1017 led = ipw_register_toggle(led);
1019 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1020 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1022 IPW_DEBUG_LED("Activity LED Off\n");
1024 priv->status &= ~STATUS_LED_ACT_ON;
1027 spin_unlock_irqrestore(&priv->lock, flags);
1030 static void ipw_bg_led_activity_off(struct work_struct *work)
1032 struct ipw_priv *priv =
1033 container_of(work, struct ipw_priv, led_act_off.work);
1034 mutex_lock(&priv->mutex);
1035 ipw_led_activity_off(priv);
1036 mutex_unlock(&priv->mutex);
1039 static void ipw_led_band_on(struct ipw_priv *priv)
1041 unsigned long flags;
1044 /* Only nic type 1 supports mode LEDs */
1045 if (priv->config & CFG_NO_LED ||
1046 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1049 spin_lock_irqsave(&priv->lock, flags);
1051 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1052 if (priv->assoc_network->mode == IEEE_A) {
1053 led |= priv->led_ofdm_on;
1054 led &= priv->led_association_off;
1055 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1056 } else if (priv->assoc_network->mode == IEEE_G) {
1057 led |= priv->led_ofdm_on;
1058 led |= priv->led_association_on;
1059 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1061 led &= priv->led_ofdm_off;
1062 led |= priv->led_association_on;
1063 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1066 led = ipw_register_toggle(led);
1068 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1069 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1071 spin_unlock_irqrestore(&priv->lock, flags);
1074 static void ipw_led_band_off(struct ipw_priv *priv)
1076 unsigned long flags;
1079 /* Only nic type 1 supports mode LEDs */
1080 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1083 spin_lock_irqsave(&priv->lock, flags);
1085 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1086 led &= priv->led_ofdm_off;
1087 led &= priv->led_association_off;
1089 led = ipw_register_toggle(led);
1091 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1092 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1094 spin_unlock_irqrestore(&priv->lock, flags);
1097 static void ipw_led_radio_on(struct ipw_priv *priv)
1099 ipw_led_link_on(priv);
1102 static void ipw_led_radio_off(struct ipw_priv *priv)
1104 ipw_led_activity_off(priv);
1105 ipw_led_link_off(priv);
1108 static void ipw_led_link_up(struct ipw_priv *priv)
1110 /* Set the Link Led on for all nic types */
1111 ipw_led_link_on(priv);
1114 static void ipw_led_link_down(struct ipw_priv *priv)
1116 ipw_led_activity_off(priv);
1117 ipw_led_link_off(priv);
1119 if (priv->status & STATUS_RF_KILL_MASK)
1120 ipw_led_radio_off(priv);
1123 static void ipw_led_init(struct ipw_priv *priv)
1125 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1127 /* Set the default PINs for the link and activity leds */
1128 priv->led_activity_on = IPW_ACTIVITY_LED;
1129 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1131 priv->led_association_on = IPW_ASSOCIATED_LED;
1132 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1134 /* Set the default PINs for the OFDM leds */
1135 priv->led_ofdm_on = IPW_OFDM_LED;
1136 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1138 switch (priv->nic_type) {
1139 case EEPROM_NIC_TYPE_1:
1140 /* In this NIC type, the LEDs are reversed.... */
1141 priv->led_activity_on = IPW_ASSOCIATED_LED;
1142 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1143 priv->led_association_on = IPW_ACTIVITY_LED;
1144 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1146 if (!(priv->config & CFG_NO_LED))
1147 ipw_led_band_on(priv);
1149 /* And we don't blink link LEDs for this nic, so
1150 * just return here */
1153 case EEPROM_NIC_TYPE_3:
1154 case EEPROM_NIC_TYPE_2:
1155 case EEPROM_NIC_TYPE_4:
1156 case EEPROM_NIC_TYPE_0:
1160 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1162 priv->nic_type = EEPROM_NIC_TYPE_0;
1166 if (!(priv->config & CFG_NO_LED)) {
1167 if (priv->status & STATUS_ASSOCIATED)
1168 ipw_led_link_on(priv);
1170 ipw_led_link_off(priv);
1174 static void ipw_led_shutdown(struct ipw_priv *priv)
1176 ipw_led_activity_off(priv);
1177 ipw_led_link_off(priv);
1178 ipw_led_band_off(priv);
1179 cancel_delayed_work(&priv->led_link_on);
1180 cancel_delayed_work(&priv->led_link_off);
1181 cancel_delayed_work(&priv->led_act_off);
1185 * The following adds a new attribute to the sysfs representation
1186 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1187 * used for controling the debug level.
1189 * See the level definitions in ipw for details.
1191 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1193 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1196 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1199 char *p = (char *)buf;
1202 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1204 if (p[0] == 'x' || p[0] == 'X')
1206 val = simple_strtoul(p, &p, 16);
1208 val = simple_strtoul(p, &p, 10);
1210 printk(KERN_INFO DRV_NAME
1211 ": %s is not in hex or decimal form.\n", buf);
1213 ipw_debug_level = val;
1215 return strnlen(buf, count);
1218 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1219 show_debug_level, store_debug_level);
1221 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1223 /* length = 1st dword in log */
1224 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1227 static void ipw_capture_event_log(struct ipw_priv *priv,
1228 u32 log_len, struct ipw_event *log)
1233 base = ipw_read32(priv, IPW_EVENT_LOG);
1234 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1235 (u8 *) log, sizeof(*log) * log_len);
1239 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1241 struct ipw_fw_error *error;
1242 u32 log_len = ipw_get_event_log_len(priv);
1243 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1244 u32 elem_len = ipw_read_reg32(priv, base);
1246 error = kmalloc(sizeof(*error) +
1247 sizeof(*error->elem) * elem_len +
1248 sizeof(*error->log) * log_len, GFP_ATOMIC);
1250 IPW_ERROR("Memory allocation for firmware error log "
1254 error->jiffies = jiffies;
1255 error->status = priv->status;
1256 error->config = priv->config;
1257 error->elem_len = elem_len;
1258 error->log_len = log_len;
1259 error->elem = (struct ipw_error_elem *)error->payload;
1260 error->log = (struct ipw_event *)(error->elem + elem_len);
1262 ipw_capture_event_log(priv, log_len, error->log);
1265 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1266 sizeof(*error->elem) * elem_len);
1271 static ssize_t show_event_log(struct device *d,
1272 struct device_attribute *attr, char *buf)
1274 struct ipw_priv *priv = dev_get_drvdata(d);
1275 u32 log_len = ipw_get_event_log_len(priv);
1277 struct ipw_event *log;
1280 /* not using min() because of its strict type checking */
1281 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1282 sizeof(*log) * log_len : PAGE_SIZE;
1283 log = kzalloc(log_size, GFP_KERNEL);
1285 IPW_ERROR("Unable to allocate memory for log\n");
1288 log_len = log_size / sizeof(*log);
1289 ipw_capture_event_log(priv, log_len, log);
1291 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1292 for (i = 0; i < log_len; i++)
1293 len += snprintf(buf + len, PAGE_SIZE - len,
1295 log[i].time, log[i].event, log[i].data);
1296 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1301 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1303 static ssize_t show_error(struct device *d,
1304 struct device_attribute *attr, char *buf)
1306 struct ipw_priv *priv = dev_get_drvdata(d);
1310 len += snprintf(buf + len, PAGE_SIZE - len,
1311 "%08lX%08X%08X%08X",
1312 priv->error->jiffies,
1313 priv->error->status,
1314 priv->error->config, priv->error->elem_len);
1315 for (i = 0; i < priv->error->elem_len; i++)
1316 len += snprintf(buf + len, PAGE_SIZE - len,
1317 "\n%08X%08X%08X%08X%08X%08X%08X",
1318 priv->error->elem[i].time,
1319 priv->error->elem[i].desc,
1320 priv->error->elem[i].blink1,
1321 priv->error->elem[i].blink2,
1322 priv->error->elem[i].link1,
1323 priv->error->elem[i].link2,
1324 priv->error->elem[i].data);
1326 len += snprintf(buf + len, PAGE_SIZE - len,
1327 "\n%08X", priv->error->log_len);
1328 for (i = 0; i < priv->error->log_len; i++)
1329 len += snprintf(buf + len, PAGE_SIZE - len,
1331 priv->error->log[i].time,
1332 priv->error->log[i].event,
1333 priv->error->log[i].data);
1334 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1338 static ssize_t clear_error(struct device *d,
1339 struct device_attribute *attr,
1340 const char *buf, size_t count)
1342 struct ipw_priv *priv = dev_get_drvdata(d);
1349 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1351 static ssize_t show_cmd_log(struct device *d,
1352 struct device_attribute *attr, char *buf)
1354 struct ipw_priv *priv = dev_get_drvdata(d);
1358 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1359 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1360 i = (i + 1) % priv->cmdlog_len) {
1362 snprintf(buf + len, PAGE_SIZE - len,
1363 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1364 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1365 priv->cmdlog[i].cmd.len);
1367 snprintk_buf(buf + len, PAGE_SIZE - len,
1368 (u8 *) priv->cmdlog[i].cmd.param,
1369 priv->cmdlog[i].cmd.len);
1370 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1372 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1376 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1378 #ifdef CONFIG_IPW2200_PROMISCUOUS
1379 static void ipw_prom_free(struct ipw_priv *priv);
1380 static int ipw_prom_alloc(struct ipw_priv *priv);
1381 static ssize_t store_rtap_iface(struct device *d,
1382 struct device_attribute *attr,
1383 const char *buf, size_t count)
1385 struct ipw_priv *priv = dev_get_drvdata(d);
1396 if (netif_running(priv->prom_net_dev)) {
1397 IPW_WARNING("Interface is up. Cannot unregister.\n");
1401 ipw_prom_free(priv);
1409 rc = ipw_prom_alloc(priv);
1419 IPW_ERROR("Failed to register promiscuous network "
1420 "device (error %d).\n", rc);
1426 static ssize_t show_rtap_iface(struct device *d,
1427 struct device_attribute *attr,
1430 struct ipw_priv *priv = dev_get_drvdata(d);
1432 return sprintf(buf, "%s", priv->prom_net_dev->name);
1441 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1444 static ssize_t store_rtap_filter(struct device *d,
1445 struct device_attribute *attr,
1446 const char *buf, size_t count)
1448 struct ipw_priv *priv = dev_get_drvdata(d);
1450 if (!priv->prom_priv) {
1451 IPW_ERROR("Attempting to set filter without "
1452 "rtap_iface enabled.\n");
1456 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1458 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1459 BIT_ARG16(priv->prom_priv->filter));
1464 static ssize_t show_rtap_filter(struct device *d,
1465 struct device_attribute *attr,
1468 struct ipw_priv *priv = dev_get_drvdata(d);
1469 return sprintf(buf, "0x%04X",
1470 priv->prom_priv ? priv->prom_priv->filter : 0);
1473 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1477 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1480 struct ipw_priv *priv = dev_get_drvdata(d);
1481 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1484 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1485 const char *buf, size_t count)
1487 struct ipw_priv *priv = dev_get_drvdata(d);
1488 struct net_device *dev = priv->net_dev;
1489 char buffer[] = "00000000";
1491 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1495 IPW_DEBUG_INFO("enter\n");
1497 strncpy(buffer, buf, len);
1500 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1502 if (p[0] == 'x' || p[0] == 'X')
1504 val = simple_strtoul(p, &p, 16);
1506 val = simple_strtoul(p, &p, 10);
1508 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1510 priv->ieee->scan_age = val;
1511 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1514 IPW_DEBUG_INFO("exit\n");
1518 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1520 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1523 struct ipw_priv *priv = dev_get_drvdata(d);
1524 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1527 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1528 const char *buf, size_t count)
1530 struct ipw_priv *priv = dev_get_drvdata(d);
1532 IPW_DEBUG_INFO("enter\n");
1538 IPW_DEBUG_LED("Disabling LED control.\n");
1539 priv->config |= CFG_NO_LED;
1540 ipw_led_shutdown(priv);
1542 IPW_DEBUG_LED("Enabling LED control.\n");
1543 priv->config &= ~CFG_NO_LED;
1547 IPW_DEBUG_INFO("exit\n");
1551 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1553 static ssize_t show_status(struct device *d,
1554 struct device_attribute *attr, char *buf)
1556 struct ipw_priv *p = dev_get_drvdata(d);
1557 return sprintf(buf, "0x%08x\n", (int)p->status);
1560 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1562 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1565 struct ipw_priv *p = dev_get_drvdata(d);
1566 return sprintf(buf, "0x%08x\n", (int)p->config);
1569 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1571 static ssize_t show_nic_type(struct device *d,
1572 struct device_attribute *attr, char *buf)
1574 struct ipw_priv *priv = dev_get_drvdata(d);
1575 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1578 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1580 static ssize_t show_ucode_version(struct device *d,
1581 struct device_attribute *attr, char *buf)
1583 u32 len = sizeof(u32), tmp = 0;
1584 struct ipw_priv *p = dev_get_drvdata(d);
1586 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1589 return sprintf(buf, "0x%08x\n", tmp);
1592 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1594 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1597 u32 len = sizeof(u32), tmp = 0;
1598 struct ipw_priv *p = dev_get_drvdata(d);
1600 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1603 return sprintf(buf, "0x%08x\n", tmp);
1606 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1609 * Add a device attribute to view/control the delay between eeprom
1612 static ssize_t show_eeprom_delay(struct device *d,
1613 struct device_attribute *attr, char *buf)
1615 struct ipw_priv *p = dev_get_drvdata(d);
1616 int n = p->eeprom_delay;
1617 return sprintf(buf, "%i\n", n);
1619 static ssize_t store_eeprom_delay(struct device *d,
1620 struct device_attribute *attr,
1621 const char *buf, size_t count)
1623 struct ipw_priv *p = dev_get_drvdata(d);
1624 sscanf(buf, "%i", &p->eeprom_delay);
1625 return strnlen(buf, count);
1628 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1629 show_eeprom_delay, store_eeprom_delay);
1631 static ssize_t show_command_event_reg(struct device *d,
1632 struct device_attribute *attr, char *buf)
1635 struct ipw_priv *p = dev_get_drvdata(d);
1637 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1638 return sprintf(buf, "0x%08x\n", reg);
1640 static ssize_t store_command_event_reg(struct device *d,
1641 struct device_attribute *attr,
1642 const char *buf, size_t count)
1645 struct ipw_priv *p = dev_get_drvdata(d);
1647 sscanf(buf, "%x", ®);
1648 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1649 return strnlen(buf, count);
1652 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1653 show_command_event_reg, store_command_event_reg);
1655 static ssize_t show_mem_gpio_reg(struct device *d,
1656 struct device_attribute *attr, char *buf)
1659 struct ipw_priv *p = dev_get_drvdata(d);
1661 reg = ipw_read_reg32(p, 0x301100);
1662 return sprintf(buf, "0x%08x\n", reg);
1664 static ssize_t store_mem_gpio_reg(struct device *d,
1665 struct device_attribute *attr,
1666 const char *buf, size_t count)
1669 struct ipw_priv *p = dev_get_drvdata(d);
1671 sscanf(buf, "%x", ®);
1672 ipw_write_reg32(p, 0x301100, reg);
1673 return strnlen(buf, count);
1676 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1677 show_mem_gpio_reg, store_mem_gpio_reg);
1679 static ssize_t show_indirect_dword(struct device *d,
1680 struct device_attribute *attr, char *buf)
1683 struct ipw_priv *priv = dev_get_drvdata(d);
1685 if (priv->status & STATUS_INDIRECT_DWORD)
1686 reg = ipw_read_reg32(priv, priv->indirect_dword);
1690 return sprintf(buf, "0x%08x\n", reg);
1692 static ssize_t store_indirect_dword(struct device *d,
1693 struct device_attribute *attr,
1694 const char *buf, size_t count)
1696 struct ipw_priv *priv = dev_get_drvdata(d);
1698 sscanf(buf, "%x", &priv->indirect_dword);
1699 priv->status |= STATUS_INDIRECT_DWORD;
1700 return strnlen(buf, count);
1703 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1704 show_indirect_dword, store_indirect_dword);
1706 static ssize_t show_indirect_byte(struct device *d,
1707 struct device_attribute *attr, char *buf)
1710 struct ipw_priv *priv = dev_get_drvdata(d);
1712 if (priv->status & STATUS_INDIRECT_BYTE)
1713 reg = ipw_read_reg8(priv, priv->indirect_byte);
1717 return sprintf(buf, "0x%02x\n", reg);
1719 static ssize_t store_indirect_byte(struct device *d,
1720 struct device_attribute *attr,
1721 const char *buf, size_t count)
1723 struct ipw_priv *priv = dev_get_drvdata(d);
1725 sscanf(buf, "%x", &priv->indirect_byte);
1726 priv->status |= STATUS_INDIRECT_BYTE;
1727 return strnlen(buf, count);
1730 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1731 show_indirect_byte, store_indirect_byte);
1733 static ssize_t show_direct_dword(struct device *d,
1734 struct device_attribute *attr, char *buf)
1737 struct ipw_priv *priv = dev_get_drvdata(d);
1739 if (priv->status & STATUS_DIRECT_DWORD)
1740 reg = ipw_read32(priv, priv->direct_dword);
1744 return sprintf(buf, "0x%08x\n", reg);
1746 static ssize_t store_direct_dword(struct device *d,
1747 struct device_attribute *attr,
1748 const char *buf, size_t count)
1750 struct ipw_priv *priv = dev_get_drvdata(d);
1752 sscanf(buf, "%x", &priv->direct_dword);
1753 priv->status |= STATUS_DIRECT_DWORD;
1754 return strnlen(buf, count);
1757 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1758 show_direct_dword, store_direct_dword);
1760 static int rf_kill_active(struct ipw_priv *priv)
1762 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1763 priv->status |= STATUS_RF_KILL_HW;
1764 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1766 priv->status &= ~STATUS_RF_KILL_HW;
1767 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1770 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1773 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1776 /* 0 - RF kill not enabled
1777 1 - SW based RF kill active (sysfs)
1778 2 - HW based RF kill active
1779 3 - Both HW and SW baed RF kill active */
1780 struct ipw_priv *priv = dev_get_drvdata(d);
1781 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1782 (rf_kill_active(priv) ? 0x2 : 0x0);
1783 return sprintf(buf, "%i\n", val);
1786 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1788 if ((disable_radio ? 1 : 0) ==
1789 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1792 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1793 disable_radio ? "OFF" : "ON");
1795 if (disable_radio) {
1796 priv->status |= STATUS_RF_KILL_SW;
1798 if (priv->workqueue) {
1799 cancel_delayed_work(&priv->request_scan);
1800 cancel_delayed_work(&priv->request_direct_scan);
1801 cancel_delayed_work(&priv->request_passive_scan);
1802 cancel_delayed_work(&priv->scan_event);
1804 queue_work(priv->workqueue, &priv->down);
1806 priv->status &= ~STATUS_RF_KILL_SW;
1807 if (rf_kill_active(priv)) {
1808 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1809 "disabled by HW switch\n");
1810 /* Make sure the RF_KILL check timer is running */
1811 cancel_delayed_work(&priv->rf_kill);
1812 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1813 round_jiffies_relative(2 * HZ));
1815 queue_work(priv->workqueue, &priv->up);
1821 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1822 const char *buf, size_t count)
1824 struct ipw_priv *priv = dev_get_drvdata(d);
1826 ipw_radio_kill_sw(priv, buf[0] == '1');
1831 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1833 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1836 struct ipw_priv *priv = dev_get_drvdata(d);
1837 int pos = 0, len = 0;
1838 if (priv->config & CFG_SPEED_SCAN) {
1839 while (priv->speed_scan[pos] != 0)
1840 len += sprintf(&buf[len], "%d ",
1841 priv->speed_scan[pos++]);
1842 return len + sprintf(&buf[len], "\n");
1845 return sprintf(buf, "0\n");
1848 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1851 struct ipw_priv *priv = dev_get_drvdata(d);
1852 int channel, pos = 0;
1853 const char *p = buf;
1855 /* list of space separated channels to scan, optionally ending with 0 */
1856 while ((channel = simple_strtol(p, NULL, 0))) {
1857 if (pos == MAX_SPEED_SCAN - 1) {
1858 priv->speed_scan[pos] = 0;
1862 if (libipw_is_valid_channel(priv->ieee, channel))
1863 priv->speed_scan[pos++] = channel;
1865 IPW_WARNING("Skipping invalid channel request: %d\n",
1870 while (*p == ' ' || *p == '\t')
1875 priv->config &= ~CFG_SPEED_SCAN;
1877 priv->speed_scan_pos = 0;
1878 priv->config |= CFG_SPEED_SCAN;
1884 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1887 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1890 struct ipw_priv *priv = dev_get_drvdata(d);
1891 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1894 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1895 const char *buf, size_t count)
1897 struct ipw_priv *priv = dev_get_drvdata(d);
1899 priv->config |= CFG_NET_STATS;
1901 priv->config &= ~CFG_NET_STATS;
1906 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1907 show_net_stats, store_net_stats);
1909 static ssize_t show_channels(struct device *d,
1910 struct device_attribute *attr,
1913 struct ipw_priv *priv = dev_get_drvdata(d);
1914 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1917 len = sprintf(&buf[len],
1918 "Displaying %d channels in 2.4Ghz band "
1919 "(802.11bg):\n", geo->bg_channels);
1921 for (i = 0; i < geo->bg_channels; i++) {
1922 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1924 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1925 " (radar spectrum)" : "",
1926 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1927 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1929 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1930 "passive only" : "active/passive",
1931 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1935 len += sprintf(&buf[len],
1936 "Displaying %d channels in 5.2Ghz band "
1937 "(802.11a):\n", geo->a_channels);
1938 for (i = 0; i < geo->a_channels; i++) {
1939 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1941 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1942 " (radar spectrum)" : "",
1943 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1944 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1946 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1947 "passive only" : "active/passive");
1953 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1955 static void notify_wx_assoc_event(struct ipw_priv *priv)
1957 union iwreq_data wrqu;
1958 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1959 if (priv->status & STATUS_ASSOCIATED)
1960 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1962 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1963 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1966 static void ipw_irq_tasklet(struct ipw_priv *priv)
1968 u32 inta, inta_mask, handled = 0;
1969 unsigned long flags;
1972 spin_lock_irqsave(&priv->irq_lock, flags);
1974 inta = ipw_read32(priv, IPW_INTA_RW);
1975 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1976 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1978 /* Add any cached INTA values that need to be handled */
1979 inta |= priv->isr_inta;
1981 spin_unlock_irqrestore(&priv->irq_lock, flags);
1983 spin_lock_irqsave(&priv->lock, flags);
1985 /* handle all the justifications for the interrupt */
1986 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1988 handled |= IPW_INTA_BIT_RX_TRANSFER;
1991 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1992 IPW_DEBUG_HC("Command completed.\n");
1993 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1994 priv->status &= ~STATUS_HCMD_ACTIVE;
1995 wake_up_interruptible(&priv->wait_command_queue);
1996 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1999 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2000 IPW_DEBUG_TX("TX_QUEUE_1\n");
2001 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2002 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2005 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2006 IPW_DEBUG_TX("TX_QUEUE_2\n");
2007 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2008 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2011 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2012 IPW_DEBUG_TX("TX_QUEUE_3\n");
2013 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2014 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2017 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2018 IPW_DEBUG_TX("TX_QUEUE_4\n");
2019 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2020 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2023 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2024 IPW_WARNING("STATUS_CHANGE\n");
2025 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2028 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2029 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2030 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2033 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2034 IPW_WARNING("HOST_CMD_DONE\n");
2035 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2038 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2039 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2040 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2043 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2044 IPW_WARNING("PHY_OFF_DONE\n");
2045 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2048 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2049 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2050 priv->status |= STATUS_RF_KILL_HW;
2051 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2052 wake_up_interruptible(&priv->wait_command_queue);
2053 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2054 cancel_delayed_work(&priv->request_scan);
2055 cancel_delayed_work(&priv->request_direct_scan);
2056 cancel_delayed_work(&priv->request_passive_scan);
2057 cancel_delayed_work(&priv->scan_event);
2058 schedule_work(&priv->link_down);
2059 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2060 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2063 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2064 IPW_WARNING("Firmware error detected. Restarting.\n");
2066 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2067 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2068 struct ipw_fw_error *error =
2069 ipw_alloc_error_log(priv);
2070 ipw_dump_error_log(priv, error);
2074 priv->error = ipw_alloc_error_log(priv);
2076 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2078 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2080 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2081 ipw_dump_error_log(priv, priv->error);
2084 /* XXX: If hardware encryption is for WPA/WPA2,
2085 * we have to notify the supplicant. */
2086 if (priv->ieee->sec.encrypt) {
2087 priv->status &= ~STATUS_ASSOCIATED;
2088 notify_wx_assoc_event(priv);
2091 /* Keep the restart process from trying to send host
2092 * commands by clearing the INIT status bit */
2093 priv->status &= ~STATUS_INIT;
2095 /* Cancel currently queued command. */
2096 priv->status &= ~STATUS_HCMD_ACTIVE;
2097 wake_up_interruptible(&priv->wait_command_queue);
2099 queue_work(priv->workqueue, &priv->adapter_restart);
2100 handled |= IPW_INTA_BIT_FATAL_ERROR;
2103 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2104 IPW_ERROR("Parity error\n");
2105 handled |= IPW_INTA_BIT_PARITY_ERROR;
2108 if (handled != inta) {
2109 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2112 spin_unlock_irqrestore(&priv->lock, flags);
2114 /* enable all interrupts */
2115 ipw_enable_interrupts(priv);
2118 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2119 static char *get_cmd_string(u8 cmd)
2122 IPW_CMD(HOST_COMPLETE);
2123 IPW_CMD(POWER_DOWN);
2124 IPW_CMD(SYSTEM_CONFIG);
2125 IPW_CMD(MULTICAST_ADDRESS);
2127 IPW_CMD(ADAPTER_ADDRESS);
2129 IPW_CMD(RTS_THRESHOLD);
2130 IPW_CMD(FRAG_THRESHOLD);
2131 IPW_CMD(POWER_MODE);
2133 IPW_CMD(TGI_TX_KEY);
2134 IPW_CMD(SCAN_REQUEST);
2135 IPW_CMD(SCAN_REQUEST_EXT);
2137 IPW_CMD(SUPPORTED_RATES);
2138 IPW_CMD(SCAN_ABORT);
2140 IPW_CMD(QOS_PARAMETERS);
2141 IPW_CMD(DINO_CONFIG);
2142 IPW_CMD(RSN_CAPABILITIES);
2144 IPW_CMD(CARD_DISABLE);
2145 IPW_CMD(SEED_NUMBER);
2147 IPW_CMD(COUNTRY_INFO);
2148 IPW_CMD(AIRONET_INFO);
2149 IPW_CMD(AP_TX_POWER);
2151 IPW_CMD(CCX_VER_INFO);
2152 IPW_CMD(SET_CALIBRATION);
2153 IPW_CMD(SENSITIVITY_CALIB);
2154 IPW_CMD(RETRY_LIMIT);
2155 IPW_CMD(IPW_PRE_POWER_DOWN);
2156 IPW_CMD(VAP_BEACON_TEMPLATE);
2157 IPW_CMD(VAP_DTIM_PERIOD);
2158 IPW_CMD(EXT_SUPPORTED_RATES);
2159 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2160 IPW_CMD(VAP_QUIET_INTERVALS);
2161 IPW_CMD(VAP_CHANNEL_SWITCH);
2162 IPW_CMD(VAP_MANDATORY_CHANNELS);
2163 IPW_CMD(VAP_CELL_PWR_LIMIT);
2164 IPW_CMD(VAP_CF_PARAM_SET);
2165 IPW_CMD(VAP_SET_BEACONING_STATE);
2166 IPW_CMD(MEASUREMENT);
2167 IPW_CMD(POWER_CAPABILITY);
2168 IPW_CMD(SUPPORTED_CHANNELS);
2169 IPW_CMD(TPC_REPORT);
2171 IPW_CMD(PRODUCTION_COMMAND);
2177 #define HOST_COMPLETE_TIMEOUT HZ
2179 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2182 unsigned long flags;
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2187 get_cmd_string(cmd->cmd));
2188 spin_unlock_irqrestore(&priv->lock, flags);
2192 priv->status |= STATUS_HCMD_ACTIVE;
2195 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2196 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2197 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2198 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2200 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2203 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2204 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2207 #ifndef DEBUG_CMD_WEP_KEY
2208 if (cmd->cmd == IPW_CMD_WEP_KEY)
2209 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2212 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2214 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2216 priv->status &= ~STATUS_HCMD_ACTIVE;
2217 IPW_ERROR("Failed to send %s: Reason %d\n",
2218 get_cmd_string(cmd->cmd), rc);
2219 spin_unlock_irqrestore(&priv->lock, flags);
2222 spin_unlock_irqrestore(&priv->lock, flags);
2224 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2226 status & STATUS_HCMD_ACTIVE),
2227 HOST_COMPLETE_TIMEOUT);
2229 spin_lock_irqsave(&priv->lock, flags);
2230 if (priv->status & STATUS_HCMD_ACTIVE) {
2231 IPW_ERROR("Failed to send %s: Command timed out.\n",
2232 get_cmd_string(cmd->cmd));
2233 priv->status &= ~STATUS_HCMD_ACTIVE;
2234 spin_unlock_irqrestore(&priv->lock, flags);
2238 spin_unlock_irqrestore(&priv->lock, flags);
2242 if (priv->status & STATUS_RF_KILL_HW) {
2243 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244 get_cmd_string(cmd->cmd));
2251 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252 priv->cmdlog_pos %= priv->cmdlog_len;
2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2259 struct host_cmd cmd = {
2263 return __ipw_send_cmd(priv, &cmd);
2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2269 struct host_cmd cmd = {
2275 return __ipw_send_cmd(priv, &cmd);
2278 static int ipw_send_host_complete(struct ipw_priv *priv)
2281 IPW_ERROR("Invalid args\n");
2285 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2288 static int ipw_send_system_config(struct ipw_priv *priv)
2290 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291 sizeof(priv->sys_config),
2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2297 if (!priv || !ssid) {
2298 IPW_ERROR("Invalid args\n");
2302 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2308 if (!priv || !mac) {
2309 IPW_ERROR("Invalid args\n");
2313 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314 priv->net_dev->name, mac);
2316 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2320 * NOTE: This must be executed from our workqueue as it results in udelay
2321 * being called which may corrupt the keyboard if executed on default
2324 static void ipw_adapter_restart(void *adapter)
2326 struct ipw_priv *priv = adapter;
2328 if (priv->status & STATUS_RF_KILL_MASK)
2333 if (priv->assoc_network &&
2334 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2335 ipw_remove_current_network(priv);
2338 IPW_ERROR("Failed to up device\n");
2343 static void ipw_bg_adapter_restart(struct work_struct *work)
2345 struct ipw_priv *priv =
2346 container_of(work, struct ipw_priv, adapter_restart);
2347 mutex_lock(&priv->mutex);
2348 ipw_adapter_restart(priv);
2349 mutex_unlock(&priv->mutex);
2352 static void ipw_abort_scan(struct ipw_priv *priv);
2354 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2356 static void ipw_scan_check(void *data)
2358 struct ipw_priv *priv = data;
2360 if (priv->status & STATUS_SCAN_ABORTING) {
2361 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2362 "adapter after (%dms).\n",
2363 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364 queue_work(priv->workqueue, &priv->adapter_restart);
2365 } else if (priv->status & STATUS_SCANNING) {
2366 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2368 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2369 ipw_abort_scan(priv);
2370 queue_delayed_work(priv->workqueue, &priv->scan_check, HZ);
2374 static void ipw_bg_scan_check(struct work_struct *work)
2376 struct ipw_priv *priv =
2377 container_of(work, struct ipw_priv, scan_check.work);
2378 mutex_lock(&priv->mutex);
2379 ipw_scan_check(priv);
2380 mutex_unlock(&priv->mutex);
2383 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2384 struct ipw_scan_request_ext *request)
2386 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2387 sizeof(*request), request);
2390 static int ipw_send_scan_abort(struct ipw_priv *priv)
2393 IPW_ERROR("Invalid args\n");
2397 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2400 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2402 struct ipw_sensitivity_calib calib = {
2403 .beacon_rssi_raw = cpu_to_le16(sens),
2406 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2410 static int ipw_send_associate(struct ipw_priv *priv,
2411 struct ipw_associate *associate)
2413 if (!priv || !associate) {
2414 IPW_ERROR("Invalid args\n");
2418 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2422 static int ipw_send_supported_rates(struct ipw_priv *priv,
2423 struct ipw_supported_rates *rates)
2425 if (!priv || !rates) {
2426 IPW_ERROR("Invalid args\n");
2430 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2434 static int ipw_set_random_seed(struct ipw_priv *priv)
2439 IPW_ERROR("Invalid args\n");
2443 get_random_bytes(&val, sizeof(val));
2445 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2448 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2450 __le32 v = cpu_to_le32(phy_off);
2452 IPW_ERROR("Invalid args\n");
2456 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2459 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2461 if (!priv || !power) {
2462 IPW_ERROR("Invalid args\n");
2466 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2469 static int ipw_set_tx_power(struct ipw_priv *priv)
2471 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2472 struct ipw_tx_power tx_power;
2476 memset(&tx_power, 0, sizeof(tx_power));
2478 /* configure device for 'G' band */
2479 tx_power.ieee_mode = IPW_G_MODE;
2480 tx_power.num_channels = geo->bg_channels;
2481 for (i = 0; i < geo->bg_channels; i++) {
2482 max_power = geo->bg[i].max_power;
2483 tx_power.channels_tx_power[i].channel_number =
2485 tx_power.channels_tx_power[i].tx_power = max_power ?
2486 min(max_power, priv->tx_power) : priv->tx_power;
2488 if (ipw_send_tx_power(priv, &tx_power))
2491 /* configure device to also handle 'B' band */
2492 tx_power.ieee_mode = IPW_B_MODE;
2493 if (ipw_send_tx_power(priv, &tx_power))
2496 /* configure device to also handle 'A' band */
2497 if (priv->ieee->abg_true) {
2498 tx_power.ieee_mode = IPW_A_MODE;
2499 tx_power.num_channels = geo->a_channels;
2500 for (i = 0; i < tx_power.num_channels; i++) {
2501 max_power = geo->a[i].max_power;
2502 tx_power.channels_tx_power[i].channel_number =
2504 tx_power.channels_tx_power[i].tx_power = max_power ?
2505 min(max_power, priv->tx_power) : priv->tx_power;
2507 if (ipw_send_tx_power(priv, &tx_power))
2513 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2515 struct ipw_rts_threshold rts_threshold = {
2516 .rts_threshold = cpu_to_le16(rts),
2520 IPW_ERROR("Invalid args\n");
2524 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2525 sizeof(rts_threshold), &rts_threshold);
2528 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2530 struct ipw_frag_threshold frag_threshold = {
2531 .frag_threshold = cpu_to_le16(frag),
2535 IPW_ERROR("Invalid args\n");
2539 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2540 sizeof(frag_threshold), &frag_threshold);
2543 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2548 IPW_ERROR("Invalid args\n");
2552 /* If on battery, set to 3, if AC set to CAM, else user
2555 case IPW_POWER_BATTERY:
2556 param = cpu_to_le32(IPW_POWER_INDEX_3);
2559 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2562 param = cpu_to_le32(mode);
2566 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2570 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2572 struct ipw_retry_limit retry_limit = {
2573 .short_retry_limit = slimit,
2574 .long_retry_limit = llimit
2578 IPW_ERROR("Invalid args\n");
2582 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2587 * The IPW device contains a Microwire compatible EEPROM that stores
2588 * various data like the MAC address. Usually the firmware has exclusive
2589 * access to the eeprom, but during device initialization (before the
2590 * device driver has sent the HostComplete command to the firmware) the
2591 * device driver has read access to the EEPROM by way of indirect addressing
2592 * through a couple of memory mapped registers.
2594 * The following is a simplified implementation for pulling data out of the
2595 * the eeprom, along with some helper functions to find information in
2596 * the per device private data's copy of the eeprom.
2598 * NOTE: To better understand how these functions work (i.e what is a chip
2599 * select and why do have to keep driving the eeprom clock?), read
2600 * just about any data sheet for a Microwire compatible EEPROM.
2603 /* write a 32 bit value into the indirect accessor register */
2604 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2606 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2608 /* the eeprom requires some time to complete the operation */
2609 udelay(p->eeprom_delay);
2612 /* perform a chip select operation */
2613 static void eeprom_cs(struct ipw_priv *priv)
2615 eeprom_write_reg(priv, 0);
2616 eeprom_write_reg(priv, EEPROM_BIT_CS);
2617 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2618 eeprom_write_reg(priv, EEPROM_BIT_CS);
2621 /* perform a chip select operation */
2622 static void eeprom_disable_cs(struct ipw_priv *priv)
2624 eeprom_write_reg(priv, EEPROM_BIT_CS);
2625 eeprom_write_reg(priv, 0);
2626 eeprom_write_reg(priv, EEPROM_BIT_SK);
2629 /* push a single bit down to the eeprom */
2630 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2632 int d = (bit ? EEPROM_BIT_DI : 0);
2633 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2634 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2637 /* push an opcode followed by an address down to the eeprom */
2638 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2643 eeprom_write_bit(priv, 1);
2644 eeprom_write_bit(priv, op & 2);
2645 eeprom_write_bit(priv, op & 1);
2646 for (i = 7; i >= 0; i--) {
2647 eeprom_write_bit(priv, addr & (1 << i));
2651 /* pull 16 bits off the eeprom, one bit at a time */
2652 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2657 /* Send READ Opcode */
2658 eeprom_op(priv, EEPROM_CMD_READ, addr);
2660 /* Send dummy bit */
2661 eeprom_write_reg(priv, EEPROM_BIT_CS);
2663 /* Read the byte off the eeprom one bit at a time */
2664 for (i = 0; i < 16; i++) {
2666 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2667 eeprom_write_reg(priv, EEPROM_BIT_CS);
2668 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2669 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2672 /* Send another dummy bit */
2673 eeprom_write_reg(priv, 0);
2674 eeprom_disable_cs(priv);
2679 /* helper function for pulling the mac address out of the private */
2680 /* data's copy of the eeprom data */
2681 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2683 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2687 * Either the device driver (i.e. the host) or the firmware can
2688 * load eeprom data into the designated region in SRAM. If neither
2689 * happens then the FW will shutdown with a fatal error.
2691 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2692 * bit needs region of shared SRAM needs to be non-zero.
2694 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2697 __le16 *eeprom = (__le16 *) priv->eeprom;
2699 IPW_DEBUG_TRACE(">>\n");
2701 /* read entire contents of eeprom into private buffer */
2702 for (i = 0; i < 128; i++)
2703 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2706 If the data looks correct, then copy it to our private
2707 copy. Otherwise let the firmware know to perform the operation
2710 if (priv->eeprom[EEPROM_VERSION] != 0) {
2711 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2713 /* write the eeprom data to sram */
2714 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2715 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2717 /* Do not load eeprom data on fatal error or suspend */
2718 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2720 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2722 /* Load eeprom data on fatal error or suspend */
2723 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2726 IPW_DEBUG_TRACE("<<\n");
2729 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2734 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2736 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2739 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2741 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2742 CB_NUMBER_OF_ELEMENTS_SMALL *
2743 sizeof(struct command_block));
2746 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2747 { /* start dma engine but no transfers yet */
2749 IPW_DEBUG_FW(">> :\n");
2752 ipw_fw_dma_reset_command_blocks(priv);
2754 /* Write CB base address */
2755 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2757 IPW_DEBUG_FW("<< :\n");
2761 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2765 IPW_DEBUG_FW(">> :\n");
2767 /* set the Stop and Abort bit */
2768 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2769 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2770 priv->sram_desc.last_cb_index = 0;
2772 IPW_DEBUG_FW("<<\n");
2775 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2776 struct command_block *cb)
2779 IPW_SHARED_SRAM_DMA_CONTROL +
2780 (sizeof(struct command_block) * index);
2781 IPW_DEBUG_FW(">> :\n");
2783 ipw_write_indirect(priv, address, (u8 *) cb,
2784 (int)sizeof(struct command_block));
2786 IPW_DEBUG_FW("<< :\n");
2791 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2796 IPW_DEBUG_FW(">> :\n");
2798 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2799 ipw_fw_dma_write_command_block(priv, index,
2800 &priv->sram_desc.cb_list[index]);
2802 /* Enable the DMA in the CSR register */
2803 ipw_clear_bit(priv, IPW_RESET_REG,
2804 IPW_RESET_REG_MASTER_DISABLED |
2805 IPW_RESET_REG_STOP_MASTER);
2807 /* Set the Start bit. */
2808 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2809 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2811 IPW_DEBUG_FW("<< :\n");
2815 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2818 u32 register_value = 0;
2819 u32 cb_fields_address = 0;
2821 IPW_DEBUG_FW(">> :\n");
2822 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2823 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2825 /* Read the DMA Controlor register */
2826 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2827 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2829 /* Print the CB values */
2830 cb_fields_address = address;
2831 register_value = ipw_read_reg32(priv, cb_fields_address);
2832 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2834 cb_fields_address += sizeof(u32);
2835 register_value = ipw_read_reg32(priv, cb_fields_address);
2836 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2838 cb_fields_address += sizeof(u32);
2839 register_value = ipw_read_reg32(priv, cb_fields_address);
2840 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2843 cb_fields_address += sizeof(u32);
2844 register_value = ipw_read_reg32(priv, cb_fields_address);
2845 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2847 IPW_DEBUG_FW(">> :\n");
2850 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2852 u32 current_cb_address = 0;
2853 u32 current_cb_index = 0;
2855 IPW_DEBUG_FW("<< :\n");
2856 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2858 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2859 sizeof(struct command_block);
2861 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2862 current_cb_index, current_cb_address);
2864 IPW_DEBUG_FW(">> :\n");
2865 return current_cb_index;
2869 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2873 int interrupt_enabled, int is_last)
2876 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2877 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2879 struct command_block *cb;
2880 u32 last_cb_element = 0;
2882 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2883 src_address, dest_address, length);
2885 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2888 last_cb_element = priv->sram_desc.last_cb_index;
2889 cb = &priv->sram_desc.cb_list[last_cb_element];
2890 priv->sram_desc.last_cb_index++;
2892 /* Calculate the new CB control word */
2893 if (interrupt_enabled)
2894 control |= CB_INT_ENABLED;
2897 control |= CB_LAST_VALID;
2901 /* Calculate the CB Element's checksum value */
2902 cb->status = control ^ src_address ^ dest_address;
2904 /* Copy the Source and Destination addresses */
2905 cb->dest_addr = dest_address;
2906 cb->source_addr = src_address;
2908 /* Copy the Control Word last */
2909 cb->control = control;
2914 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2915 int nr, u32 dest_address, u32 len)
2920 IPW_DEBUG_FW(">>\n");
2921 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2922 nr, dest_address, len);
2924 for (i = 0; i < nr; i++) {
2925 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2926 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2928 i * CB_MAX_LENGTH, size,
2931 IPW_DEBUG_FW_INFO(": Failed\n");
2934 IPW_DEBUG_FW_INFO(": Added new cb\n");
2937 IPW_DEBUG_FW("<<\n");
2941 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2943 u32 current_index = 0, previous_index;
2946 IPW_DEBUG_FW(">> :\n");
2948 current_index = ipw_fw_dma_command_block_index(priv);
2949 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2950 (int)priv->sram_desc.last_cb_index);
2952 while (current_index < priv->sram_desc.last_cb_index) {
2954 previous_index = current_index;
2955 current_index = ipw_fw_dma_command_block_index(priv);
2957 if (previous_index < current_index) {
2961 if (++watchdog > 400) {
2962 IPW_DEBUG_FW_INFO("Timeout\n");
2963 ipw_fw_dma_dump_command_block(priv);
2964 ipw_fw_dma_abort(priv);
2969 ipw_fw_dma_abort(priv);
2971 /*Disable the DMA in the CSR register */
2972 ipw_set_bit(priv, IPW_RESET_REG,
2973 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2975 IPW_DEBUG_FW("<< dmaWaitSync\n");
2979 static void ipw_remove_current_network(struct ipw_priv *priv)
2981 struct list_head *element, *safe;
2982 struct libipw_network *network = NULL;
2983 unsigned long flags;
2985 spin_lock_irqsave(&priv->ieee->lock, flags);
2986 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2987 network = list_entry(element, struct libipw_network, list);
2988 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2990 list_add_tail(&network->list,
2991 &priv->ieee->network_free_list);
2994 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2998 * Check that card is still alive.
2999 * Reads debug register from domain0.
3000 * If card is present, pre-defined value should
3004 * @return 1 if card is present, 0 otherwise
3006 static inline int ipw_alive(struct ipw_priv *priv)
3008 return ipw_read32(priv, 0x90) == 0xd55555d5;
3011 /* timeout in msec, attempted in 10-msec quanta */
3012 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3018 if ((ipw_read32(priv, addr) & mask) == mask)
3022 } while (i < timeout);
3027 /* These functions load the firmware and micro code for the operation of
3028 * the ipw hardware. It assumes the buffer has all the bits for the
3029 * image and the caller is handling the memory allocation and clean up.
3032 static int ipw_stop_master(struct ipw_priv *priv)
3036 IPW_DEBUG_TRACE(">>\n");
3037 /* stop master. typical delay - 0 */
3038 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3040 /* timeout is in msec, polled in 10-msec quanta */
3041 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3042 IPW_RESET_REG_MASTER_DISABLED, 100);
3044 IPW_ERROR("wait for stop master failed after 100ms\n");
3048 IPW_DEBUG_INFO("stop master %dms\n", rc);
3053 static void ipw_arc_release(struct ipw_priv *priv)
3055 IPW_DEBUG_TRACE(">>\n");
3058 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3060 /* no one knows timing, for safety add some delay */
3069 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3071 int rc = 0, i, addr;
3075 image = (__le16 *) data;
3077 IPW_DEBUG_TRACE(">>\n");
3079 rc = ipw_stop_master(priv);
3084 for (addr = IPW_SHARED_LOWER_BOUND;
3085 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3086 ipw_write32(priv, addr, 0);
3089 /* no ucode (yet) */
3090 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3091 /* destroy DMA queues */
3092 /* reset sequence */
3094 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3095 ipw_arc_release(priv);
3096 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3100 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3103 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3106 /* enable ucode store */
3107 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3108 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3114 * Do NOT set indirect address register once and then
3115 * store data to indirect data register in the loop.
3116 * It seems very reasonable, but in this case DINO do not
3117 * accept ucode. It is essential to set address each time.
3119 /* load new ipw uCode */
3120 for (i = 0; i < len / 2; i++)
3121 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3122 le16_to_cpu(image[i]));
3125 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3126 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3128 /* this is where the igx / win driver deveates from the VAP driver. */
3130 /* wait for alive response */
3131 for (i = 0; i < 100; i++) {
3132 /* poll for incoming data */
3133 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3134 if (cr & DINO_RXFIFO_DATA)
3139 if (cr & DINO_RXFIFO_DATA) {
3140 /* alive_command_responce size is NOT multiple of 4 */
3141 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3143 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3144 response_buffer[i] =
3145 cpu_to_le32(ipw_read_reg32(priv,
3146 IPW_BASEBAND_RX_FIFO_READ));
3147 memcpy(&priv->dino_alive, response_buffer,
3148 sizeof(priv->dino_alive));
3149 if (priv->dino_alive.alive_command == 1
3150 && priv->dino_alive.ucode_valid == 1) {
3153 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3154 "of %02d/%02d/%02d %02d:%02d\n",
3155 priv->dino_alive.software_revision,
3156 priv->dino_alive.software_revision,
3157 priv->dino_alive.device_identifier,
3158 priv->dino_alive.device_identifier,
3159 priv->dino_alive.time_stamp[0],
3160 priv->dino_alive.time_stamp[1],
3161 priv->dino_alive.time_stamp[2],
3162 priv->dino_alive.time_stamp[3],
3163 priv->dino_alive.time_stamp[4]);
3165 IPW_DEBUG_INFO("Microcode is not alive\n");
3169 IPW_DEBUG_INFO("No alive response from DINO\n");
3173 /* disable DINO, otherwise for some reason
3174 firmware have problem getting alive resp. */
3175 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3180 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3184 struct fw_chunk *chunk;
3187 struct pci_pool *pool;
3191 IPW_DEBUG_TRACE("<< :\n");
3193 virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3198 phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3204 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3206 IPW_ERROR("pci_pool_create failed\n");
3213 ret = ipw_fw_dma_enable(priv);
3215 /* the DMA is already ready this would be a bug. */
3216 BUG_ON(priv->sram_desc.last_cb_index > 0);
3224 chunk = (struct fw_chunk *)(data + offset);
3225 offset += sizeof(struct fw_chunk);
3226 chunk_len = le32_to_cpu(chunk->length);
3227 start = data + offset;
3229 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3230 for (i = 0; i < nr; i++) {
3231 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3233 if (!virts[total_nr]) {
3237 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3239 memcpy(virts[total_nr], start, size);
3242 /* We don't support fw chunk larger than 64*8K */
3243 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3246 /* build DMA packet and queue up for sending */
3247 /* dma to chunk->address, the chunk->length bytes from data +
3250 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3251 nr, le32_to_cpu(chunk->address),
3254 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3258 offset += chunk_len;
3259 } while (offset < len);
3261 /* Run the DMA and wait for the answer */
3262 ret = ipw_fw_dma_kick(priv);
3264 IPW_ERROR("dmaKick Failed\n");
3268 ret = ipw_fw_dma_wait(priv);
3270 IPW_ERROR("dmaWaitSync Failed\n");
3274 for (i = 0; i < total_nr; i++)
3275 pci_pool_free(pool, virts[i], phys[i]);
3277 pci_pool_destroy(pool);
3285 static int ipw_stop_nic(struct ipw_priv *priv)
3290 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3292 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3293 IPW_RESET_REG_MASTER_DISABLED, 500);
3295 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3299 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3304 static void ipw_start_nic(struct ipw_priv *priv)
3306 IPW_DEBUG_TRACE(">>\n");
3308 /* prvHwStartNic release ARC */
3309 ipw_clear_bit(priv, IPW_RESET_REG,
3310 IPW_RESET_REG_MASTER_DISABLED |
3311 IPW_RESET_REG_STOP_MASTER |
3312 CBD_RESET_REG_PRINCETON_RESET);
3314 /* enable power management */
3315 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3316 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3318 IPW_DEBUG_TRACE("<<\n");
3321 static int ipw_init_nic(struct ipw_priv *priv)
3325 IPW_DEBUG_TRACE(">>\n");
3328 /* set "initialization complete" bit to move adapter to D0 state */
3329 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3331 /* low-level PLL activation */
3332 ipw_write32(priv, IPW_READ_INT_REGISTER,
3333 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3335 /* wait for clock stabilization */
3336 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3337 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3339 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3341 /* assert SW reset */
3342 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3346 /* set "initialization complete" bit to move adapter to D0 state */
3347 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3349 IPW_DEBUG_TRACE(">>\n");
3353 /* Call this function from process context, it will sleep in request_firmware.
3354 * Probe is an ok place to call this from.
3356 static int ipw_reset_nic(struct ipw_priv *priv)
3359 unsigned long flags;
3361 IPW_DEBUG_TRACE(">>\n");
3363 rc = ipw_init_nic(priv);
3365 spin_lock_irqsave(&priv->lock, flags);
3366 /* Clear the 'host command active' bit... */
3367 priv->status &= ~STATUS_HCMD_ACTIVE;
3368 wake_up_interruptible(&priv->wait_command_queue);
3369 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3370 wake_up_interruptible(&priv->wait_state);
3371 spin_unlock_irqrestore(&priv->lock, flags);
3373 IPW_DEBUG_TRACE("<<\n");
3386 static int ipw_get_fw(struct ipw_priv *priv,
3387 const struct firmware **raw, const char *name)
3392 /* ask firmware_class module to get the boot firmware off disk */
3393 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3395 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3399 if ((*raw)->size < sizeof(*fw)) {
3400 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3404 fw = (void *)(*raw)->data;
3406 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3407 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3408 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3409 name, (*raw)->size);
3413 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3415 le32_to_cpu(fw->ver) >> 16,
3416 le32_to_cpu(fw->ver) & 0xff,
3417 (*raw)->size - sizeof(*fw));
3421 #define IPW_RX_BUF_SIZE (3000)
3423 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3424 struct ipw_rx_queue *rxq)
3426 unsigned long flags;
3429 spin_lock_irqsave(&rxq->lock, flags);
3431 INIT_LIST_HEAD(&rxq->rx_free);
3432 INIT_LIST_HEAD(&rxq->rx_used);
3434 /* Fill the rx_used queue with _all_ of the Rx buffers */
3435 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3436 /* In the reset function, these buffers may have been allocated
3437 * to an SKB, so we need to unmap and free potential storage */
3438 if (rxq->pool[i].skb != NULL) {
3439 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3440 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3441 dev_kfree_skb(rxq->pool[i].skb);
3442 rxq->pool[i].skb = NULL;
3444 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3447 /* Set us so that we have processed and used all buffers, but have
3448 * not restocked the Rx queue with fresh buffers */
3449 rxq->read = rxq->write = 0;
3450 rxq->free_count = 0;
3451 spin_unlock_irqrestore(&rxq->lock, flags);
3455 static int fw_loaded = 0;
3456 static const struct firmware *raw = NULL;
3458 static void free_firmware(void)
3461 release_firmware(raw);
3467 #define free_firmware() do {} while (0)
3470 static int ipw_load(struct ipw_priv *priv)
3473 const struct firmware *raw = NULL;
3476 u8 *boot_img, *ucode_img, *fw_img;
3478 int rc = 0, retries = 3;
3480 switch (priv->ieee->iw_mode) {
3482 name = "ipw2200-ibss.fw";
3484 #ifdef CONFIG_IPW2200_MONITOR
3485 case IW_MODE_MONITOR:
3486 name = "ipw2200-sniffer.fw";
3490 name = "ipw2200-bss.fw";
3502 rc = ipw_get_fw(priv, &raw, name);
3509 fw = (void *)raw->data;
3510 boot_img = &fw->data[0];
3511 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3512 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3513 le32_to_cpu(fw->ucode_size)];
3519 priv->rxq = ipw_rx_queue_alloc(priv);
3521 ipw_rx_queue_reset(priv, priv->rxq);
3523 IPW_ERROR("Unable to initialize Rx queue\n");
3528 /* Ensure interrupts are disabled */
3529 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3530 priv->status &= ~STATUS_INT_ENABLED;
3532 /* ack pending interrupts */
3533 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3537 rc = ipw_reset_nic(priv);
3539 IPW_ERROR("Unable to reset NIC\n");
3543 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3544 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3546 /* DMA the initial boot firmware into the device */
3547 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3549 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3553 /* kick start the device */
3554 ipw_start_nic(priv);
3556 /* wait for the device to finish its initial startup sequence */
3557 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3558 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3560 IPW_ERROR("device failed to boot initial fw image\n");
3563 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3565 /* ack fw init done interrupt */
3566 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3568 /* DMA the ucode into the device */
3569 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3571 IPW_ERROR("Unable to load ucode: %d\n", rc);
3578 /* DMA bss firmware into the device */
3579 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3581 IPW_ERROR("Unable to load firmware: %d\n", rc);
3588 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3590 rc = ipw_queue_reset(priv);
3592 IPW_ERROR("Unable to initialize queues\n");
3596 /* Ensure interrupts are disabled */
3597 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3598 /* ack pending interrupts */
3599 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3601 /* kick start the device */
3602 ipw_start_nic(priv);
3604 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3606 IPW_WARNING("Parity error. Retrying init.\n");
3611 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616 /* wait for the device */
3617 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3618 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3620 IPW_ERROR("device failed to start within 500ms\n");
3623 IPW_DEBUG_INFO("device response after %dms\n", rc);
3625 /* ack fw init done interrupt */
3626 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3628 /* read eeprom data and initialize the eeprom region of sram */
3629 priv->eeprom_delay = 1;
3630 ipw_eeprom_init_sram(priv);
3632 /* enable interrupts */
3633 ipw_enable_interrupts(priv);
3635 /* Ensure our queue has valid packets */
3636 ipw_rx_queue_replenish(priv);
3638 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3640 /* ack pending interrupts */
3641 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3644 release_firmware(raw);
3650 ipw_rx_queue_free(priv, priv->rxq);
3653 ipw_tx_queue_free(priv);
3655 release_firmware(raw);
3667 * Theory of operation
3669 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3670 * 2 empty entries always kept in the buffer to protect from overflow.
3672 * For Tx queue, there are low mark and high mark limits. If, after queuing
3673 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3674 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3677 * The IPW operates with six queues, one receive queue in the device's
3678 * sram, one transmit queue for sending commands to the device firmware,
3679 * and four transmit queues for data.
3681 * The four transmit queues allow for performing quality of service (qos)
3682 * transmissions as per the 802.11 protocol. Currently Linux does not
3683 * provide a mechanism to the user for utilizing prioritized queues, so
3684 * we only utilize the first data transmit queue (queue1).
3688 * Driver allocates buffers of this size for Rx
3692 * ipw_rx_queue_space - Return number of free slots available in queue.
3694 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3696 int s = q->read - q->write;
3699 /* keep some buffer to not confuse full and empty queue */
3706 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3708 int s = q->last_used - q->first_empty;
3711 s -= 2; /* keep some reserve to not confuse empty and full situations */
3717 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3719 return (++index == n_bd) ? 0 : index;
3723 * Initialize common DMA queue structure
3725 * @param q queue to init
3726 * @param count Number of BD's to allocate. Should be power of 2
3727 * @param read_register Address for 'read' register
3728 * (not offset within BAR, full address)
3729 * @param write_register Address for 'write' register
3730 * (not offset within BAR, full address)
3731 * @param base_register Address for 'base' register
3732 * (not offset within BAR, full address)
3733 * @param size Address for 'size' register
3734 * (not offset within BAR, full address)
3736 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3737 int count, u32 read, u32 write, u32 base, u32 size)
3741 q->low_mark = q->n_bd / 4;
3742 if (q->low_mark < 4)
3745 q->high_mark = q->n_bd / 8;
3746 if (q->high_mark < 2)
3749 q->first_empty = q->last_used = 0;
3753 ipw_write32(priv, base, q->dma_addr);
3754 ipw_write32(priv, size, count);
3755 ipw_write32(priv, read, 0);
3756 ipw_write32(priv, write, 0);
3758 _ipw_read32(priv, 0x90);
3761 static int ipw_queue_tx_init(struct ipw_priv *priv,
3762 struct clx2_tx_queue *q,
3763 int count, u32 read, u32 write, u32 base, u32 size)
3765 struct pci_dev *dev = priv->pci_dev;
3767 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3769 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3774 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3776 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3777 sizeof(q->bd[0]) * count);
3783 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3788 * Free one TFD, those at index [txq->q.last_used].
3789 * Do NOT advance any indexes
3794 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3795 struct clx2_tx_queue *txq)
3797 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3798 struct pci_dev *dev = priv->pci_dev;
3802 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3803 /* nothing to cleanup after for host commands */
3807 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3808 IPW_ERROR("Too many chunks: %i\n",
3809 le32_to_cpu(bd->u.data.num_chunks));
3810 /** @todo issue fatal error, it is quite serious situation */
3814 /* unmap chunks if any */
3815 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3816 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3817 le16_to_cpu(bd->u.data.chunk_len[i]),
3819 if (txq->txb[txq->q.last_used]) {
3820 libipw_txb_free(txq->txb[txq->q.last_used]);
3821 txq->txb[txq->q.last_used] = NULL;
3827 * Deallocate DMA queue.
3829 * Empty queue by removing and destroying all BD's.
3835 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3837 struct clx2_queue *q = &txq->q;
3838 struct pci_dev *dev = priv->pci_dev;
3843 /* first, empty all BD's */
3844 for (; q->first_empty != q->last_used;
3845 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3846 ipw_queue_tx_free_tfd(priv, txq);
3849 /* free buffers belonging to queue itself */
3850 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3854 /* 0 fill whole structure */
3855 memset(txq, 0, sizeof(*txq));
3859 * Destroy all DMA queues and structures
3863 static void ipw_tx_queue_free(struct ipw_priv *priv)
3866 ipw_queue_tx_free(priv, &priv->txq_cmd);
3869 ipw_queue_tx_free(priv, &priv->txq[0]);
3870 ipw_queue_tx_free(priv, &priv->txq[1]);
3871 ipw_queue_tx_free(priv, &priv->txq[2]);
3872 ipw_queue_tx_free(priv, &priv->txq[3]);
3875 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3877 /* First 3 bytes are manufacturer */
3878 bssid[0] = priv->mac_addr[0];
3879 bssid[1] = priv->mac_addr[1];
3880 bssid[2] = priv->mac_addr[2];
3882 /* Last bytes are random */
3883 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3885 bssid[0] &= 0xfe; /* clear multicast bit */
3886 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3889 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3891 struct ipw_station_entry entry;
3894 for (i = 0; i < priv->num_stations; i++) {
3895 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3896 /* Another node is active in network */
3897 priv->missed_adhoc_beacons = 0;
3898 if (!(priv->config & CFG_STATIC_CHANNEL))
3899 /* when other nodes drop out, we drop out */
3900 priv->config &= ~CFG_ADHOC_PERSIST;
3906 if (i == MAX_STATIONS)
3907 return IPW_INVALID_STATION;
3909 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3912 entry.support_mode = 0;
3913 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3914 memcpy(priv->stations[i], bssid, ETH_ALEN);
3915 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3916 &entry, sizeof(entry));
3917 priv->num_stations++;
3922 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3926 for (i = 0; i < priv->num_stations; i++)
3927 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3930 return IPW_INVALID_STATION;
3933 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3937 if (priv->status & STATUS_ASSOCIATING) {
3938 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3939 queue_work(priv->workqueue, &priv->disassociate);
3943 if (!(priv->status & STATUS_ASSOCIATED)) {
3944 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3948 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3950 priv->assoc_request.bssid,
3951 priv->assoc_request.channel);
3953 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3954 priv->status |= STATUS_DISASSOCIATING;
3957 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3959 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3961 err = ipw_send_associate(priv, &priv->assoc_request);
3963 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3970 static int ipw_disassociate(void *data)
3972 struct ipw_priv *priv = data;
3973 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3975 ipw_send_disassociate(data, 0);
3976 netif_carrier_off(priv->net_dev);
3980 static void ipw_bg_disassociate(struct work_struct *work)
3982 struct ipw_priv *priv =
3983 container_of(work, struct ipw_priv, disassociate);
3984 mutex_lock(&priv->mutex);
3985 ipw_disassociate(priv);
3986 mutex_unlock(&priv->mutex);
3989 static void ipw_system_config(struct work_struct *work)
3991 struct ipw_priv *priv =
3992 container_of(work, struct ipw_priv, system_config);
3994 #ifdef CONFIG_IPW2200_PROMISCUOUS
3995 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3996 priv->sys_config.accept_all_data_frames = 1;
3997 priv->sys_config.accept_non_directed_frames = 1;
3998 priv->sys_config.accept_all_mgmt_bcpr = 1;
3999 priv->sys_config.accept_all_mgmt_frames = 1;
4003 ipw_send_system_config(priv);
4006 struct ipw_status_code {
4011 static const struct ipw_status_code ipw_status_codes[] = {
4012 {0x00, "Successful"},
4013 {0x01, "Unspecified failure"},
4014 {0x0A, "Cannot support all requested capabilities in the "
4015 "Capability information field"},
4016 {0x0B, "Reassociation denied due to inability to confirm that "
4017 "association exists"},
4018 {0x0C, "Association denied due to reason outside the scope of this "
4021 "Responding station does not support the specified authentication "
4024 "Received an Authentication frame with authentication sequence "
4025 "transaction sequence number out of expected sequence"},
4026 {0x0F, "Authentication rejected because of challenge failure"},
4027 {0x10, "Authentication rejected due to timeout waiting for next "
4028 "frame in sequence"},
4029 {0x11, "Association denied because AP is unable to handle additional "
4030 "associated stations"},
4032 "Association denied due to requesting station not supporting all "
4033 "of the datarates in the BSSBasicServiceSet Parameter"},
4035 "Association denied due to requesting station not supporting "
4036 "short preamble operation"},
4038 "Association denied due to requesting station not supporting "
4041 "Association denied due to requesting station not supporting "
4044 "Association denied due to requesting station not supporting "
4045 "short slot operation"},
4047 "Association denied due to requesting station not supporting "
4048 "DSSS-OFDM operation"},
4049 {0x28, "Invalid Information Element"},
4050 {0x29, "Group Cipher is not valid"},
4051 {0x2A, "Pairwise Cipher is not valid"},
4052 {0x2B, "AKMP is not valid"},
4053 {0x2C, "Unsupported RSN IE version"},
4054 {0x2D, "Invalid RSN IE Capabilities"},
4055 {0x2E, "Cipher suite is rejected per security policy"},
4058 static const char *ipw_get_status_code(u16 status)
4061 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4062 if (ipw_status_codes[i].status == (status & 0xff))
4063 return ipw_status_codes[i].reason;
4064 return "Unknown status value.";
4067 static void inline average_init(struct average *avg)
4069 memset(avg, 0, sizeof(*avg));
4072 #define DEPTH_RSSI 8
4073 #define DEPTH_NOISE 16
4074 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4076 return ((depth-1)*prev_avg + val)/depth;
4079 static void average_add(struct average *avg, s16 val)
4081 avg->sum -= avg->entries[avg->pos];
4083 avg->entries[avg->pos++] = val;
4084 if (unlikely(avg->pos == AVG_ENTRIES)) {
4090 static s16 average_value(struct average *avg)
4092 if (!unlikely(avg->init)) {
4094 return avg->sum / avg->pos;
4098 return avg->sum / AVG_ENTRIES;
4101 static void ipw_reset_stats(struct ipw_priv *priv)
4103 u32 len = sizeof(u32);
4107 average_init(&priv->average_missed_beacons);
4108 priv->exp_avg_rssi = -60;
4109 priv->exp_avg_noise = -85 + 0x100;
4111 priv->last_rate = 0;
4112 priv->last_missed_beacons = 0;
4113 priv->last_rx_packets = 0;
4114 priv->last_tx_packets = 0;
4115 priv->last_tx_failures = 0;
4117 /* Firmware managed, reset only when NIC is restarted, so we have to
4118 * normalize on the current value */
4119 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4120 &priv->last_rx_err, &len);
4121 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4122 &priv->last_tx_failures, &len);
4124 /* Driver managed, reset with each association */
4125 priv->missed_adhoc_beacons = 0;
4126 priv->missed_beacons = 0;
4127 priv->tx_packets = 0;
4128 priv->rx_packets = 0;
4132 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4135 u32 mask = priv->rates_mask;
4136 /* If currently associated in B mode, restrict the maximum
4137 * rate match to B rates */
4138 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4139 mask &= LIBIPW_CCK_RATES_MASK;
4141 /* TODO: Verify that the rate is supported by the current rates
4144 while (i && !(mask & i))
4147 case LIBIPW_CCK_RATE_1MB_MASK:
4149 case LIBIPW_CCK_RATE_2MB_MASK:
4151 case LIBIPW_CCK_RATE_5MB_MASK:
4153 case LIBIPW_OFDM_RATE_6MB_MASK:
4155 case LIBIPW_OFDM_RATE_9MB_MASK:
4157 case LIBIPW_CCK_RATE_11MB_MASK:
4159 case LIBIPW_OFDM_RATE_12MB_MASK:
4161 case LIBIPW_OFDM_RATE_18MB_MASK:
4163 case LIBIPW_OFDM_RATE_24MB_MASK:
4165 case LIBIPW_OFDM_RATE_36MB_MASK:
4167 case LIBIPW_OFDM_RATE_48MB_MASK:
4169 case LIBIPW_OFDM_RATE_54MB_MASK:
4173 if (priv->ieee->mode == IEEE_B)
4179 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4181 u32 rate, len = sizeof(rate);
4184 if (!(priv->status & STATUS_ASSOCIATED))
4187 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4188 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4191 IPW_DEBUG_INFO("failed querying ordinals.\n");
4195 return ipw_get_max_rate(priv);
4198 case IPW_TX_RATE_1MB:
4200 case IPW_TX_RATE_2MB:
4202 case IPW_TX_RATE_5MB:
4204 case IPW_TX_RATE_6MB:
4206 case IPW_TX_RATE_9MB:
4208 case IPW_TX_RATE_11MB:
4210 case IPW_TX_RATE_12MB:
4212 case IPW_TX_RATE_18MB:
4214 case IPW_TX_RATE_24MB:
4216 case IPW_TX_RATE_36MB:
4218 case IPW_TX_RATE_48MB:
4220 case IPW_TX_RATE_54MB:
4227 #define IPW_STATS_INTERVAL (2 * HZ)
4228 static void ipw_gather_stats(struct ipw_priv *priv)
4230 u32 rx_err, rx_err_delta, rx_packets_delta;
4231 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4232 u32 missed_beacons_percent, missed_beacons_delta;
4234 u32 len = sizeof(u32);
4236 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4240 if (!(priv->status & STATUS_ASSOCIATED)) {
4245 /* Update the statistics */
4246 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4247 &priv->missed_beacons, &len);
4248 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4249 priv->last_missed_beacons = priv->missed_beacons;
4250 if (priv->assoc_request.beacon_interval) {
4251 missed_beacons_percent = missed_beacons_delta *
4252 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4253 (IPW_STATS_INTERVAL * 10);
4255 missed_beacons_percent = 0;
4257 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4259 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4260 rx_err_delta = rx_err - priv->last_rx_err;
4261 priv->last_rx_err = rx_err;
4263 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4264 tx_failures_delta = tx_failures - priv->last_tx_failures;
4265 priv->last_tx_failures = tx_failures;
4267 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4268 priv->last_rx_packets = priv->rx_packets;
4270 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4271 priv->last_tx_packets = priv->tx_packets;
4273 /* Calculate quality based on the following:
4275 * Missed beacon: 100% = 0, 0% = 70% missed
4276 * Rate: 60% = 1Mbs, 100% = Max
4277 * Rx and Tx errors represent a straight % of total Rx/Tx
4278 * RSSI: 100% = > -50, 0% = < -80
4279 * Rx errors: 100% = 0, 0% = 50% missed
4281 * The lowest computed quality is used.
4284 #define BEACON_THRESHOLD 5
4285 beacon_quality = 100 - missed_beacons_percent;
4286 if (beacon_quality < BEACON_THRESHOLD)
4289 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4290 (100 - BEACON_THRESHOLD);
4291 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4292 beacon_quality, missed_beacons_percent);
4294 priv->last_rate = ipw_get_current_rate(priv);
4295 max_rate = ipw_get_max_rate(priv);
4296 rate_quality = priv->last_rate * 40 / max_rate + 60;
4297 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4298 rate_quality, priv->last_rate / 1000000);
4300 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4301 rx_quality = 100 - (rx_err_delta * 100) /
4302 (rx_packets_delta + rx_err_delta);
4305 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4306 rx_quality, rx_err_delta, rx_packets_delta);
4308 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4309 tx_quality = 100 - (tx_failures_delta * 100) /
4310 (tx_packets_delta + tx_failures_delta);
4313 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4314 tx_quality, tx_failures_delta, tx_packets_delta);
4316 rssi = priv->exp_avg_rssi;
4319 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4320 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4321 (priv->ieee->perfect_rssi - rssi) *
4322 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4323 62 * (priv->ieee->perfect_rssi - rssi))) /
4324 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4326 if (signal_quality > 100)
4327 signal_quality = 100;
4328 else if (signal_quality < 1)
4331 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4332 signal_quality, rssi);
4334 quality = min(rx_quality, signal_quality);
4335 quality = min(tx_quality, quality);
4336 quality = min(rate_quality, quality);
4337 quality = min(beacon_quality, quality);
4338 if (quality == beacon_quality)
4339 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4341 if (quality == rate_quality)
4342 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4344 if (quality == tx_quality)
4345 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4347 if (quality == rx_quality)
4348 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4350 if (quality == signal_quality)
4351 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4354 priv->quality = quality;
4356 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4357 IPW_STATS_INTERVAL);
4360 static void ipw_bg_gather_stats(struct work_struct *work)
4362 struct ipw_priv *priv =
4363 container_of(work, struct ipw_priv, gather_stats.work);
4364 mutex_lock(&priv->mutex);
4365 ipw_gather_stats(priv);
4366 mutex_unlock(&priv->mutex);
4369 /* Missed beacon behavior:
4370 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4371 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4372 * Above disassociate threshold, give up and stop scanning.
4373 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4374 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4377 priv->notif_missed_beacons = missed_count;
4379 if (missed_count > priv->disassociate_threshold &&
4380 priv->status & STATUS_ASSOCIATED) {
4381 /* If associated and we've hit the missed
4382 * beacon threshold, disassociate, turn
4383 * off roaming, and abort any active scans */
4384 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4385 IPW_DL_STATE | IPW_DL_ASSOC,
4386 "Missed beacon: %d - disassociate\n", missed_count);
4387 priv->status &= ~STATUS_ROAMING;
4388 if (priv->status & STATUS_SCANNING) {
4389 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4391 "Aborting scan with missed beacon.\n");
4392 queue_work(priv->workqueue, &priv->abort_scan);
4395 queue_work(priv->workqueue, &priv->disassociate);
4399 if (priv->status & STATUS_ROAMING) {
4400 /* If we are currently roaming, then just
4401 * print a debug statement... */
4402 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4403 "Missed beacon: %d - roam in progress\n",
4409 (missed_count > priv->roaming_threshold &&
4410 missed_count <= priv->disassociate_threshold)) {
4411 /* If we are not already roaming, set the ROAM
4412 * bit in the status and kick off a scan.
4413 * This can happen several times before we reach
4414 * disassociate_threshold. */
4415 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4416 "Missed beacon: %d - initiate "
4417 "roaming\n", missed_count);
4418 if (!(priv->status & STATUS_ROAMING)) {
4419 priv->status |= STATUS_ROAMING;
4420 if (!(priv->status & STATUS_SCANNING))
4421 queue_delayed_work(priv->workqueue,
4422 &priv->request_scan, 0);
4427 if (priv->status & STATUS_SCANNING &&
4428 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4429 /* Stop scan to keep fw from getting
4430 * stuck (only if we aren't roaming --
4431 * otherwise we'll never scan more than 2 or 3
4433 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4434 "Aborting scan with missed beacon.\n");
4435 queue_work(priv->workqueue, &priv->abort_scan);
4438 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4441 static void ipw_scan_event(struct work_struct *work)
4443 union iwreq_data wrqu;
4445 struct ipw_priv *priv =
4446 container_of(work, struct ipw_priv, scan_event.work);
4448 wrqu.data.length = 0;
4449 wrqu.data.flags = 0;
4450 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4453 static void handle_scan_event(struct ipw_priv *priv)
4455 /* Only userspace-requested scan completion events go out immediately */
4456 if (!priv->user_requested_scan) {
4457 if (!delayed_work_pending(&priv->scan_event))
4458 queue_delayed_work(priv->workqueue, &priv->scan_event,
4459 round_jiffies_relative(msecs_to_jiffies(4000)));
4461 union iwreq_data wrqu;
4463 priv->user_requested_scan = 0;
4464 cancel_delayed_work(&priv->scan_event);
4466 wrqu.data.length = 0;
4467 wrqu.data.flags = 0;
4468 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4473 * Handle host notification packet.
4474 * Called from interrupt routine
4476 static void ipw_rx_notification(struct ipw_priv *priv,
4477 struct ipw_rx_notification *notif)
4479 DECLARE_SSID_BUF(ssid);
4480 u16 size = le16_to_cpu(notif->size);
4482 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4484 switch (notif->subtype) {
4485 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4486 struct notif_association *assoc = ¬if->u.assoc;
4488 switch (assoc->state) {
4489 case CMAS_ASSOCIATED:{
4490 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4492 "associated: '%s' %pM\n",
4493 print_ssid(ssid, priv->essid,
4497 switch (priv->ieee->iw_mode) {
4499 memcpy(priv->ieee->bssid,
4500 priv->bssid, ETH_ALEN);
4504 memcpy(priv->ieee->bssid,
4505 priv->bssid, ETH_ALEN);
4507 /* clear out the station table */
4508 priv->num_stations = 0;
4511 ("queueing adhoc check\n");
4512 queue_delayed_work(priv->
4522 priv->status &= ~STATUS_ASSOCIATING;
4523 priv->status |= STATUS_ASSOCIATED;
4524 queue_work(priv->workqueue,
4525 &priv->system_config);
4527 #ifdef CONFIG_IPW2200_QOS
4528 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4529 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4530 if ((priv->status & STATUS_AUTH) &&
4531 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4532 == IEEE80211_STYPE_ASSOC_RESP)) {
4535 libipw_assoc_response)
4537 && (size <= 2314)) {
4547 libipw_rx_mgt(priv->
4552 ¬if->u.raw, &stats);
4557 schedule_work(&priv->link_up);
4562 case CMAS_AUTHENTICATED:{
4564 status & (STATUS_ASSOCIATED |
4566 struct notif_authenticate *auth
4568 IPW_DEBUG(IPW_DL_NOTIF |
4571 "deauthenticated: '%s' "
4573 ": (0x%04X) - %s\n",
4580 le16_to_cpu(auth->status),
4586 ~(STATUS_ASSOCIATING |
4590 schedule_work(&priv->link_down);
4594 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4596 "authenticated: '%s' %pM\n",
4597 print_ssid(ssid, priv->essid,
4604 if (priv->status & STATUS_AUTH) {
4606 libipw_assoc_response
4610 libipw_assoc_response
4612 IPW_DEBUG(IPW_DL_NOTIF |
4615 "association failed (0x%04X): %s\n",
4616 le16_to_cpu(resp->status),
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4624 "disassociated: '%s' %pM\n",
4625 print_ssid(ssid, priv->essid,
4630 ~(STATUS_DISASSOCIATING |
4631 STATUS_ASSOCIATING |
4632 STATUS_ASSOCIATED | STATUS_AUTH);
4633 if (priv->assoc_network
4634 && (priv->assoc_network->
4636 WLAN_CAPABILITY_IBSS))
4637 ipw_remove_current_network
4640 schedule_work(&priv->link_down);
4645 case CMAS_RX_ASSOC_RESP:
4649 IPW_ERROR("assoc: unknown (%d)\n",
4657 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4658 struct notif_authenticate *auth = ¬if->u.auth;
4659 switch (auth->state) {
4660 case CMAS_AUTHENTICATED:
4661 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4662 "authenticated: '%s' %pM\n",
4663 print_ssid(ssid, priv->essid,
4666 priv->status |= STATUS_AUTH;
4670 if (priv->status & STATUS_AUTH) {
4671 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4673 "authentication failed (0x%04X): %s\n",
4674 le16_to_cpu(auth->status),
4675 ipw_get_status_code(le16_to_cpu
4679 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681 "deauthenticated: '%s' %pM\n",
4682 print_ssid(ssid, priv->essid,
4686 priv->status &= ~(STATUS_ASSOCIATING |
4690 schedule_work(&priv->link_down);
4693 case CMAS_TX_AUTH_SEQ_1:
4694 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4695 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4697 case CMAS_RX_AUTH_SEQ_2:
4698 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4699 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4701 case CMAS_AUTH_SEQ_1_PASS:
4702 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4703 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4705 case CMAS_AUTH_SEQ_1_FAIL:
4706 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4707 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4709 case CMAS_TX_AUTH_SEQ_3:
4710 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4711 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4713 case CMAS_RX_AUTH_SEQ_4:
4714 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4717 case CMAS_AUTH_SEQ_2_PASS:
4718 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4721 case CMAS_AUTH_SEQ_2_FAIL:
4722 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4723 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4726 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4727 IPW_DL_ASSOC, "TX_ASSOC\n");
4729 case CMAS_RX_ASSOC_RESP:
4730 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4731 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4734 case CMAS_ASSOCIATED:
4735 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4736 IPW_DL_ASSOC, "ASSOCIATED\n");
4739 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4746 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4747 struct notif_channel_result *x =
4748 ¬if->u.channel_result;
4750 if (size == sizeof(*x)) {
4751 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4754 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4755 "(should be %zd)\n",
4761 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4762 struct notif_scan_complete *x = ¬if->u.scan_complete;
4763 if (size == sizeof(*x)) {
4765 ("Scan completed: type %d, %d channels, "
4766 "%d status\n", x->scan_type,
4767 x->num_channels, x->status);
4769 IPW_ERROR("Scan completed of wrong size %d "
4770 "(should be %zd)\n",
4775 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4777 wake_up_interruptible(&priv->wait_state);
4778 cancel_delayed_work(&priv->scan_check);
4780 if (priv->status & STATUS_EXIT_PENDING)
4783 priv->ieee->scans++;
4785 #ifdef CONFIG_IPW2200_MONITOR
4786 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4787 priv->status |= STATUS_SCAN_FORCED;
4788 queue_delayed_work(priv->workqueue,
4789 &priv->request_scan, 0);
4792 priv->status &= ~STATUS_SCAN_FORCED;
4793 #endif /* CONFIG_IPW2200_MONITOR */
4795 /* Do queued direct scans first */
4796 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4797 queue_delayed_work(priv->workqueue,
4798 &priv->request_direct_scan, 0);
4801 if (!(priv->status & (STATUS_ASSOCIATED |
4802 STATUS_ASSOCIATING |
4804 STATUS_DISASSOCIATING)))
4805 queue_work(priv->workqueue, &priv->associate);
4806 else if (priv->status & STATUS_ROAMING) {
4807 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4808 /* If a scan completed and we are in roam mode, then
4809 * the scan that completed was the one requested as a
4810 * result of entering roam... so, schedule the
4812 queue_work(priv->workqueue,
4815 /* Don't schedule if we aborted the scan */
4816 priv->status &= ~STATUS_ROAMING;
4817 } else if (priv->status & STATUS_SCAN_PENDING)
4818 queue_delayed_work(priv->workqueue,
4819 &priv->request_scan, 0);
4820 else if (priv->config & CFG_BACKGROUND_SCAN
4821 && priv->status & STATUS_ASSOCIATED)
4822 queue_delayed_work(priv->workqueue,
4823 &priv->request_scan,
4824 round_jiffies_relative(HZ));
4826 /* Send an empty event to user space.
4827 * We don't send the received data on the event because
4828 * it would require us to do complex transcoding, and
4829 * we want to minimise the work done in the irq handler
4830 * Use a request to extract the data.
4831 * Also, we generate this even for any scan, regardless
4832 * on how the scan was initiated. User space can just
4833 * sync on periodic scan to get fresh data...
4835 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4836 handle_scan_event(priv);
4840 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4841 struct notif_frag_length *x = ¬if->u.frag_len;
4843 if (size == sizeof(*x))
4844 IPW_ERROR("Frag length: %d\n",
4845 le16_to_cpu(x->frag_length));
4847 IPW_ERROR("Frag length of wrong size %d "
4848 "(should be %zd)\n",
4853 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4854 struct notif_link_deterioration *x =
4855 ¬if->u.link_deterioration;
4857 if (size == sizeof(*x)) {
4858 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4859 "link deterioration: type %d, cnt %d\n",
4860 x->silence_notification_type,
4862 memcpy(&priv->last_link_deterioration, x,
4865 IPW_ERROR("Link Deterioration of wrong size %d "
4866 "(should be %zd)\n",
4872 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4873 IPW_ERROR("Dino config\n");
4875 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4876 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4881 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4882 struct notif_beacon_state *x = ¬if->u.beacon_state;
4883 if (size != sizeof(*x)) {
4885 ("Beacon state of wrong size %d (should "
4886 "be %zd)\n", size, sizeof(*x));
4890 if (le32_to_cpu(x->state) ==
4891 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4892 ipw_handle_missed_beacon(priv,
4899 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4900 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4901 if (size == sizeof(*x)) {
4902 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4903 "0x%02x station %d\n",
4904 x->key_state, x->security_type,
4910 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4915 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4916 struct notif_calibration *x = ¬if->u.calibration;
4918 if (size == sizeof(*x)) {
4919 memcpy(&priv->calib, x, sizeof(*x));
4920 IPW_DEBUG_INFO("TODO: Calibration\n");
4925 ("Calibration of wrong size %d (should be %zd)\n",
4930 case HOST_NOTIFICATION_NOISE_STATS:{
4931 if (size == sizeof(u32)) {
4932 priv->exp_avg_noise =
4933 exponential_average(priv->exp_avg_noise,
4934 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4940 ("Noise stat is wrong size %d (should be %zd)\n",
4946 IPW_DEBUG_NOTIF("Unknown notification: "
4947 "subtype=%d,flags=0x%2x,size=%d\n",
4948 notif->subtype, notif->flags, size);
4953 * Destroys all DMA structures and initialise them again
4956 * @return error code
4958 static int ipw_queue_reset(struct ipw_priv *priv)
4961 /** @todo customize queue sizes */
4962 int nTx = 64, nTxCmd = 8;
4963 ipw_tx_queue_free(priv);
4965 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4966 IPW_TX_CMD_QUEUE_READ_INDEX,
4967 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4968 IPW_TX_CMD_QUEUE_BD_BASE,
4969 IPW_TX_CMD_QUEUE_BD_SIZE);
4971 IPW_ERROR("Tx Cmd queue init failed\n");
4975 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4976 IPW_TX_QUEUE_0_READ_INDEX,
4977 IPW_TX_QUEUE_0_WRITE_INDEX,
4978 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4980 IPW_ERROR("Tx 0 queue init failed\n");
4983 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4984 IPW_TX_QUEUE_1_READ_INDEX,
4985 IPW_TX_QUEUE_1_WRITE_INDEX,
4986 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4988 IPW_ERROR("Tx 1 queue init failed\n");
4991 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4992 IPW_TX_QUEUE_2_READ_INDEX,
4993 IPW_TX_QUEUE_2_WRITE_INDEX,
4994 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4996 IPW_ERROR("Tx 2 queue init failed\n");
4999 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5000 IPW_TX_QUEUE_3_READ_INDEX,
5001 IPW_TX_QUEUE_3_WRITE_INDEX,
5002 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5004 IPW_ERROR("Tx 3 queue init failed\n");
5008 priv->rx_bufs_min = 0;
5009 priv->rx_pend_max = 0;
5013 ipw_tx_queue_free(priv);
5018 * Reclaim Tx queue entries no more used by NIC.
5020 * When FW advances 'R' index, all entries between old and
5021 * new 'R' index need to be reclaimed. As result, some free space
5022 * forms. If there is enough free space (> low mark), wake Tx queue.
5024 * @note Need to protect against garbage in 'R' index
5028 * @return Number of used entries remains in the queue
5030 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5031 struct clx2_tx_queue *txq, int qindex)
5035 struct clx2_queue *q = &txq->q;
5037 hw_tail = ipw_read32(priv, q->reg_r);
5038 if (hw_tail >= q->n_bd) {
5040 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5044 for (; q->last_used != hw_tail;
5045 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5046 ipw_queue_tx_free_tfd(priv, txq);
5050 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5052 netif_wake_queue(priv->net_dev);
5053 used = q->first_empty - q->last_used;
5060 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5063 struct clx2_tx_queue *txq = &priv->txq_cmd;
5064 struct clx2_queue *q = &txq->q;
5065 struct tfd_frame *tfd;
5067 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5068 IPW_ERROR("No space for Tx\n");
5072 tfd = &txq->bd[q->first_empty];
5073 txq->txb[q->first_empty] = NULL;
5075 memset(tfd, 0, sizeof(*tfd));
5076 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5077 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5079 tfd->u.cmd.index = hcmd;
5080 tfd->u.cmd.length = len;
5081 memcpy(tfd->u.cmd.payload, buf, len);
5082 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5083 ipw_write32(priv, q->reg_w, q->first_empty);
5084 _ipw_read32(priv, 0x90);
5090 * Rx theory of operation
5092 * The host allocates 32 DMA target addresses and passes the host address
5093 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5097 * The host/firmware share two index registers for managing the Rx buffers.
5099 * The READ index maps to the first position that the firmware may be writing
5100 * to -- the driver can read up to (but not including) this position and get
5102 * The READ index is managed by the firmware once the card is enabled.
5104 * The WRITE index maps to the last position the driver has read from -- the
5105 * position preceding WRITE is the last slot the firmware can place a packet.
5107 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5110 * During initialization the host sets up the READ queue position to the first
5111 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5113 * When the firmware places a packet in a buffer it will advance the READ index
5114 * and fire the RX interrupt. The driver can then query the READ index and
5115 * process as many packets as possible, moving the WRITE index forward as it
5116 * resets the Rx queue buffers with new memory.
5118 * The management in the driver is as follows:
5119 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5120 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5121 * to replensish the ipw->rxq->rx_free.
5122 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5123 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5124 * 'processed' and 'read' driver indexes as well)
5125 * + A received packet is processed and handed to the kernel network stack,
5126 * detached from the ipw->rxq. The driver 'processed' index is updated.
5127 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5128 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5129 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5130 * were enough free buffers and RX_STALLED is set it is cleared.
5135 * ipw_rx_queue_alloc() Allocates rx_free
5136 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5137 * ipw_rx_queue_restock
5138 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5139 * queue, updates firmware pointers, and updates
5140 * the WRITE index. If insufficient rx_free buffers
5141 * are available, schedules ipw_rx_queue_replenish
5143 * -- enable interrupts --
5144 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5145 * READ INDEX, detaching the SKB from the pool.
5146 * Moves the packet buffer from queue to rx_used.
5147 * Calls ipw_rx_queue_restock to refill any empty
5154 * If there are slots in the RX queue that need to be restocked,
5155 * and we have free pre-allocated buffers, fill the ranks as much
5156 * as we can pulling from rx_free.
5158 * This moves the 'write' index forward to catch up with 'processed', and
5159 * also updates the memory address in the firmware to reference the new
5162 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5164 struct ipw_rx_queue *rxq = priv->rxq;
5165 struct list_head *element;
5166 struct ipw_rx_mem_buffer *rxb;
5167 unsigned long flags;
5170 spin_lock_irqsave(&rxq->lock, flags);
5172 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5173 element = rxq->rx_free.next;
5174 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5177 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5179 rxq->queue[rxq->write] = rxb;
5180 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5183 spin_unlock_irqrestore(&rxq->lock, flags);
5185 /* If the pre-allocated buffer pool is dropping low, schedule to
5187 if (rxq->free_count <= RX_LOW_WATERMARK)
5188 queue_work(priv->workqueue, &priv->rx_replenish);
5190 /* If we've added more space for the firmware to place data, tell it */
5191 if (write != rxq->write)
5192 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5196 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5197 * Also restock the Rx queue via ipw_rx_queue_restock.
5199 * This is called as a scheduled work item (except for during intialization)
5201 static void ipw_rx_queue_replenish(void *data)
5203 struct ipw_priv *priv = data;
5204 struct ipw_rx_queue *rxq = priv->rxq;
5205 struct list_head *element;
5206 struct ipw_rx_mem_buffer *rxb;
5207 unsigned long flags;
5209 spin_lock_irqsave(&rxq->lock, flags);
5210 while (!list_empty(&rxq->rx_used)) {
5211 element = rxq->rx_used.next;
5212 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5213 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5215 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5216 priv->net_dev->name);
5217 /* We don't reschedule replenish work here -- we will
5218 * call the restock method and if it still needs
5219 * more buffers it will schedule replenish */
5225 pci_map_single(priv->pci_dev, rxb->skb->data,
5226 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5228 list_add_tail(&rxb->list, &rxq->rx_free);
5231 spin_unlock_irqrestore(&rxq->lock, flags);
5233 ipw_rx_queue_restock(priv);
5236 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5238 struct ipw_priv *priv =
5239 container_of(work, struct ipw_priv, rx_replenish);
5240 mutex_lock(&priv->mutex);
5241 ipw_rx_queue_replenish(priv);
5242 mutex_unlock(&priv->mutex);
5245 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5246 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5247 * This free routine walks the list of POOL entries and if SKB is set to
5248 * non NULL it is unmapped and freed
5250 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5257 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5258 if (rxq->pool[i].skb != NULL) {
5259 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5260 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5261 dev_kfree_skb(rxq->pool[i].skb);
5268 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5270 struct ipw_rx_queue *rxq;
5273 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5274 if (unlikely(!rxq)) {
5275 IPW_ERROR("memory allocation failed\n");
5278 spin_lock_init(&rxq->lock);
5279 INIT_LIST_HEAD(&rxq->rx_free);
5280 INIT_LIST_HEAD(&rxq->rx_used);
5282 /* Fill the rx_used queue with _all_ of the Rx buffers */
5283 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5284 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5286 /* Set us so that we have processed and used all buffers, but have
5287 * not restocked the Rx queue with fresh buffers */
5288 rxq->read = rxq->write = 0;
5289 rxq->free_count = 0;
5294 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5296 rate &= ~LIBIPW_BASIC_RATE_MASK;
5297 if (ieee_mode == IEEE_A) {
5299 case LIBIPW_OFDM_RATE_6MB:
5300 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5302 case LIBIPW_OFDM_RATE_9MB:
5303 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5305 case LIBIPW_OFDM_RATE_12MB:
5307 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5308 case LIBIPW_OFDM_RATE_18MB:
5310 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5311 case LIBIPW_OFDM_RATE_24MB:
5313 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5314 case LIBIPW_OFDM_RATE_36MB:
5316 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5317 case LIBIPW_OFDM_RATE_48MB:
5319 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5320 case LIBIPW_OFDM_RATE_54MB:
5322 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5330 case LIBIPW_CCK_RATE_1MB:
5331 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5332 case LIBIPW_CCK_RATE_2MB:
5333 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5334 case LIBIPW_CCK_RATE_5MB:
5335 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5336 case LIBIPW_CCK_RATE_11MB:
5337 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5340 /* If we are limited to B modulations, bail at this point */
5341 if (ieee_mode == IEEE_B)
5346 case LIBIPW_OFDM_RATE_6MB:
5347 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5348 case LIBIPW_OFDM_RATE_9MB:
5349 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5350 case LIBIPW_OFDM_RATE_12MB:
5351 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5352 case LIBIPW_OFDM_RATE_18MB:
5353 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5354 case LIBIPW_OFDM_RATE_24MB:
5355 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5356 case LIBIPW_OFDM_RATE_36MB:
5357 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5358 case LIBIPW_OFDM_RATE_48MB:
5359 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5360 case LIBIPW_OFDM_RATE_54MB:
5361 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5367 static int ipw_compatible_rates(struct ipw_priv *priv,
5368 const struct libipw_network *network,
5369 struct ipw_supported_rates *rates)
5373 memset(rates, 0, sizeof(*rates));
5374 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5375 rates->num_rates = 0;
5376 for (i = 0; i < num_rates; i++) {
5377 if (!ipw_is_rate_in_mask(priv, network->mode,
5378 network->rates[i])) {
5380 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5381 IPW_DEBUG_SCAN("Adding masked mandatory "
5384 rates->supported_rates[rates->num_rates++] =
5389 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5390 network->rates[i], priv->rates_mask);
5394 rates->supported_rates[rates->num_rates++] = network->rates[i];
5397 num_rates = min(network->rates_ex_len,
5398 (u8) (IPW_MAX_RATES - num_rates));
5399 for (i = 0; i < num_rates; i++) {
5400 if (!ipw_is_rate_in_mask(priv, network->mode,
5401 network->rates_ex[i])) {
5402 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5403 IPW_DEBUG_SCAN("Adding masked mandatory "
5405 network->rates_ex[i]);
5406 rates->supported_rates[rates->num_rates++] =
5411 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5412 network->rates_ex[i], priv->rates_mask);
5416 rates->supported_rates[rates->num_rates++] =
5417 network->rates_ex[i];
5423 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5424 const struct ipw_supported_rates *src)
5427 for (i = 0; i < src->num_rates; i++)
5428 dest->supported_rates[i] = src->supported_rates[i];
5429 dest->num_rates = src->num_rates;
5432 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5433 * mask should ever be used -- right now all callers to add the scan rates are
5434 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5435 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5436 u8 modulation, u32 rate_mask)
5438 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439 LIBIPW_BASIC_RATE_MASK : 0;
5441 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5442 rates->supported_rates[rates->num_rates++] =
5443 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5445 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5446 rates->supported_rates[rates->num_rates++] =
5447 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5449 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5450 rates->supported_rates[rates->num_rates++] = basic_mask |
5451 LIBIPW_CCK_RATE_5MB;
5453 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5454 rates->supported_rates[rates->num_rates++] = basic_mask |
5455 LIBIPW_CCK_RATE_11MB;
5458 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5459 u8 modulation, u32 rate_mask)
5461 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5462 LIBIPW_BASIC_RATE_MASK : 0;
5464 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5465 rates->supported_rates[rates->num_rates++] = basic_mask |
5466 LIBIPW_OFDM_RATE_6MB;
5468 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5469 rates->supported_rates[rates->num_rates++] =
5470 LIBIPW_OFDM_RATE_9MB;
5472 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5473 rates->supported_rates[rates->num_rates++] = basic_mask |
5474 LIBIPW_OFDM_RATE_12MB;
5476 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5477 rates->supported_rates[rates->num_rates++] =
5478 LIBIPW_OFDM_RATE_18MB;
5480 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5481 rates->supported_rates[rates->num_rates++] = basic_mask |
5482 LIBIPW_OFDM_RATE_24MB;
5484 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5485 rates->supported_rates[rates->num_rates++] =
5486 LIBIPW_OFDM_RATE_36MB;
5488 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5489 rates->supported_rates[rates->num_rates++] =
5490 LIBIPW_OFDM_RATE_48MB;
5492 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5493 rates->supported_rates[rates->num_rates++] =
5494 LIBIPW_OFDM_RATE_54MB;
5497 struct ipw_network_match {
5498 struct libipw_network *network;
5499 struct ipw_supported_rates rates;
5502 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5503 struct ipw_network_match *match,
5504 struct libipw_network *network,
5507 struct ipw_supported_rates rates;
5508 DECLARE_SSID_BUF(ssid);
5510 /* Verify that this network's capability is compatible with the
5511 * current mode (AdHoc or Infrastructure) */
5512 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5513 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5514 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5515 "capability mismatch.\n",
5516 print_ssid(ssid, network->ssid,
5522 if (unlikely(roaming)) {
5523 /* If we are roaming, then ensure check if this is a valid
5524 * network to try and roam to */
5525 if ((network->ssid_len != match->network->ssid_len) ||
5526 memcmp(network->ssid, match->network->ssid,
5527 network->ssid_len)) {
5528 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5529 "because of non-network ESSID.\n",
5530 print_ssid(ssid, network->ssid,
5536 /* If an ESSID has been configured then compare the broadcast
5538 if ((priv->config & CFG_STATIC_ESSID) &&
5539 ((network->ssid_len != priv->essid_len) ||
5540 memcmp(network->ssid, priv->essid,
5541 min(network->ssid_len, priv->essid_len)))) {
5542 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5545 print_ssid(ssid, network->ssid,
5548 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5549 "because of ESSID mismatch: '%s'.\n",
5550 escaped, network->bssid,
5551 print_ssid(ssid, priv->essid,
5557 /* If the old network rate is better than this one, don't bother
5558 * testing everything else. */
5560 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5561 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5562 "current network.\n",
5563 print_ssid(ssid, match->network->ssid,
5564 match->network->ssid_len));
5566 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5567 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5568 "current network.\n",
5569 print_ssid(ssid, match->network->ssid,
5570 match->network->ssid_len));
5574 /* Now go through and see if the requested network is valid... */
5575 if (priv->ieee->scan_age != 0 &&
5576 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5577 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5578 "because of age: %ums.\n",
5579 print_ssid(ssid, network->ssid,
5582 jiffies_to_msecs(jiffies -
5583 network->last_scanned));
5587 if ((priv->config & CFG_STATIC_CHANNEL) &&
5588 (network->channel != priv->channel)) {
5589 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5590 "because of channel mismatch: %d != %d.\n",
5591 print_ssid(ssid, network->ssid,
5594 network->channel, priv->channel);
5598 /* Verify privacy compatability */
5599 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5600 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5601 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5602 "because of privacy mismatch: %s != %s.\n",
5603 print_ssid(ssid, network->ssid,
5607 capability & CAP_PRIVACY_ON ? "on" : "off",
5609 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5614 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5615 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5616 "because of the same BSSID match: %pM"
5617 ".\n", print_ssid(ssid, network->ssid,
5624 /* Filter out any incompatible freq / mode combinations */
5625 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5626 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5627 "because of invalid frequency/mode "
5629 print_ssid(ssid, network->ssid,
5635 /* Ensure that the rates supported by the driver are compatible with
5636 * this AP, including verification of basic rates (mandatory) */
5637 if (!ipw_compatible_rates(priv, network, &rates)) {
5638 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5639 "because configured rate mask excludes "
5640 "AP mandatory rate.\n",
5641 print_ssid(ssid, network->ssid,
5647 if (rates.num_rates == 0) {
5648 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5649 "because of no compatible rates.\n",
5650 print_ssid(ssid, network->ssid,
5656 /* TODO: Perform any further minimal comparititive tests. We do not
5657 * want to put too much policy logic here; intelligent scan selection
5658 * should occur within a generic IEEE 802.11 user space tool. */
5660 /* Set up 'new' AP to this network */
5661 ipw_copy_rates(&match->rates, &rates);
5662 match->network = network;
5663 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5664 print_ssid(ssid, network->ssid, network->ssid_len),
5670 static void ipw_merge_adhoc_network(struct work_struct *work)
5672 DECLARE_SSID_BUF(ssid);
5673 struct ipw_priv *priv =
5674 container_of(work, struct ipw_priv, merge_networks);
5675 struct libipw_network *network = NULL;
5676 struct ipw_network_match match = {
5677 .network = priv->assoc_network
5680 if ((priv->status & STATUS_ASSOCIATED) &&
5681 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5682 /* First pass through ROAM process -- look for a better
5684 unsigned long flags;
5686 spin_lock_irqsave(&priv->ieee->lock, flags);
5687 list_for_each_entry(network, &priv->ieee->network_list, list) {
5688 if (network != priv->assoc_network)
5689 ipw_find_adhoc_network(priv, &match, network,
5692 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5694 if (match.network == priv->assoc_network) {
5695 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5700 mutex_lock(&priv->mutex);
5701 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5702 IPW_DEBUG_MERGE("remove network %s\n",
5703 print_ssid(ssid, priv->essid,
5705 ipw_remove_current_network(priv);
5708 ipw_disassociate(priv);
5709 priv->assoc_network = match.network;
5710 mutex_unlock(&priv->mutex);
5715 static int ipw_best_network(struct ipw_priv *priv,
5716 struct ipw_network_match *match,
5717 struct libipw_network *network, int roaming)
5719 struct ipw_supported_rates rates;
5720 DECLARE_SSID_BUF(ssid);
5722 /* Verify that this network's capability is compatible with the
5723 * current mode (AdHoc or Infrastructure) */
5724 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5725 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5726 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5727 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5728 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5729 "capability mismatch.\n",
5730 print_ssid(ssid, network->ssid,
5736 if (unlikely(roaming)) {
5737 /* If we are roaming, then ensure check if this is a valid
5738 * network to try and roam to */
5739 if ((network->ssid_len != match->network->ssid_len) ||
5740 memcmp(network->ssid, match->network->ssid,
5741 network->ssid_len)) {
5742 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5743 "because of non-network ESSID.\n",
5744 print_ssid(ssid, network->ssid,
5750 /* If an ESSID has been configured then compare the broadcast
5752 if ((priv->config & CFG_STATIC_ESSID) &&
5753 ((network->ssid_len != priv->essid_len) ||
5754 memcmp(network->ssid, priv->essid,
5755 min(network->ssid_len, priv->essid_len)))) {
5756 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5758 print_ssid(ssid, network->ssid,
5761 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5762 "because of ESSID mismatch: '%s'.\n",
5763 escaped, network->bssid,
5764 print_ssid(ssid, priv->essid,
5770 /* If the old network rate is better than this one, don't bother
5771 * testing everything else. */
5772 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5773 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5775 print_ssid(ssid, network->ssid, network->ssid_len),
5777 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5778 "'%s (%pM)' has a stronger signal.\n",
5779 escaped, network->bssid,
5780 print_ssid(ssid, match->network->ssid,
5781 match->network->ssid_len),
5782 match->network->bssid);
5786 /* If this network has already had an association attempt within the
5787 * last 3 seconds, do not try and associate again... */
5788 if (network->last_associate &&
5789 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5790 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5791 "because of storming (%ums since last "
5792 "assoc attempt).\n",
5793 print_ssid(ssid, network->ssid,
5796 jiffies_to_msecs(jiffies -
5797 network->last_associate));
5801 /* Now go through and see if the requested network is valid... */
5802 if (priv->ieee->scan_age != 0 &&
5803 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5804 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5805 "because of age: %ums.\n",
5806 print_ssid(ssid, network->ssid,
5809 jiffies_to_msecs(jiffies -
5810 network->last_scanned));
5814 if ((priv->config & CFG_STATIC_CHANNEL) &&
5815 (network->channel != priv->channel)) {
5816 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5817 "because of channel mismatch: %d != %d.\n",
5818 print_ssid(ssid, network->ssid,
5821 network->channel, priv->channel);
5825 /* Verify privacy compatability */
5826 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5827 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5828 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5829 "because of privacy mismatch: %s != %s.\n",
5830 print_ssid(ssid, network->ssid,
5833 priv->capability & CAP_PRIVACY_ON ? "on" :
5835 network->capability &
5836 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5840 if ((priv->config & CFG_STATIC_BSSID) &&
5841 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5842 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5843 "because of BSSID mismatch: %pM.\n",
5844 print_ssid(ssid, network->ssid,
5846 network->bssid, priv->bssid);
5850 /* Filter out any incompatible freq / mode combinations */
5851 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5852 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5853 "because of invalid frequency/mode "
5855 print_ssid(ssid, network->ssid,
5861 /* Filter out invalid channel in current GEO */
5862 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5863 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5864 "because of invalid channel in current GEO\n",
5865 print_ssid(ssid, network->ssid,
5871 /* Ensure that the rates supported by the driver are compatible with
5872 * this AP, including verification of basic rates (mandatory) */
5873 if (!ipw_compatible_rates(priv, network, &rates)) {
5874 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5875 "because configured rate mask excludes "
5876 "AP mandatory rate.\n",
5877 print_ssid(ssid, network->ssid,
5883 if (rates.num_rates == 0) {
5884 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5885 "because of no compatible rates.\n",
5886 print_ssid(ssid, network->ssid,
5892 /* TODO: Perform any further minimal comparititive tests. We do not
5893 * want to put too much policy logic here; intelligent scan selection
5894 * should occur within a generic IEEE 802.11 user space tool. */
5896 /* Set up 'new' AP to this network */
5897 ipw_copy_rates(&match->rates, &rates);
5898 match->network = network;
5900 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5901 print_ssid(ssid, network->ssid, network->ssid_len),
5907 static void ipw_adhoc_create(struct ipw_priv *priv,
5908 struct libipw_network *network)
5910 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5914 * For the purposes of scanning, we can set our wireless mode
5915 * to trigger scans across combinations of bands, but when it
5916 * comes to creating a new ad-hoc network, we have tell the FW
5917 * exactly which band to use.
5919 * We also have the possibility of an invalid channel for the
5920 * chossen band. Attempting to create a new ad-hoc network
5921 * with an invalid channel for wireless mode will trigger a
5925 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5926 case LIBIPW_52GHZ_BAND:
5927 network->mode = IEEE_A;
5928 i = libipw_channel_to_index(priv->ieee, priv->channel);
5930 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5931 IPW_WARNING("Overriding invalid channel\n");
5932 priv->channel = geo->a[0].channel;
5936 case LIBIPW_24GHZ_BAND:
5937 if (priv->ieee->mode & IEEE_G)
5938 network->mode = IEEE_G;
5940 network->mode = IEEE_B;
5941 i = libipw_channel_to_index(priv->ieee, priv->channel);
5943 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5944 IPW_WARNING("Overriding invalid channel\n");
5945 priv->channel = geo->bg[0].channel;
5950 IPW_WARNING("Overriding invalid channel\n");
5951 if (priv->ieee->mode & IEEE_A) {
5952 network->mode = IEEE_A;
5953 priv->channel = geo->a[0].channel;
5954 } else if (priv->ieee->mode & IEEE_G) {
5955 network->mode = IEEE_G;
5956 priv->channel = geo->bg[0].channel;
5958 network->mode = IEEE_B;
5959 priv->channel = geo->bg[0].channel;
5964 network->channel = priv->channel;
5965 priv->config |= CFG_ADHOC_PERSIST;
5966 ipw_create_bssid(priv, network->bssid);
5967 network->ssid_len = priv->essid_len;
5968 memcpy(network->ssid, priv->essid, priv->essid_len);
5969 memset(&network->stats, 0, sizeof(network->stats));
5970 network->capability = WLAN_CAPABILITY_IBSS;
5971 if (!(priv->config & CFG_PREAMBLE_LONG))
5972 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5973 if (priv->capability & CAP_PRIVACY_ON)
5974 network->capability |= WLAN_CAPABILITY_PRIVACY;
5975 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5976 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5977 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5978 memcpy(network->rates_ex,
5979 &priv->rates.supported_rates[network->rates_len],
5980 network->rates_ex_len);
5981 network->last_scanned = 0;
5983 network->last_associate = 0;
5984 network->time_stamp[0] = 0;
5985 network->time_stamp[1] = 0;
5986 network->beacon_interval = 100; /* Default */
5987 network->listen_interval = 10; /* Default */
5988 network->atim_window = 0; /* Default */
5989 network->wpa_ie_len = 0;
5990 network->rsn_ie_len = 0;
5993 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5995 struct ipw_tgi_tx_key key;
5997 if (!(priv->ieee->sec.flags & (1 << index)))
6001 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6002 key.security_type = type;
6003 key.station_index = 0; /* always 0 for BSS */
6005 /* 0 for new key; previous value of counter (after fatal error) */
6006 key.tx_counter[0] = cpu_to_le32(0);
6007 key.tx_counter[1] = cpu_to_le32(0);
6009 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6012 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6014 struct ipw_wep_key key;
6017 key.cmd_id = DINO_CMD_WEP_KEY;
6020 /* Note: AES keys cannot be set for multiple times.
6021 * Only set it at the first time. */
6022 for (i = 0; i < 4; i++) {
6023 key.key_index = i | type;
6024 if (!(priv->ieee->sec.flags & (1 << i))) {
6029 key.key_size = priv->ieee->sec.key_sizes[i];
6030 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6032 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6036 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6038 if (priv->ieee->host_encrypt)
6043 priv->sys_config.disable_unicast_decryption = 0;
6044 priv->ieee->host_decrypt = 0;
6047 priv->sys_config.disable_unicast_decryption = 1;
6048 priv->ieee->host_decrypt = 1;
6051 priv->sys_config.disable_unicast_decryption = 0;
6052 priv->ieee->host_decrypt = 0;
6055 priv->sys_config.disable_unicast_decryption = 1;
6062 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6064 if (priv->ieee->host_encrypt)
6069 priv->sys_config.disable_multicast_decryption = 0;
6072 priv->sys_config.disable_multicast_decryption = 1;
6075 priv->sys_config.disable_multicast_decryption = 0;
6078 priv->sys_config.disable_multicast_decryption = 1;
6085 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6087 switch (priv->ieee->sec.level) {
6089 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6090 ipw_send_tgi_tx_key(priv,
6091 DCT_FLAG_EXT_SECURITY_CCM,
6092 priv->ieee->sec.active_key);
6094 if (!priv->ieee->host_mc_decrypt)
6095 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6098 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6099 ipw_send_tgi_tx_key(priv,
6100 DCT_FLAG_EXT_SECURITY_TKIP,
6101 priv->ieee->sec.active_key);
6104 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6105 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6106 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6114 static void ipw_adhoc_check(void *data)
6116 struct ipw_priv *priv = data;
6118 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6119 !(priv->config & CFG_ADHOC_PERSIST)) {
6120 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6121 IPW_DL_STATE | IPW_DL_ASSOC,
6122 "Missed beacon: %d - disassociate\n",
6123 priv->missed_adhoc_beacons);
6124 ipw_remove_current_network(priv);
6125 ipw_disassociate(priv);
6129 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6130 le16_to_cpu(priv->assoc_request.beacon_interval));
6133 static void ipw_bg_adhoc_check(struct work_struct *work)
6135 struct ipw_priv *priv =
6136 container_of(work, struct ipw_priv, adhoc_check.work);
6137 mutex_lock(&priv->mutex);
6138 ipw_adhoc_check(priv);
6139 mutex_unlock(&priv->mutex);
6142 static void ipw_debug_config(struct ipw_priv *priv)
6144 DECLARE_SSID_BUF(ssid);
6145 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6146 "[CFG 0x%08X]\n", priv->config);
6147 if (priv->config & CFG_STATIC_CHANNEL)
6148 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6150 IPW_DEBUG_INFO("Channel unlocked.\n");
6151 if (priv->config & CFG_STATIC_ESSID)
6152 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6153 print_ssid(ssid, priv->essid, priv->essid_len));
6155 IPW_DEBUG_INFO("ESSID unlocked.\n");
6156 if (priv->config & CFG_STATIC_BSSID)
6157 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6159 IPW_DEBUG_INFO("BSSID unlocked.\n");
6160 if (priv->capability & CAP_PRIVACY_ON)
6161 IPW_DEBUG_INFO("PRIVACY on\n");
6163 IPW_DEBUG_INFO("PRIVACY off\n");
6164 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6167 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6169 /* TODO: Verify that this works... */
6170 struct ipw_fixed_rate fr;
6173 u16 new_tx_rates = priv->rates_mask;
6175 /* Identify 'current FW band' and match it with the fixed
6178 switch (priv->ieee->freq_band) {
6179 case LIBIPW_52GHZ_BAND: /* A only */
6181 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6182 /* Invalid fixed rate mask */
6184 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6189 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6192 default: /* 2.4Ghz or Mixed */
6194 if (mode == IEEE_B) {
6195 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6196 /* Invalid fixed rate mask */
6198 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6205 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6206 LIBIPW_OFDM_RATES_MASK)) {
6207 /* Invalid fixed rate mask */
6209 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6214 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6215 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6216 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6219 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6220 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6221 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6224 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6225 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6226 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6229 new_tx_rates |= mask;
6233 fr.tx_rates = cpu_to_le16(new_tx_rates);
6235 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6236 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6239 static void ipw_abort_scan(struct ipw_priv *priv)
6243 if (priv->status & STATUS_SCAN_ABORTING) {
6244 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6247 priv->status |= STATUS_SCAN_ABORTING;
6249 err = ipw_send_scan_abort(priv);
6251 IPW_DEBUG_HC("Request to abort scan failed.\n");
6254 static void ipw_add_scan_channels(struct ipw_priv *priv,
6255 struct ipw_scan_request_ext *scan,
6258 int channel_index = 0;
6259 const struct libipw_geo *geo;
6262 geo = libipw_get_geo(priv->ieee);
6264 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6265 int start = channel_index;
6266 for (i = 0; i < geo->a_channels; i++) {
6267 if ((priv->status & STATUS_ASSOCIATED) &&
6268 geo->a[i].channel == priv->channel)
6271 scan->channels_list[channel_index] = geo->a[i].channel;
6272 ipw_set_scan_type(scan, channel_index,
6274 flags & LIBIPW_CH_PASSIVE_ONLY ?
6275 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6279 if (start != channel_index) {
6280 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6281 (channel_index - start);
6286 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6287 int start = channel_index;
6288 if (priv->config & CFG_SPEED_SCAN) {
6290 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6291 /* nop out the list */
6296 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6298 priv->speed_scan[priv->speed_scan_pos];
6300 priv->speed_scan_pos = 0;
6301 channel = priv->speed_scan[0];
6303 if ((priv->status & STATUS_ASSOCIATED) &&
6304 channel == priv->channel) {
6305 priv->speed_scan_pos++;
6309 /* If this channel has already been
6310 * added in scan, break from loop
6311 * and this will be the first channel
6314 if (channels[channel - 1] != 0)
6317 channels[channel - 1] = 1;
6318 priv->speed_scan_pos++;
6320 scan->channels_list[channel_index] = channel;
6322 libipw_channel_to_index(priv->ieee, channel);
6323 ipw_set_scan_type(scan, channel_index,
6326 LIBIPW_CH_PASSIVE_ONLY ?
6327 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6331 for (i = 0; i < geo->bg_channels; i++) {
6332 if ((priv->status & STATUS_ASSOCIATED) &&
6333 geo->bg[i].channel == priv->channel)
6336 scan->channels_list[channel_index] =
6338 ipw_set_scan_type(scan, channel_index,
6341 LIBIPW_CH_PASSIVE_ONLY ?
6342 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6347 if (start != channel_index) {
6348 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6349 (channel_index - start);
6354 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6356 /* staying on passive channels longer than the DTIM interval during a
6357 * scan, while associated, causes the firmware to cancel the scan
6358 * without notification. Hence, don't stay on passive channels longer
6359 * than the beacon interval.
6361 if (priv->status & STATUS_ASSOCIATED
6362 && priv->assoc_network->beacon_interval > 10)
6363 return priv->assoc_network->beacon_interval - 10;
6368 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6370 struct ipw_scan_request_ext scan;
6371 int err = 0, scan_type;
6373 if (!(priv->status & STATUS_INIT) ||
6374 (priv->status & STATUS_EXIT_PENDING))
6377 mutex_lock(&priv->mutex);
6379 if (direct && (priv->direct_scan_ssid_len == 0)) {
6380 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6381 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6385 if (priv->status & STATUS_SCANNING) {
6386 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6387 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6388 STATUS_SCAN_PENDING;
6392 if (!(priv->status & STATUS_SCAN_FORCED) &&
6393 priv->status & STATUS_SCAN_ABORTING) {
6394 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6395 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6396 STATUS_SCAN_PENDING;
6400 if (priv->status & STATUS_RF_KILL_MASK) {
6401 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6402 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6403 STATUS_SCAN_PENDING;
6407 memset(&scan, 0, sizeof(scan));
6408 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6410 if (type == IW_SCAN_TYPE_PASSIVE) {
6411 IPW_DEBUG_WX("use passive scanning\n");
6412 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6413 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6414 cpu_to_le16(ipw_passive_dwell_time(priv));
6415 ipw_add_scan_channels(priv, &scan, scan_type);
6419 /* Use active scan by default. */
6420 if (priv->config & CFG_SPEED_SCAN)
6421 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6424 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6427 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6430 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6431 cpu_to_le16(ipw_passive_dwell_time(priv));
6432 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6434 #ifdef CONFIG_IPW2200_MONITOR
6435 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6439 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6440 case LIBIPW_52GHZ_BAND:
6441 band = (u8) (IPW_A_MODE << 6) | 1;
6442 channel = priv->channel;
6445 case LIBIPW_24GHZ_BAND:
6446 band = (u8) (IPW_B_MODE << 6) | 1;
6447 channel = priv->channel;
6451 band = (u8) (IPW_B_MODE << 6) | 1;
6456 scan.channels_list[0] = band;
6457 scan.channels_list[1] = channel;
6458 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6460 /* NOTE: The card will sit on this channel for this time
6461 * period. Scan aborts are timing sensitive and frequently
6462 * result in firmware restarts. As such, it is best to
6463 * set a small dwell_time here and just keep re-issuing
6464 * scans. Otherwise fast channel hopping will not actually
6467 * TODO: Move SPEED SCAN support to all modes and bands */
6468 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6471 #endif /* CONFIG_IPW2200_MONITOR */
6472 /* Honor direct scans first, otherwise if we are roaming make
6473 * this a direct scan for the current network. Finally,
6474 * ensure that every other scan is a fast channel hop scan */
6476 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6477 priv->direct_scan_ssid_len);
6479 IPW_DEBUG_HC("Attempt to send SSID command "
6484 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6485 } else if ((priv->status & STATUS_ROAMING)
6486 || (!(priv->status & STATUS_ASSOCIATED)
6487 && (priv->config & CFG_STATIC_ESSID)
6488 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6489 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6491 IPW_DEBUG_HC("Attempt to send SSID command "
6496 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6498 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6500 ipw_add_scan_channels(priv, &scan, scan_type);
6501 #ifdef CONFIG_IPW2200_MONITOR
6506 err = ipw_send_scan_request_ext(priv, &scan);
6508 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6512 priv->status |= STATUS_SCANNING;
6514 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6515 priv->direct_scan_ssid_len = 0;
6517 priv->status &= ~STATUS_SCAN_PENDING;
6519 queue_delayed_work(priv->workqueue, &priv->scan_check,
6520 IPW_SCAN_CHECK_WATCHDOG);
6522 mutex_unlock(&priv->mutex);
6526 static void ipw_request_passive_scan(struct work_struct *work)
6528 struct ipw_priv *priv =
6529 container_of(work, struct ipw_priv, request_passive_scan.work);
6530 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6533 static void ipw_request_scan(struct work_struct *work)
6535 struct ipw_priv *priv =
6536 container_of(work, struct ipw_priv, request_scan.work);
6537 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6540 static void ipw_request_direct_scan(struct work_struct *work)
6542 struct ipw_priv *priv =
6543 container_of(work, struct ipw_priv, request_direct_scan.work);
6544 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6547 static void ipw_bg_abort_scan(struct work_struct *work)
6549 struct ipw_priv *priv =
6550 container_of(work, struct ipw_priv, abort_scan);
6551 mutex_lock(&priv->mutex);
6552 ipw_abort_scan(priv);
6553 mutex_unlock(&priv->mutex);
6556 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6558 /* This is called when wpa_supplicant loads and closes the driver
6560 priv->ieee->wpa_enabled = value;
6564 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6566 struct libipw_device *ieee = priv->ieee;
6567 struct libipw_security sec = {
6568 .flags = SEC_AUTH_MODE,
6572 if (value & IW_AUTH_ALG_SHARED_KEY) {
6573 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6575 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6576 sec.auth_mode = WLAN_AUTH_OPEN;
6578 } else if (value & IW_AUTH_ALG_LEAP) {
6579 sec.auth_mode = WLAN_AUTH_LEAP;
6584 if (ieee->set_security)
6585 ieee->set_security(ieee->dev, &sec);
6592 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6595 /* make sure WPA is enabled */
6596 ipw_wpa_enable(priv, 1);
6599 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6600 char *capabilities, int length)
6602 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6604 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6613 static int ipw_wx_set_genie(struct net_device *dev,
6614 struct iw_request_info *info,
6615 union iwreq_data *wrqu, char *extra)
6617 struct ipw_priv *priv = libipw_priv(dev);
6618 struct libipw_device *ieee = priv->ieee;
6622 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6623 (wrqu->data.length && extra == NULL))
6626 if (wrqu->data.length) {
6627 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6633 memcpy(buf, extra, wrqu->data.length);
6634 kfree(ieee->wpa_ie);
6636 ieee->wpa_ie_len = wrqu->data.length;
6638 kfree(ieee->wpa_ie);
6639 ieee->wpa_ie = NULL;
6640 ieee->wpa_ie_len = 0;
6643 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6649 static int ipw_wx_get_genie(struct net_device *dev,
6650 struct iw_request_info *info,
6651 union iwreq_data *wrqu, char *extra)
6653 struct ipw_priv *priv = libipw_priv(dev);
6654 struct libipw_device *ieee = priv->ieee;
6657 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6658 wrqu->data.length = 0;
6662 if (wrqu->data.length < ieee->wpa_ie_len) {
6667 wrqu->data.length = ieee->wpa_ie_len;
6668 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6674 static int wext_cipher2level(int cipher)
6677 case IW_AUTH_CIPHER_NONE:
6679 case IW_AUTH_CIPHER_WEP40:
6680 case IW_AUTH_CIPHER_WEP104:
6682 case IW_AUTH_CIPHER_TKIP:
6684 case IW_AUTH_CIPHER_CCMP:
6692 static int ipw_wx_set_auth(struct net_device *dev,
6693 struct iw_request_info *info,
6694 union iwreq_data *wrqu, char *extra)
6696 struct ipw_priv *priv = libipw_priv(dev);
6697 struct libipw_device *ieee = priv->ieee;
6698 struct iw_param *param = &wrqu->param;
6699 struct lib80211_crypt_data *crypt;
6700 unsigned long flags;
6703 switch (param->flags & IW_AUTH_INDEX) {
6704 case IW_AUTH_WPA_VERSION:
6706 case IW_AUTH_CIPHER_PAIRWISE:
6707 ipw_set_hw_decrypt_unicast(priv,
6708 wext_cipher2level(param->value));
6710 case IW_AUTH_CIPHER_GROUP:
6711 ipw_set_hw_decrypt_multicast(priv,
6712 wext_cipher2level(param->value));
6714 case IW_AUTH_KEY_MGMT:
6716 * ipw2200 does not use these parameters
6720 case IW_AUTH_TKIP_COUNTERMEASURES:
6721 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6722 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6725 flags = crypt->ops->get_flags(crypt->priv);
6728 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6730 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6732 crypt->ops->set_flags(flags, crypt->priv);
6736 case IW_AUTH_DROP_UNENCRYPTED:{
6739 * wpa_supplicant calls set_wpa_enabled when the driver
6740 * is loaded and unloaded, regardless of if WPA is being
6741 * used. No other calls are made which can be used to
6742 * determine if encryption will be used or not prior to
6743 * association being expected. If encryption is not being
6744 * used, drop_unencrypted is set to false, else true -- we
6745 * can use this to determine if the CAP_PRIVACY_ON bit should
6748 struct libipw_security sec = {
6749 .flags = SEC_ENABLED,
6750 .enabled = param->value,
6752 priv->ieee->drop_unencrypted = param->value;
6753 /* We only change SEC_LEVEL for open mode. Others
6754 * are set by ipw_wpa_set_encryption.
6756 if (!param->value) {
6757 sec.flags |= SEC_LEVEL;
6758 sec.level = SEC_LEVEL_0;
6760 sec.flags |= SEC_LEVEL;
6761 sec.level = SEC_LEVEL_1;
6763 if (priv->ieee->set_security)
6764 priv->ieee->set_security(priv->ieee->dev, &sec);
6768 case IW_AUTH_80211_AUTH_ALG:
6769 ret = ipw_wpa_set_auth_algs(priv, param->value);
6772 case IW_AUTH_WPA_ENABLED:
6773 ret = ipw_wpa_enable(priv, param->value);
6774 ipw_disassociate(priv);
6777 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6778 ieee->ieee802_1x = param->value;
6781 case IW_AUTH_PRIVACY_INVOKED:
6782 ieee->privacy_invoked = param->value;
6792 static int ipw_wx_get_auth(struct net_device *dev,
6793 struct iw_request_info *info,
6794 union iwreq_data *wrqu, char *extra)
6796 struct ipw_priv *priv = libipw_priv(dev);
6797 struct libipw_device *ieee = priv->ieee;
6798 struct lib80211_crypt_data *crypt;
6799 struct iw_param *param = &wrqu->param;
6802 switch (param->flags & IW_AUTH_INDEX) {
6803 case IW_AUTH_WPA_VERSION:
6804 case IW_AUTH_CIPHER_PAIRWISE:
6805 case IW_AUTH_CIPHER_GROUP:
6806 case IW_AUTH_KEY_MGMT:
6808 * wpa_supplicant will control these internally
6813 case IW_AUTH_TKIP_COUNTERMEASURES:
6814 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6815 if (!crypt || !crypt->ops->get_flags)
6818 param->value = (crypt->ops->get_flags(crypt->priv) &
6819 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6823 case IW_AUTH_DROP_UNENCRYPTED:
6824 param->value = ieee->drop_unencrypted;
6827 case IW_AUTH_80211_AUTH_ALG:
6828 param->value = ieee->sec.auth_mode;
6831 case IW_AUTH_WPA_ENABLED:
6832 param->value = ieee->wpa_enabled;
6835 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6836 param->value = ieee->ieee802_1x;
6839 case IW_AUTH_ROAMING_CONTROL:
6840 case IW_AUTH_PRIVACY_INVOKED:
6841 param->value = ieee->privacy_invoked;
6850 /* SIOCSIWENCODEEXT */
6851 static int ipw_wx_set_encodeext(struct net_device *dev,
6852 struct iw_request_info *info,
6853 union iwreq_data *wrqu, char *extra)
6855 struct ipw_priv *priv = libipw_priv(dev);
6856 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6859 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6860 /* IPW HW can't build TKIP MIC,
6861 host decryption still needed */
6862 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6863 priv->ieee->host_mc_decrypt = 1;
6865 priv->ieee->host_encrypt = 0;
6866 priv->ieee->host_encrypt_msdu = 1;
6867 priv->ieee->host_decrypt = 1;
6870 priv->ieee->host_encrypt = 0;
6871 priv->ieee->host_encrypt_msdu = 0;
6872 priv->ieee->host_decrypt = 0;
6873 priv->ieee->host_mc_decrypt = 0;
6877 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6880 /* SIOCGIWENCODEEXT */
6881 static int ipw_wx_get_encodeext(struct net_device *dev,
6882 struct iw_request_info *info,
6883 union iwreq_data *wrqu, char *extra)
6885 struct ipw_priv *priv = libipw_priv(dev);
6886 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6890 static int ipw_wx_set_mlme(struct net_device *dev,
6891 struct iw_request_info *info,
6892 union iwreq_data *wrqu, char *extra)
6894 struct ipw_priv *priv = libipw_priv(dev);
6895 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6898 reason = cpu_to_le16(mlme->reason_code);
6900 switch (mlme->cmd) {
6901 case IW_MLME_DEAUTH:
6902 /* silently ignore */
6905 case IW_MLME_DISASSOC:
6906 ipw_disassociate(priv);
6915 #ifdef CONFIG_IPW2200_QOS
6919 * get the modulation type of the current network or
6920 * the card current mode
6922 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6926 if (priv->status & STATUS_ASSOCIATED) {
6927 unsigned long flags;
6929 spin_lock_irqsave(&priv->ieee->lock, flags);
6930 mode = priv->assoc_network->mode;
6931 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6933 mode = priv->ieee->mode;
6935 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6940 * Handle management frame beacon and probe response
6942 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6944 struct libipw_network *network)
6946 u32 size = sizeof(struct libipw_qos_parameters);
6948 if (network->capability & WLAN_CAPABILITY_IBSS)
6949 network->qos_data.active = network->qos_data.supported;
6951 if (network->flags & NETWORK_HAS_QOS_MASK) {
6952 if (active_network &&
6953 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6954 network->qos_data.active = network->qos_data.supported;
6956 if ((network->qos_data.active == 1) && (active_network == 1) &&
6957 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6958 (network->qos_data.old_param_count !=
6959 network->qos_data.param_count)) {
6960 network->qos_data.old_param_count =
6961 network->qos_data.param_count;
6962 schedule_work(&priv->qos_activate);
6963 IPW_DEBUG_QOS("QoS parameters change call "
6967 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6968 memcpy(&network->qos_data.parameters,
6969 &def_parameters_CCK, size);
6971 memcpy(&network->qos_data.parameters,
6972 &def_parameters_OFDM, size);
6974 if ((network->qos_data.active == 1) && (active_network == 1)) {
6975 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6976 schedule_work(&priv->qos_activate);
6979 network->qos_data.active = 0;
6980 network->qos_data.supported = 0;
6982 if ((priv->status & STATUS_ASSOCIATED) &&
6983 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6984 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6985 if (network->capability & WLAN_CAPABILITY_IBSS)
6986 if ((network->ssid_len ==
6987 priv->assoc_network->ssid_len) &&
6988 !memcmp(network->ssid,
6989 priv->assoc_network->ssid,
6990 network->ssid_len)) {
6991 queue_work(priv->workqueue,
6992 &priv->merge_networks);
7000 * This function set up the firmware to support QoS. It sends
7001 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7003 static int ipw_qos_activate(struct ipw_priv *priv,
7004 struct libipw_qos_data *qos_network_data)
7007 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7008 struct libipw_qos_parameters *active_one = NULL;
7009 u32 size = sizeof(struct libipw_qos_parameters);
7014 type = ipw_qos_current_mode(priv);
7016 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7017 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7018 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7019 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7021 if (qos_network_data == NULL) {
7022 if (type == IEEE_B) {
7023 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7024 active_one = &def_parameters_CCK;
7026 active_one = &def_parameters_OFDM;
7028 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7029 burst_duration = ipw_qos_get_burst_duration(priv);
7030 for (i = 0; i < QOS_QUEUE_NUM; i++)
7031 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7032 cpu_to_le16(burst_duration);
7033 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7034 if (type == IEEE_B) {
7035 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7037 if (priv->qos_data.qos_enable == 0)
7038 active_one = &def_parameters_CCK;
7040 active_one = priv->qos_data.def_qos_parm_CCK;
7042 if (priv->qos_data.qos_enable == 0)
7043 active_one = &def_parameters_OFDM;
7045 active_one = priv->qos_data.def_qos_parm_OFDM;
7047 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7049 unsigned long flags;
7052 spin_lock_irqsave(&priv->ieee->lock, flags);
7053 active_one = &(qos_network_data->parameters);
7054 qos_network_data->old_param_count =
7055 qos_network_data->param_count;
7056 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7057 active = qos_network_data->supported;
7058 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7061 burst_duration = ipw_qos_get_burst_duration(priv);
7062 for (i = 0; i < QOS_QUEUE_NUM; i++)
7063 qos_parameters[QOS_PARAM_SET_ACTIVE].
7064 tx_op_limit[i] = cpu_to_le16(burst_duration);
7068 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7069 err = ipw_send_qos_params_command(priv,
7070 (struct libipw_qos_parameters *)
7071 &(qos_parameters[0]));
7073 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7079 * send IPW_CMD_WME_INFO to the firmware
7081 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7084 struct libipw_qos_information_element qos_info;
7089 qos_info.elementID = QOS_ELEMENT_ID;
7090 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7092 qos_info.version = QOS_VERSION_1;
7093 qos_info.ac_info = 0;
7095 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7096 qos_info.qui_type = QOS_OUI_TYPE;
7097 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7099 ret = ipw_send_qos_info_command(priv, &qos_info);
7101 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7107 * Set the QoS parameter with the association request structure
7109 static int ipw_qos_association(struct ipw_priv *priv,
7110 struct libipw_network *network)
7113 struct libipw_qos_data *qos_data = NULL;
7114 struct libipw_qos_data ibss_data = {
7119 switch (priv->ieee->iw_mode) {
7121 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7123 qos_data = &ibss_data;
7127 qos_data = &network->qos_data;
7135 err = ipw_qos_activate(priv, qos_data);
7137 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7141 if (priv->qos_data.qos_enable && qos_data->supported) {
7142 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7143 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7144 return ipw_qos_set_info_element(priv);
7151 * handling the beaconing responses. if we get different QoS setting
7152 * off the network from the associated setting, adjust the QoS
7155 static int ipw_qos_association_resp(struct ipw_priv *priv,
7156 struct libipw_network *network)
7159 unsigned long flags;
7160 u32 size = sizeof(struct libipw_qos_parameters);
7161 int set_qos_param = 0;
7163 if ((priv == NULL) || (network == NULL) ||
7164 (priv->assoc_network == NULL))
7167 if (!(priv->status & STATUS_ASSOCIATED))
7170 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7173 spin_lock_irqsave(&priv->ieee->lock, flags);
7174 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7175 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7176 sizeof(struct libipw_qos_data));
7177 priv->assoc_network->qos_data.active = 1;
7178 if ((network->qos_data.old_param_count !=
7179 network->qos_data.param_count)) {
7181 network->qos_data.old_param_count =
7182 network->qos_data.param_count;
7186 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7187 memcpy(&priv->assoc_network->qos_data.parameters,
7188 &def_parameters_CCK, size);
7190 memcpy(&priv->assoc_network->qos_data.parameters,
7191 &def_parameters_OFDM, size);
7192 priv->assoc_network->qos_data.active = 0;
7193 priv->assoc_network->qos_data.supported = 0;
7197 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7199 if (set_qos_param == 1)
7200 schedule_work(&priv->qos_activate);
7205 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7212 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7213 ret = priv->qos_data.burst_duration_CCK;
7215 ret = priv->qos_data.burst_duration_OFDM;
7221 * Initialize the setting of QoS global
7223 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7224 int burst_enable, u32 burst_duration_CCK,
7225 u32 burst_duration_OFDM)
7227 priv->qos_data.qos_enable = enable;
7229 if (priv->qos_data.qos_enable) {
7230 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7231 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7232 IPW_DEBUG_QOS("QoS is enabled\n");
7234 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7235 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7236 IPW_DEBUG_QOS("QoS is not enabled\n");
7239 priv->qos_data.burst_enable = burst_enable;
7242 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7243 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7245 priv->qos_data.burst_duration_CCK = 0;
7246 priv->qos_data.burst_duration_OFDM = 0;
7251 * map the packet priority to the right TX Queue
7253 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7255 if (priority > 7 || !priv->qos_data.qos_enable)
7258 return from_priority_to_tx_queue[priority] - 1;
7261 static int ipw_is_qos_active(struct net_device *dev,
7262 struct sk_buff *skb)
7264 struct ipw_priv *priv = libipw_priv(dev);
7265 struct libipw_qos_data *qos_data = NULL;
7266 int active, supported;
7267 u8 *daddr = skb->data + ETH_ALEN;
7268 int unicast = !is_multicast_ether_addr(daddr);
7270 if (!(priv->status & STATUS_ASSOCIATED))
7273 qos_data = &priv->assoc_network->qos_data;
7275 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7277 qos_data->active = 0;
7279 qos_data->active = qos_data->supported;
7281 active = qos_data->active;
7282 supported = qos_data->supported;
7283 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7285 priv->qos_data.qos_enable, active, supported, unicast);
7286 if (active && priv->qos_data.qos_enable)
7293 * add QoS parameter to the TX command
7295 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7297 struct tfd_data *tfd)
7299 int tx_queue_id = 0;
7302 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7303 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7305 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7306 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7307 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7313 * background support to run QoS activate functionality
7315 static void ipw_bg_qos_activate(struct work_struct *work)
7317 struct ipw_priv *priv =
7318 container_of(work, struct ipw_priv, qos_activate);
7320 mutex_lock(&priv->mutex);
7322 if (priv->status & STATUS_ASSOCIATED)
7323 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7325 mutex_unlock(&priv->mutex);
7328 static int ipw_handle_probe_response(struct net_device *dev,
7329 struct libipw_probe_response *resp,
7330 struct libipw_network *network)
7332 struct ipw_priv *priv = libipw_priv(dev);
7333 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7334 (network == priv->assoc_network));
7336 ipw_qos_handle_probe_response(priv, active_network, network);
7341 static int ipw_handle_beacon(struct net_device *dev,
7342 struct libipw_beacon *resp,
7343 struct libipw_network *network)
7345 struct ipw_priv *priv = libipw_priv(dev);
7346 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7347 (network == priv->assoc_network));
7349 ipw_qos_handle_probe_response(priv, active_network, network);
7354 static int ipw_handle_assoc_response(struct net_device *dev,
7355 struct libipw_assoc_response *resp,
7356 struct libipw_network *network)
7358 struct ipw_priv *priv = libipw_priv(dev);
7359 ipw_qos_association_resp(priv, network);
7363 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7366 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7367 sizeof(*qos_param) * 3, qos_param);
7370 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7373 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7377 #endif /* CONFIG_IPW2200_QOS */
7379 static int ipw_associate_network(struct ipw_priv *priv,
7380 struct libipw_network *network,
7381 struct ipw_supported_rates *rates, int roaming)
7384 DECLARE_SSID_BUF(ssid);
7386 if (priv->config & CFG_FIXED_RATE)
7387 ipw_set_fixed_rate(priv, network->mode);
7389 if (!(priv->config & CFG_STATIC_ESSID)) {
7390 priv->essid_len = min(network->ssid_len,
7391 (u8) IW_ESSID_MAX_SIZE);
7392 memcpy(priv->essid, network->ssid, priv->essid_len);
7395 network->last_associate = jiffies;
7397 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7398 priv->assoc_request.channel = network->channel;
7399 priv->assoc_request.auth_key = 0;
7401 if ((priv->capability & CAP_PRIVACY_ON) &&
7402 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7403 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7404 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7406 if (priv->ieee->sec.level == SEC_LEVEL_1)
7407 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7409 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7410 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7411 priv->assoc_request.auth_type = AUTH_LEAP;
7413 priv->assoc_request.auth_type = AUTH_OPEN;
7415 if (priv->ieee->wpa_ie_len) {
7416 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7417 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7418 priv->ieee->wpa_ie_len);
7422 * It is valid for our ieee device to support multiple modes, but
7423 * when it comes to associating to a given network we have to choose
7426 if (network->mode & priv->ieee->mode & IEEE_A)
7427 priv->assoc_request.ieee_mode = IPW_A_MODE;
7428 else if (network->mode & priv->ieee->mode & IEEE_G)
7429 priv->assoc_request.ieee_mode = IPW_G_MODE;
7430 else if (network->mode & priv->ieee->mode & IEEE_B)
7431 priv->assoc_request.ieee_mode = IPW_B_MODE;
7433 priv->assoc_request.capability = cpu_to_le16(network->capability);
7434 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7435 && !(priv->config & CFG_PREAMBLE_LONG)) {
7436 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7438 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7440 /* Clear the short preamble if we won't be supporting it */
7441 priv->assoc_request.capability &=
7442 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7445 /* Clear capability bits that aren't used in Ad Hoc */
7446 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7447 priv->assoc_request.capability &=
7448 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7450 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7451 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7452 roaming ? "Rea" : "A",
7453 print_ssid(ssid, priv->essid, priv->essid_len),
7455 ipw_modes[priv->assoc_request.ieee_mode],
7457 (priv->assoc_request.preamble_length ==
7458 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7459 network->capability &
7460 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7461 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7462 priv->capability & CAP_PRIVACY_ON ?
7463 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7465 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7466 priv->capability & CAP_PRIVACY_ON ?
7467 '1' + priv->ieee->sec.active_key : '.',
7468 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7470 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7471 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7472 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7473 priv->assoc_request.assoc_type = HC_IBSS_START;
7474 priv->assoc_request.assoc_tsf_msw = 0;
7475 priv->assoc_request.assoc_tsf_lsw = 0;
7477 if (unlikely(roaming))
7478 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7480 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7481 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7482 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7485 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7487 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7488 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7489 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7491 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7492 priv->assoc_request.atim_window = 0;
7495 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7497 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7499 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7503 rates->ieee_mode = priv->assoc_request.ieee_mode;
7504 rates->purpose = IPW_RATE_CONNECT;
7505 ipw_send_supported_rates(priv, rates);
7507 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7508 priv->sys_config.dot11g_auto_detection = 1;
7510 priv->sys_config.dot11g_auto_detection = 0;
7512 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7513 priv->sys_config.answer_broadcast_ssid_probe = 1;
7515 priv->sys_config.answer_broadcast_ssid_probe = 0;
7517 err = ipw_send_system_config(priv);
7519 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7523 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7524 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7526 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7531 * If preemption is enabled, it is possible for the association
7532 * to complete before we return from ipw_send_associate. Therefore
7533 * we have to be sure and update our priviate data first.
7535 priv->channel = network->channel;
7536 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7537 priv->status |= STATUS_ASSOCIATING;
7538 priv->status &= ~STATUS_SECURITY_UPDATED;
7540 priv->assoc_network = network;
7542 #ifdef CONFIG_IPW2200_QOS
7543 ipw_qos_association(priv, network);
7546 err = ipw_send_associate(priv, &priv->assoc_request);
7548 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7552 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7553 print_ssid(ssid, priv->essid, priv->essid_len),
7559 static void ipw_roam(void *data)
7561 struct ipw_priv *priv = data;
7562 struct libipw_network *network = NULL;
7563 struct ipw_network_match match = {
7564 .network = priv->assoc_network
7567 /* The roaming process is as follows:
7569 * 1. Missed beacon threshold triggers the roaming process by
7570 * setting the status ROAM bit and requesting a scan.
7571 * 2. When the scan completes, it schedules the ROAM work
7572 * 3. The ROAM work looks at all of the known networks for one that
7573 * is a better network than the currently associated. If none
7574 * found, the ROAM process is over (ROAM bit cleared)
7575 * 4. If a better network is found, a disassociation request is
7577 * 5. When the disassociation completes, the roam work is again
7578 * scheduled. The second time through, the driver is no longer
7579 * associated, and the newly selected network is sent an
7580 * association request.
7581 * 6. At this point ,the roaming process is complete and the ROAM
7582 * status bit is cleared.
7585 /* If we are no longer associated, and the roaming bit is no longer
7586 * set, then we are not actively roaming, so just return */
7587 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7590 if (priv->status & STATUS_ASSOCIATED) {
7591 /* First pass through ROAM process -- look for a better
7593 unsigned long flags;
7594 u8 rssi = priv->assoc_network->stats.rssi;
7595 priv->assoc_network->stats.rssi = -128;
7596 spin_lock_irqsave(&priv->ieee->lock, flags);
7597 list_for_each_entry(network, &priv->ieee->network_list, list) {
7598 if (network != priv->assoc_network)
7599 ipw_best_network(priv, &match, network, 1);
7601 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7602 priv->assoc_network->stats.rssi = rssi;
7604 if (match.network == priv->assoc_network) {
7605 IPW_DEBUG_ASSOC("No better APs in this network to "
7607 priv->status &= ~STATUS_ROAMING;
7608 ipw_debug_config(priv);
7612 ipw_send_disassociate(priv, 1);
7613 priv->assoc_network = match.network;
7618 /* Second pass through ROAM process -- request association */
7619 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7620 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7621 priv->status &= ~STATUS_ROAMING;
7624 static void ipw_bg_roam(struct work_struct *work)
7626 struct ipw_priv *priv =
7627 container_of(work, struct ipw_priv, roam);
7628 mutex_lock(&priv->mutex);
7630 mutex_unlock(&priv->mutex);
7633 static int ipw_associate(void *data)
7635 struct ipw_priv *priv = data;
7637 struct libipw_network *network = NULL;
7638 struct ipw_network_match match = {
7641 struct ipw_supported_rates *rates;
7642 struct list_head *element;
7643 unsigned long flags;
7644 DECLARE_SSID_BUF(ssid);
7646 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7647 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7651 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7652 IPW_DEBUG_ASSOC("Not attempting association (already in "
7657 if (priv->status & STATUS_DISASSOCIATING) {
7658 IPW_DEBUG_ASSOC("Not attempting association (in "
7659 "disassociating)\n ");
7660 queue_work(priv->workqueue, &priv->associate);
7664 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7665 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7670 if (!(priv->config & CFG_ASSOCIATE) &&
7671 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7672 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7676 /* Protect our use of the network_list */
7677 spin_lock_irqsave(&priv->ieee->lock, flags);
7678 list_for_each_entry(network, &priv->ieee->network_list, list)
7679 ipw_best_network(priv, &match, network, 0);
7681 network = match.network;
7682 rates = &match.rates;
7684 if (network == NULL &&
7685 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7686 priv->config & CFG_ADHOC_CREATE &&
7687 priv->config & CFG_STATIC_ESSID &&
7688 priv->config & CFG_STATIC_CHANNEL) {
7689 /* Use oldest network if the free list is empty */
7690 if (list_empty(&priv->ieee->network_free_list)) {
7691 struct libipw_network *oldest = NULL;
7692 struct libipw_network *target;
7694 list_for_each_entry(target, &priv->ieee->network_list, list) {
7695 if ((oldest == NULL) ||
7696 (target->last_scanned < oldest->last_scanned))
7700 /* If there are no more slots, expire the oldest */
7701 list_del(&oldest->list);
7703 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7705 print_ssid(ssid, target->ssid,
7708 list_add_tail(&target->list,
7709 &priv->ieee->network_free_list);
7712 element = priv->ieee->network_free_list.next;
7713 network = list_entry(element, struct libipw_network, list);
7714 ipw_adhoc_create(priv, network);
7715 rates = &priv->rates;
7717 list_add_tail(&network->list, &priv->ieee->network_list);
7719 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7721 /* If we reached the end of the list, then we don't have any valid
7724 ipw_debug_config(priv);
7726 if (!(priv->status & STATUS_SCANNING)) {
7727 if (!(priv->config & CFG_SPEED_SCAN))
7728 queue_delayed_work(priv->workqueue,
7729 &priv->request_scan,
7732 queue_delayed_work(priv->workqueue,
7733 &priv->request_scan, 0);
7739 ipw_associate_network(priv, network, rates, 0);
7744 static void ipw_bg_associate(struct work_struct *work)
7746 struct ipw_priv *priv =
7747 container_of(work, struct ipw_priv, associate);
7748 mutex_lock(&priv->mutex);
7749 ipw_associate(priv);
7750 mutex_unlock(&priv->mutex);
7753 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7754 struct sk_buff *skb)
7756 struct ieee80211_hdr *hdr;
7759 hdr = (struct ieee80211_hdr *)skb->data;
7760 fc = le16_to_cpu(hdr->frame_control);
7761 if (!(fc & IEEE80211_FCTL_PROTECTED))
7764 fc &= ~IEEE80211_FCTL_PROTECTED;
7765 hdr->frame_control = cpu_to_le16(fc);
7766 switch (priv->ieee->sec.level) {
7768 /* Remove CCMP HDR */
7769 memmove(skb->data + LIBIPW_3ADDR_LEN,
7770 skb->data + LIBIPW_3ADDR_LEN + 8,
7771 skb->len - LIBIPW_3ADDR_LEN - 8);
7772 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7778 memmove(skb->data + LIBIPW_3ADDR_LEN,
7779 skb->data + LIBIPW_3ADDR_LEN + 4,
7780 skb->len - LIBIPW_3ADDR_LEN - 4);
7781 skb_trim(skb, skb->len - 8); /* IV + ICV */
7786 printk(KERN_ERR "Unknown security level %d\n",
7787 priv->ieee->sec.level);
7792 static void ipw_handle_data_packet(struct ipw_priv *priv,
7793 struct ipw_rx_mem_buffer *rxb,
7794 struct libipw_rx_stats *stats)
7796 struct net_device *dev = priv->net_dev;
7797 struct libipw_hdr_4addr *hdr;
7798 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7800 /* We received data from the HW, so stop the watchdog */
7801 dev->trans_start = jiffies;
7803 /* We only process data packets if the
7804 * interface is open */
7805 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7806 skb_tailroom(rxb->skb))) {
7807 dev->stats.rx_errors++;
7808 priv->wstats.discard.misc++;
7809 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7811 } else if (unlikely(!netif_running(priv->net_dev))) {
7812 dev->stats.rx_dropped++;
7813 priv->wstats.discard.misc++;
7814 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7818 /* Advance skb->data to the start of the actual payload */
7819 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7821 /* Set the size of the skb to the size of the frame */
7822 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7824 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7826 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7827 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7828 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7829 (is_multicast_ether_addr(hdr->addr1) ?
7830 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7831 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7833 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7834 dev->stats.rx_errors++;
7835 else { /* libipw_rx succeeded, so it now owns the SKB */
7837 __ipw_led_activity_on(priv);
7841 #ifdef CONFIG_IPW2200_RADIOTAP
7842 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7843 struct ipw_rx_mem_buffer *rxb,
7844 struct libipw_rx_stats *stats)
7846 struct net_device *dev = priv->net_dev;
7847 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7848 struct ipw_rx_frame *frame = &pkt->u.frame;
7850 /* initial pull of some data */
7851 u16 received_channel = frame->received_channel;
7852 u8 antennaAndPhy = frame->antennaAndPhy;
7853 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7854 u16 pktrate = frame->rate;
7856 /* Magic struct that slots into the radiotap header -- no reason
7857 * to build this manually element by element, we can write it much
7858 * more efficiently than we can parse it. ORDER MATTERS HERE */
7859 struct ipw_rt_hdr *ipw_rt;
7861 short len = le16_to_cpu(pkt->u.frame.length);
7863 /* We received data from the HW, so stop the watchdog */
7864 dev->trans_start = jiffies;
7866 /* We only process data packets if the
7867 * interface is open */
7868 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7869 skb_tailroom(rxb->skb))) {
7870 dev->stats.rx_errors++;
7871 priv->wstats.discard.misc++;
7872 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7874 } else if (unlikely(!netif_running(priv->net_dev))) {
7875 dev->stats.rx_dropped++;
7876 priv->wstats.discard.misc++;
7877 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7881 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7883 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7884 /* FIXME: Should alloc bigger skb instead */
7885 dev->stats.rx_dropped++;
7886 priv->wstats.discard.misc++;
7887 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7891 /* copy the frame itself */
7892 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7893 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7895 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7897 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7898 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7899 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7901 /* Big bitfield of all the fields we provide in radiotap */
7902 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7903 (1 << IEEE80211_RADIOTAP_TSFT) |
7904 (1 << IEEE80211_RADIOTAP_FLAGS) |
7905 (1 << IEEE80211_RADIOTAP_RATE) |
7906 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7907 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7908 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7909 (1 << IEEE80211_RADIOTAP_ANTENNA));
7911 /* Zero the flags, we'll add to them as we go */
7912 ipw_rt->rt_flags = 0;
7913 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7914 frame->parent_tsf[2] << 16 |
7915 frame->parent_tsf[1] << 8 |
7916 frame->parent_tsf[0]);
7918 /* Convert signal to DBM */
7919 ipw_rt->rt_dbmsignal = antsignal;
7920 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7922 /* Convert the channel data and set the flags */
7923 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7924 if (received_channel > 14) { /* 802.11a */
7925 ipw_rt->rt_chbitmask =
7926 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7927 } else if (antennaAndPhy & 32) { /* 802.11b */
7928 ipw_rt->rt_chbitmask =
7929 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7930 } else { /* 802.11g */
7931 ipw_rt->rt_chbitmask =
7932 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7935 /* set the rate in multiples of 500k/s */
7937 case IPW_TX_RATE_1MB:
7938 ipw_rt->rt_rate = 2;
7940 case IPW_TX_RATE_2MB:
7941 ipw_rt->rt_rate = 4;
7943 case IPW_TX_RATE_5MB:
7944 ipw_rt->rt_rate = 10;
7946 case IPW_TX_RATE_6MB:
7947 ipw_rt->rt_rate = 12;
7949 case IPW_TX_RATE_9MB:
7950 ipw_rt->rt_rate = 18;
7952 case IPW_TX_RATE_11MB:
7953 ipw_rt->rt_rate = 22;
7955 case IPW_TX_RATE_12MB:
7956 ipw_rt->rt_rate = 24;
7958 case IPW_TX_RATE_18MB:
7959 ipw_rt->rt_rate = 36;
7961 case IPW_TX_RATE_24MB:
7962 ipw_rt->rt_rate = 48;
7964 case IPW_TX_RATE_36MB:
7965 ipw_rt->rt_rate = 72;
7967 case IPW_TX_RATE_48MB:
7968 ipw_rt->rt_rate = 96;
7970 case IPW_TX_RATE_54MB:
7971 ipw_rt->rt_rate = 108;
7974 ipw_rt->rt_rate = 0;
7978 /* antenna number */
7979 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7981 /* set the preamble flag if we have it */
7982 if ((antennaAndPhy & 64))
7983 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7985 /* Set the size of the skb to the size of the frame */
7986 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7988 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7990 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7991 dev->stats.rx_errors++;
7992 else { /* libipw_rx succeeded, so it now owns the SKB */
7994 /* no LED during capture */
7999 #ifdef CONFIG_IPW2200_PROMISCUOUS
8000 #define libipw_is_probe_response(fc) \
8001 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8002 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8004 #define libipw_is_management(fc) \
8005 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8007 #define libipw_is_control(fc) \
8008 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8010 #define libipw_is_data(fc) \
8011 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8013 #define libipw_is_assoc_request(fc) \
8014 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8016 #define libipw_is_reassoc_request(fc) \
8017 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8019 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8020 struct ipw_rx_mem_buffer *rxb,
8021 struct libipw_rx_stats *stats)
8023 struct net_device *dev = priv->prom_net_dev;
8024 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8025 struct ipw_rx_frame *frame = &pkt->u.frame;
8026 struct ipw_rt_hdr *ipw_rt;
8028 /* First cache any information we need before we overwrite
8029 * the information provided in the skb from the hardware */
8030 struct ieee80211_hdr *hdr;
8031 u16 channel = frame->received_channel;
8032 u8 phy_flags = frame->antennaAndPhy;
8033 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8034 s8 noise = (s8) le16_to_cpu(frame->noise);
8035 u8 rate = frame->rate;
8036 short len = le16_to_cpu(pkt->u.frame.length);
8037 struct sk_buff *skb;
8039 u16 filter = priv->prom_priv->filter;
8041 /* If the filter is set to not include Rx frames then return */
8042 if (filter & IPW_PROM_NO_RX)
8045 /* We received data from the HW, so stop the watchdog */
8046 dev->trans_start = jiffies;
8048 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8049 dev->stats.rx_errors++;
8050 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8054 /* We only process data packets if the interface is open */
8055 if (unlikely(!netif_running(dev))) {
8056 dev->stats.rx_dropped++;
8057 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8061 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8063 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8064 /* FIXME: Should alloc bigger skb instead */
8065 dev->stats.rx_dropped++;
8066 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8070 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8071 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8072 if (filter & IPW_PROM_NO_MGMT)
8074 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8076 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8077 if (filter & IPW_PROM_NO_CTL)
8079 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8081 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8082 if (filter & IPW_PROM_NO_DATA)
8084 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8088 /* Copy the SKB since this is for the promiscuous side */
8089 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8091 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8095 /* copy the frame data to write after where the radiotap header goes */
8096 ipw_rt = (void *)skb->data;
8099 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8101 memcpy(ipw_rt->payload, hdr, len);
8103 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8104 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8105 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8107 /* Set the size of the skb to the size of the frame */
8108 skb_put(skb, sizeof(*ipw_rt) + len);
8110 /* Big bitfield of all the fields we provide in radiotap */
8111 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8112 (1 << IEEE80211_RADIOTAP_TSFT) |
8113 (1 << IEEE80211_RADIOTAP_FLAGS) |
8114 (1 << IEEE80211_RADIOTAP_RATE) |
8115 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8116 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8117 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8118 (1 << IEEE80211_RADIOTAP_ANTENNA));
8120 /* Zero the flags, we'll add to them as we go */
8121 ipw_rt->rt_flags = 0;
8122 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8123 frame->parent_tsf[2] << 16 |
8124 frame->parent_tsf[1] << 8 |
8125 frame->parent_tsf[0]);
8127 /* Convert to DBM */
8128 ipw_rt->rt_dbmsignal = signal;
8129 ipw_rt->rt_dbmnoise = noise;
8131 /* Convert the channel data and set the flags */
8132 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8133 if (channel > 14) { /* 802.11a */
8134 ipw_rt->rt_chbitmask =
8135 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8136 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8137 ipw_rt->rt_chbitmask =
8138 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8139 } else { /* 802.11g */
8140 ipw_rt->rt_chbitmask =
8141 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8144 /* set the rate in multiples of 500k/s */
8146 case IPW_TX_RATE_1MB:
8147 ipw_rt->rt_rate = 2;
8149 case IPW_TX_RATE_2MB:
8150 ipw_rt->rt_rate = 4;
8152 case IPW_TX_RATE_5MB:
8153 ipw_rt->rt_rate = 10;
8155 case IPW_TX_RATE_6MB:
8156 ipw_rt->rt_rate = 12;
8158 case IPW_TX_RATE_9MB:
8159 ipw_rt->rt_rate = 18;
8161 case IPW_TX_RATE_11MB:
8162 ipw_rt->rt_rate = 22;
8164 case IPW_TX_RATE_12MB:
8165 ipw_rt->rt_rate = 24;
8167 case IPW_TX_RATE_18MB:
8168 ipw_rt->rt_rate = 36;
8170 case IPW_TX_RATE_24MB:
8171 ipw_rt->rt_rate = 48;
8173 case IPW_TX_RATE_36MB:
8174 ipw_rt->rt_rate = 72;
8176 case IPW_TX_RATE_48MB:
8177 ipw_rt->rt_rate = 96;
8179 case IPW_TX_RATE_54MB:
8180 ipw_rt->rt_rate = 108;
8183 ipw_rt->rt_rate = 0;
8187 /* antenna number */
8188 ipw_rt->rt_antenna = (phy_flags & 3);
8190 /* set the preamble flag if we have it */
8191 if (phy_flags & (1 << 6))
8192 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8194 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8196 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8197 dev->stats.rx_errors++;
8198 dev_kfree_skb_any(skb);
8203 static int is_network_packet(struct ipw_priv *priv,
8204 struct libipw_hdr_4addr *header)
8206 /* Filter incoming packets to determine if they are targetted toward
8207 * this network, discarding packets coming from ourselves */
8208 switch (priv->ieee->iw_mode) {
8209 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8210 /* packets from our adapter are dropped (echo) */
8211 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8214 /* {broad,multi}cast packets to our BSSID go through */
8215 if (is_multicast_ether_addr(header->addr1))
8216 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8218 /* packets to our adapter go through */
8219 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8222 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8223 /* packets from our adapter are dropped (echo) */
8224 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8227 /* {broad,multi}cast packets to our BSS go through */
8228 if (is_multicast_ether_addr(header->addr1))
8229 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8231 /* packets to our adapter go through */
8232 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8239 #define IPW_PACKET_RETRY_TIME HZ
8241 static int is_duplicate_packet(struct ipw_priv *priv,
8242 struct libipw_hdr_4addr *header)
8244 u16 sc = le16_to_cpu(header->seq_ctl);
8245 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8246 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8247 u16 *last_seq, *last_frag;
8248 unsigned long *last_time;
8250 switch (priv->ieee->iw_mode) {
8253 struct list_head *p;
8254 struct ipw_ibss_seq *entry = NULL;
8255 u8 *mac = header->addr2;
8256 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8258 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8260 list_entry(p, struct ipw_ibss_seq, list);
8261 if (!memcmp(entry->mac, mac, ETH_ALEN))
8264 if (p == &priv->ibss_mac_hash[index]) {
8265 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8268 ("Cannot malloc new mac entry\n");
8271 memcpy(entry->mac, mac, ETH_ALEN);
8272 entry->seq_num = seq;
8273 entry->frag_num = frag;
8274 entry->packet_time = jiffies;
8275 list_add(&entry->list,
8276 &priv->ibss_mac_hash[index]);
8279 last_seq = &entry->seq_num;
8280 last_frag = &entry->frag_num;
8281 last_time = &entry->packet_time;
8285 last_seq = &priv->last_seq_num;
8286 last_frag = &priv->last_frag_num;
8287 last_time = &priv->last_packet_time;
8292 if ((*last_seq == seq) &&
8293 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8294 if (*last_frag == frag)
8296 if (*last_frag + 1 != frag)
8297 /* out-of-order fragment */
8303 *last_time = jiffies;
8307 /* Comment this line now since we observed the card receives
8308 * duplicate packets but the FCTL_RETRY bit is not set in the
8309 * IBSS mode with fragmentation enabled.
8310 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8314 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8315 struct ipw_rx_mem_buffer *rxb,
8316 struct libipw_rx_stats *stats)
8318 struct sk_buff *skb = rxb->skb;
8319 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8320 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8321 (skb->data + IPW_RX_FRAME_SIZE);
8323 libipw_rx_mgt(priv->ieee, header, stats);
8325 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8326 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8327 IEEE80211_STYPE_PROBE_RESP) ||
8328 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8329 IEEE80211_STYPE_BEACON))) {
8330 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8331 ipw_add_station(priv, header->addr2);
8334 if (priv->config & CFG_NET_STATS) {
8335 IPW_DEBUG_HC("sending stat packet\n");
8337 /* Set the size of the skb to the size of the full
8338 * ipw header and 802.11 frame */
8339 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8342 /* Advance past the ipw packet header to the 802.11 frame */
8343 skb_pull(skb, IPW_RX_FRAME_SIZE);
8345 /* Push the libipw_rx_stats before the 802.11 frame */
8346 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8348 skb->dev = priv->ieee->dev;
8350 /* Point raw at the libipw_stats */
8351 skb_reset_mac_header(skb);
8353 skb->pkt_type = PACKET_OTHERHOST;
8354 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8355 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8362 * Main entry function for recieving a packet with 80211 headers. This
8363 * should be called when ever the FW has notified us that there is a new
8364 * skb in the recieve queue.
8366 static void ipw_rx(struct ipw_priv *priv)
8368 struct ipw_rx_mem_buffer *rxb;
8369 struct ipw_rx_packet *pkt;
8370 struct libipw_hdr_4addr *header;
8375 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8376 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8377 i = priv->rxq->read;
8379 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8383 rxb = priv->rxq->queue[i];
8384 if (unlikely(rxb == NULL)) {
8385 printk(KERN_CRIT "Queue not allocated!\n");
8388 priv->rxq->queue[i] = NULL;
8390 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8392 PCI_DMA_FROMDEVICE);
8394 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8395 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8396 pkt->header.message_type,
8397 pkt->header.rx_seq_num, pkt->header.control_bits);
8399 switch (pkt->header.message_type) {
8400 case RX_FRAME_TYPE: /* 802.11 frame */ {
8401 struct libipw_rx_stats stats = {
8402 .rssi = pkt->u.frame.rssi_dbm -
8405 pkt->u.frame.rssi_dbm -
8406 IPW_RSSI_TO_DBM + 0x100,
8408 le16_to_cpu(pkt->u.frame.noise),
8409 .rate = pkt->u.frame.rate,
8410 .mac_time = jiffies,
8412 pkt->u.frame.received_channel,
8415 control & (1 << 0)) ?
8418 .len = le16_to_cpu(pkt->u.frame.length),
8421 if (stats.rssi != 0)
8422 stats.mask |= LIBIPW_STATMASK_RSSI;
8423 if (stats.signal != 0)
8424 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8425 if (stats.noise != 0)
8426 stats.mask |= LIBIPW_STATMASK_NOISE;
8427 if (stats.rate != 0)
8428 stats.mask |= LIBIPW_STATMASK_RATE;
8432 #ifdef CONFIG_IPW2200_PROMISCUOUS
8433 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8434 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8437 #ifdef CONFIG_IPW2200_MONITOR
8438 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8439 #ifdef CONFIG_IPW2200_RADIOTAP
8441 ipw_handle_data_packet_monitor(priv,
8445 ipw_handle_data_packet(priv, rxb,
8453 (struct libipw_hdr_4addr *)(rxb->skb->
8456 /* TODO: Check Ad-Hoc dest/source and make sure
8457 * that we are actually parsing these packets
8458 * correctly -- we should probably use the
8459 * frame control of the packet and disregard
8460 * the current iw_mode */
8463 is_network_packet(priv, header);
8464 if (network_packet && priv->assoc_network) {
8465 priv->assoc_network->stats.rssi =
8467 priv->exp_avg_rssi =
8468 exponential_average(priv->exp_avg_rssi,
8469 stats.rssi, DEPTH_RSSI);
8472 IPW_DEBUG_RX("Frame: len=%u\n",
8473 le16_to_cpu(pkt->u.frame.length));
8475 if (le16_to_cpu(pkt->u.frame.length) <
8476 libipw_get_hdrlen(le16_to_cpu(
8477 header->frame_ctl))) {
8479 ("Received packet is too small. "
8481 priv->net_dev->stats.rx_errors++;
8482 priv->wstats.discard.misc++;
8486 switch (WLAN_FC_GET_TYPE
8487 (le16_to_cpu(header->frame_ctl))) {
8489 case IEEE80211_FTYPE_MGMT:
8490 ipw_handle_mgmt_packet(priv, rxb,
8494 case IEEE80211_FTYPE_CTL:
8497 case IEEE80211_FTYPE_DATA:
8498 if (unlikely(!network_packet ||
8499 is_duplicate_packet(priv,
8502 IPW_DEBUG_DROP("Dropping: "
8512 ipw_handle_data_packet(priv, rxb,
8520 case RX_HOST_NOTIFICATION_TYPE:{
8522 ("Notification: subtype=%02X flags=%02X size=%d\n",
8523 pkt->u.notification.subtype,
8524 pkt->u.notification.flags,
8525 le16_to_cpu(pkt->u.notification.size));
8526 ipw_rx_notification(priv, &pkt->u.notification);
8531 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8532 pkt->header.message_type);
8536 /* For now we just don't re-use anything. We can tweak this
8537 * later to try and re-use notification packets and SKBs that
8538 * fail to Rx correctly */
8539 if (rxb->skb != NULL) {
8540 dev_kfree_skb_any(rxb->skb);
8544 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8545 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8546 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8548 i = (i + 1) % RX_QUEUE_SIZE;
8550 /* If there are a lot of unsued frames, restock the Rx queue
8551 * so the ucode won't assert */
8553 priv->rxq->read = i;
8554 ipw_rx_queue_replenish(priv);
8558 /* Backtrack one entry */
8559 priv->rxq->read = i;
8560 ipw_rx_queue_restock(priv);
8563 #define DEFAULT_RTS_THRESHOLD 2304U
8564 #define MIN_RTS_THRESHOLD 1U
8565 #define MAX_RTS_THRESHOLD 2304U
8566 #define DEFAULT_BEACON_INTERVAL 100U
8567 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8568 #define DEFAULT_LONG_RETRY_LIMIT 4U
8572 * @option: options to control different reset behaviour
8573 * 0 = reset everything except the 'disable' module_param
8574 * 1 = reset everything and print out driver info (for probe only)
8575 * 2 = reset everything
8577 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8579 int band, modulation;
8580 int old_mode = priv->ieee->iw_mode;
8582 /* Initialize module parameter values here */
8585 /* We default to disabling the LED code as right now it causes
8586 * too many systems to lock up... */
8588 priv->config |= CFG_NO_LED;
8591 priv->config |= CFG_ASSOCIATE;
8593 IPW_DEBUG_INFO("Auto associate disabled.\n");
8596 priv->config |= CFG_ADHOC_CREATE;
8598 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8600 priv->config &= ~CFG_STATIC_ESSID;
8601 priv->essid_len = 0;
8602 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8604 if (disable && option) {
8605 priv->status |= STATUS_RF_KILL_SW;
8606 IPW_DEBUG_INFO("Radio disabled.\n");
8609 if (default_channel != 0) {
8610 priv->config |= CFG_STATIC_CHANNEL;
8611 priv->channel = default_channel;
8612 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8613 /* TODO: Validate that provided channel is in range */
8615 #ifdef CONFIG_IPW2200_QOS
8616 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8617 burst_duration_CCK, burst_duration_OFDM);
8618 #endif /* CONFIG_IPW2200_QOS */
8620 switch (network_mode) {
8622 priv->ieee->iw_mode = IW_MODE_ADHOC;
8623 priv->net_dev->type = ARPHRD_ETHER;
8626 #ifdef CONFIG_IPW2200_MONITOR
8628 priv->ieee->iw_mode = IW_MODE_MONITOR;
8629 #ifdef CONFIG_IPW2200_RADIOTAP
8630 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8632 priv->net_dev->type = ARPHRD_IEEE80211;
8638 priv->net_dev->type = ARPHRD_ETHER;
8639 priv->ieee->iw_mode = IW_MODE_INFRA;
8644 priv->ieee->host_encrypt = 0;
8645 priv->ieee->host_encrypt_msdu = 0;
8646 priv->ieee->host_decrypt = 0;
8647 priv->ieee->host_mc_decrypt = 0;
8649 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8651 /* IPW2200/2915 is abled to do hardware fragmentation. */
8652 priv->ieee->host_open_frag = 0;
8654 if ((priv->pci_dev->device == 0x4223) ||
8655 (priv->pci_dev->device == 0x4224)) {
8657 printk(KERN_INFO DRV_NAME
8658 ": Detected Intel PRO/Wireless 2915ABG Network "
8660 priv->ieee->abg_true = 1;
8661 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8662 modulation = LIBIPW_OFDM_MODULATION |
8663 LIBIPW_CCK_MODULATION;
8664 priv->adapter = IPW_2915ABG;
8665 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8668 printk(KERN_INFO DRV_NAME
8669 ": Detected Intel PRO/Wireless 2200BG Network "
8672 priv->ieee->abg_true = 0;
8673 band = LIBIPW_24GHZ_BAND;
8674 modulation = LIBIPW_OFDM_MODULATION |
8675 LIBIPW_CCK_MODULATION;
8676 priv->adapter = IPW_2200BG;
8677 priv->ieee->mode = IEEE_G | IEEE_B;
8680 priv->ieee->freq_band = band;
8681 priv->ieee->modulation = modulation;
8683 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8685 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8686 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8688 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8689 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8690 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8692 /* If power management is turned on, default to AC mode */
8693 priv->power_mode = IPW_POWER_AC;
8694 priv->tx_power = IPW_TX_POWER_DEFAULT;
8696 return old_mode == priv->ieee->iw_mode;
8700 * This file defines the Wireless Extension handlers. It does not
8701 * define any methods of hardware manipulation and relies on the
8702 * functions defined in ipw_main to provide the HW interaction.
8704 * The exception to this is the use of the ipw_get_ordinal()
8705 * function used to poll the hardware vs. making unecessary calls.
8709 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8712 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8713 priv->config &= ~CFG_STATIC_CHANNEL;
8714 IPW_DEBUG_ASSOC("Attempting to associate with new "
8716 ipw_associate(priv);
8720 priv->config |= CFG_STATIC_CHANNEL;
8722 if (priv->channel == channel) {
8723 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8728 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8729 priv->channel = channel;
8731 #ifdef CONFIG_IPW2200_MONITOR
8732 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8734 if (priv->status & STATUS_SCANNING) {
8735 IPW_DEBUG_SCAN("Scan abort triggered due to "
8736 "channel change.\n");
8737 ipw_abort_scan(priv);
8740 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8743 if (priv->status & STATUS_SCANNING)
8744 IPW_DEBUG_SCAN("Still scanning...\n");
8746 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8751 #endif /* CONFIG_IPW2200_MONITOR */
8753 /* Network configuration changed -- force [re]association */
8754 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8755 if (!ipw_disassociate(priv))
8756 ipw_associate(priv);
8761 static int ipw_wx_set_freq(struct net_device *dev,
8762 struct iw_request_info *info,
8763 union iwreq_data *wrqu, char *extra)
8765 struct ipw_priv *priv = libipw_priv(dev);
8766 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8767 struct iw_freq *fwrq = &wrqu->freq;
8773 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8774 mutex_lock(&priv->mutex);
8775 ret = ipw_set_channel(priv, 0);
8776 mutex_unlock(&priv->mutex);
8779 /* if setting by freq convert to channel */
8781 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8787 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8790 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8791 i = libipw_channel_to_index(priv->ieee, channel);
8795 flags = (band == LIBIPW_24GHZ_BAND) ?
8796 geo->bg[i].flags : geo->a[i].flags;
8797 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8798 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8803 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8804 mutex_lock(&priv->mutex);
8805 ret = ipw_set_channel(priv, channel);
8806 mutex_unlock(&priv->mutex);
8810 static int ipw_wx_get_freq(struct net_device *dev,
8811 struct iw_request_info *info,
8812 union iwreq_data *wrqu, char *extra)
8814 struct ipw_priv *priv = libipw_priv(dev);
8818 /* If we are associated, trying to associate, or have a statically
8819 * configured CHANNEL then return that; otherwise return ANY */
8820 mutex_lock(&priv->mutex);
8821 if (priv->config & CFG_STATIC_CHANNEL ||
8822 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8825 i = libipw_channel_to_index(priv->ieee, priv->channel);
8829 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8830 case LIBIPW_52GHZ_BAND:
8831 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8834 case LIBIPW_24GHZ_BAND:
8835 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8844 mutex_unlock(&priv->mutex);
8845 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8849 static int ipw_wx_set_mode(struct net_device *dev,
8850 struct iw_request_info *info,
8851 union iwreq_data *wrqu, char *extra)
8853 struct ipw_priv *priv = libipw_priv(dev);
8856 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8858 switch (wrqu->mode) {
8859 #ifdef CONFIG_IPW2200_MONITOR
8860 case IW_MODE_MONITOR:
8866 wrqu->mode = IW_MODE_INFRA;
8871 if (wrqu->mode == priv->ieee->iw_mode)
8874 mutex_lock(&priv->mutex);
8876 ipw_sw_reset(priv, 0);
8878 #ifdef CONFIG_IPW2200_MONITOR
8879 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8880 priv->net_dev->type = ARPHRD_ETHER;
8882 if (wrqu->mode == IW_MODE_MONITOR)
8883 #ifdef CONFIG_IPW2200_RADIOTAP
8884 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8886 priv->net_dev->type = ARPHRD_IEEE80211;
8888 #endif /* CONFIG_IPW2200_MONITOR */
8890 /* Free the existing firmware and reset the fw_loaded
8891 * flag so ipw_load() will bring in the new firmware */
8894 priv->ieee->iw_mode = wrqu->mode;
8896 queue_work(priv->workqueue, &priv->adapter_restart);
8897 mutex_unlock(&priv->mutex);
8901 static int ipw_wx_get_mode(struct net_device *dev,
8902 struct iw_request_info *info,
8903 union iwreq_data *wrqu, char *extra)
8905 struct ipw_priv *priv = libipw_priv(dev);
8906 mutex_lock(&priv->mutex);
8907 wrqu->mode = priv->ieee->iw_mode;
8908 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8909 mutex_unlock(&priv->mutex);
8913 /* Values are in microsecond */
8914 static const s32 timeout_duration[] = {
8922 static const s32 period_duration[] = {
8930 static int ipw_wx_get_range(struct net_device *dev,
8931 struct iw_request_info *info,
8932 union iwreq_data *wrqu, char *extra)
8934 struct ipw_priv *priv = libipw_priv(dev);
8935 struct iw_range *range = (struct iw_range *)extra;
8936 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8939 wrqu->data.length = sizeof(*range);
8940 memset(range, 0, sizeof(*range));
8942 /* 54Mbs == ~27 Mb/s real (802.11g) */
8943 range->throughput = 27 * 1000 * 1000;
8945 range->max_qual.qual = 100;
8946 /* TODO: Find real max RSSI and stick here */
8947 range->max_qual.level = 0;
8948 range->max_qual.noise = 0;
8949 range->max_qual.updated = 7; /* Updated all three */
8951 range->avg_qual.qual = 70;
8952 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8953 range->avg_qual.level = 0; /* FIXME to real average level */
8954 range->avg_qual.noise = 0;
8955 range->avg_qual.updated = 7; /* Updated all three */
8956 mutex_lock(&priv->mutex);
8957 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8959 for (i = 0; i < range->num_bitrates; i++)
8960 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8963 range->max_rts = DEFAULT_RTS_THRESHOLD;
8964 range->min_frag = MIN_FRAG_THRESHOLD;
8965 range->max_frag = MAX_FRAG_THRESHOLD;
8967 range->encoding_size[0] = 5;
8968 range->encoding_size[1] = 13;
8969 range->num_encoding_sizes = 2;
8970 range->max_encoding_tokens = WEP_KEYS;
8972 /* Set the Wireless Extension versions */
8973 range->we_version_compiled = WIRELESS_EXT;
8974 range->we_version_source = 18;
8977 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8978 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8979 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8980 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8983 range->freq[i].i = geo->bg[j].channel;
8984 range->freq[i].m = geo->bg[j].freq * 100000;
8985 range->freq[i].e = 1;
8990 if (priv->ieee->mode & IEEE_A) {
8991 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8992 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8993 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8996 range->freq[i].i = geo->a[j].channel;
8997 range->freq[i].m = geo->a[j].freq * 100000;
8998 range->freq[i].e = 1;
9003 range->num_channels = i;
9004 range->num_frequency = i;
9006 mutex_unlock(&priv->mutex);
9008 /* Event capability (kernel + driver) */
9009 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9010 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9011 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9012 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9013 range->event_capa[1] = IW_EVENT_CAPA_K_1;
9015 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9016 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9018 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9020 IPW_DEBUG_WX("GET Range\n");
9024 static int ipw_wx_set_wap(struct net_device *dev,
9025 struct iw_request_info *info,
9026 union iwreq_data *wrqu, char *extra)
9028 struct ipw_priv *priv = libipw_priv(dev);
9030 static const unsigned char any[] = {
9031 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9033 static const unsigned char off[] = {
9034 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9037 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9039 mutex_lock(&priv->mutex);
9040 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9041 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9042 /* we disable mandatory BSSID association */
9043 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9044 priv->config &= ~CFG_STATIC_BSSID;
9045 IPW_DEBUG_ASSOC("Attempting to associate with new "
9047 ipw_associate(priv);
9048 mutex_unlock(&priv->mutex);
9052 priv->config |= CFG_STATIC_BSSID;
9053 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9054 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9055 mutex_unlock(&priv->mutex);
9059 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9060 wrqu->ap_addr.sa_data);
9062 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9064 /* Network configuration changed -- force [re]association */
9065 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9066 if (!ipw_disassociate(priv))
9067 ipw_associate(priv);
9069 mutex_unlock(&priv->mutex);
9073 static int ipw_wx_get_wap(struct net_device *dev,
9074 struct iw_request_info *info,
9075 union iwreq_data *wrqu, char *extra)
9077 struct ipw_priv *priv = libipw_priv(dev);
9079 /* If we are associated, trying to associate, or have a statically
9080 * configured BSSID then return that; otherwise return ANY */
9081 mutex_lock(&priv->mutex);
9082 if (priv->config & CFG_STATIC_BSSID ||
9083 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9084 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9085 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9087 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9089 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9090 wrqu->ap_addr.sa_data);
9091 mutex_unlock(&priv->mutex);
9095 static int ipw_wx_set_essid(struct net_device *dev,
9096 struct iw_request_info *info,
9097 union iwreq_data *wrqu, char *extra)
9099 struct ipw_priv *priv = libipw_priv(dev);
9101 DECLARE_SSID_BUF(ssid);
9103 mutex_lock(&priv->mutex);
9105 if (!wrqu->essid.flags)
9107 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9108 ipw_disassociate(priv);
9109 priv->config &= ~CFG_STATIC_ESSID;
9110 ipw_associate(priv);
9111 mutex_unlock(&priv->mutex);
9115 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9117 priv->config |= CFG_STATIC_ESSID;
9119 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9120 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9121 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9122 mutex_unlock(&priv->mutex);
9126 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9127 print_ssid(ssid, extra, length), length);
9129 priv->essid_len = length;
9130 memcpy(priv->essid, extra, priv->essid_len);
9132 /* Network configuration changed -- force [re]association */
9133 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9134 if (!ipw_disassociate(priv))
9135 ipw_associate(priv);
9137 mutex_unlock(&priv->mutex);
9141 static int ipw_wx_get_essid(struct net_device *dev,
9142 struct iw_request_info *info,
9143 union iwreq_data *wrqu, char *extra)
9145 struct ipw_priv *priv = libipw_priv(dev);
9146 DECLARE_SSID_BUF(ssid);
9148 /* If we are associated, trying to associate, or have a statically
9149 * configured ESSID then return that; otherwise return ANY */
9150 mutex_lock(&priv->mutex);
9151 if (priv->config & CFG_STATIC_ESSID ||
9152 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9153 IPW_DEBUG_WX("Getting essid: '%s'\n",
9154 print_ssid(ssid, priv->essid, priv->essid_len));
9155 memcpy(extra, priv->essid, priv->essid_len);
9156 wrqu->essid.length = priv->essid_len;
9157 wrqu->essid.flags = 1; /* active */
9159 IPW_DEBUG_WX("Getting essid: ANY\n");
9160 wrqu->essid.length = 0;
9161 wrqu->essid.flags = 0; /* active */
9163 mutex_unlock(&priv->mutex);
9167 static int ipw_wx_set_nick(struct net_device *dev,
9168 struct iw_request_info *info,
9169 union iwreq_data *wrqu, char *extra)
9171 struct ipw_priv *priv = libipw_priv(dev);
9173 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9174 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9176 mutex_lock(&priv->mutex);
9177 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9178 memset(priv->nick, 0, sizeof(priv->nick));
9179 memcpy(priv->nick, extra, wrqu->data.length);
9180 IPW_DEBUG_TRACE("<<\n");
9181 mutex_unlock(&priv->mutex);
9186 static int ipw_wx_get_nick(struct net_device *dev,
9187 struct iw_request_info *info,
9188 union iwreq_data *wrqu, char *extra)
9190 struct ipw_priv *priv = libipw_priv(dev);
9191 IPW_DEBUG_WX("Getting nick\n");
9192 mutex_lock(&priv->mutex);
9193 wrqu->data.length = strlen(priv->nick);
9194 memcpy(extra, priv->nick, wrqu->data.length);
9195 wrqu->data.flags = 1; /* active */
9196 mutex_unlock(&priv->mutex);
9200 static int ipw_wx_set_sens(struct net_device *dev,
9201 struct iw_request_info *info,
9202 union iwreq_data *wrqu, char *extra)
9204 struct ipw_priv *priv = libipw_priv(dev);
9207 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9208 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9209 mutex_lock(&priv->mutex);
9211 if (wrqu->sens.fixed == 0)
9213 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9214 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9217 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9218 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9223 priv->roaming_threshold = wrqu->sens.value;
9224 priv->disassociate_threshold = 3*wrqu->sens.value;
9226 mutex_unlock(&priv->mutex);
9230 static int ipw_wx_get_sens(struct net_device *dev,
9231 struct iw_request_info *info,
9232 union iwreq_data *wrqu, char *extra)
9234 struct ipw_priv *priv = libipw_priv(dev);
9235 mutex_lock(&priv->mutex);
9236 wrqu->sens.fixed = 1;
9237 wrqu->sens.value = priv->roaming_threshold;
9238 mutex_unlock(&priv->mutex);
9240 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9241 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9246 static int ipw_wx_set_rate(struct net_device *dev,
9247 struct iw_request_info *info,
9248 union iwreq_data *wrqu, char *extra)
9250 /* TODO: We should use semaphores or locks for access to priv */
9251 struct ipw_priv *priv = libipw_priv(dev);
9252 u32 target_rate = wrqu->bitrate.value;
9255 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9256 /* value = X, fixed = 1 means only rate X */
9257 /* value = X, fixed = 0 means all rates lower equal X */
9259 if (target_rate == -1) {
9261 mask = LIBIPW_DEFAULT_RATES_MASK;
9262 /* Now we should reassociate */
9267 fixed = wrqu->bitrate.fixed;
9269 if (target_rate == 1000000 || !fixed)
9270 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9271 if (target_rate == 1000000)
9274 if (target_rate == 2000000 || !fixed)
9275 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9276 if (target_rate == 2000000)
9279 if (target_rate == 5500000 || !fixed)
9280 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9281 if (target_rate == 5500000)
9284 if (target_rate == 6000000 || !fixed)
9285 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9286 if (target_rate == 6000000)
9289 if (target_rate == 9000000 || !fixed)
9290 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9291 if (target_rate == 9000000)
9294 if (target_rate == 11000000 || !fixed)
9295 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9296 if (target_rate == 11000000)
9299 if (target_rate == 12000000 || !fixed)
9300 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9301 if (target_rate == 12000000)
9304 if (target_rate == 18000000 || !fixed)
9305 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9306 if (target_rate == 18000000)
9309 if (target_rate == 24000000 || !fixed)
9310 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9311 if (target_rate == 24000000)
9314 if (target_rate == 36000000 || !fixed)
9315 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9316 if (target_rate == 36000000)
9319 if (target_rate == 48000000 || !fixed)
9320 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9321 if (target_rate == 48000000)
9324 if (target_rate == 54000000 || !fixed)
9325 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9326 if (target_rate == 54000000)
9329 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9333 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9334 mask, fixed ? "fixed" : "sub-rates");
9335 mutex_lock(&priv->mutex);
9336 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9337 priv->config &= ~CFG_FIXED_RATE;
9338 ipw_set_fixed_rate(priv, priv->ieee->mode);
9340 priv->config |= CFG_FIXED_RATE;
9342 if (priv->rates_mask == mask) {
9343 IPW_DEBUG_WX("Mask set to current mask.\n");
9344 mutex_unlock(&priv->mutex);
9348 priv->rates_mask = mask;
9350 /* Network configuration changed -- force [re]association */
9351 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9352 if (!ipw_disassociate(priv))
9353 ipw_associate(priv);
9355 mutex_unlock(&priv->mutex);
9359 static int ipw_wx_get_rate(struct net_device *dev,
9360 struct iw_request_info *info,
9361 union iwreq_data *wrqu, char *extra)
9363 struct ipw_priv *priv = libipw_priv(dev);
9364 mutex_lock(&priv->mutex);
9365 wrqu->bitrate.value = priv->last_rate;
9366 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9367 mutex_unlock(&priv->mutex);
9368 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9372 static int ipw_wx_set_rts(struct net_device *dev,
9373 struct iw_request_info *info,
9374 union iwreq_data *wrqu, char *extra)
9376 struct ipw_priv *priv = libipw_priv(dev);
9377 mutex_lock(&priv->mutex);
9378 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9379 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9381 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9382 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9383 mutex_unlock(&priv->mutex);
9386 priv->rts_threshold = wrqu->rts.value;
9389 ipw_send_rts_threshold(priv, priv->rts_threshold);
9390 mutex_unlock(&priv->mutex);
9391 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9395 static int ipw_wx_get_rts(struct net_device *dev,
9396 struct iw_request_info *info,
9397 union iwreq_data *wrqu, char *extra)
9399 struct ipw_priv *priv = libipw_priv(dev);
9400 mutex_lock(&priv->mutex);
9401 wrqu->rts.value = priv->rts_threshold;
9402 wrqu->rts.fixed = 0; /* no auto select */
9403 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9404 mutex_unlock(&priv->mutex);
9405 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9409 static int ipw_wx_set_txpow(struct net_device *dev,
9410 struct iw_request_info *info,
9411 union iwreq_data *wrqu, char *extra)
9413 struct ipw_priv *priv = libipw_priv(dev);
9416 mutex_lock(&priv->mutex);
9417 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9422 if (!wrqu->power.fixed)
9423 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9425 if (wrqu->power.flags != IW_TXPOW_DBM) {
9430 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9431 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9436 priv->tx_power = wrqu->power.value;
9437 err = ipw_set_tx_power(priv);
9439 mutex_unlock(&priv->mutex);
9443 static int ipw_wx_get_txpow(struct net_device *dev,
9444 struct iw_request_info *info,
9445 union iwreq_data *wrqu, char *extra)
9447 struct ipw_priv *priv = libipw_priv(dev);
9448 mutex_lock(&priv->mutex);
9449 wrqu->power.value = priv->tx_power;
9450 wrqu->power.fixed = 1;
9451 wrqu->power.flags = IW_TXPOW_DBM;
9452 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9453 mutex_unlock(&priv->mutex);
9455 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9456 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9461 static int ipw_wx_set_frag(struct net_device *dev,
9462 struct iw_request_info *info,
9463 union iwreq_data *wrqu, char *extra)
9465 struct ipw_priv *priv = libipw_priv(dev);
9466 mutex_lock(&priv->mutex);
9467 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9468 priv->ieee->fts = DEFAULT_FTS;
9470 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9471 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9472 mutex_unlock(&priv->mutex);
9476 priv->ieee->fts = wrqu->frag.value & ~0x1;
9479 ipw_send_frag_threshold(priv, wrqu->frag.value);
9480 mutex_unlock(&priv->mutex);
9481 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9485 static int ipw_wx_get_frag(struct net_device *dev,
9486 struct iw_request_info *info,
9487 union iwreq_data *wrqu, char *extra)
9489 struct ipw_priv *priv = libipw_priv(dev);
9490 mutex_lock(&priv->mutex);
9491 wrqu->frag.value = priv->ieee->fts;
9492 wrqu->frag.fixed = 0; /* no auto select */
9493 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9494 mutex_unlock(&priv->mutex);
9495 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9500 static int ipw_wx_set_retry(struct net_device *dev,
9501 struct iw_request_info *info,
9502 union iwreq_data *wrqu, char *extra)
9504 struct ipw_priv *priv = libipw_priv(dev);
9506 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9509 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9512 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9515 mutex_lock(&priv->mutex);
9516 if (wrqu->retry.flags & IW_RETRY_SHORT)
9517 priv->short_retry_limit = (u8) wrqu->retry.value;
9518 else if (wrqu->retry.flags & IW_RETRY_LONG)
9519 priv->long_retry_limit = (u8) wrqu->retry.value;
9521 priv->short_retry_limit = (u8) wrqu->retry.value;
9522 priv->long_retry_limit = (u8) wrqu->retry.value;
9525 ipw_send_retry_limit(priv, priv->short_retry_limit,
9526 priv->long_retry_limit);
9527 mutex_unlock(&priv->mutex);
9528 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9529 priv->short_retry_limit, priv->long_retry_limit);
9533 static int ipw_wx_get_retry(struct net_device *dev,
9534 struct iw_request_info *info,
9535 union iwreq_data *wrqu, char *extra)
9537 struct ipw_priv *priv = libipw_priv(dev);
9539 mutex_lock(&priv->mutex);
9540 wrqu->retry.disabled = 0;
9542 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9543 mutex_unlock(&priv->mutex);
9547 if (wrqu->retry.flags & IW_RETRY_LONG) {
9548 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9549 wrqu->retry.value = priv->long_retry_limit;
9550 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9551 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9552 wrqu->retry.value = priv->short_retry_limit;
9554 wrqu->retry.flags = IW_RETRY_LIMIT;
9555 wrqu->retry.value = priv->short_retry_limit;
9557 mutex_unlock(&priv->mutex);
9559 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9564 static int ipw_wx_set_scan(struct net_device *dev,
9565 struct iw_request_info *info,
9566 union iwreq_data *wrqu, char *extra)
9568 struct ipw_priv *priv = libipw_priv(dev);
9569 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9570 struct delayed_work *work = NULL;
9572 mutex_lock(&priv->mutex);
9574 priv->user_requested_scan = 1;
9576 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9577 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9578 int len = min((int)req->essid_len,
9579 (int)sizeof(priv->direct_scan_ssid));
9580 memcpy(priv->direct_scan_ssid, req->essid, len);
9581 priv->direct_scan_ssid_len = len;
9582 work = &priv->request_direct_scan;
9583 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9584 work = &priv->request_passive_scan;
9587 /* Normal active broadcast scan */
9588 work = &priv->request_scan;
9591 mutex_unlock(&priv->mutex);
9593 IPW_DEBUG_WX("Start scan\n");
9595 queue_delayed_work(priv->workqueue, work, 0);
9600 static int ipw_wx_get_scan(struct net_device *dev,
9601 struct iw_request_info *info,
9602 union iwreq_data *wrqu, char *extra)
9604 struct ipw_priv *priv = libipw_priv(dev);
9605 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9608 static int ipw_wx_set_encode(struct net_device *dev,
9609 struct iw_request_info *info,
9610 union iwreq_data *wrqu, char *key)
9612 struct ipw_priv *priv = libipw_priv(dev);
9614 u32 cap = priv->capability;
9616 mutex_lock(&priv->mutex);
9617 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9619 /* In IBSS mode, we need to notify the firmware to update
9620 * the beacon info after we changed the capability. */
9621 if (cap != priv->capability &&
9622 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9623 priv->status & STATUS_ASSOCIATED)
9624 ipw_disassociate(priv);
9626 mutex_unlock(&priv->mutex);
9630 static int ipw_wx_get_encode(struct net_device *dev,
9631 struct iw_request_info *info,
9632 union iwreq_data *wrqu, char *key)
9634 struct ipw_priv *priv = libipw_priv(dev);
9635 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9638 static int ipw_wx_set_power(struct net_device *dev,
9639 struct iw_request_info *info,
9640 union iwreq_data *wrqu, char *extra)
9642 struct ipw_priv *priv = libipw_priv(dev);
9644 mutex_lock(&priv->mutex);
9645 if (wrqu->power.disabled) {
9646 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9647 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9649 IPW_DEBUG_WX("failed setting power mode.\n");
9650 mutex_unlock(&priv->mutex);
9653 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9654 mutex_unlock(&priv->mutex);
9658 switch (wrqu->power.flags & IW_POWER_MODE) {
9659 case IW_POWER_ON: /* If not specified */
9660 case IW_POWER_MODE: /* If set all mask */
9661 case IW_POWER_ALL_R: /* If explicitly state all */
9663 default: /* Otherwise we don't support it */
9664 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9666 mutex_unlock(&priv->mutex);
9670 /* If the user hasn't specified a power management mode yet, default
9672 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9673 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9675 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9677 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9679 IPW_DEBUG_WX("failed setting power mode.\n");
9680 mutex_unlock(&priv->mutex);
9684 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9685 mutex_unlock(&priv->mutex);
9689 static int ipw_wx_get_power(struct net_device *dev,
9690 struct iw_request_info *info,
9691 union iwreq_data *wrqu, char *extra)
9693 struct ipw_priv *priv = libipw_priv(dev);
9694 mutex_lock(&priv->mutex);
9695 if (!(priv->power_mode & IPW_POWER_ENABLED))
9696 wrqu->power.disabled = 1;
9698 wrqu->power.disabled = 0;
9700 mutex_unlock(&priv->mutex);
9701 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9706 static int ipw_wx_set_powermode(struct net_device *dev,
9707 struct iw_request_info *info,
9708 union iwreq_data *wrqu, char *extra)
9710 struct ipw_priv *priv = libipw_priv(dev);
9711 int mode = *(int *)extra;
9714 mutex_lock(&priv->mutex);
9715 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9716 mode = IPW_POWER_AC;
9718 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9719 err = ipw_send_power_mode(priv, mode);
9721 IPW_DEBUG_WX("failed setting power mode.\n");
9722 mutex_unlock(&priv->mutex);
9725 priv->power_mode = IPW_POWER_ENABLED | mode;
9727 mutex_unlock(&priv->mutex);
9731 #define MAX_WX_STRING 80
9732 static int ipw_wx_get_powermode(struct net_device *dev,
9733 struct iw_request_info *info,
9734 union iwreq_data *wrqu, char *extra)
9736 struct ipw_priv *priv = libipw_priv(dev);
9737 int level = IPW_POWER_LEVEL(priv->power_mode);
9740 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9744 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9746 case IPW_POWER_BATTERY:
9747 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9750 p += snprintf(p, MAX_WX_STRING - (p - extra),
9751 "(Timeout %dms, Period %dms)",
9752 timeout_duration[level - 1] / 1000,
9753 period_duration[level - 1] / 1000);
9756 if (!(priv->power_mode & IPW_POWER_ENABLED))
9757 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9759 wrqu->data.length = p - extra + 1;
9764 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9765 struct iw_request_info *info,
9766 union iwreq_data *wrqu, char *extra)
9768 struct ipw_priv *priv = libipw_priv(dev);
9769 int mode = *(int *)extra;
9770 u8 band = 0, modulation = 0;
9772 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9773 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9776 mutex_lock(&priv->mutex);
9777 if (priv->adapter == IPW_2915ABG) {
9778 priv->ieee->abg_true = 1;
9779 if (mode & IEEE_A) {
9780 band |= LIBIPW_52GHZ_BAND;
9781 modulation |= LIBIPW_OFDM_MODULATION;
9783 priv->ieee->abg_true = 0;
9785 if (mode & IEEE_A) {
9786 IPW_WARNING("Attempt to set 2200BG into "
9788 mutex_unlock(&priv->mutex);
9792 priv->ieee->abg_true = 0;
9795 if (mode & IEEE_B) {
9796 band |= LIBIPW_24GHZ_BAND;
9797 modulation |= LIBIPW_CCK_MODULATION;
9799 priv->ieee->abg_true = 0;
9801 if (mode & IEEE_G) {
9802 band |= LIBIPW_24GHZ_BAND;
9803 modulation |= LIBIPW_OFDM_MODULATION;
9805 priv->ieee->abg_true = 0;
9807 priv->ieee->mode = mode;
9808 priv->ieee->freq_band = band;
9809 priv->ieee->modulation = modulation;
9810 init_supported_rates(priv, &priv->rates);
9812 /* Network configuration changed -- force [re]association */
9813 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9814 if (!ipw_disassociate(priv)) {
9815 ipw_send_supported_rates(priv, &priv->rates);
9816 ipw_associate(priv);
9819 /* Update the band LEDs */
9820 ipw_led_band_on(priv);
9822 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9823 mode & IEEE_A ? 'a' : '.',
9824 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9825 mutex_unlock(&priv->mutex);
9829 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9830 struct iw_request_info *info,
9831 union iwreq_data *wrqu, char *extra)
9833 struct ipw_priv *priv = libipw_priv(dev);
9834 mutex_lock(&priv->mutex);
9835 switch (priv->ieee->mode) {
9837 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9840 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9842 case IEEE_A | IEEE_B:
9843 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9846 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9848 case IEEE_A | IEEE_G:
9849 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9851 case IEEE_B | IEEE_G:
9852 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9854 case IEEE_A | IEEE_B | IEEE_G:
9855 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9858 strncpy(extra, "unknown", MAX_WX_STRING);
9862 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9864 wrqu->data.length = strlen(extra) + 1;
9865 mutex_unlock(&priv->mutex);
9870 static int ipw_wx_set_preamble(struct net_device *dev,
9871 struct iw_request_info *info,
9872 union iwreq_data *wrqu, char *extra)
9874 struct ipw_priv *priv = libipw_priv(dev);
9875 int mode = *(int *)extra;
9876 mutex_lock(&priv->mutex);
9877 /* Switching from SHORT -> LONG requires a disassociation */
9879 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9880 priv->config |= CFG_PREAMBLE_LONG;
9882 /* Network configuration changed -- force [re]association */
9884 ("[re]association triggered due to preamble change.\n");
9885 if (!ipw_disassociate(priv))
9886 ipw_associate(priv);
9892 priv->config &= ~CFG_PREAMBLE_LONG;
9895 mutex_unlock(&priv->mutex);
9899 mutex_unlock(&priv->mutex);
9903 static int ipw_wx_get_preamble(struct net_device *dev,
9904 struct iw_request_info *info,
9905 union iwreq_data *wrqu, char *extra)
9907 struct ipw_priv *priv = libipw_priv(dev);
9908 mutex_lock(&priv->mutex);
9909 if (priv->config & CFG_PREAMBLE_LONG)
9910 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9912 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9913 mutex_unlock(&priv->mutex);
9917 #ifdef CONFIG_IPW2200_MONITOR
9918 static int ipw_wx_set_monitor(struct net_device *dev,
9919 struct iw_request_info *info,
9920 union iwreq_data *wrqu, char *extra)
9922 struct ipw_priv *priv = libipw_priv(dev);
9923 int *parms = (int *)extra;
9924 int enable = (parms[0] > 0);
9925 mutex_lock(&priv->mutex);
9926 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9928 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9929 #ifdef CONFIG_IPW2200_RADIOTAP
9930 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9932 priv->net_dev->type = ARPHRD_IEEE80211;
9934 queue_work(priv->workqueue, &priv->adapter_restart);
9937 ipw_set_channel(priv, parms[1]);
9939 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9940 mutex_unlock(&priv->mutex);
9943 priv->net_dev->type = ARPHRD_ETHER;
9944 queue_work(priv->workqueue, &priv->adapter_restart);
9946 mutex_unlock(&priv->mutex);
9950 #endif /* CONFIG_IPW2200_MONITOR */
9952 static int ipw_wx_reset(struct net_device *dev,
9953 struct iw_request_info *info,
9954 union iwreq_data *wrqu, char *extra)
9956 struct ipw_priv *priv = libipw_priv(dev);
9957 IPW_DEBUG_WX("RESET\n");
9958 queue_work(priv->workqueue, &priv->adapter_restart);
9962 static int ipw_wx_sw_reset(struct net_device *dev,
9963 struct iw_request_info *info,
9964 union iwreq_data *wrqu, char *extra)
9966 struct ipw_priv *priv = libipw_priv(dev);
9967 union iwreq_data wrqu_sec = {
9969 .flags = IW_ENCODE_DISABLED,
9974 IPW_DEBUG_WX("SW_RESET\n");
9976 mutex_lock(&priv->mutex);
9978 ret = ipw_sw_reset(priv, 2);
9981 ipw_adapter_restart(priv);
9984 /* The SW reset bit might have been toggled on by the 'disable'
9985 * module parameter, so take appropriate action */
9986 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9988 mutex_unlock(&priv->mutex);
9989 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9990 mutex_lock(&priv->mutex);
9992 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9993 /* Configuration likely changed -- force [re]association */
9994 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9996 if (!ipw_disassociate(priv))
9997 ipw_associate(priv);
10000 mutex_unlock(&priv->mutex);
10005 /* Rebase the WE IOCTLs to zero for the handler array */
10006 static iw_handler ipw_wx_handlers[] = {
10007 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10008 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10009 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10010 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10011 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10012 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10013 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10014 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10015 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10016 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10017 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10018 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10019 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10020 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10021 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10022 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10023 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10024 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10025 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10026 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10027 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10028 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10029 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10030 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10031 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10032 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10033 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10034 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10035 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10036 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10037 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10038 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10039 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10040 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10041 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10042 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10043 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10044 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10045 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10046 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10047 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10051 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10052 IPW_PRIV_GET_POWER,
10055 IPW_PRIV_SET_PREAMBLE,
10056 IPW_PRIV_GET_PREAMBLE,
10059 #ifdef CONFIG_IPW2200_MONITOR
10060 IPW_PRIV_SET_MONITOR,
10064 static struct iw_priv_args ipw_priv_args[] = {
10066 .cmd = IPW_PRIV_SET_POWER,
10067 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10068 .name = "set_power"},
10070 .cmd = IPW_PRIV_GET_POWER,
10071 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10072 .name = "get_power"},
10074 .cmd = IPW_PRIV_SET_MODE,
10075 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10076 .name = "set_mode"},
10078 .cmd = IPW_PRIV_GET_MODE,
10079 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10080 .name = "get_mode"},
10082 .cmd = IPW_PRIV_SET_PREAMBLE,
10083 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10084 .name = "set_preamble"},
10086 .cmd = IPW_PRIV_GET_PREAMBLE,
10087 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10088 .name = "get_preamble"},
10091 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10095 #ifdef CONFIG_IPW2200_MONITOR
10097 IPW_PRIV_SET_MONITOR,
10098 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10099 #endif /* CONFIG_IPW2200_MONITOR */
10102 static iw_handler ipw_priv_handler[] = {
10103 ipw_wx_set_powermode,
10104 ipw_wx_get_powermode,
10105 ipw_wx_set_wireless_mode,
10106 ipw_wx_get_wireless_mode,
10107 ipw_wx_set_preamble,
10108 ipw_wx_get_preamble,
10111 #ifdef CONFIG_IPW2200_MONITOR
10112 ipw_wx_set_monitor,
10116 static struct iw_handler_def ipw_wx_handler_def = {
10117 .standard = ipw_wx_handlers,
10118 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10119 .num_private = ARRAY_SIZE(ipw_priv_handler),
10120 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10121 .private = ipw_priv_handler,
10122 .private_args = ipw_priv_args,
10123 .get_wireless_stats = ipw_get_wireless_stats,
10127 * Get wireless statistics.
10128 * Called by /proc/net/wireless
10129 * Also called by SIOCGIWSTATS
10131 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10133 struct ipw_priv *priv = libipw_priv(dev);
10134 struct iw_statistics *wstats;
10136 wstats = &priv->wstats;
10138 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10139 * netdev->get_wireless_stats seems to be called before fw is
10140 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10141 * and associated; if not associcated, the values are all meaningless
10142 * anyway, so set them all to NULL and INVALID */
10143 if (!(priv->status & STATUS_ASSOCIATED)) {
10144 wstats->miss.beacon = 0;
10145 wstats->discard.retries = 0;
10146 wstats->qual.qual = 0;
10147 wstats->qual.level = 0;
10148 wstats->qual.noise = 0;
10149 wstats->qual.updated = 7;
10150 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10151 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10155 wstats->qual.qual = priv->quality;
10156 wstats->qual.level = priv->exp_avg_rssi;
10157 wstats->qual.noise = priv->exp_avg_noise;
10158 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10159 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10161 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10162 wstats->discard.retries = priv->last_tx_failures;
10163 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10165 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10166 goto fail_get_ordinal;
10167 wstats->discard.retries += tx_retry; */
10172 /* net device stuff */
10174 static void init_sys_config(struct ipw_sys_config *sys_config)
10176 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10177 sys_config->bt_coexistence = 0;
10178 sys_config->answer_broadcast_ssid_probe = 0;
10179 sys_config->accept_all_data_frames = 0;
10180 sys_config->accept_non_directed_frames = 1;
10181 sys_config->exclude_unicast_unencrypted = 0;
10182 sys_config->disable_unicast_decryption = 1;
10183 sys_config->exclude_multicast_unencrypted = 0;
10184 sys_config->disable_multicast_decryption = 1;
10185 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10186 antenna = CFG_SYS_ANTENNA_BOTH;
10187 sys_config->antenna_diversity = antenna;
10188 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10189 sys_config->dot11g_auto_detection = 0;
10190 sys_config->enable_cts_to_self = 0;
10191 sys_config->bt_coexist_collision_thr = 0;
10192 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10193 sys_config->silence_threshold = 0x1e;
10196 static int ipw_net_open(struct net_device *dev)
10198 IPW_DEBUG_INFO("dev->open\n");
10199 netif_start_queue(dev);
10203 static int ipw_net_stop(struct net_device *dev)
10205 IPW_DEBUG_INFO("dev->close\n");
10206 netif_stop_queue(dev);
10213 modify to send one tfd per fragment instead of using chunking. otherwise
10214 we need to heavily modify the libipw_skb_to_txb.
10217 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10220 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10221 txb->fragments[0]->data;
10223 struct tfd_frame *tfd;
10224 #ifdef CONFIG_IPW2200_QOS
10225 int tx_id = ipw_get_tx_queue_number(priv, pri);
10226 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10228 struct clx2_tx_queue *txq = &priv->txq[0];
10230 struct clx2_queue *q = &txq->q;
10231 u8 id, hdr_len, unicast;
10234 if (!(priv->status & STATUS_ASSOCIATED))
10237 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10238 switch (priv->ieee->iw_mode) {
10239 case IW_MODE_ADHOC:
10240 unicast = !is_multicast_ether_addr(hdr->addr1);
10241 id = ipw_find_station(priv, hdr->addr1);
10242 if (id == IPW_INVALID_STATION) {
10243 id = ipw_add_station(priv, hdr->addr1);
10244 if (id == IPW_INVALID_STATION) {
10245 IPW_WARNING("Attempt to send data to "
10246 "invalid cell: %pM\n",
10253 case IW_MODE_INFRA:
10255 unicast = !is_multicast_ether_addr(hdr->addr3);
10260 tfd = &txq->bd[q->first_empty];
10261 txq->txb[q->first_empty] = txb;
10262 memset(tfd, 0, sizeof(*tfd));
10263 tfd->u.data.station_number = id;
10265 tfd->control_flags.message_type = TX_FRAME_TYPE;
10266 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10268 tfd->u.data.cmd_id = DINO_CMD_TX;
10269 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10271 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10272 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10274 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10276 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10277 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10279 fc = le16_to_cpu(hdr->frame_ctl);
10280 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10282 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10284 if (likely(unicast))
10285 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10287 if (txb->encrypted && !priv->ieee->host_encrypt) {
10288 switch (priv->ieee->sec.level) {
10290 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10291 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10292 /* XXX: ACK flag must be set for CCMP even if it
10293 * is a multicast/broadcast packet, because CCMP
10294 * group communication encrypted by GTK is
10295 * actually done by the AP. */
10297 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10299 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10300 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10301 tfd->u.data.key_index = 0;
10302 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10305 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10306 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10307 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10308 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10309 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10312 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10313 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10314 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10315 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10317 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10319 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10324 printk(KERN_ERR "Unknown security level %d\n",
10325 priv->ieee->sec.level);
10329 /* No hardware encryption */
10330 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10332 #ifdef CONFIG_IPW2200_QOS
10333 if (fc & IEEE80211_STYPE_QOS_DATA)
10334 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10335 #endif /* CONFIG_IPW2200_QOS */
10338 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10340 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10341 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10342 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10343 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10344 i, le32_to_cpu(tfd->u.data.num_chunks),
10345 txb->fragments[i]->len - hdr_len);
10346 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10347 i, tfd->u.data.num_chunks,
10348 txb->fragments[i]->len - hdr_len);
10349 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10350 txb->fragments[i]->len - hdr_len);
10352 tfd->u.data.chunk_ptr[i] =
10353 cpu_to_le32(pci_map_single
10355 txb->fragments[i]->data + hdr_len,
10356 txb->fragments[i]->len - hdr_len,
10357 PCI_DMA_TODEVICE));
10358 tfd->u.data.chunk_len[i] =
10359 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10362 if (i != txb->nr_frags) {
10363 struct sk_buff *skb;
10364 u16 remaining_bytes = 0;
10367 for (j = i; j < txb->nr_frags; j++)
10368 remaining_bytes += txb->fragments[j]->len - hdr_len;
10370 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10372 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10374 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10375 for (j = i; j < txb->nr_frags; j++) {
10376 int size = txb->fragments[j]->len - hdr_len;
10378 printk(KERN_INFO "Adding frag %d %d...\n",
10380 memcpy(skb_put(skb, size),
10381 txb->fragments[j]->data + hdr_len, size);
10383 dev_kfree_skb_any(txb->fragments[i]);
10384 txb->fragments[i] = skb;
10385 tfd->u.data.chunk_ptr[i] =
10386 cpu_to_le32(pci_map_single
10387 (priv->pci_dev, skb->data,
10389 PCI_DMA_TODEVICE));
10391 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10396 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10397 ipw_write32(priv, q->reg_w, q->first_empty);
10399 if (ipw_tx_queue_space(q) < q->high_mark)
10400 netif_stop_queue(priv->net_dev);
10402 return NETDEV_TX_OK;
10405 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10406 libipw_txb_free(txb);
10407 return NETDEV_TX_OK;
10410 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10412 struct ipw_priv *priv = libipw_priv(dev);
10413 #ifdef CONFIG_IPW2200_QOS
10414 int tx_id = ipw_get_tx_queue_number(priv, pri);
10415 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10417 struct clx2_tx_queue *txq = &priv->txq[0];
10418 #endif /* CONFIG_IPW2200_QOS */
10420 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10426 #ifdef CONFIG_IPW2200_PROMISCUOUS
10427 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10428 struct libipw_txb *txb)
10430 struct libipw_rx_stats dummystats;
10431 struct ieee80211_hdr *hdr;
10433 u16 filter = priv->prom_priv->filter;
10436 if (filter & IPW_PROM_NO_TX)
10439 memset(&dummystats, 0, sizeof(dummystats));
10441 /* Filtering of fragment chains is done agains the first fragment */
10442 hdr = (void *)txb->fragments[0]->data;
10443 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10444 if (filter & IPW_PROM_NO_MGMT)
10446 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10448 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10449 if (filter & IPW_PROM_NO_CTL)
10451 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10453 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10454 if (filter & IPW_PROM_NO_DATA)
10456 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10460 for(n=0; n<txb->nr_frags; ++n) {
10461 struct sk_buff *src = txb->fragments[n];
10462 struct sk_buff *dst;
10463 struct ieee80211_radiotap_header *rt_hdr;
10467 hdr = (void *)src->data;
10468 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10472 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10476 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10478 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10479 rt_hdr->it_pad = 0;
10480 rt_hdr->it_present = 0; /* after all, it's just an idea */
10481 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10483 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10484 ieee80211chan2mhz(priv->channel));
10485 if (priv->channel > 14) /* 802.11a */
10486 *(__le16*)skb_put(dst, sizeof(u16)) =
10487 cpu_to_le16(IEEE80211_CHAN_OFDM |
10488 IEEE80211_CHAN_5GHZ);
10489 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10490 *(__le16*)skb_put(dst, sizeof(u16)) =
10491 cpu_to_le16(IEEE80211_CHAN_CCK |
10492 IEEE80211_CHAN_2GHZ);
10494 *(__le16*)skb_put(dst, sizeof(u16)) =
10495 cpu_to_le16(IEEE80211_CHAN_OFDM |
10496 IEEE80211_CHAN_2GHZ);
10498 rt_hdr->it_len = cpu_to_le16(dst->len);
10500 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10502 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10503 dev_kfree_skb_any(dst);
10508 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10509 struct net_device *dev, int pri)
10511 struct ipw_priv *priv = libipw_priv(dev);
10512 unsigned long flags;
10515 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10516 spin_lock_irqsave(&priv->lock, flags);
10518 #ifdef CONFIG_IPW2200_PROMISCUOUS
10519 if (rtap_iface && netif_running(priv->prom_net_dev))
10520 ipw_handle_promiscuous_tx(priv, txb);
10523 ret = ipw_tx_skb(priv, txb, pri);
10524 if (ret == NETDEV_TX_OK)
10525 __ipw_led_activity_on(priv);
10526 spin_unlock_irqrestore(&priv->lock, flags);
10531 static void ipw_net_set_multicast_list(struct net_device *dev)
10536 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10538 struct ipw_priv *priv = libipw_priv(dev);
10539 struct sockaddr *addr = p;
10541 if (!is_valid_ether_addr(addr->sa_data))
10542 return -EADDRNOTAVAIL;
10543 mutex_lock(&priv->mutex);
10544 priv->config |= CFG_CUSTOM_MAC;
10545 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10546 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10547 priv->net_dev->name, priv->mac_addr);
10548 queue_work(priv->workqueue, &priv->adapter_restart);
10549 mutex_unlock(&priv->mutex);
10553 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10554 struct ethtool_drvinfo *info)
10556 struct ipw_priv *p = libipw_priv(dev);
10561 strcpy(info->driver, DRV_NAME);
10562 strcpy(info->version, DRV_VERSION);
10564 len = sizeof(vers);
10565 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10566 len = sizeof(date);
10567 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10569 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10571 strcpy(info->bus_info, pci_name(p->pci_dev));
10572 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10575 static u32 ipw_ethtool_get_link(struct net_device *dev)
10577 struct ipw_priv *priv = libipw_priv(dev);
10578 return (priv->status & STATUS_ASSOCIATED) != 0;
10581 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10583 return IPW_EEPROM_IMAGE_SIZE;
10586 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10587 struct ethtool_eeprom *eeprom, u8 * bytes)
10589 struct ipw_priv *p = libipw_priv(dev);
10591 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10593 mutex_lock(&p->mutex);
10594 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10595 mutex_unlock(&p->mutex);
10599 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10600 struct ethtool_eeprom *eeprom, u8 * bytes)
10602 struct ipw_priv *p = libipw_priv(dev);
10605 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10607 mutex_lock(&p->mutex);
10608 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10609 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10610 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10611 mutex_unlock(&p->mutex);
10615 static const struct ethtool_ops ipw_ethtool_ops = {
10616 .get_link = ipw_ethtool_get_link,
10617 .get_drvinfo = ipw_ethtool_get_drvinfo,
10618 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10619 .get_eeprom = ipw_ethtool_get_eeprom,
10620 .set_eeprom = ipw_ethtool_set_eeprom,
10623 static irqreturn_t ipw_isr(int irq, void *data)
10625 struct ipw_priv *priv = data;
10626 u32 inta, inta_mask;
10631 spin_lock(&priv->irq_lock);
10633 if (!(priv->status & STATUS_INT_ENABLED)) {
10634 /* IRQ is disabled */
10638 inta = ipw_read32(priv, IPW_INTA_RW);
10639 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10641 if (inta == 0xFFFFFFFF) {
10642 /* Hardware disappeared */
10643 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10647 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10648 /* Shared interrupt */
10652 /* tell the device to stop sending interrupts */
10653 __ipw_disable_interrupts(priv);
10655 /* ack current interrupts */
10656 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10657 ipw_write32(priv, IPW_INTA_RW, inta);
10659 /* Cache INTA value for our tasklet */
10660 priv->isr_inta = inta;
10662 tasklet_schedule(&priv->irq_tasklet);
10664 spin_unlock(&priv->irq_lock);
10666 return IRQ_HANDLED;
10668 spin_unlock(&priv->irq_lock);
10672 static void ipw_rf_kill(void *adapter)
10674 struct ipw_priv *priv = adapter;
10675 unsigned long flags;
10677 spin_lock_irqsave(&priv->lock, flags);
10679 if (rf_kill_active(priv)) {
10680 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10681 if (priv->workqueue)
10682 queue_delayed_work(priv->workqueue,
10683 &priv->rf_kill, 2 * HZ);
10687 /* RF Kill is now disabled, so bring the device back up */
10689 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10690 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10693 /* we can not do an adapter restart while inside an irq lock */
10694 queue_work(priv->workqueue, &priv->adapter_restart);
10696 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10700 spin_unlock_irqrestore(&priv->lock, flags);
10703 static void ipw_bg_rf_kill(struct work_struct *work)
10705 struct ipw_priv *priv =
10706 container_of(work, struct ipw_priv, rf_kill.work);
10707 mutex_lock(&priv->mutex);
10709 mutex_unlock(&priv->mutex);
10712 static void ipw_link_up(struct ipw_priv *priv)
10714 priv->last_seq_num = -1;
10715 priv->last_frag_num = -1;
10716 priv->last_packet_time = 0;
10718 netif_carrier_on(priv->net_dev);
10720 cancel_delayed_work(&priv->request_scan);
10721 cancel_delayed_work(&priv->request_direct_scan);
10722 cancel_delayed_work(&priv->request_passive_scan);
10723 cancel_delayed_work(&priv->scan_event);
10724 ipw_reset_stats(priv);
10725 /* Ensure the rate is updated immediately */
10726 priv->last_rate = ipw_get_current_rate(priv);
10727 ipw_gather_stats(priv);
10728 ipw_led_link_up(priv);
10729 notify_wx_assoc_event(priv);
10731 if (priv->config & CFG_BACKGROUND_SCAN)
10732 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10735 static void ipw_bg_link_up(struct work_struct *work)
10737 struct ipw_priv *priv =
10738 container_of(work, struct ipw_priv, link_up);
10739 mutex_lock(&priv->mutex);
10741 mutex_unlock(&priv->mutex);
10744 static void ipw_link_down(struct ipw_priv *priv)
10746 ipw_led_link_down(priv);
10747 netif_carrier_off(priv->net_dev);
10748 notify_wx_assoc_event(priv);
10750 /* Cancel any queued work ... */
10751 cancel_delayed_work(&priv->request_scan);
10752 cancel_delayed_work(&priv->request_direct_scan);
10753 cancel_delayed_work(&priv->request_passive_scan);
10754 cancel_delayed_work(&priv->adhoc_check);
10755 cancel_delayed_work(&priv->gather_stats);
10757 ipw_reset_stats(priv);
10759 if (!(priv->status & STATUS_EXIT_PENDING)) {
10760 /* Queue up another scan... */
10761 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10763 cancel_delayed_work(&priv->scan_event);
10766 static void ipw_bg_link_down(struct work_struct *work)
10768 struct ipw_priv *priv =
10769 container_of(work, struct ipw_priv, link_down);
10770 mutex_lock(&priv->mutex);
10771 ipw_link_down(priv);
10772 mutex_unlock(&priv->mutex);
10775 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10779 priv->workqueue = create_workqueue(DRV_NAME);
10780 init_waitqueue_head(&priv->wait_command_queue);
10781 init_waitqueue_head(&priv->wait_state);
10783 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10784 INIT_WORK(&priv->associate, ipw_bg_associate);
10785 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10786 INIT_WORK(&priv->system_config, ipw_system_config);
10787 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10788 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10789 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10790 INIT_WORK(&priv->up, ipw_bg_up);
10791 INIT_WORK(&priv->down, ipw_bg_down);
10792 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10793 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10794 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10795 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10796 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10797 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10798 INIT_WORK(&priv->roam, ipw_bg_roam);
10799 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10800 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10801 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10802 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10803 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10804 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10805 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10807 #ifdef CONFIG_IPW2200_QOS
10808 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10809 #endif /* CONFIG_IPW2200_QOS */
10811 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10812 ipw_irq_tasklet, (unsigned long)priv);
10817 static void shim__set_security(struct net_device *dev,
10818 struct libipw_security *sec)
10820 struct ipw_priv *priv = libipw_priv(dev);
10822 for (i = 0; i < 4; i++) {
10823 if (sec->flags & (1 << i)) {
10824 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10825 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10826 if (sec->key_sizes[i] == 0)
10827 priv->ieee->sec.flags &= ~(1 << i);
10829 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10830 sec->key_sizes[i]);
10831 priv->ieee->sec.flags |= (1 << i);
10833 priv->status |= STATUS_SECURITY_UPDATED;
10834 } else if (sec->level != SEC_LEVEL_1)
10835 priv->ieee->sec.flags &= ~(1 << i);
10838 if (sec->flags & SEC_ACTIVE_KEY) {
10839 if (sec->active_key <= 3) {
10840 priv->ieee->sec.active_key = sec->active_key;
10841 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10843 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10844 priv->status |= STATUS_SECURITY_UPDATED;
10846 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10848 if ((sec->flags & SEC_AUTH_MODE) &&
10849 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10850 priv->ieee->sec.auth_mode = sec->auth_mode;
10851 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10852 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10853 priv->capability |= CAP_SHARED_KEY;
10855 priv->capability &= ~CAP_SHARED_KEY;
10856 priv->status |= STATUS_SECURITY_UPDATED;
10859 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10860 priv->ieee->sec.flags |= SEC_ENABLED;
10861 priv->ieee->sec.enabled = sec->enabled;
10862 priv->status |= STATUS_SECURITY_UPDATED;
10864 priv->capability |= CAP_PRIVACY_ON;
10866 priv->capability &= ~CAP_PRIVACY_ON;
10869 if (sec->flags & SEC_ENCRYPT)
10870 priv->ieee->sec.encrypt = sec->encrypt;
10872 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10873 priv->ieee->sec.level = sec->level;
10874 priv->ieee->sec.flags |= SEC_LEVEL;
10875 priv->status |= STATUS_SECURITY_UPDATED;
10878 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10879 ipw_set_hwcrypto_keys(priv);
10881 /* To match current functionality of ipw2100 (which works well w/
10882 * various supplicants, we don't force a disassociate if the
10883 * privacy capability changes ... */
10885 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10886 (((priv->assoc_request.capability &
10887 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10888 (!(priv->assoc_request.capability &
10889 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10890 IPW_DEBUG_ASSOC("Disassociating due to capability "
10892 ipw_disassociate(priv);
10897 static int init_supported_rates(struct ipw_priv *priv,
10898 struct ipw_supported_rates *rates)
10900 /* TODO: Mask out rates based on priv->rates_mask */
10902 memset(rates, 0, sizeof(*rates));
10903 /* configure supported rates */
10904 switch (priv->ieee->freq_band) {
10905 case LIBIPW_52GHZ_BAND:
10906 rates->ieee_mode = IPW_A_MODE;
10907 rates->purpose = IPW_RATE_CAPABILITIES;
10908 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10909 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10912 default: /* Mixed or 2.4Ghz */
10913 rates->ieee_mode = IPW_G_MODE;
10914 rates->purpose = IPW_RATE_CAPABILITIES;
10915 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10916 LIBIPW_CCK_DEFAULT_RATES_MASK);
10917 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10918 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10919 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10927 static int ipw_config(struct ipw_priv *priv)
10929 /* This is only called from ipw_up, which resets/reloads the firmware
10930 so, we don't need to first disable the card before we configure
10932 if (ipw_set_tx_power(priv))
10935 /* initialize adapter address */
10936 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10939 /* set basic system config settings */
10940 init_sys_config(&priv->sys_config);
10942 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10943 * Does not support BT priority yet (don't abort or defer our Tx) */
10945 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10947 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10948 priv->sys_config.bt_coexistence
10949 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10950 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10951 priv->sys_config.bt_coexistence
10952 |= CFG_BT_COEXISTENCE_OOB;
10955 #ifdef CONFIG_IPW2200_PROMISCUOUS
10956 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10957 priv->sys_config.accept_all_data_frames = 1;
10958 priv->sys_config.accept_non_directed_frames = 1;
10959 priv->sys_config.accept_all_mgmt_bcpr = 1;
10960 priv->sys_config.accept_all_mgmt_frames = 1;
10964 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10965 priv->sys_config.answer_broadcast_ssid_probe = 1;
10967 priv->sys_config.answer_broadcast_ssid_probe = 0;
10969 if (ipw_send_system_config(priv))
10972 init_supported_rates(priv, &priv->rates);
10973 if (ipw_send_supported_rates(priv, &priv->rates))
10976 /* Set request-to-send threshold */
10977 if (priv->rts_threshold) {
10978 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10981 #ifdef CONFIG_IPW2200_QOS
10982 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10983 ipw_qos_activate(priv, NULL);
10984 #endif /* CONFIG_IPW2200_QOS */
10986 if (ipw_set_random_seed(priv))
10989 /* final state transition to the RUN state */
10990 if (ipw_send_host_complete(priv))
10993 priv->status |= STATUS_INIT;
10995 ipw_led_init(priv);
10996 ipw_led_radio_on(priv);
10997 priv->notif_missed_beacons = 0;
10999 /* Set hardware WEP key if it is configured. */
11000 if ((priv->capability & CAP_PRIVACY_ON) &&
11001 (priv->ieee->sec.level == SEC_LEVEL_1) &&
11002 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11003 ipw_set_hwcrypto_keys(priv);
11014 * These tables have been tested in conjunction with the
11015 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11017 * Altering this values, using it on other hardware, or in geographies
11018 * not intended for resale of the above mentioned Intel adapters has
11021 * Remember to update the table in README.ipw2200 when changing this
11025 static const struct libipw_geo ipw_geos[] = {
11029 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11030 {2427, 4}, {2432, 5}, {2437, 6},
11031 {2442, 7}, {2447, 8}, {2452, 9},
11032 {2457, 10}, {2462, 11}},
11035 { /* Custom US/Canada */
11038 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11039 {2427, 4}, {2432, 5}, {2437, 6},
11040 {2442, 7}, {2447, 8}, {2452, 9},
11041 {2457, 10}, {2462, 11}},
11047 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11048 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11049 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11050 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11053 { /* Rest of World */
11056 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11057 {2427, 4}, {2432, 5}, {2437, 6},
11058 {2442, 7}, {2447, 8}, {2452, 9},
11059 {2457, 10}, {2462, 11}, {2467, 12},
11063 { /* Custom USA & Europe & High */
11066 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11067 {2427, 4}, {2432, 5}, {2437, 6},
11068 {2442, 7}, {2447, 8}, {2452, 9},
11069 {2457, 10}, {2462, 11}},
11075 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11076 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11077 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11078 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11086 { /* Custom NA & Europe */
11089 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11090 {2427, 4}, {2432, 5}, {2437, 6},
11091 {2442, 7}, {2447, 8}, {2452, 9},
11092 {2457, 10}, {2462, 11}},
11098 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11099 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11100 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11101 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11102 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11103 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11104 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11105 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11106 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11109 { /* Custom Japan */
11112 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11113 {2427, 4}, {2432, 5}, {2437, 6},
11114 {2442, 7}, {2447, 8}, {2452, 9},
11115 {2457, 10}, {2462, 11}},
11117 .a = {{5170, 34}, {5190, 38},
11118 {5210, 42}, {5230, 46}},
11124 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11125 {2427, 4}, {2432, 5}, {2437, 6},
11126 {2442, 7}, {2447, 8}, {2452, 9},
11127 {2457, 10}, {2462, 11}},
11133 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11134 {2427, 4}, {2432, 5}, {2437, 6},
11135 {2442, 7}, {2447, 8}, {2452, 9},
11136 {2457, 10}, {2462, 11}, {2467, 12},
11143 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11144 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11145 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11146 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11147 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11148 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11149 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11150 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11151 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11152 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11153 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11154 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11155 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11156 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11157 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11160 { /* Custom Japan */
11163 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11164 {2427, 4}, {2432, 5}, {2437, 6},
11165 {2442, 7}, {2447, 8}, {2452, 9},
11166 {2457, 10}, {2462, 11}, {2467, 12},
11167 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11169 .a = {{5170, 34}, {5190, 38},
11170 {5210, 42}, {5230, 46}},
11173 { /* Rest of World */
11176 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11177 {2427, 4}, {2432, 5}, {2437, 6},
11178 {2442, 7}, {2447, 8}, {2452, 9},
11179 {2457, 10}, {2462, 11}, {2467, 12},
11180 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11181 LIBIPW_CH_PASSIVE_ONLY}},
11187 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11188 {2427, 4}, {2432, 5}, {2437, 6},
11189 {2442, 7}, {2447, 8}, {2452, 9},
11190 {2457, 10}, {2462, 11},
11191 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11192 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11194 .a = {{5745, 149}, {5765, 153},
11195 {5785, 157}, {5805, 161}},
11198 { /* Custom Europe */
11201 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11202 {2427, 4}, {2432, 5}, {2437, 6},
11203 {2442, 7}, {2447, 8}, {2452, 9},
11204 {2457, 10}, {2462, 11},
11205 {2467, 12}, {2472, 13}},
11207 .a = {{5180, 36}, {5200, 40},
11208 {5220, 44}, {5240, 48}},
11214 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11215 {2427, 4}, {2432, 5}, {2437, 6},
11216 {2442, 7}, {2447, 8}, {2452, 9},
11217 {2457, 10}, {2462, 11},
11218 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11219 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11221 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11222 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11223 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11224 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11225 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11226 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11227 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11228 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11229 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11230 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11231 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11232 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11233 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11234 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11235 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11236 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11237 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11238 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11239 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11240 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11241 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11242 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11243 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11244 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11250 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11251 {2427, 4}, {2432, 5}, {2437, 6},
11252 {2442, 7}, {2447, 8}, {2452, 9},
11253 {2457, 10}, {2462, 11}},
11255 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11256 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11257 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11258 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11259 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11260 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11261 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11262 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11263 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11264 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11265 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11266 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11267 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11271 #define MAX_HW_RESTARTS 5
11272 static int ipw_up(struct ipw_priv *priv)
11276 /* Age scan list entries found before suspend */
11277 if (priv->suspend_time) {
11278 libipw_networks_age(priv->ieee, priv->suspend_time);
11279 priv->suspend_time = 0;
11282 if (priv->status & STATUS_EXIT_PENDING)
11285 if (cmdlog && !priv->cmdlog) {
11286 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11288 if (priv->cmdlog == NULL) {
11289 IPW_ERROR("Error allocating %d command log entries.\n",
11293 priv->cmdlog_len = cmdlog;
11297 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11298 /* Load the microcode, firmware, and eeprom.
11299 * Also start the clocks. */
11300 rc = ipw_load(priv);
11302 IPW_ERROR("Unable to load firmware: %d\n", rc);
11306 ipw_init_ordinals(priv);
11307 if (!(priv->config & CFG_CUSTOM_MAC))
11308 eeprom_parse_mac(priv, priv->mac_addr);
11309 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11310 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11312 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11313 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11314 ipw_geos[j].name, 3))
11317 if (j == ARRAY_SIZE(ipw_geos)) {
11318 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11319 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11320 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11321 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11324 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11325 IPW_WARNING("Could not set geography.");
11329 if (priv->status & STATUS_RF_KILL_SW) {
11330 IPW_WARNING("Radio disabled by module parameter.\n");
11332 } else if (rf_kill_active(priv)) {
11333 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11334 "Kill switch must be turned off for "
11335 "wireless networking to work.\n");
11336 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11341 rc = ipw_config(priv);
11343 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11345 /* If configure to try and auto-associate, kick
11347 queue_delayed_work(priv->workqueue,
11348 &priv->request_scan, 0);
11353 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11354 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11355 i, MAX_HW_RESTARTS);
11357 /* We had an error bringing up the hardware, so take it
11358 * all the way back down so we can try again */
11362 /* tried to restart and config the device for as long as our
11363 * patience could withstand */
11364 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11369 static void ipw_bg_up(struct work_struct *work)
11371 struct ipw_priv *priv =
11372 container_of(work, struct ipw_priv, up);
11373 mutex_lock(&priv->mutex);
11375 mutex_unlock(&priv->mutex);
11378 static void ipw_deinit(struct ipw_priv *priv)
11382 if (priv->status & STATUS_SCANNING) {
11383 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11384 ipw_abort_scan(priv);
11387 if (priv->status & STATUS_ASSOCIATED) {
11388 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11389 ipw_disassociate(priv);
11392 ipw_led_shutdown(priv);
11394 /* Wait up to 1s for status to change to not scanning and not
11395 * associated (disassociation can take a while for a ful 802.11
11397 for (i = 1000; i && (priv->status &
11398 (STATUS_DISASSOCIATING |
11399 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11402 if (priv->status & (STATUS_DISASSOCIATING |
11403 STATUS_ASSOCIATED | STATUS_SCANNING))
11404 IPW_DEBUG_INFO("Still associated or scanning...\n");
11406 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11408 /* Attempt to disable the card */
11409 ipw_send_card_disable(priv, 0);
11411 priv->status &= ~STATUS_INIT;
11414 static void ipw_down(struct ipw_priv *priv)
11416 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11418 priv->status |= STATUS_EXIT_PENDING;
11420 if (ipw_is_init(priv))
11423 /* Wipe out the EXIT_PENDING status bit if we are not actually
11424 * exiting the module */
11426 priv->status &= ~STATUS_EXIT_PENDING;
11428 /* tell the device to stop sending interrupts */
11429 ipw_disable_interrupts(priv);
11431 /* Clear all bits but the RF Kill */
11432 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11433 netif_carrier_off(priv->net_dev);
11435 ipw_stop_nic(priv);
11437 ipw_led_radio_off(priv);
11440 static void ipw_bg_down(struct work_struct *work)
11442 struct ipw_priv *priv =
11443 container_of(work, struct ipw_priv, down);
11444 mutex_lock(&priv->mutex);
11446 mutex_unlock(&priv->mutex);
11449 /* Called by register_netdev() */
11450 static int ipw_net_init(struct net_device *dev)
11453 struct ipw_priv *priv = libipw_priv(dev);
11454 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11455 struct wireless_dev *wdev = &priv->ieee->wdev;
11456 mutex_lock(&priv->mutex);
11458 if (ipw_up(priv)) {
11463 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11465 /* fill-out priv->ieee->bg_band */
11466 if (geo->bg_channels) {
11467 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11469 bg_band->band = IEEE80211_BAND_2GHZ;
11470 bg_band->n_channels = geo->bg_channels;
11471 bg_band->channels =
11472 kzalloc(geo->bg_channels *
11473 sizeof(struct ieee80211_channel), GFP_KERNEL);
11474 /* translate geo->bg to bg_band.channels */
11475 for (i = 0; i < geo->bg_channels; i++) {
11476 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11477 bg_band->channels[i].center_freq = geo->bg[i].freq;
11478 bg_band->channels[i].hw_value = geo->bg[i].channel;
11479 bg_band->channels[i].max_power = geo->bg[i].max_power;
11480 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11481 bg_band->channels[i].flags |=
11482 IEEE80211_CHAN_PASSIVE_SCAN;
11483 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11484 bg_band->channels[i].flags |=
11485 IEEE80211_CHAN_NO_IBSS;
11486 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11487 bg_band->channels[i].flags |=
11488 IEEE80211_CHAN_RADAR;
11489 /* No equivalent for LIBIPW_CH_80211H_RULES,
11490 LIBIPW_CH_UNIFORM_SPREADING, or
11491 LIBIPW_CH_B_ONLY... */
11493 /* point at bitrate info */
11494 bg_band->bitrates = ipw2200_bg_rates;
11495 bg_band->n_bitrates = ipw2200_num_bg_rates;
11497 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11500 /* fill-out priv->ieee->a_band */
11501 if (geo->a_channels) {
11502 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11504 a_band->band = IEEE80211_BAND_5GHZ;
11505 a_band->n_channels = geo->a_channels;
11507 kzalloc(geo->a_channels *
11508 sizeof(struct ieee80211_channel), GFP_KERNEL);
11509 /* translate geo->bg to a_band.channels */
11510 for (i = 0; i < geo->a_channels; i++) {
11511 a_band->channels[i].band = IEEE80211_BAND_2GHZ;
11512 a_band->channels[i].center_freq = geo->a[i].freq;
11513 a_band->channels[i].hw_value = geo->a[i].channel;
11514 a_band->channels[i].max_power = geo->a[i].max_power;
11515 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11516 a_band->channels[i].flags |=
11517 IEEE80211_CHAN_PASSIVE_SCAN;
11518 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11519 a_band->channels[i].flags |=
11520 IEEE80211_CHAN_NO_IBSS;
11521 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11522 a_band->channels[i].flags |=
11523 IEEE80211_CHAN_RADAR;
11524 /* No equivalent for LIBIPW_CH_80211H_RULES,
11525 LIBIPW_CH_UNIFORM_SPREADING, or
11526 LIBIPW_CH_B_ONLY... */
11528 /* point at bitrate info */
11529 a_band->bitrates = ipw2200_a_rates;
11530 a_band->n_bitrates = ipw2200_num_a_rates;
11532 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11535 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11537 /* With that information in place, we can now register the wiphy... */
11538 if (wiphy_register(wdev->wiphy)) {
11544 mutex_unlock(&priv->mutex);
11548 /* PCI driver stuff */
11549 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11550 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11551 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11552 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11553 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11554 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11555 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11556 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11557 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11558 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11559 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11560 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11561 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11562 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11563 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11564 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11565 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11566 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11567 {PCI_VDEVICE(INTEL, 0x104f), 0},
11568 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11569 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11570 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11571 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11573 /* required last entry */
11577 MODULE_DEVICE_TABLE(pci, card_ids);
11579 static struct attribute *ipw_sysfs_entries[] = {
11580 &dev_attr_rf_kill.attr,
11581 &dev_attr_direct_dword.attr,
11582 &dev_attr_indirect_byte.attr,
11583 &dev_attr_indirect_dword.attr,
11584 &dev_attr_mem_gpio_reg.attr,
11585 &dev_attr_command_event_reg.attr,
11586 &dev_attr_nic_type.attr,
11587 &dev_attr_status.attr,
11588 &dev_attr_cfg.attr,
11589 &dev_attr_error.attr,
11590 &dev_attr_event_log.attr,
11591 &dev_attr_cmd_log.attr,
11592 &dev_attr_eeprom_delay.attr,
11593 &dev_attr_ucode_version.attr,
11594 &dev_attr_rtc.attr,
11595 &dev_attr_scan_age.attr,
11596 &dev_attr_led.attr,
11597 &dev_attr_speed_scan.attr,
11598 &dev_attr_net_stats.attr,
11599 &dev_attr_channels.attr,
11600 #ifdef CONFIG_IPW2200_PROMISCUOUS
11601 &dev_attr_rtap_iface.attr,
11602 &dev_attr_rtap_filter.attr,
11607 static struct attribute_group ipw_attribute_group = {
11608 .name = NULL, /* put in device directory */
11609 .attrs = ipw_sysfs_entries,
11612 #ifdef CONFIG_IPW2200_PROMISCUOUS
11613 static int ipw_prom_open(struct net_device *dev)
11615 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11616 struct ipw_priv *priv = prom_priv->priv;
11618 IPW_DEBUG_INFO("prom dev->open\n");
11619 netif_carrier_off(dev);
11621 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11622 priv->sys_config.accept_all_data_frames = 1;
11623 priv->sys_config.accept_non_directed_frames = 1;
11624 priv->sys_config.accept_all_mgmt_bcpr = 1;
11625 priv->sys_config.accept_all_mgmt_frames = 1;
11627 ipw_send_system_config(priv);
11633 static int ipw_prom_stop(struct net_device *dev)
11635 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11636 struct ipw_priv *priv = prom_priv->priv;
11638 IPW_DEBUG_INFO("prom dev->stop\n");
11640 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11641 priv->sys_config.accept_all_data_frames = 0;
11642 priv->sys_config.accept_non_directed_frames = 0;
11643 priv->sys_config.accept_all_mgmt_bcpr = 0;
11644 priv->sys_config.accept_all_mgmt_frames = 0;
11646 ipw_send_system_config(priv);
11652 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11653 struct net_device *dev)
11655 IPW_DEBUG_INFO("prom dev->xmit\n");
11656 dev_kfree_skb(skb);
11657 return NETDEV_TX_OK;
11660 static const struct net_device_ops ipw_prom_netdev_ops = {
11661 .ndo_open = ipw_prom_open,
11662 .ndo_stop = ipw_prom_stop,
11663 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11664 .ndo_change_mtu = libipw_change_mtu,
11665 .ndo_set_mac_address = eth_mac_addr,
11666 .ndo_validate_addr = eth_validate_addr,
11669 static int ipw_prom_alloc(struct ipw_priv *priv)
11673 if (priv->prom_net_dev)
11676 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11677 if (priv->prom_net_dev == NULL)
11680 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11681 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11682 priv->prom_priv->priv = priv;
11684 strcpy(priv->prom_net_dev->name, "rtap%d");
11685 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11687 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11688 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11690 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11691 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11693 rc = register_netdev(priv->prom_net_dev);
11695 free_libipw(priv->prom_net_dev, 1);
11696 priv->prom_net_dev = NULL;
11703 static void ipw_prom_free(struct ipw_priv *priv)
11705 if (!priv->prom_net_dev)
11708 unregister_netdev(priv->prom_net_dev);
11709 free_libipw(priv->prom_net_dev, 1);
11711 priv->prom_net_dev = NULL;
11716 static const struct net_device_ops ipw_netdev_ops = {
11717 .ndo_init = ipw_net_init,
11718 .ndo_open = ipw_net_open,
11719 .ndo_stop = ipw_net_stop,
11720 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11721 .ndo_set_mac_address = ipw_net_set_mac_address,
11722 .ndo_start_xmit = libipw_xmit,
11723 .ndo_change_mtu = libipw_change_mtu,
11724 .ndo_validate_addr = eth_validate_addr,
11727 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11728 const struct pci_device_id *ent)
11731 struct net_device *net_dev;
11732 void __iomem *base;
11734 struct ipw_priv *priv;
11737 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11738 if (net_dev == NULL) {
11743 priv = libipw_priv(net_dev);
11744 priv->ieee = netdev_priv(net_dev);
11746 priv->net_dev = net_dev;
11747 priv->pci_dev = pdev;
11748 ipw_debug_level = debug;
11749 spin_lock_init(&priv->irq_lock);
11750 spin_lock_init(&priv->lock);
11751 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11752 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11754 mutex_init(&priv->mutex);
11755 if (pci_enable_device(pdev)) {
11757 goto out_free_libipw;
11760 pci_set_master(pdev);
11762 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11764 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11766 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11767 goto out_pci_disable_device;
11770 pci_set_drvdata(pdev, priv);
11772 err = pci_request_regions(pdev, DRV_NAME);
11774 goto out_pci_disable_device;
11776 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11777 * PCI Tx retries from interfering with C3 CPU state */
11778 pci_read_config_dword(pdev, 0x40, &val);
11779 if ((val & 0x0000ff00) != 0)
11780 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11782 length = pci_resource_len(pdev, 0);
11783 priv->hw_len = length;
11785 base = pci_ioremap_bar(pdev, 0);
11788 goto out_pci_release_regions;
11791 priv->hw_base = base;
11792 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11793 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11795 err = ipw_setup_deferred_work(priv);
11797 IPW_ERROR("Unable to setup deferred work\n");
11801 ipw_sw_reset(priv, 1);
11803 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11805 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11806 goto out_destroy_workqueue;
11809 SET_NETDEV_DEV(net_dev, &pdev->dev);
11811 mutex_lock(&priv->mutex);
11813 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11814 priv->ieee->set_security = shim__set_security;
11815 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11817 #ifdef CONFIG_IPW2200_QOS
11818 priv->ieee->is_qos_active = ipw_is_qos_active;
11819 priv->ieee->handle_probe_response = ipw_handle_beacon;
11820 priv->ieee->handle_beacon = ipw_handle_probe_response;
11821 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11822 #endif /* CONFIG_IPW2200_QOS */
11824 priv->ieee->perfect_rssi = -20;
11825 priv->ieee->worst_rssi = -85;
11827 net_dev->netdev_ops = &ipw_netdev_ops;
11828 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11829 net_dev->wireless_data = &priv->wireless_data;
11830 net_dev->wireless_handlers = &ipw_wx_handler_def;
11831 net_dev->ethtool_ops = &ipw_ethtool_ops;
11832 net_dev->irq = pdev->irq;
11833 net_dev->base_addr = (unsigned long)priv->hw_base;
11834 net_dev->mem_start = pci_resource_start(pdev, 0);
11835 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11837 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11839 IPW_ERROR("failed to create sysfs device attributes\n");
11840 mutex_unlock(&priv->mutex);
11841 goto out_release_irq;
11844 mutex_unlock(&priv->mutex);
11845 err = register_netdev(net_dev);
11847 IPW_ERROR("failed to register network device\n");
11848 goto out_remove_sysfs;
11851 #ifdef CONFIG_IPW2200_PROMISCUOUS
11853 err = ipw_prom_alloc(priv);
11855 IPW_ERROR("Failed to register promiscuous network "
11856 "device (error %d).\n", err);
11857 unregister_netdev(priv->net_dev);
11858 goto out_remove_sysfs;
11863 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11864 "channels, %d 802.11a channels)\n",
11865 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11866 priv->ieee->geo.a_channels);
11871 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11873 free_irq(pdev->irq, priv);
11874 out_destroy_workqueue:
11875 destroy_workqueue(priv->workqueue);
11876 priv->workqueue = NULL;
11878 iounmap(priv->hw_base);
11879 out_pci_release_regions:
11880 pci_release_regions(pdev);
11881 out_pci_disable_device:
11882 pci_disable_device(pdev);
11883 pci_set_drvdata(pdev, NULL);
11885 free_libipw(priv->net_dev, 0);
11890 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11892 struct ipw_priv *priv = pci_get_drvdata(pdev);
11893 struct list_head *p, *q;
11899 mutex_lock(&priv->mutex);
11901 priv->status |= STATUS_EXIT_PENDING;
11903 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11905 mutex_unlock(&priv->mutex);
11907 unregister_netdev(priv->net_dev);
11910 ipw_rx_queue_free(priv, priv->rxq);
11913 ipw_tx_queue_free(priv);
11915 if (priv->cmdlog) {
11916 kfree(priv->cmdlog);
11917 priv->cmdlog = NULL;
11919 /* ipw_down will ensure that there is no more pending work
11920 * in the workqueue's, so we can safely remove them now. */
11921 cancel_delayed_work(&priv->adhoc_check);
11922 cancel_delayed_work(&priv->gather_stats);
11923 cancel_delayed_work(&priv->request_scan);
11924 cancel_delayed_work(&priv->request_direct_scan);
11925 cancel_delayed_work(&priv->request_passive_scan);
11926 cancel_delayed_work(&priv->scan_event);
11927 cancel_delayed_work(&priv->rf_kill);
11928 cancel_delayed_work(&priv->scan_check);
11929 destroy_workqueue(priv->workqueue);
11930 priv->workqueue = NULL;
11932 /* Free MAC hash list for ADHOC */
11933 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11934 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11936 kfree(list_entry(p, struct ipw_ibss_seq, list));
11940 kfree(priv->error);
11941 priv->error = NULL;
11943 #ifdef CONFIG_IPW2200_PROMISCUOUS
11944 ipw_prom_free(priv);
11947 free_irq(pdev->irq, priv);
11948 iounmap(priv->hw_base);
11949 pci_release_regions(pdev);
11950 pci_disable_device(pdev);
11951 pci_set_drvdata(pdev, NULL);
11952 /* wiphy_unregister needs to be here, before free_libipw */
11953 wiphy_unregister(priv->ieee->wdev.wiphy);
11954 kfree(priv->ieee->a_band.channels);
11955 kfree(priv->ieee->bg_band.channels);
11956 free_libipw(priv->net_dev, 0);
11961 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11963 struct ipw_priv *priv = pci_get_drvdata(pdev);
11964 struct net_device *dev = priv->net_dev;
11966 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11968 /* Take down the device; powers it off, etc. */
11971 /* Remove the PRESENT state of the device */
11972 netif_device_detach(dev);
11974 pci_save_state(pdev);
11975 pci_disable_device(pdev);
11976 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11978 priv->suspend_at = get_seconds();
11983 static int ipw_pci_resume(struct pci_dev *pdev)
11985 struct ipw_priv *priv = pci_get_drvdata(pdev);
11986 struct net_device *dev = priv->net_dev;
11990 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11992 pci_set_power_state(pdev, PCI_D0);
11993 err = pci_enable_device(pdev);
11995 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11999 pci_restore_state(pdev);
12002 * Suspend/Resume resets the PCI configuration space, so we have to
12003 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12004 * from interfering with C3 CPU state. pci_restore_state won't help
12005 * here since it only restores the first 64 bytes pci config header.
12007 pci_read_config_dword(pdev, 0x40, &val);
12008 if ((val & 0x0000ff00) != 0)
12009 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12011 /* Set the device back into the PRESENT state; this will also wake
12012 * the queue of needed */
12013 netif_device_attach(dev);
12015 priv->suspend_time = get_seconds() - priv->suspend_at;
12017 /* Bring the device back up */
12018 queue_work(priv->workqueue, &priv->up);
12024 static void ipw_pci_shutdown(struct pci_dev *pdev)
12026 struct ipw_priv *priv = pci_get_drvdata(pdev);
12028 /* Take down the device; powers it off, etc. */
12031 pci_disable_device(pdev);
12034 /* driver initialization stuff */
12035 static struct pci_driver ipw_driver = {
12037 .id_table = card_ids,
12038 .probe = ipw_pci_probe,
12039 .remove = __devexit_p(ipw_pci_remove),
12041 .suspend = ipw_pci_suspend,
12042 .resume = ipw_pci_resume,
12044 .shutdown = ipw_pci_shutdown,
12047 static int __init ipw_init(void)
12051 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12052 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12054 ret = pci_register_driver(&ipw_driver);
12056 IPW_ERROR("Unable to initialize PCI module\n");
12060 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12062 IPW_ERROR("Unable to create driver sysfs file\n");
12063 pci_unregister_driver(&ipw_driver);
12070 static void __exit ipw_exit(void)
12072 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12073 pci_unregister_driver(&ipw_driver);
12076 module_param(disable, int, 0444);
12077 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12079 module_param(associate, int, 0444);
12080 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12082 module_param(auto_create, int, 0444);
12083 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12085 module_param_named(led, led_support, int, 0444);
12086 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
12088 module_param(debug, int, 0444);
12089 MODULE_PARM_DESC(debug, "debug output mask");
12091 module_param_named(channel, default_channel, int, 0444);
12092 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12094 #ifdef CONFIG_IPW2200_PROMISCUOUS
12095 module_param(rtap_iface, int, 0444);
12096 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12099 #ifdef CONFIG_IPW2200_QOS
12100 module_param(qos_enable, int, 0444);
12101 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12103 module_param(qos_burst_enable, int, 0444);
12104 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12106 module_param(qos_no_ack_mask, int, 0444);
12107 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12109 module_param(burst_duration_CCK, int, 0444);
12110 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12112 module_param(burst_duration_OFDM, int, 0444);
12113 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12114 #endif /* CONFIG_IPW2200_QOS */
12116 #ifdef CONFIG_IPW2200_MONITOR
12117 module_param_named(mode, network_mode, int, 0444);
12118 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12120 module_param_named(mode, network_mode, int, 0444);
12121 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12124 module_param(bt_coexist, int, 0444);
12125 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12127 module_param(hwcrypto, int, 0444);
12128 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12130 module_param(cmdlog, int, 0444);
12131 MODULE_PARM_DESC(cmdlog,
12132 "allocate a ring buffer for logging firmware commands");
12134 module_param(roaming, int, 0444);
12135 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12137 module_param(antenna, int, 0444);
12138 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12140 module_exit(ipw_exit);
12141 module_init(ipw_init);