Merge remote-tracking branch 'asoc/fix/cs4271' into tmp
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_PASSIVE_SCAN;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IBSS;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008         DECLARE_SSID_BUF(ssid);
2009
2010         /*
2011          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012          *      an actual MAC of the AP. Seems like FW sets this
2013          *      address too late. Read it later and expose through
2014          *      /proc or schedule a later task to query and update
2015          */
2016
2017         essid_len = IW_ESSID_MAX_SIZE;
2018         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019                                   essid, &essid_len);
2020         if (ret) {
2021                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022                                __LINE__);
2023                 return;
2024         }
2025
2026         len = sizeof(u32);
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028         if (ret) {
2029                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030                                __LINE__);
2031                 return;
2032         }
2033
2034         len = sizeof(u32);
2035         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036         if (ret) {
2037                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038                                __LINE__);
2039                 return;
2040         }
2041         len = ETH_ALEN;
2042         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043                                   &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 schedule_delayed_work(&priv->security_work, 0);
2166
2167         schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void send_scan_event(void *data)
2185 {
2186         struct ipw2100_priv *priv = data;
2187         union iwreq_data wrqu;
2188
2189         wrqu.data.length = 0;
2190         wrqu.data.flags = 0;
2191         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2192 }
2193
2194 static void ipw2100_scan_event_later(struct work_struct *work)
2195 {
2196         send_scan_event(container_of(work, struct ipw2100_priv,
2197                                         scan_event_later.work));
2198 }
2199
2200 static void ipw2100_scan_event_now(struct work_struct *work)
2201 {
2202         send_scan_event(container_of(work, struct ipw2100_priv,
2203                                         scan_event_now));
2204 }
2205
2206 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2207 {
2208         IPW_DEBUG_SCAN("scan complete\n");
2209         /* Age the scan results... */
2210         priv->ieee->scans++;
2211         priv->status &= ~STATUS_SCANNING;
2212
2213         /* Only userspace-requested scan completion events go out immediately */
2214         if (!priv->user_requested_scan) {
2215                 if (!delayed_work_pending(&priv->scan_event_later))
2216                         schedule_delayed_work(&priv->scan_event_later,
2217                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2218         } else {
2219                 priv->user_requested_scan = 0;
2220                 cancel_delayed_work(&priv->scan_event_later);
2221                 schedule_work(&priv->scan_event_now);
2222         }
2223 }
2224
2225 #ifdef CONFIG_IPW2100_DEBUG
2226 #define IPW2100_HANDLER(v, f) { v, f, # v }
2227 struct ipw2100_status_indicator {
2228         int status;
2229         void (*cb) (struct ipw2100_priv * priv, u32 status);
2230         char *name;
2231 };
2232 #else
2233 #define IPW2100_HANDLER(v, f) { v, f }
2234 struct ipw2100_status_indicator {
2235         int status;
2236         void (*cb) (struct ipw2100_priv * priv, u32 status);
2237 };
2238 #endif                          /* CONFIG_IPW2100_DEBUG */
2239
2240 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2241 {
2242         IPW_DEBUG_SCAN("Scanning...\n");
2243         priv->status |= STATUS_SCANNING;
2244 }
2245
2246 static const struct ipw2100_status_indicator status_handlers[] = {
2247         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2248         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2249         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2250         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2251         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2252         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2253         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2254         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2255         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2256         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2257         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2258         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2259         IPW2100_HANDLER(-1, NULL)
2260 };
2261
2262 static void isr_status_change(struct ipw2100_priv *priv, int status)
2263 {
2264         int i;
2265
2266         if (status == IPW_STATE_SCANNING &&
2267             priv->status & STATUS_ASSOCIATED &&
2268             !(priv->status & STATUS_SCANNING)) {
2269                 IPW_DEBUG_INFO("Scan detected while associated, with "
2270                                "no scan request.  Restarting firmware.\n");
2271
2272                 /* Wake up any sleeping jobs */
2273                 schedule_reset(priv);
2274         }
2275
2276         for (i = 0; status_handlers[i].status != -1; i++) {
2277                 if (status == status_handlers[i].status) {
2278                         IPW_DEBUG_NOTIF("Status change: %s\n",
2279                                         status_handlers[i].name);
2280                         if (status_handlers[i].cb)
2281                                 status_handlers[i].cb(priv, status);
2282                         priv->wstats.status = status;
2283                         return;
2284                 }
2285         }
2286
2287         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2288 }
2289
2290 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2291                                     struct ipw2100_cmd_header *cmd)
2292 {
2293 #ifdef CONFIG_IPW2100_DEBUG
2294         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2295                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2296                              command_types[cmd->host_command_reg],
2297                              cmd->host_command_reg);
2298         }
2299 #endif
2300         if (cmd->host_command_reg == HOST_COMPLETE)
2301                 priv->status |= STATUS_ENABLED;
2302
2303         if (cmd->host_command_reg == CARD_DISABLE)
2304                 priv->status &= ~STATUS_ENABLED;
2305
2306         priv->status &= ~STATUS_CMD_ACTIVE;
2307
2308         wake_up_interruptible(&priv->wait_command_queue);
2309 }
2310
2311 #ifdef CONFIG_IPW2100_DEBUG
2312 static const char *frame_types[] = {
2313         "COMMAND_STATUS_VAL",
2314         "STATUS_CHANGE_VAL",
2315         "P80211_DATA_VAL",
2316         "P8023_DATA_VAL",
2317         "HOST_NOTIFICATION_VAL"
2318 };
2319 #endif
2320
2321 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2322                                     struct ipw2100_rx_packet *packet)
2323 {
2324         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2325         if (!packet->skb)
2326                 return -ENOMEM;
2327
2328         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2329         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2330                                           sizeof(struct ipw2100_rx),
2331                                           PCI_DMA_FROMDEVICE);
2332         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2333          *       dma_addr */
2334
2335         return 0;
2336 }
2337
2338 #define SEARCH_ERROR   0xffffffff
2339 #define SEARCH_FAIL    0xfffffffe
2340 #define SEARCH_SUCCESS 0xfffffff0
2341 #define SEARCH_DISCARD 0
2342 #define SEARCH_SNAPSHOT 1
2343
2344 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2345 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2346 {
2347         int i;
2348         if (!priv->snapshot[0])
2349                 return;
2350         for (i = 0; i < 0x30; i++)
2351                 kfree(priv->snapshot[i]);
2352         priv->snapshot[0] = NULL;
2353 }
2354
2355 #ifdef IPW2100_DEBUG_C3
2356 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2357 {
2358         int i;
2359         if (priv->snapshot[0])
2360                 return 1;
2361         for (i = 0; i < 0x30; i++) {
2362                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2363                 if (!priv->snapshot[i]) {
2364                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2365                                        "buffer %d\n", priv->net_dev->name, i);
2366                         while (i > 0)
2367                                 kfree(priv->snapshot[--i]);
2368                         priv->snapshot[0] = NULL;
2369                         return 0;
2370                 }
2371         }
2372
2373         return 1;
2374 }
2375
2376 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2377                                     size_t len, int mode)
2378 {
2379         u32 i, j;
2380         u32 tmp;
2381         u8 *s, *d;
2382         u32 ret;
2383
2384         s = in_buf;
2385         if (mode == SEARCH_SNAPSHOT) {
2386                 if (!ipw2100_snapshot_alloc(priv))
2387                         mode = SEARCH_DISCARD;
2388         }
2389
2390         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2391                 read_nic_dword(priv->net_dev, i, &tmp);
2392                 if (mode == SEARCH_SNAPSHOT)
2393                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2394                 if (ret == SEARCH_FAIL) {
2395                         d = (u8 *) & tmp;
2396                         for (j = 0; j < 4; j++) {
2397                                 if (*s != *d) {
2398                                         s = in_buf;
2399                                         continue;
2400                                 }
2401
2402                                 s++;
2403                                 d++;
2404
2405                                 if ((s - in_buf) == len)
2406                                         ret = (i + j) - len + 1;
2407                         }
2408                 } else if (mode == SEARCH_DISCARD)
2409                         return ret;
2410         }
2411
2412         return ret;
2413 }
2414 #endif
2415
2416 /*
2417  *
2418  * 0) Disconnect the SKB from the firmware (just unmap)
2419  * 1) Pack the ETH header into the SKB
2420  * 2) Pass the SKB to the network stack
2421  *
2422  * When packet is provided by the firmware, it contains the following:
2423  *
2424  * .  libipw_hdr
2425  * .  libipw_snap_hdr
2426  *
2427  * The size of the constructed ethernet
2428  *
2429  */
2430 #ifdef IPW2100_RX_DEBUG
2431 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2432 #endif
2433
2434 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2435 {
2436 #ifdef IPW2100_DEBUG_C3
2437         struct ipw2100_status *status = &priv->status_queue.drv[i];
2438         u32 match, reg;
2439         int j;
2440 #endif
2441
2442         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2443                        i * sizeof(struct ipw2100_status));
2444
2445 #ifdef IPW2100_DEBUG_C3
2446         /* Halt the firmware so we can get a good image */
2447         write_register(priv->net_dev, IPW_REG_RESET_REG,
2448                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2449         j = 5;
2450         do {
2451                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2452                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2453
2454                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2455                         break;
2456         } while (j--);
2457
2458         match = ipw2100_match_buf(priv, (u8 *) status,
2459                                   sizeof(struct ipw2100_status),
2460                                   SEARCH_SNAPSHOT);
2461         if (match < SEARCH_SUCCESS)
2462                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2463                                "offset 0x%06X, length %d:\n",
2464                                priv->net_dev->name, match,
2465                                sizeof(struct ipw2100_status));
2466         else
2467                 IPW_DEBUG_INFO("%s: No DMA status match in "
2468                                "Firmware.\n", priv->net_dev->name);
2469
2470         printk_buf((u8 *) priv->status_queue.drv,
2471                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2472 #endif
2473
2474         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2475         priv->net_dev->stats.rx_errors++;
2476         schedule_reset(priv);
2477 }
2478
2479 static void isr_rx(struct ipw2100_priv *priv, int i,
2480                           struct libipw_rx_stats *stats)
2481 {
2482         struct net_device *dev = priv->net_dev;
2483         struct ipw2100_status *status = &priv->status_queue.drv[i];
2484         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2485
2486         IPW_DEBUG_RX("Handler...\n");
2487
2488         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2489                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2490                                "  Dropping.\n",
2491                                dev->name,
2492                                status->frame_size, skb_tailroom(packet->skb));
2493                 dev->stats.rx_errors++;
2494                 return;
2495         }
2496
2497         if (unlikely(!netif_running(dev))) {
2498                 dev->stats.rx_errors++;
2499                 priv->wstats.discard.misc++;
2500                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2501                 return;
2502         }
2503
2504         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2505                      !(priv->status & STATUS_ASSOCIATED))) {
2506                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2507                 priv->wstats.discard.misc++;
2508                 return;
2509         }
2510
2511         pci_unmap_single(priv->pci_dev,
2512                          packet->dma_addr,
2513                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2514
2515         skb_put(packet->skb, status->frame_size);
2516
2517 #ifdef IPW2100_RX_DEBUG
2518         /* Make a copy of the frame so we can dump it to the logs if
2519          * libipw_rx fails */
2520         skb_copy_from_linear_data(packet->skb, packet_data,
2521                                   min_t(u32, status->frame_size,
2522                                              IPW_RX_NIC_BUFFER_LENGTH));
2523 #endif
2524
2525         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2526 #ifdef IPW2100_RX_DEBUG
2527                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2528                                dev->name);
2529                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2530 #endif
2531                 dev->stats.rx_errors++;
2532
2533                 /* libipw_rx failed, so it didn't free the SKB */
2534                 dev_kfree_skb_any(packet->skb);
2535                 packet->skb = NULL;
2536         }
2537
2538         /* We need to allocate a new SKB and attach it to the RDB. */
2539         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2540                 printk(KERN_WARNING DRV_NAME ": "
2541                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2542                        "adapter.\n", dev->name);
2543                 /* TODO: schedule adapter shutdown */
2544                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2545         }
2546
2547         /* Update the RDB entry */
2548         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2549 }
2550
2551 #ifdef CONFIG_IPW2100_MONITOR
2552
2553 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2554                    struct libipw_rx_stats *stats)
2555 {
2556         struct net_device *dev = priv->net_dev;
2557         struct ipw2100_status *status = &priv->status_queue.drv[i];
2558         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2559
2560         /* Magic struct that slots into the radiotap header -- no reason
2561          * to build this manually element by element, we can write it much
2562          * more efficiently than we can parse it. ORDER MATTERS HERE */
2563         struct ipw_rt_hdr {
2564                 struct ieee80211_radiotap_header rt_hdr;
2565                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2566         } *ipw_rt;
2567
2568         IPW_DEBUG_RX("Handler...\n");
2569
2570         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2571                                 sizeof(struct ipw_rt_hdr))) {
2572                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2573                                "  Dropping.\n",
2574                                dev->name,
2575                                status->frame_size,
2576                                skb_tailroom(packet->skb));
2577                 dev->stats.rx_errors++;
2578                 return;
2579         }
2580
2581         if (unlikely(!netif_running(dev))) {
2582                 dev->stats.rx_errors++;
2583                 priv->wstats.discard.misc++;
2584                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2585                 return;
2586         }
2587
2588         if (unlikely(priv->config & CFG_CRC_CHECK &&
2589                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2590                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2591                 dev->stats.rx_errors++;
2592                 return;
2593         }
2594
2595         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2596                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2597         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2598                 packet->skb->data, status->frame_size);
2599
2600         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2601
2602         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2603         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2604         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2605
2606         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2607
2608         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2609
2610         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2611
2612         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2613                 dev->stats.rx_errors++;
2614
2615                 /* libipw_rx failed, so it didn't free the SKB */
2616                 dev_kfree_skb_any(packet->skb);
2617                 packet->skb = NULL;
2618         }
2619
2620         /* We need to allocate a new SKB and attach it to the RDB. */
2621         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2622                 IPW_DEBUG_WARNING(
2623                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2624                         "adapter.\n", dev->name);
2625                 /* TODO: schedule adapter shutdown */
2626                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2627         }
2628
2629         /* Update the RDB entry */
2630         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2631 }
2632
2633 #endif
2634
2635 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2636 {
2637         struct ipw2100_status *status = &priv->status_queue.drv[i];
2638         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2639         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2640
2641         switch (frame_type) {
2642         case COMMAND_STATUS_VAL:
2643                 return (status->frame_size != sizeof(u->rx_data.command));
2644         case STATUS_CHANGE_VAL:
2645                 return (status->frame_size != sizeof(u->rx_data.status));
2646         case HOST_NOTIFICATION_VAL:
2647                 return (status->frame_size < sizeof(u->rx_data.notification));
2648         case P80211_DATA_VAL:
2649         case P8023_DATA_VAL:
2650 #ifdef CONFIG_IPW2100_MONITOR
2651                 return 0;
2652 #else
2653                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2654                 case IEEE80211_FTYPE_MGMT:
2655                 case IEEE80211_FTYPE_CTL:
2656                         return 0;
2657                 case IEEE80211_FTYPE_DATA:
2658                         return (status->frame_size >
2659                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2660                 }
2661 #endif
2662         }
2663
2664         return 1;
2665 }
2666
2667 /*
2668  * ipw2100 interrupts are disabled at this point, and the ISR
2669  * is the only code that calls this method.  So, we do not need
2670  * to play with any locks.
2671  *
2672  * RX Queue works as follows:
2673  *
2674  * Read index - firmware places packet in entry identified by the
2675  *              Read index and advances Read index.  In this manner,
2676  *              Read index will always point to the next packet to
2677  *              be filled--but not yet valid.
2678  *
2679  * Write index - driver fills this entry with an unused RBD entry.
2680  *               This entry has not filled by the firmware yet.
2681  *
2682  * In between the W and R indexes are the RBDs that have been received
2683  * but not yet processed.
2684  *
2685  * The process of handling packets will start at WRITE + 1 and advance
2686  * until it reaches the READ index.
2687  *
2688  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2689  *
2690  */
2691 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2692 {
2693         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2694         struct ipw2100_status_queue *sq = &priv->status_queue;
2695         struct ipw2100_rx_packet *packet;
2696         u16 frame_type;
2697         u32 r, w, i, s;
2698         struct ipw2100_rx *u;
2699         struct libipw_rx_stats stats = {
2700                 .mac_time = jiffies,
2701         };
2702
2703         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2704         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2705
2706         if (r >= rxq->entries) {
2707                 IPW_DEBUG_RX("exit - bad read index\n");
2708                 return;
2709         }
2710
2711         i = (rxq->next + 1) % rxq->entries;
2712         s = i;
2713         while (i != r) {
2714                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2715                    r, rxq->next, i); */
2716
2717                 packet = &priv->rx_buffers[i];
2718
2719                 /* Sync the DMA for the RX buffer so CPU is sure to get
2720                  * the correct values */
2721                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2722                                             sizeof(struct ipw2100_rx),
2723                                             PCI_DMA_FROMDEVICE);
2724
2725                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2726                         ipw2100_corruption_detected(priv, i);
2727                         goto increment;
2728                 }
2729
2730                 u = packet->rxp;
2731                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2732                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2733                 stats.len = sq->drv[i].frame_size;
2734
2735                 stats.mask = 0;
2736                 if (stats.rssi != 0)
2737                         stats.mask |= LIBIPW_STATMASK_RSSI;
2738                 stats.freq = LIBIPW_24GHZ_BAND;
2739
2740                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2741                              priv->net_dev->name, frame_types[frame_type],
2742                              stats.len);
2743
2744                 switch (frame_type) {
2745                 case COMMAND_STATUS_VAL:
2746                         /* Reset Rx watchdog */
2747                         isr_rx_complete_command(priv, &u->rx_data.command);
2748                         break;
2749
2750                 case STATUS_CHANGE_VAL:
2751                         isr_status_change(priv, u->rx_data.status);
2752                         break;
2753
2754                 case P80211_DATA_VAL:
2755                 case P8023_DATA_VAL:
2756 #ifdef CONFIG_IPW2100_MONITOR
2757                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2758                                 isr_rx_monitor(priv, i, &stats);
2759                                 break;
2760                         }
2761 #endif
2762                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2763                                 break;
2764                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2765                         case IEEE80211_FTYPE_MGMT:
2766                                 libipw_rx_mgt(priv->ieee,
2767                                                  &u->rx_data.header, &stats);
2768                                 break;
2769
2770                         case IEEE80211_FTYPE_CTL:
2771                                 break;
2772
2773                         case IEEE80211_FTYPE_DATA:
2774                                 isr_rx(priv, i, &stats);
2775                                 break;
2776
2777                         }
2778                         break;
2779                 }
2780
2781               increment:
2782                 /* clear status field associated with this RBD */
2783                 rxq->drv[i].status.info.field = 0;
2784
2785                 i = (i + 1) % rxq->entries;
2786         }
2787
2788         if (i != s) {
2789                 /* backtrack one entry, wrapping to end if at 0 */
2790                 rxq->next = (i ? i : rxq->entries) - 1;
2791
2792                 write_register(priv->net_dev,
2793                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2794         }
2795 }
2796
2797 /*
2798  * __ipw2100_tx_process
2799  *
2800  * This routine will determine whether the next packet on
2801  * the fw_pend_list has been processed by the firmware yet.
2802  *
2803  * If not, then it does nothing and returns.
2804  *
2805  * If so, then it removes the item from the fw_pend_list, frees
2806  * any associated storage, and places the item back on the
2807  * free list of its source (either msg_free_list or tx_free_list)
2808  *
2809  * TX Queue works as follows:
2810  *
2811  * Read index - points to the next TBD that the firmware will
2812  *              process.  The firmware will read the data, and once
2813  *              done processing, it will advance the Read index.
2814  *
2815  * Write index - driver fills this entry with an constructed TBD
2816  *               entry.  The Write index is not advanced until the
2817  *               packet has been configured.
2818  *
2819  * In between the W and R indexes are the TBDs that have NOT been
2820  * processed.  Lagging behind the R index are packets that have
2821  * been processed but have not been freed by the driver.
2822  *
2823  * In order to free old storage, an internal index will be maintained
2824  * that points to the next packet to be freed.  When all used
2825  * packets have been freed, the oldest index will be the same as the
2826  * firmware's read index.
2827  *
2828  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2829  *
2830  * Because the TBD structure can not contain arbitrary data, the
2831  * driver must keep an internal queue of cached allocations such that
2832  * it can put that data back into the tx_free_list and msg_free_list
2833  * for use by future command and data packets.
2834  *
2835  */
2836 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2837 {
2838         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2839         struct ipw2100_bd *tbd;
2840         struct list_head *element;
2841         struct ipw2100_tx_packet *packet;
2842         int descriptors_used;
2843         int e, i;
2844         u32 r, w, frag_num = 0;
2845
2846         if (list_empty(&priv->fw_pend_list))
2847                 return 0;
2848
2849         element = priv->fw_pend_list.next;
2850
2851         packet = list_entry(element, struct ipw2100_tx_packet, list);
2852         tbd = &txq->drv[packet->index];
2853
2854         /* Determine how many TBD entries must be finished... */
2855         switch (packet->type) {
2856         case COMMAND:
2857                 /* COMMAND uses only one slot; don't advance */
2858                 descriptors_used = 1;
2859                 e = txq->oldest;
2860                 break;
2861
2862         case DATA:
2863                 /* DATA uses two slots; advance and loop position. */
2864                 descriptors_used = tbd->num_fragments;
2865                 frag_num = tbd->num_fragments - 1;
2866                 e = txq->oldest + frag_num;
2867                 e %= txq->entries;
2868                 break;
2869
2870         default:
2871                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2872                        priv->net_dev->name);
2873                 return 0;
2874         }
2875
2876         /* if the last TBD is not done by NIC yet, then packet is
2877          * not ready to be released.
2878          *
2879          */
2880         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2881                       &r);
2882         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2883                       &w);
2884         if (w != txq->next)
2885                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2886                        priv->net_dev->name);
2887
2888         /*
2889          * txq->next is the index of the last packet written txq->oldest is
2890          * the index of the r is the index of the next packet to be read by
2891          * firmware
2892          */
2893
2894         /*
2895          * Quick graphic to help you visualize the following
2896          * if / else statement
2897          *
2898          * ===>|                     s---->|===============
2899          *                               e>|
2900          * | a | b | c | d | e | f | g | h | i | j | k | l
2901          *       r---->|
2902          *               w
2903          *
2904          * w - updated by driver
2905          * r - updated by firmware
2906          * s - start of oldest BD entry (txq->oldest)
2907          * e - end of oldest BD entry
2908          *
2909          */
2910         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2911                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2912                 return 0;
2913         }
2914
2915         list_del(element);
2916         DEC_STAT(&priv->fw_pend_stat);
2917
2918 #ifdef CONFIG_IPW2100_DEBUG
2919         {
2920                 i = txq->oldest;
2921                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2922                              &txq->drv[i],
2923                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2924                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2925
2926                 if (packet->type == DATA) {
2927                         i = (i + 1) % txq->entries;
2928
2929                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2930                                      &txq->drv[i],
2931                                      (u32) (txq->nic + i *
2932                                             sizeof(struct ipw2100_bd)),
2933                                      (u32) txq->drv[i].host_addr,
2934                                      txq->drv[i].buf_length);
2935                 }
2936         }
2937 #endif
2938
2939         switch (packet->type) {
2940         case DATA:
2941                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2942                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2943                                "Expecting DATA TBD but pulled "
2944                                "something else: ids %d=%d.\n",
2945                                priv->net_dev->name, txq->oldest, packet->index);
2946
2947                 /* DATA packet; we have to unmap and free the SKB */
2948                 for (i = 0; i < frag_num; i++) {
2949                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2950
2951                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2952                                      (packet->index + 1 + i) % txq->entries,
2953                                      tbd->host_addr, tbd->buf_length);
2954
2955                         pci_unmap_single(priv->pci_dev,
2956                                          tbd->host_addr,
2957                                          tbd->buf_length, PCI_DMA_TODEVICE);
2958                 }
2959
2960                 libipw_txb_free(packet->info.d_struct.txb);
2961                 packet->info.d_struct.txb = NULL;
2962
2963                 list_add_tail(element, &priv->tx_free_list);
2964                 INC_STAT(&priv->tx_free_stat);
2965
2966                 /* We have a free slot in the Tx queue, so wake up the
2967                  * transmit layer if it is stopped. */
2968                 if (priv->status & STATUS_ASSOCIATED)
2969                         netif_wake_queue(priv->net_dev);
2970
2971                 /* A packet was processed by the hardware, so update the
2972                  * watchdog */
2973                 priv->net_dev->trans_start = jiffies;
2974
2975                 break;
2976
2977         case COMMAND:
2978                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2979                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2980                                "Expecting COMMAND TBD but pulled "
2981                                "something else: ids %d=%d.\n",
2982                                priv->net_dev->name, txq->oldest, packet->index);
2983
2984 #ifdef CONFIG_IPW2100_DEBUG
2985                 if (packet->info.c_struct.cmd->host_command_reg <
2986                     ARRAY_SIZE(command_types))
2987                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2988                                      command_types[packet->info.c_struct.cmd->
2989                                                    host_command_reg],
2990                                      packet->info.c_struct.cmd->
2991                                      host_command_reg,
2992                                      packet->info.c_struct.cmd->cmd_status_reg);
2993 #endif
2994
2995                 list_add_tail(element, &priv->msg_free_list);
2996                 INC_STAT(&priv->msg_free_stat);
2997                 break;
2998         }
2999
3000         /* advance oldest used TBD pointer to start of next entry */
3001         txq->oldest = (e + 1) % txq->entries;
3002         /* increase available TBDs number */
3003         txq->available += descriptors_used;
3004         SET_STAT(&priv->txq_stat, txq->available);
3005
3006         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3007                      jiffies - packet->jiffy_start);
3008
3009         return (!list_empty(&priv->fw_pend_list));
3010 }
3011
3012 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3013 {
3014         int i = 0;
3015
3016         while (__ipw2100_tx_process(priv) && i < 200)
3017                 i++;
3018
3019         if (i == 200) {
3020                 printk(KERN_WARNING DRV_NAME ": "
3021                        "%s: Driver is running slow (%d iters).\n",
3022                        priv->net_dev->name, i);
3023         }
3024 }
3025
3026 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3027 {
3028         struct list_head *element;
3029         struct ipw2100_tx_packet *packet;
3030         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3031         struct ipw2100_bd *tbd;
3032         int next = txq->next;
3033
3034         while (!list_empty(&priv->msg_pend_list)) {
3035                 /* if there isn't enough space in TBD queue, then
3036                  * don't stuff a new one in.
3037                  * NOTE: 3 are needed as a command will take one,
3038                  *       and there is a minimum of 2 that must be
3039                  *       maintained between the r and w indexes
3040                  */
3041                 if (txq->available <= 3) {
3042                         IPW_DEBUG_TX("no room in tx_queue\n");
3043                         break;
3044                 }
3045
3046                 element = priv->msg_pend_list.next;
3047                 list_del(element);
3048                 DEC_STAT(&priv->msg_pend_stat);
3049
3050                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3051
3052                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3053                              &txq->drv[txq->next],
3054                              (u32) (txq->nic + txq->next *
3055                                       sizeof(struct ipw2100_bd)));
3056
3057                 packet->index = txq->next;
3058
3059                 tbd = &txq->drv[txq->next];
3060
3061                 /* initialize TBD */
3062                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3063                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3064                 /* not marking number of fragments causes problems
3065                  * with f/w debug version */
3066                 tbd->num_fragments = 1;
3067                 tbd->status.info.field =
3068                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3069                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3070
3071                 /* update TBD queue counters */
3072                 txq->next++;
3073                 txq->next %= txq->entries;
3074                 txq->available--;
3075                 DEC_STAT(&priv->txq_stat);
3076
3077                 list_add_tail(element, &priv->fw_pend_list);
3078                 INC_STAT(&priv->fw_pend_stat);
3079         }
3080
3081         if (txq->next != next) {
3082                 /* kick off the DMA by notifying firmware the
3083                  * write index has moved; make sure TBD stores are sync'd */
3084                 wmb();
3085                 write_register(priv->net_dev,
3086                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3087                                txq->next);
3088         }
3089 }
3090
3091 /*
3092  * ipw2100_tx_send_data
3093  *
3094  */
3095 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3096 {
3097         struct list_head *element;
3098         struct ipw2100_tx_packet *packet;
3099         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3100         struct ipw2100_bd *tbd;
3101         int next = txq->next;
3102         int i = 0;
3103         struct ipw2100_data_header *ipw_hdr;
3104         struct libipw_hdr_3addr *hdr;
3105
3106         while (!list_empty(&priv->tx_pend_list)) {
3107                 /* if there isn't enough space in TBD queue, then
3108                  * don't stuff a new one in.
3109                  * NOTE: 4 are needed as a data will take two,
3110                  *       and there is a minimum of 2 that must be
3111                  *       maintained between the r and w indexes
3112                  */
3113                 element = priv->tx_pend_list.next;
3114                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3115
3116                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3117                              IPW_MAX_BDS)) {
3118                         /* TODO: Support merging buffers if more than
3119                          * IPW_MAX_BDS are used */
3120                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3121                                        "Increase fragmentation level.\n",
3122                                        priv->net_dev->name);
3123                 }
3124
3125                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3126                         IPW_DEBUG_TX("no room in tx_queue\n");
3127                         break;
3128                 }
3129
3130                 list_del(element);
3131                 DEC_STAT(&priv->tx_pend_stat);
3132
3133                 tbd = &txq->drv[txq->next];
3134
3135                 packet->index = txq->next;
3136
3137                 ipw_hdr = packet->info.d_struct.data;
3138                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3139                     fragments[0]->data;
3140
3141                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3142                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3143                            Addr3 = DA */
3144                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3145                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3146                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3147                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3148                            Addr3 = BSSID */
3149                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3150                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3151                 }
3152
3153                 ipw_hdr->host_command_reg = SEND;
3154                 ipw_hdr->host_command_reg1 = 0;
3155
3156                 /* For now we only support host based encryption */
3157                 ipw_hdr->needs_encryption = 0;
3158                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3159                 if (packet->info.d_struct.txb->nr_frags > 1)
3160                         ipw_hdr->fragment_size =
3161                             packet->info.d_struct.txb->frag_size -
3162                             LIBIPW_3ADDR_LEN;
3163                 else
3164                         ipw_hdr->fragment_size = 0;
3165
3166                 tbd->host_addr = packet->info.d_struct.data_phys;
3167                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3168                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3169                 tbd->status.info.field =
3170                     IPW_BD_STATUS_TX_FRAME_802_3 |
3171                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3172                 txq->next++;
3173                 txq->next %= txq->entries;
3174
3175                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3176                              packet->index, tbd->host_addr, tbd->buf_length);
3177 #ifdef CONFIG_IPW2100_DEBUG
3178                 if (packet->info.d_struct.txb->nr_frags > 1)
3179                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3180                                        packet->info.d_struct.txb->nr_frags);
3181 #endif
3182
3183                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3184                         tbd = &txq->drv[txq->next];
3185                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3186                                 tbd->status.info.field =
3187                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3188                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3189                         else
3190                                 tbd->status.info.field =
3191                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3192                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3193
3194                         tbd->buf_length = packet->info.d_struct.txb->
3195                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3196
3197                         tbd->host_addr = pci_map_single(priv->pci_dev,
3198                                                         packet->info.d_struct.
3199                                                         txb->fragments[i]->
3200                                                         data +
3201                                                         LIBIPW_3ADDR_LEN,
3202                                                         tbd->buf_length,
3203                                                         PCI_DMA_TODEVICE);
3204
3205                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3206                                      txq->next, tbd->host_addr,
3207                                      tbd->buf_length);
3208
3209                         pci_dma_sync_single_for_device(priv->pci_dev,
3210                                                        tbd->host_addr,
3211                                                        tbd->buf_length,
3212                                                        PCI_DMA_TODEVICE);
3213
3214                         txq->next++;
3215                         txq->next %= txq->entries;
3216                 }
3217
3218                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3219                 SET_STAT(&priv->txq_stat, txq->available);
3220
3221                 list_add_tail(element, &priv->fw_pend_list);
3222                 INC_STAT(&priv->fw_pend_stat);
3223         }
3224
3225         if (txq->next != next) {
3226                 /* kick off the DMA by notifying firmware the
3227                  * write index has moved; make sure TBD stores are sync'd */
3228                 write_register(priv->net_dev,
3229                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3230                                txq->next);
3231         }
3232 }
3233
3234 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3235 {
3236         struct net_device *dev = priv->net_dev;
3237         unsigned long flags;
3238         u32 inta, tmp;
3239
3240         spin_lock_irqsave(&priv->low_lock, flags);
3241         ipw2100_disable_interrupts(priv);
3242
3243         read_register(dev, IPW_REG_INTA, &inta);
3244
3245         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3246                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3247
3248         priv->in_isr++;
3249         priv->interrupts++;
3250
3251         /* We do not loop and keep polling for more interrupts as this
3252          * is frowned upon and doesn't play nicely with other potentially
3253          * chained IRQs */
3254         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3255                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3256
3257         if (inta & IPW2100_INTA_FATAL_ERROR) {
3258                 printk(KERN_WARNING DRV_NAME
3259                        ": Fatal interrupt. Scheduling firmware restart.\n");
3260                 priv->inta_other++;
3261                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3262
3263                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3264                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3265                                priv->net_dev->name, priv->fatal_error);
3266
3267                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3268                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3269                                priv->net_dev->name, tmp);
3270
3271                 /* Wake up any sleeping jobs */
3272                 schedule_reset(priv);
3273         }
3274
3275         if (inta & IPW2100_INTA_PARITY_ERROR) {
3276                 printk(KERN_ERR DRV_NAME
3277                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3278                 priv->inta_other++;
3279                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3280         }
3281
3282         if (inta & IPW2100_INTA_RX_TRANSFER) {
3283                 IPW_DEBUG_ISR("RX interrupt\n");
3284
3285                 priv->rx_interrupts++;
3286
3287                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3288
3289                 __ipw2100_rx_process(priv);
3290                 __ipw2100_tx_complete(priv);
3291         }
3292
3293         if (inta & IPW2100_INTA_TX_TRANSFER) {
3294                 IPW_DEBUG_ISR("TX interrupt\n");
3295
3296                 priv->tx_interrupts++;
3297
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3299
3300                 __ipw2100_tx_complete(priv);
3301                 ipw2100_tx_send_commands(priv);
3302                 ipw2100_tx_send_data(priv);
3303         }
3304
3305         if (inta & IPW2100_INTA_TX_COMPLETE) {
3306                 IPW_DEBUG_ISR("TX complete\n");
3307                 priv->inta_other++;
3308                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3309
3310                 __ipw2100_tx_complete(priv);
3311         }
3312
3313         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3314                 /* ipw2100_handle_event(dev); */
3315                 priv->inta_other++;
3316                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3317         }
3318
3319         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3320                 IPW_DEBUG_ISR("FW init done interrupt\n");
3321                 priv->inta_other++;
3322
3323                 read_register(dev, IPW_REG_INTA, &tmp);
3324                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3325                            IPW2100_INTA_PARITY_ERROR)) {
3326                         write_register(dev, IPW_REG_INTA,
3327                                        IPW2100_INTA_FATAL_ERROR |
3328                                        IPW2100_INTA_PARITY_ERROR);
3329                 }
3330
3331                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3332         }
3333
3334         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3335                 IPW_DEBUG_ISR("Status change interrupt\n");
3336                 priv->inta_other++;
3337                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3338         }
3339
3340         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3341                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3342                 priv->inta_other++;
3343                 write_register(dev, IPW_REG_INTA,
3344                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3345         }
3346
3347         priv->in_isr--;
3348         ipw2100_enable_interrupts(priv);
3349
3350         spin_unlock_irqrestore(&priv->low_lock, flags);
3351
3352         IPW_DEBUG_ISR("exit\n");
3353 }
3354
3355 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3356 {
3357         struct ipw2100_priv *priv = data;
3358         u32 inta, inta_mask;
3359
3360         if (!data)
3361                 return IRQ_NONE;
3362
3363         spin_lock(&priv->low_lock);
3364
3365         /* We check to see if we should be ignoring interrupts before
3366          * we touch the hardware.  During ucode load if we try and handle
3367          * an interrupt we can cause keyboard problems as well as cause
3368          * the ucode to fail to initialize */
3369         if (!(priv->status & STATUS_INT_ENABLED)) {
3370                 /* Shared IRQ */
3371                 goto none;
3372         }
3373
3374         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3375         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3376
3377         if (inta == 0xFFFFFFFF) {
3378                 /* Hardware disappeared */
3379                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3380                 goto none;
3381         }
3382
3383         inta &= IPW_INTERRUPT_MASK;
3384
3385         if (!(inta & inta_mask)) {
3386                 /* Shared interrupt */
3387                 goto none;
3388         }
3389
3390         /* We disable the hardware interrupt here just to prevent unneeded
3391          * calls to be made.  We disable this again within the actual
3392          * work tasklet, so if another part of the code re-enables the
3393          * interrupt, that is fine */
3394         ipw2100_disable_interrupts(priv);
3395
3396         tasklet_schedule(&priv->irq_tasklet);
3397         spin_unlock(&priv->low_lock);
3398
3399         return IRQ_HANDLED;
3400       none:
3401         spin_unlock(&priv->low_lock);
3402         return IRQ_NONE;
3403 }
3404
3405 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3406                               struct net_device *dev, int pri)
3407 {
3408         struct ipw2100_priv *priv = libipw_priv(dev);
3409         struct list_head *element;
3410         struct ipw2100_tx_packet *packet;
3411         unsigned long flags;
3412
3413         spin_lock_irqsave(&priv->low_lock, flags);
3414
3415         if (!(priv->status & STATUS_ASSOCIATED)) {
3416                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3417                 priv->net_dev->stats.tx_carrier_errors++;
3418                 netif_stop_queue(dev);
3419                 goto fail_unlock;
3420         }
3421
3422         if (list_empty(&priv->tx_free_list))
3423                 goto fail_unlock;
3424
3425         element = priv->tx_free_list.next;
3426         packet = list_entry(element, struct ipw2100_tx_packet, list);
3427
3428         packet->info.d_struct.txb = txb;
3429
3430         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3431         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3432
3433         packet->jiffy_start = jiffies;
3434
3435         list_del(element);
3436         DEC_STAT(&priv->tx_free_stat);
3437
3438         list_add_tail(element, &priv->tx_pend_list);
3439         INC_STAT(&priv->tx_pend_stat);
3440
3441         ipw2100_tx_send_data(priv);
3442
3443         spin_unlock_irqrestore(&priv->low_lock, flags);
3444         return NETDEV_TX_OK;
3445
3446 fail_unlock:
3447         netif_stop_queue(dev);
3448         spin_unlock_irqrestore(&priv->low_lock, flags);
3449         return NETDEV_TX_BUSY;
3450 }
3451
3452 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3453 {
3454         int i, j, err = -EINVAL;
3455         void *v;
3456         dma_addr_t p;
3457
3458         priv->msg_buffers =
3459             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3460                     GFP_KERNEL);
3461         if (!priv->msg_buffers)
3462                 return -ENOMEM;
3463
3464         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3465                 v = pci_alloc_consistent(priv->pci_dev,
3466                                          sizeof(struct ipw2100_cmd_header), &p);
3467                 if (!v) {
3468                         printk(KERN_ERR DRV_NAME ": "
3469                                "%s: PCI alloc failed for msg "
3470                                "buffers.\n", priv->net_dev->name);
3471                         err = -ENOMEM;
3472                         break;
3473                 }
3474
3475                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3476
3477                 priv->msg_buffers[i].type = COMMAND;
3478                 priv->msg_buffers[i].info.c_struct.cmd =
3479                     (struct ipw2100_cmd_header *)v;
3480                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3481         }
3482
3483         if (i == IPW_COMMAND_POOL_SIZE)
3484                 return 0;
3485
3486         for (j = 0; j < i; j++) {
3487                 pci_free_consistent(priv->pci_dev,
3488                                     sizeof(struct ipw2100_cmd_header),
3489                                     priv->msg_buffers[j].info.c_struct.cmd,
3490                                     priv->msg_buffers[j].info.c_struct.
3491                                     cmd_phys);
3492         }
3493
3494         kfree(priv->msg_buffers);
3495         priv->msg_buffers = NULL;
3496
3497         return err;
3498 }
3499
3500 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3501 {
3502         int i;
3503
3504         INIT_LIST_HEAD(&priv->msg_free_list);
3505         INIT_LIST_HEAD(&priv->msg_pend_list);
3506
3507         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3508                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3509         SET_STAT(&priv->msg_free_stat, i);
3510
3511         return 0;
3512 }
3513
3514 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3515 {
3516         int i;
3517
3518         if (!priv->msg_buffers)
3519                 return;
3520
3521         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3522                 pci_free_consistent(priv->pci_dev,
3523                                     sizeof(struct ipw2100_cmd_header),
3524                                     priv->msg_buffers[i].info.c_struct.cmd,
3525                                     priv->msg_buffers[i].info.c_struct.
3526                                     cmd_phys);
3527         }
3528
3529         kfree(priv->msg_buffers);
3530         priv->msg_buffers = NULL;
3531 }
3532
3533 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3534                         char *buf)
3535 {
3536         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3537         char *out = buf;
3538         int i, j;
3539         u32 val;
3540
3541         for (i = 0; i < 16; i++) {
3542                 out += sprintf(out, "[%08X] ", i * 16);
3543                 for (j = 0; j < 16; j += 4) {
3544                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3545                         out += sprintf(out, "%08X ", val);
3546                 }
3547                 out += sprintf(out, "\n");
3548         }
3549
3550         return out - buf;
3551 }
3552
3553 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3554
3555 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3556                         char *buf)
3557 {
3558         struct ipw2100_priv *p = dev_get_drvdata(d);
3559         return sprintf(buf, "0x%08x\n", (int)p->config);
3560 }
3561
3562 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3563
3564 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3565                            char *buf)
3566 {
3567         struct ipw2100_priv *p = dev_get_drvdata(d);
3568         return sprintf(buf, "0x%08x\n", (int)p->status);
3569 }
3570
3571 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3572
3573 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3574                                char *buf)
3575 {
3576         struct ipw2100_priv *p = dev_get_drvdata(d);
3577         return sprintf(buf, "0x%08x\n", (int)p->capability);
3578 }
3579
3580 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3581
3582 #define IPW2100_REG(x) { IPW_ ##x, #x }
3583 static const struct {
3584         u32 addr;
3585         const char *name;
3586 } hw_data[] = {
3587 IPW2100_REG(REG_GP_CNTRL),
3588             IPW2100_REG(REG_GPIO),
3589             IPW2100_REG(REG_INTA),
3590             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3591 #define IPW2100_NIC(x, s) { x, #x, s }
3592 static const struct {
3593         u32 addr;
3594         const char *name;
3595         size_t size;
3596 } nic_data[] = {
3597 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3598             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3599 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3600 static const struct {
3601         u8 index;
3602         const char *name;
3603         const char *desc;
3604 } ord_data[] = {
3605 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3606             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3607                                 "successful Host Tx's (MSDU)"),
3608             IPW2100_ORD(STAT_TX_DIR_DATA,
3609                                 "successful Directed Tx's (MSDU)"),
3610             IPW2100_ORD(STAT_TX_DIR_DATA1,
3611                                 "successful Directed Tx's (MSDU) @ 1MB"),
3612             IPW2100_ORD(STAT_TX_DIR_DATA2,
3613                                 "successful Directed Tx's (MSDU) @ 2MB"),
3614             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3615                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3616             IPW2100_ORD(STAT_TX_DIR_DATA11,
3617                                 "successful Directed Tx's (MSDU) @ 11MB"),
3618             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3619                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3620             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3621                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3622             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3623                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3624             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3625                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3626             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3627             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3628             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3629             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3630             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3631             IPW2100_ORD(STAT_TX_ASSN_RESP,
3632                                 "successful Association response Tx's"),
3633             IPW2100_ORD(STAT_TX_REASSN,
3634                                 "successful Reassociation Tx's"),
3635             IPW2100_ORD(STAT_TX_REASSN_RESP,
3636                                 "successful Reassociation response Tx's"),
3637             IPW2100_ORD(STAT_TX_PROBE,
3638                                 "probes successfully transmitted"),
3639             IPW2100_ORD(STAT_TX_PROBE_RESP,
3640                                 "probe responses successfully transmitted"),
3641             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3642             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3643             IPW2100_ORD(STAT_TX_DISASSN,
3644                                 "successful Disassociation TX"),
3645             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3646             IPW2100_ORD(STAT_TX_DEAUTH,
3647                                 "successful Deauthentication TX"),
3648             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3649                                 "Total successful Tx data bytes"),
3650             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3651             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3652             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3653             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3654             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3655             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3656             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3657                                 "times max tries in a hop failed"),
3658             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3659                                 "times disassociation failed"),
3660             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3661             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3662             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3663             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3664             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3665             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3666             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3667                                 "directed packets at 5.5MB"),
3668             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3669             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3670             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3671                                 "nondirected packets at 1MB"),
3672             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3673                                 "nondirected packets at 2MB"),
3674             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3675                                 "nondirected packets at 5.5MB"),
3676             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3677                                 "nondirected packets at 11MB"),
3678             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3679             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3680                                                                     "Rx CTS"),
3681             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3682             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3683             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3684             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3685             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3686             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3687             IPW2100_ORD(STAT_RX_REASSN_RESP,
3688                                 "Reassociation response Rx's"),
3689             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3690             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3691             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3692             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3693             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3694             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3695             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3696             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3697                                 "Total rx data bytes received"),
3698             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3699             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3700             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3701             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3702             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3703             IPW2100_ORD(STAT_RX_DUPLICATE1,
3704                                 "duplicate rx packets at 1MB"),
3705             IPW2100_ORD(STAT_RX_DUPLICATE2,
3706                                 "duplicate rx packets at 2MB"),
3707             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3708                                 "duplicate rx packets at 5.5MB"),
3709             IPW2100_ORD(STAT_RX_DUPLICATE11,
3710                                 "duplicate rx packets at 11MB"),
3711             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3712             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3713             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3714             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3715             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3716                                 "rx frames with invalid protocol"),
3717             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3718             IPW2100_ORD(STAT_RX_NO_BUFFER,
3719                                 "rx frames rejected due to no buffer"),
3720             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3721                                 "rx frames dropped due to missing fragment"),
3722             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3723                                 "rx frames dropped due to non-sequential fragment"),
3724             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3725                                 "rx frames dropped due to unmatched 1st frame"),
3726             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3727                                 "rx frames dropped due to uncompleted frame"),
3728             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3729                                 "ICV errors during decryption"),
3730             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3731             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3732             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3733                                 "poll response timeouts"),
3734             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3735                                 "timeouts waiting for last {broad,multi}cast pkt"),
3736             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3737             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3738             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3739             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3740             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3741                                 "current calculation of % missed beacons"),
3742             IPW2100_ORD(STAT_PERCENT_RETRIES,
3743                                 "current calculation of % missed tx retries"),
3744             IPW2100_ORD(ASSOCIATED_AP_PTR,
3745                                 "0 if not associated, else pointer to AP table entry"),
3746             IPW2100_ORD(AVAILABLE_AP_CNT,
3747                                 "AP's decsribed in the AP table"),
3748             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3749             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3750             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3751             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3752                                 "failures due to response fail"),
3753             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3754             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3755             IPW2100_ORD(STAT_ROAM_INHIBIT,
3756                                 "times roaming was inhibited due to activity"),
3757             IPW2100_ORD(RSSI_AT_ASSN,
3758                                 "RSSI of associated AP at time of association"),
3759             IPW2100_ORD(STAT_ASSN_CAUSE1,
3760                                 "reassociation: no probe response or TX on hop"),
3761             IPW2100_ORD(STAT_ASSN_CAUSE2,
3762                                 "reassociation: poor tx/rx quality"),
3763             IPW2100_ORD(STAT_ASSN_CAUSE3,
3764                                 "reassociation: tx/rx quality (excessive AP load"),
3765             IPW2100_ORD(STAT_ASSN_CAUSE4,
3766                                 "reassociation: AP RSSI level"),
3767             IPW2100_ORD(STAT_ASSN_CAUSE5,
3768                                 "reassociations due to load leveling"),
3769             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3770             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3771                                 "times authentication response failed"),
3772             IPW2100_ORD(STATION_TABLE_CNT,
3773                                 "entries in association table"),
3774             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3775             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3776             IPW2100_ORD(COUNTRY_CODE,
3777                                 "IEEE country code as recv'd from beacon"),
3778             IPW2100_ORD(COUNTRY_CHANNELS,
3779                                 "channels supported by country"),
3780             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3781             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3782             IPW2100_ORD(ANTENNA_DIVERSITY,
3783                                 "TRUE if antenna diversity is disabled"),
3784             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3785             IPW2100_ORD(OUR_FREQ,
3786                                 "current radio freq lower digits - channel ID"),
3787             IPW2100_ORD(RTC_TIME, "current RTC time"),
3788             IPW2100_ORD(PORT_TYPE, "operating mode"),
3789             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3790             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3791             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3792             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3793             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3794             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3795             IPW2100_ORD(CAPABILITIES,
3796                                 "Management frame capability field"),
3797             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3798             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3799             IPW2100_ORD(RTS_THRESHOLD,
3800                                 "Min packet length for RTS handshaking"),
3801             IPW2100_ORD(INT_MODE, "International mode"),
3802             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3803                                 "protocol frag threshold"),
3804             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3805                                 "EEPROM offset in SRAM"),
3806             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3807                                 "EEPROM size in SRAM"),
3808             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3809             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3810                                 "EEPROM IBSS 11b channel set"),
3811             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3812             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3813             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3814             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3815             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3816
3817 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3818                               char *buf)
3819 {
3820         int i;
3821         struct ipw2100_priv *priv = dev_get_drvdata(d);
3822         struct net_device *dev = priv->net_dev;
3823         char *out = buf;
3824         u32 val = 0;
3825
3826         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3827
3828         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3829                 read_register(dev, hw_data[i].addr, &val);
3830                 out += sprintf(out, "%30s [%08X] : %08X\n",
3831                                hw_data[i].name, hw_data[i].addr, val);
3832         }
3833
3834         return out - buf;
3835 }
3836
3837 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3838
3839 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3840                              char *buf)
3841 {
3842         struct ipw2100_priv *priv = dev_get_drvdata(d);
3843         struct net_device *dev = priv->net_dev;
3844         char *out = buf;
3845         int i;
3846
3847         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3848
3849         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3850                 u8 tmp8;
3851                 u16 tmp16;
3852                 u32 tmp32;
3853
3854                 switch (nic_data[i].size) {
3855                 case 1:
3856                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3857                         out += sprintf(out, "%30s [%08X] : %02X\n",
3858                                        nic_data[i].name, nic_data[i].addr,
3859                                        tmp8);
3860                         break;
3861                 case 2:
3862                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3863                         out += sprintf(out, "%30s [%08X] : %04X\n",
3864                                        nic_data[i].name, nic_data[i].addr,
3865                                        tmp16);
3866                         break;
3867                 case 4:
3868                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3869                         out += sprintf(out, "%30s [%08X] : %08X\n",
3870                                        nic_data[i].name, nic_data[i].addr,
3871                                        tmp32);
3872                         break;
3873                 }
3874         }
3875         return out - buf;
3876 }
3877
3878 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3879
3880 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3881                            char *buf)
3882 {
3883         struct ipw2100_priv *priv = dev_get_drvdata(d);
3884         struct net_device *dev = priv->net_dev;
3885         static unsigned long loop = 0;
3886         int len = 0;
3887         u32 buffer[4];
3888         int i;
3889         char line[81];
3890
3891         if (loop >= 0x30000)
3892                 loop = 0;
3893
3894         /* sysfs provides us PAGE_SIZE buffer */
3895         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3896
3897                 if (priv->snapshot[0])
3898                         for (i = 0; i < 4; i++)
3899                                 buffer[i] =
3900                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3901                 else
3902                         for (i = 0; i < 4; i++)
3903                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3904
3905                 if (priv->dump_raw)
3906                         len += sprintf(buf + len,
3907                                        "%c%c%c%c"
3908                                        "%c%c%c%c"
3909                                        "%c%c%c%c"
3910                                        "%c%c%c%c",
3911                                        ((u8 *) buffer)[0x0],
3912                                        ((u8 *) buffer)[0x1],
3913                                        ((u8 *) buffer)[0x2],
3914                                        ((u8 *) buffer)[0x3],
3915                                        ((u8 *) buffer)[0x4],
3916                                        ((u8 *) buffer)[0x5],
3917                                        ((u8 *) buffer)[0x6],
3918                                        ((u8 *) buffer)[0x7],
3919                                        ((u8 *) buffer)[0x8],
3920                                        ((u8 *) buffer)[0x9],
3921                                        ((u8 *) buffer)[0xa],
3922                                        ((u8 *) buffer)[0xb],
3923                                        ((u8 *) buffer)[0xc],
3924                                        ((u8 *) buffer)[0xd],
3925                                        ((u8 *) buffer)[0xe],
3926                                        ((u8 *) buffer)[0xf]);
3927                 else
3928                         len += sprintf(buf + len, "%s\n",
3929                                        snprint_line(line, sizeof(line),
3930                                                     (u8 *) buffer, 16, loop));
3931                 loop += 16;
3932         }
3933
3934         return len;
3935 }
3936
3937 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3938                             const char *buf, size_t count)
3939 {
3940         struct ipw2100_priv *priv = dev_get_drvdata(d);
3941         struct net_device *dev = priv->net_dev;
3942         const char *p = buf;
3943
3944         (void)dev;              /* kill unused-var warning for debug-only code */
3945
3946         if (count < 1)
3947                 return count;
3948
3949         if (p[0] == '1' ||
3950             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3951                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3952                                dev->name);
3953                 priv->dump_raw = 1;
3954
3955         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3956                                    tolower(p[1]) == 'f')) {
3957                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3958                                dev->name);
3959                 priv->dump_raw = 0;
3960
3961         } else if (tolower(p[0]) == 'r') {
3962                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3963                 ipw2100_snapshot_free(priv);
3964
3965         } else
3966                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3967                                "reset = clear memory snapshot\n", dev->name);
3968
3969         return count;
3970 }
3971
3972 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3973
3974 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3975                              char *buf)
3976 {
3977         struct ipw2100_priv *priv = dev_get_drvdata(d);
3978         u32 val = 0;
3979         int len = 0;
3980         u32 val_len;
3981         static int loop = 0;
3982
3983         if (priv->status & STATUS_RF_KILL_MASK)
3984                 return 0;
3985
3986         if (loop >= ARRAY_SIZE(ord_data))
3987                 loop = 0;
3988
3989         /* sysfs provides us PAGE_SIZE buffer */
3990         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3991                 val_len = sizeof(u32);
3992
3993                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3994                                         &val_len))
3995                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3996                                        ord_data[loop].index,
3997                                        ord_data[loop].desc);
3998                 else
3999                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4000                                        ord_data[loop].index, val,
4001                                        ord_data[loop].desc);
4002                 loop++;
4003         }
4004
4005         return len;
4006 }
4007
4008 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4009
4010 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4011                           char *buf)
4012 {
4013         struct ipw2100_priv *priv = dev_get_drvdata(d);
4014         char *out = buf;
4015
4016         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4017                        priv->interrupts, priv->tx_interrupts,
4018                        priv->rx_interrupts, priv->inta_other);
4019         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4020         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4021 #ifdef CONFIG_IPW2100_DEBUG
4022         out += sprintf(out, "packet mismatch image: %s\n",
4023                        priv->snapshot[0] ? "YES" : "NO");
4024 #endif
4025
4026         return out - buf;
4027 }
4028
4029 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4030
4031 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4032 {
4033         int err;
4034
4035         if (mode == priv->ieee->iw_mode)
4036                 return 0;
4037
4038         err = ipw2100_disable_adapter(priv);
4039         if (err) {
4040                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4041                        priv->net_dev->name, err);
4042                 return err;
4043         }
4044
4045         switch (mode) {
4046         case IW_MODE_INFRA:
4047                 priv->net_dev->type = ARPHRD_ETHER;
4048                 break;
4049         case IW_MODE_ADHOC:
4050                 priv->net_dev->type = ARPHRD_ETHER;
4051                 break;
4052 #ifdef CONFIG_IPW2100_MONITOR
4053         case IW_MODE_MONITOR:
4054                 priv->last_mode = priv->ieee->iw_mode;
4055                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4056                 break;
4057 #endif                          /* CONFIG_IPW2100_MONITOR */
4058         }
4059
4060         priv->ieee->iw_mode = mode;
4061
4062 #ifdef CONFIG_PM
4063         /* Indicate ipw2100_download_firmware download firmware
4064          * from disk instead of memory. */
4065         ipw2100_firmware.version = 0;
4066 #endif
4067
4068         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4069         priv->reset_backoff = 0;
4070         schedule_reset(priv);
4071
4072         return 0;
4073 }
4074
4075 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4076                               char *buf)
4077 {
4078         struct ipw2100_priv *priv = dev_get_drvdata(d);
4079         int len = 0;
4080
4081 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4082
4083         if (priv->status & STATUS_ASSOCIATED)
4084                 len += sprintf(buf + len, "connected: %lu\n",
4085                                get_seconds() - priv->connect_start);
4086         else
4087                 len += sprintf(buf + len, "not connected\n");
4088
4089         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4090         DUMP_VAR(status, "08lx");
4091         DUMP_VAR(config, "08lx");
4092         DUMP_VAR(capability, "08lx");
4093
4094         len +=
4095             sprintf(buf + len, "last_rtc: %lu\n",
4096                     (unsigned long)priv->last_rtc);
4097
4098         DUMP_VAR(fatal_error, "d");
4099         DUMP_VAR(stop_hang_check, "d");
4100         DUMP_VAR(stop_rf_kill, "d");
4101         DUMP_VAR(messages_sent, "d");
4102
4103         DUMP_VAR(tx_pend_stat.value, "d");
4104         DUMP_VAR(tx_pend_stat.hi, "d");
4105
4106         DUMP_VAR(tx_free_stat.value, "d");
4107         DUMP_VAR(tx_free_stat.lo, "d");
4108
4109         DUMP_VAR(msg_free_stat.value, "d");
4110         DUMP_VAR(msg_free_stat.lo, "d");
4111
4112         DUMP_VAR(msg_pend_stat.value, "d");
4113         DUMP_VAR(msg_pend_stat.hi, "d");
4114
4115         DUMP_VAR(fw_pend_stat.value, "d");
4116         DUMP_VAR(fw_pend_stat.hi, "d");
4117
4118         DUMP_VAR(txq_stat.value, "d");
4119         DUMP_VAR(txq_stat.lo, "d");
4120
4121         DUMP_VAR(ieee->scans, "d");
4122         DUMP_VAR(reset_backoff, "d");
4123
4124         return len;
4125 }
4126
4127 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4128
4129 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4130                             char *buf)
4131 {
4132         struct ipw2100_priv *priv = dev_get_drvdata(d);
4133         char essid[IW_ESSID_MAX_SIZE + 1];
4134         u8 bssid[ETH_ALEN];
4135         u32 chan = 0;
4136         char *out = buf;
4137         unsigned int length;
4138         int ret;
4139
4140         if (priv->status & STATUS_RF_KILL_MASK)
4141                 return 0;
4142
4143         memset(essid, 0, sizeof(essid));
4144         memset(bssid, 0, sizeof(bssid));
4145
4146         length = IW_ESSID_MAX_SIZE;
4147         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4148         if (ret)
4149                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4150                                __LINE__);
4151
4152         length = sizeof(bssid);
4153         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4154                                   bssid, &length);
4155         if (ret)
4156                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4157                                __LINE__);
4158
4159         length = sizeof(u32);
4160         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4161         if (ret)
4162                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4163                                __LINE__);
4164
4165         out += sprintf(out, "ESSID: %s\n", essid);
4166         out += sprintf(out, "BSSID:   %pM\n", bssid);
4167         out += sprintf(out, "Channel: %d\n", chan);
4168
4169         return out - buf;
4170 }
4171
4172 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4173
4174 #ifdef CONFIG_IPW2100_DEBUG
4175 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4176 {
4177         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4178 }
4179
4180 static ssize_t store_debug_level(struct device_driver *d,
4181                                  const char *buf, size_t count)
4182 {
4183         char *p = (char *)buf;
4184         u32 val;
4185
4186         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4187                 p++;
4188                 if (p[0] == 'x' || p[0] == 'X')
4189                         p++;
4190                 val = simple_strtoul(p, &p, 16);
4191         } else
4192                 val = simple_strtoul(p, &p, 10);
4193         if (p == buf)
4194                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4195         else
4196                 ipw2100_debug_level = val;
4197
4198         return strnlen(buf, count);
4199 }
4200
4201 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4202                    store_debug_level);
4203 #endif                          /* CONFIG_IPW2100_DEBUG */
4204
4205 static ssize_t show_fatal_error(struct device *d,
4206                                 struct device_attribute *attr, char *buf)
4207 {
4208         struct ipw2100_priv *priv = dev_get_drvdata(d);
4209         char *out = buf;
4210         int i;
4211
4212         if (priv->fatal_error)
4213                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4214         else
4215                 out += sprintf(out, "0\n");
4216
4217         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4218                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4219                                         IPW2100_ERROR_QUEUE])
4220                         continue;
4221
4222                 out += sprintf(out, "%d. 0x%08X\n", i,
4223                                priv->fatal_errors[(priv->fatal_index - i) %
4224                                                   IPW2100_ERROR_QUEUE]);
4225         }
4226
4227         return out - buf;
4228 }
4229
4230 static ssize_t store_fatal_error(struct device *d,
4231                                  struct device_attribute *attr, const char *buf,
4232                                  size_t count)
4233 {
4234         struct ipw2100_priv *priv = dev_get_drvdata(d);
4235         schedule_reset(priv);
4236         return count;
4237 }
4238
4239 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4240                    store_fatal_error);
4241
4242 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4243                              char *buf)
4244 {
4245         struct ipw2100_priv *priv = dev_get_drvdata(d);
4246         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4247 }
4248
4249 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4250                               const char *buf, size_t count)
4251 {
4252         struct ipw2100_priv *priv = dev_get_drvdata(d);
4253         struct net_device *dev = priv->net_dev;
4254         char buffer[] = "00000000";
4255         unsigned long len =
4256             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4257         unsigned long val;
4258         char *p = buffer;
4259
4260         (void)dev;              /* kill unused-var warning for debug-only code */
4261
4262         IPW_DEBUG_INFO("enter\n");
4263
4264         strncpy(buffer, buf, len);
4265         buffer[len] = 0;
4266
4267         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4268                 p++;
4269                 if (p[0] == 'x' || p[0] == 'X')
4270                         p++;
4271                 val = simple_strtoul(p, &p, 16);
4272         } else
4273                 val = simple_strtoul(p, &p, 10);
4274         if (p == buffer) {
4275                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4276         } else {
4277                 priv->ieee->scan_age = val;
4278                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4279         }
4280
4281         IPW_DEBUG_INFO("exit\n");
4282         return len;
4283 }
4284
4285 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4286
4287 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4288                             char *buf)
4289 {
4290         /* 0 - RF kill not enabled
4291            1 - SW based RF kill active (sysfs)
4292            2 - HW based RF kill active
4293            3 - Both HW and SW baed RF kill active */
4294         struct ipw2100_priv *priv = dev_get_drvdata(d);
4295         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4296             (rf_kill_active(priv) ? 0x2 : 0x0);
4297         return sprintf(buf, "%i\n", val);
4298 }
4299
4300 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4301 {
4302         if ((disable_radio ? 1 : 0) ==
4303             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4304                 return 0;
4305
4306         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4307                           disable_radio ? "OFF" : "ON");
4308
4309         mutex_lock(&priv->action_mutex);
4310
4311         if (disable_radio) {
4312                 priv->status |= STATUS_RF_KILL_SW;
4313                 ipw2100_down(priv);
4314         } else {
4315                 priv->status &= ~STATUS_RF_KILL_SW;
4316                 if (rf_kill_active(priv)) {
4317                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4318                                           "disabled by HW switch\n");
4319                         /* Make sure the RF_KILL check timer is running */
4320                         priv->stop_rf_kill = 0;
4321                         mod_delayed_work(system_wq, &priv->rf_kill,
4322                                          round_jiffies_relative(HZ));
4323                 } else
4324                         schedule_reset(priv);
4325         }
4326
4327         mutex_unlock(&priv->action_mutex);
4328         return 1;
4329 }
4330
4331 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4332                              const char *buf, size_t count)
4333 {
4334         struct ipw2100_priv *priv = dev_get_drvdata(d);
4335         ipw_radio_kill_sw(priv, buf[0] == '1');
4336         return count;
4337 }
4338
4339 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4340
4341 static struct attribute *ipw2100_sysfs_entries[] = {
4342         &dev_attr_hardware.attr,
4343         &dev_attr_registers.attr,
4344         &dev_attr_ordinals.attr,
4345         &dev_attr_pci.attr,
4346         &dev_attr_stats.attr,
4347         &dev_attr_internals.attr,
4348         &dev_attr_bssinfo.attr,
4349         &dev_attr_memory.attr,
4350         &dev_attr_scan_age.attr,
4351         &dev_attr_fatal_error.attr,
4352         &dev_attr_rf_kill.attr,
4353         &dev_attr_cfg.attr,
4354         &dev_attr_status.attr,
4355         &dev_attr_capability.attr,
4356         NULL,
4357 };
4358
4359 static struct attribute_group ipw2100_attribute_group = {
4360         .attrs = ipw2100_sysfs_entries,
4361 };
4362
4363 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4364 {
4365         struct ipw2100_status_queue *q = &priv->status_queue;
4366
4367         IPW_DEBUG_INFO("enter\n");
4368
4369         q->size = entries * sizeof(struct ipw2100_status);
4370         q->drv =
4371             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4372                                                           q->size, &q->nic);
4373         if (!q->drv) {
4374                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4375                 return -ENOMEM;
4376         }
4377
4378         memset(q->drv, 0, q->size);
4379
4380         IPW_DEBUG_INFO("exit\n");
4381
4382         return 0;
4383 }
4384
4385 static void status_queue_free(struct ipw2100_priv *priv)
4386 {
4387         IPW_DEBUG_INFO("enter\n");
4388
4389         if (priv->status_queue.drv) {
4390                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4391                                     priv->status_queue.drv,
4392                                     priv->status_queue.nic);
4393                 priv->status_queue.drv = NULL;
4394         }
4395
4396         IPW_DEBUG_INFO("exit\n");
4397 }
4398
4399 static int bd_queue_allocate(struct ipw2100_priv *priv,
4400                              struct ipw2100_bd_queue *q, int entries)
4401 {
4402         IPW_DEBUG_INFO("enter\n");
4403
4404         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4405
4406         q->entries = entries;
4407         q->size = entries * sizeof(struct ipw2100_bd);
4408         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4409         if (!q->drv) {
4410                 IPW_DEBUG_INFO
4411                     ("can't allocate shared memory for buffer descriptors\n");
4412                 return -ENOMEM;
4413         }
4414         memset(q->drv, 0, q->size);
4415
4416         IPW_DEBUG_INFO("exit\n");
4417
4418         return 0;
4419 }
4420
4421 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4422 {
4423         IPW_DEBUG_INFO("enter\n");
4424
4425         if (!q)
4426                 return;
4427
4428         if (q->drv) {
4429                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4430                 q->drv = NULL;
4431         }
4432
4433         IPW_DEBUG_INFO("exit\n");
4434 }
4435
4436 static void bd_queue_initialize(struct ipw2100_priv *priv,
4437                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4438                                 u32 r, u32 w)
4439 {
4440         IPW_DEBUG_INFO("enter\n");
4441
4442         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4443                        (u32) q->nic);
4444
4445         write_register(priv->net_dev, base, q->nic);
4446         write_register(priv->net_dev, size, q->entries);
4447         write_register(priv->net_dev, r, q->oldest);
4448         write_register(priv->net_dev, w, q->next);
4449
4450         IPW_DEBUG_INFO("exit\n");
4451 }
4452
4453 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4454 {
4455         priv->stop_rf_kill = 1;
4456         priv->stop_hang_check = 1;
4457         cancel_delayed_work_sync(&priv->reset_work);
4458         cancel_delayed_work_sync(&priv->security_work);
4459         cancel_delayed_work_sync(&priv->wx_event_work);
4460         cancel_delayed_work_sync(&priv->hang_check);
4461         cancel_delayed_work_sync(&priv->rf_kill);
4462         cancel_work_sync(&priv->scan_event_now);
4463         cancel_delayed_work_sync(&priv->scan_event_later);
4464 }
4465
4466 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4467 {
4468         int i, j, err = -EINVAL;
4469         void *v;
4470         dma_addr_t p;
4471
4472         IPW_DEBUG_INFO("enter\n");
4473
4474         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4475         if (err) {
4476                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4477                                 priv->net_dev->name);
4478                 return err;
4479         }
4480
4481         priv->tx_buffers =
4482             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4483                     GFP_ATOMIC);
4484         if (!priv->tx_buffers) {
4485                 printk(KERN_ERR DRV_NAME
4486                        ": %s: alloc failed form tx buffers.\n",
4487                        priv->net_dev->name);
4488                 bd_queue_free(priv, &priv->tx_queue);
4489                 return -ENOMEM;
4490         }
4491
4492         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4493                 v = pci_alloc_consistent(priv->pci_dev,
4494                                          sizeof(struct ipw2100_data_header),
4495                                          &p);
4496                 if (!v) {
4497                         printk(KERN_ERR DRV_NAME
4498                                ": %s: PCI alloc failed for tx " "buffers.\n",
4499                                priv->net_dev->name);
4500                         err = -ENOMEM;
4501                         break;
4502                 }
4503
4504                 priv->tx_buffers[i].type = DATA;
4505                 priv->tx_buffers[i].info.d_struct.data =
4506                     (struct ipw2100_data_header *)v;
4507                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4508                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4509         }
4510
4511         if (i == TX_PENDED_QUEUE_LENGTH)
4512                 return 0;
4513
4514         for (j = 0; j < i; j++) {
4515                 pci_free_consistent(priv->pci_dev,
4516                                     sizeof(struct ipw2100_data_header),
4517                                     priv->tx_buffers[j].info.d_struct.data,
4518                                     priv->tx_buffers[j].info.d_struct.
4519                                     data_phys);
4520         }
4521
4522         kfree(priv->tx_buffers);
4523         priv->tx_buffers = NULL;
4524
4525         return err;
4526 }
4527
4528 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4529 {
4530         int i;
4531
4532         IPW_DEBUG_INFO("enter\n");
4533
4534         /*
4535          * reinitialize packet info lists
4536          */
4537         INIT_LIST_HEAD(&priv->fw_pend_list);
4538         INIT_STAT(&priv->fw_pend_stat);
4539
4540         /*
4541          * reinitialize lists
4542          */
4543         INIT_LIST_HEAD(&priv->tx_pend_list);
4544         INIT_LIST_HEAD(&priv->tx_free_list);
4545         INIT_STAT(&priv->tx_pend_stat);
4546         INIT_STAT(&priv->tx_free_stat);
4547
4548         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4549                 /* We simply drop any SKBs that have been queued for
4550                  * transmit */
4551                 if (priv->tx_buffers[i].info.d_struct.txb) {
4552                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4553                                            txb);
4554                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4555                 }
4556
4557                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4558         }
4559
4560         SET_STAT(&priv->tx_free_stat, i);
4561
4562         priv->tx_queue.oldest = 0;
4563         priv->tx_queue.available = priv->tx_queue.entries;
4564         priv->tx_queue.next = 0;
4565         INIT_STAT(&priv->txq_stat);
4566         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4567
4568         bd_queue_initialize(priv, &priv->tx_queue,
4569                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4570                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4571                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4572                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4573
4574         IPW_DEBUG_INFO("exit\n");
4575
4576 }
4577
4578 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4579 {
4580         int i;
4581
4582         IPW_DEBUG_INFO("enter\n");
4583
4584         bd_queue_free(priv, &priv->tx_queue);
4585
4586         if (!priv->tx_buffers)
4587                 return;
4588
4589         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4590                 if (priv->tx_buffers[i].info.d_struct.txb) {
4591                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4592                                            txb);
4593                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4594                 }
4595                 if (priv->tx_buffers[i].info.d_struct.data)
4596                         pci_free_consistent(priv->pci_dev,
4597                                             sizeof(struct ipw2100_data_header),
4598                                             priv->tx_buffers[i].info.d_struct.
4599                                             data,
4600                                             priv->tx_buffers[i].info.d_struct.
4601                                             data_phys);
4602         }
4603
4604         kfree(priv->tx_buffers);
4605         priv->tx_buffers = NULL;
4606
4607         IPW_DEBUG_INFO("exit\n");
4608 }
4609
4610 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4611 {
4612         int i, j, err = -EINVAL;
4613
4614         IPW_DEBUG_INFO("enter\n");
4615
4616         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4617         if (err) {
4618                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4619                 return err;
4620         }
4621
4622         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4623         if (err) {
4624                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4625                 bd_queue_free(priv, &priv->rx_queue);
4626                 return err;
4627         }
4628
4629         /*
4630          * allocate packets
4631          */
4632         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4633                                    sizeof(struct ipw2100_rx_packet),
4634                                    GFP_KERNEL);
4635         if (!priv->rx_buffers) {
4636                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4637
4638                 bd_queue_free(priv, &priv->rx_queue);
4639
4640                 status_queue_free(priv);
4641
4642                 return -ENOMEM;
4643         }
4644
4645         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4646                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4647
4648                 err = ipw2100_alloc_skb(priv, packet);
4649                 if (unlikely(err)) {
4650                         err = -ENOMEM;
4651                         break;
4652                 }
4653
4654                 /* The BD holds the cache aligned address */
4655                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4656                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4657                 priv->status_queue.drv[i].status_fields = 0;
4658         }
4659
4660         if (i == RX_QUEUE_LENGTH)
4661                 return 0;
4662
4663         for (j = 0; j < i; j++) {
4664                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4665                                  sizeof(struct ipw2100_rx_packet),
4666                                  PCI_DMA_FROMDEVICE);
4667                 dev_kfree_skb(priv->rx_buffers[j].skb);
4668         }
4669
4670         kfree(priv->rx_buffers);
4671         priv->rx_buffers = NULL;
4672
4673         bd_queue_free(priv, &priv->rx_queue);
4674
4675         status_queue_free(priv);
4676
4677         return err;
4678 }
4679
4680 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4681 {
4682         IPW_DEBUG_INFO("enter\n");
4683
4684         priv->rx_queue.oldest = 0;
4685         priv->rx_queue.available = priv->rx_queue.entries - 1;
4686         priv->rx_queue.next = priv->rx_queue.entries - 1;
4687
4688         INIT_STAT(&priv->rxq_stat);
4689         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4690
4691         bd_queue_initialize(priv, &priv->rx_queue,
4692                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4693                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4694                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4695                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4696
4697         /* set up the status queue */
4698         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4699                        priv->status_queue.nic);
4700
4701         IPW_DEBUG_INFO("exit\n");
4702 }
4703
4704 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4705 {
4706         int i;
4707
4708         IPW_DEBUG_INFO("enter\n");
4709
4710         bd_queue_free(priv, &priv->rx_queue);
4711         status_queue_free(priv);
4712
4713         if (!priv->rx_buffers)
4714                 return;
4715
4716         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4717                 if (priv->rx_buffers[i].rxp) {
4718                         pci_unmap_single(priv->pci_dev,
4719                                          priv->rx_buffers[i].dma_addr,
4720                                          sizeof(struct ipw2100_rx),
4721                                          PCI_DMA_FROMDEVICE);
4722                         dev_kfree_skb(priv->rx_buffers[i].skb);
4723                 }
4724         }
4725
4726         kfree(priv->rx_buffers);
4727         priv->rx_buffers = NULL;
4728
4729         IPW_DEBUG_INFO("exit\n");
4730 }
4731
4732 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4733 {
4734         u32 length = ETH_ALEN;
4735         u8 addr[ETH_ALEN];
4736
4737         int err;
4738
4739         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4740         if (err) {
4741                 IPW_DEBUG_INFO("MAC address read failed\n");
4742                 return -EIO;
4743         }
4744
4745         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4746         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4747
4748         return 0;
4749 }
4750
4751 /********************************************************************
4752  *
4753  * Firmware Commands
4754  *
4755  ********************************************************************/
4756
4757 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4758 {
4759         struct host_command cmd = {
4760                 .host_command = ADAPTER_ADDRESS,
4761                 .host_command_sequence = 0,
4762                 .host_command_length = ETH_ALEN
4763         };
4764         int err;
4765
4766         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4767
4768         IPW_DEBUG_INFO("enter\n");
4769
4770         if (priv->config & CFG_CUSTOM_MAC) {
4771                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4772                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4773         } else
4774                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4775                        ETH_ALEN);
4776
4777         err = ipw2100_hw_send_command(priv, &cmd);
4778
4779         IPW_DEBUG_INFO("exit\n");
4780         return err;
4781 }
4782
4783 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4784                                  int batch_mode)
4785 {
4786         struct host_command cmd = {
4787                 .host_command = PORT_TYPE,
4788                 .host_command_sequence = 0,
4789                 .host_command_length = sizeof(u32)
4790         };
4791         int err;
4792
4793         switch (port_type) {
4794         case IW_MODE_INFRA:
4795                 cmd.host_command_parameters[0] = IPW_BSS;
4796                 break;
4797         case IW_MODE_ADHOC:
4798                 cmd.host_command_parameters[0] = IPW_IBSS;
4799                 break;
4800         }
4801
4802         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4803                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4804
4805         if (!batch_mode) {
4806                 err = ipw2100_disable_adapter(priv);
4807                 if (err) {
4808                         printk(KERN_ERR DRV_NAME
4809                                ": %s: Could not disable adapter %d\n",
4810                                priv->net_dev->name, err);
4811                         return err;
4812                 }
4813         }
4814
4815         /* send cmd to firmware */
4816         err = ipw2100_hw_send_command(priv, &cmd);
4817
4818         if (!batch_mode)
4819                 ipw2100_enable_adapter(priv);
4820
4821         return err;
4822 }
4823
4824 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4825                                int batch_mode)
4826 {
4827         struct host_command cmd = {
4828                 .host_command = CHANNEL,
4829                 .host_command_sequence = 0,
4830                 .host_command_length = sizeof(u32)
4831         };
4832         int err;
4833
4834         cmd.host_command_parameters[0] = channel;
4835
4836         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4837
4838         /* If BSS then we don't support channel selection */
4839         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4840                 return 0;
4841
4842         if ((channel != 0) &&
4843             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4844                 return -EINVAL;
4845
4846         if (!batch_mode) {
4847                 err = ipw2100_disable_adapter(priv);
4848                 if (err)
4849                         return err;
4850         }
4851
4852         err = ipw2100_hw_send_command(priv, &cmd);
4853         if (err) {
4854                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4855                 return err;
4856         }
4857
4858         if (channel)
4859                 priv->config |= CFG_STATIC_CHANNEL;
4860         else
4861                 priv->config &= ~CFG_STATIC_CHANNEL;
4862
4863         priv->channel = channel;
4864
4865         if (!batch_mode) {
4866                 err = ipw2100_enable_adapter(priv);
4867                 if (err)
4868                         return err;
4869         }
4870
4871         return 0;
4872 }
4873
4874 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4875 {
4876         struct host_command cmd = {
4877                 .host_command = SYSTEM_CONFIG,
4878                 .host_command_sequence = 0,
4879                 .host_command_length = 12,
4880         };
4881         u32 ibss_mask, len = sizeof(u32);
4882         int err;
4883
4884         /* Set system configuration */
4885
4886         if (!batch_mode) {
4887                 err = ipw2100_disable_adapter(priv);
4888                 if (err)
4889                         return err;
4890         }
4891
4892         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4893                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4894
4895         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4896             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4897
4898         if (!(priv->config & CFG_LONG_PREAMBLE))
4899                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4900
4901         err = ipw2100_get_ordinal(priv,
4902                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4903                                   &ibss_mask, &len);
4904         if (err)
4905                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4906
4907         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4908         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4909
4910         /* 11b only */
4911         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4912
4913         err = ipw2100_hw_send_command(priv, &cmd);
4914         if (err)
4915                 return err;
4916
4917 /* If IPv6 is configured in the kernel then we don't want to filter out all
4918  * of the multicast packets as IPv6 needs some. */
4919 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4920         cmd.host_command = ADD_MULTICAST;
4921         cmd.host_command_sequence = 0;
4922         cmd.host_command_length = 0;
4923
4924         ipw2100_hw_send_command(priv, &cmd);
4925 #endif
4926         if (!batch_mode) {
4927                 err = ipw2100_enable_adapter(priv);
4928                 if (err)
4929                         return err;
4930         }
4931
4932         return 0;
4933 }
4934
4935 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4936                                 int batch_mode)
4937 {
4938         struct host_command cmd = {
4939                 .host_command = BASIC_TX_RATES,
4940                 .host_command_sequence = 0,
4941                 .host_command_length = 4
4942         };
4943         int err;
4944
4945         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4946
4947         if (!batch_mode) {
4948                 err = ipw2100_disable_adapter(priv);
4949                 if (err)
4950                         return err;
4951         }
4952
4953         /* Set BASIC TX Rate first */
4954         ipw2100_hw_send_command(priv, &cmd);
4955
4956         /* Set TX Rate */
4957         cmd.host_command = TX_RATES;
4958         ipw2100_hw_send_command(priv, &cmd);
4959
4960         /* Set MSDU TX Rate */
4961         cmd.host_command = MSDU_TX_RATES;
4962         ipw2100_hw_send_command(priv, &cmd);
4963
4964         if (!batch_mode) {
4965                 err = ipw2100_enable_adapter(priv);
4966                 if (err)
4967                         return err;
4968         }
4969
4970         priv->tx_rates = rate;
4971
4972         return 0;
4973 }
4974
4975 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4976 {
4977         struct host_command cmd = {
4978                 .host_command = POWER_MODE,
4979                 .host_command_sequence = 0,
4980                 .host_command_length = 4
4981         };
4982         int err;
4983
4984         cmd.host_command_parameters[0] = power_level;
4985
4986         err = ipw2100_hw_send_command(priv, &cmd);
4987         if (err)
4988                 return err;
4989
4990         if (power_level == IPW_POWER_MODE_CAM)
4991                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4992         else
4993                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4994
4995 #ifdef IPW2100_TX_POWER
4996         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4997                 /* Set beacon interval */
4998                 cmd.host_command = TX_POWER_INDEX;
4999                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5000
5001                 err = ipw2100_hw_send_command(priv, &cmd);
5002                 if (err)
5003                         return err;
5004         }
5005 #endif
5006
5007         return 0;
5008 }
5009
5010 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5011 {
5012         struct host_command cmd = {
5013                 .host_command = RTS_THRESHOLD,
5014                 .host_command_sequence = 0,
5015                 .host_command_length = 4
5016         };
5017         int err;
5018
5019         if (threshold & RTS_DISABLED)
5020                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5021         else
5022                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5023
5024         err = ipw2100_hw_send_command(priv, &cmd);
5025         if (err)
5026                 return err;
5027
5028         priv->rts_threshold = threshold;
5029
5030         return 0;
5031 }
5032
5033 #if 0
5034 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5035                                         u32 threshold, int batch_mode)
5036 {
5037         struct host_command cmd = {
5038                 .host_command = FRAG_THRESHOLD,
5039                 .host_command_sequence = 0,
5040                 .host_command_length = 4,
5041                 .host_command_parameters[0] = 0,
5042         };
5043         int err;
5044
5045         if (!batch_mode) {
5046                 err = ipw2100_disable_adapter(priv);
5047                 if (err)
5048                         return err;
5049         }
5050
5051         if (threshold == 0)
5052                 threshold = DEFAULT_FRAG_THRESHOLD;
5053         else {
5054                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5055                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5056         }
5057
5058         cmd.host_command_parameters[0] = threshold;
5059
5060         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5061
5062         err = ipw2100_hw_send_command(priv, &cmd);
5063
5064         if (!batch_mode)
5065                 ipw2100_enable_adapter(priv);
5066
5067         if (!err)
5068                 priv->frag_threshold = threshold;
5069
5070         return err;
5071 }
5072 #endif
5073
5074 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5075 {
5076         struct host_command cmd = {
5077                 .host_command = SHORT_RETRY_LIMIT,
5078                 .host_command_sequence = 0,
5079                 .host_command_length = 4
5080         };
5081         int err;
5082
5083         cmd.host_command_parameters[0] = retry;
5084
5085         err = ipw2100_hw_send_command(priv, &cmd);
5086         if (err)
5087                 return err;
5088
5089         priv->short_retry_limit = retry;
5090
5091         return 0;
5092 }
5093
5094 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5095 {
5096         struct host_command cmd = {
5097                 .host_command = LONG_RETRY_LIMIT,
5098                 .host_command_sequence = 0,
5099                 .host_command_length = 4
5100         };
5101         int err;
5102
5103         cmd.host_command_parameters[0] = retry;
5104
5105         err = ipw2100_hw_send_command(priv, &cmd);
5106         if (err)
5107                 return err;
5108
5109         priv->long_retry_limit = retry;
5110
5111         return 0;
5112 }
5113
5114 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5115                                        int batch_mode)
5116 {
5117         struct host_command cmd = {
5118                 .host_command = MANDATORY_BSSID,
5119                 .host_command_sequence = 0,
5120                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5121         };
5122         int err;
5123
5124 #ifdef CONFIG_IPW2100_DEBUG
5125         if (bssid != NULL)
5126                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5127         else
5128                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5129 #endif
5130         /* if BSSID is empty then we disable mandatory bssid mode */
5131         if (bssid != NULL)
5132                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5133
5134         if (!batch_mode) {
5135                 err = ipw2100_disable_adapter(priv);
5136                 if (err)
5137                         return err;
5138         }
5139
5140         err = ipw2100_hw_send_command(priv, &cmd);
5141
5142         if (!batch_mode)
5143                 ipw2100_enable_adapter(priv);
5144
5145         return err;
5146 }
5147
5148 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5149 {
5150         struct host_command cmd = {
5151                 .host_command = DISASSOCIATION_BSSID,
5152                 .host_command_sequence = 0,
5153                 .host_command_length = ETH_ALEN
5154         };
5155         int err;
5156         int len;
5157
5158         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5159
5160         len = ETH_ALEN;
5161         /* The Firmware currently ignores the BSSID and just disassociates from
5162          * the currently associated AP -- but in the off chance that a future
5163          * firmware does use the BSSID provided here, we go ahead and try and
5164          * set it to the currently associated AP's BSSID */
5165         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5166
5167         err = ipw2100_hw_send_command(priv, &cmd);
5168
5169         return err;
5170 }
5171
5172 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5173                               struct ipw2100_wpa_assoc_frame *, int)
5174     __attribute__ ((unused));
5175
5176 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5177                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5178                               int batch_mode)
5179 {
5180         struct host_command cmd = {
5181                 .host_command = SET_WPA_IE,
5182                 .host_command_sequence = 0,
5183                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5184         };
5185         int err;
5186
5187         IPW_DEBUG_HC("SET_WPA_IE\n");
5188
5189         if (!batch_mode) {
5190                 err = ipw2100_disable_adapter(priv);
5191                 if (err)
5192                         return err;
5193         }
5194
5195         memcpy(cmd.host_command_parameters, wpa_frame,
5196                sizeof(struct ipw2100_wpa_assoc_frame));
5197
5198         err = ipw2100_hw_send_command(priv, &cmd);
5199
5200         if (!batch_mode) {
5201                 if (ipw2100_enable_adapter(priv))
5202                         err = -EIO;
5203         }
5204
5205         return err;
5206 }
5207
5208 struct security_info_params {
5209         u32 allowed_ciphers;
5210         u16 version;
5211         u8 auth_mode;
5212         u8 replay_counters_number;
5213         u8 unicast_using_group;
5214 } __packed;
5215
5216 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5217                                             int auth_mode,
5218                                             int security_level,
5219                                             int unicast_using_group,
5220                                             int batch_mode)
5221 {
5222         struct host_command cmd = {
5223                 .host_command = SET_SECURITY_INFORMATION,
5224                 .host_command_sequence = 0,
5225                 .host_command_length = sizeof(struct security_info_params)
5226         };
5227         struct security_info_params *security =
5228             (struct security_info_params *)&cmd.host_command_parameters;
5229         int err;
5230         memset(security, 0, sizeof(*security));
5231
5232         /* If shared key AP authentication is turned on, then we need to
5233          * configure the firmware to try and use it.
5234          *
5235          * Actual data encryption/decryption is handled by the host. */
5236         security->auth_mode = auth_mode;
5237         security->unicast_using_group = unicast_using_group;
5238
5239         switch (security_level) {
5240         default:
5241         case SEC_LEVEL_0:
5242                 security->allowed_ciphers = IPW_NONE_CIPHER;
5243                 break;
5244         case SEC_LEVEL_1:
5245                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5246                     IPW_WEP104_CIPHER;
5247                 break;
5248         case SEC_LEVEL_2:
5249                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5250                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5251                 break;
5252         case SEC_LEVEL_2_CKIP:
5253                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5254                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5255                 break;
5256         case SEC_LEVEL_3:
5257                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5258                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5259                 break;
5260         }
5261
5262         IPW_DEBUG_HC
5263             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5264              security->auth_mode, security->allowed_ciphers, security_level);
5265
5266         security->replay_counters_number = 0;
5267
5268         if (!batch_mode) {
5269                 err = ipw2100_disable_adapter(priv);
5270                 if (err)
5271                         return err;
5272         }
5273
5274         err = ipw2100_hw_send_command(priv, &cmd);
5275
5276         if (!batch_mode)
5277                 ipw2100_enable_adapter(priv);
5278
5279         return err;
5280 }
5281
5282 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5283 {
5284         struct host_command cmd = {
5285                 .host_command = TX_POWER_INDEX,
5286                 .host_command_sequence = 0,
5287                 .host_command_length = 4
5288         };
5289         int err = 0;
5290         u32 tmp = tx_power;
5291
5292         if (tx_power != IPW_TX_POWER_DEFAULT)
5293                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5294                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5295
5296         cmd.host_command_parameters[0] = tmp;
5297
5298         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5299                 err = ipw2100_hw_send_command(priv, &cmd);
5300         if (!err)
5301                 priv->tx_power = tx_power;
5302
5303         return 0;
5304 }
5305
5306 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5307                                             u32 interval, int batch_mode)
5308 {
5309         struct host_command cmd = {
5310                 .host_command = BEACON_INTERVAL,
5311                 .host_command_sequence = 0,
5312                 .host_command_length = 4
5313         };
5314         int err;
5315
5316         cmd.host_command_parameters[0] = interval;
5317
5318         IPW_DEBUG_INFO("enter\n");
5319
5320         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5321                 if (!batch_mode) {
5322                         err = ipw2100_disable_adapter(priv);
5323                         if (err)
5324                                 return err;
5325                 }
5326
5327                 ipw2100_hw_send_command(priv, &cmd);
5328
5329                 if (!batch_mode) {
5330                         err = ipw2100_enable_adapter(priv);
5331                         if (err)
5332                                 return err;
5333                 }
5334         }
5335
5336         IPW_DEBUG_INFO("exit\n");
5337
5338         return 0;
5339 }
5340
5341 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5342 {
5343         ipw2100_tx_initialize(priv);
5344         ipw2100_rx_initialize(priv);
5345         ipw2100_msg_initialize(priv);
5346 }
5347
5348 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5349 {
5350         ipw2100_tx_free(priv);
5351         ipw2100_rx_free(priv);
5352         ipw2100_msg_free(priv);
5353 }
5354
5355 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5356 {
5357         if (ipw2100_tx_allocate(priv) ||
5358             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5359                 goto fail;
5360
5361         return 0;
5362
5363       fail:
5364         ipw2100_tx_free(priv);
5365         ipw2100_rx_free(priv);
5366         ipw2100_msg_free(priv);
5367         return -ENOMEM;
5368 }
5369
5370 #define IPW_PRIVACY_CAPABLE 0x0008
5371
5372 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5373                                  int batch_mode)
5374 {
5375         struct host_command cmd = {
5376                 .host_command = WEP_FLAGS,
5377                 .host_command_sequence = 0,
5378                 .host_command_length = 4
5379         };
5380         int err;
5381
5382         cmd.host_command_parameters[0] = flags;
5383
5384         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5385
5386         if (!batch_mode) {
5387                 err = ipw2100_disable_adapter(priv);
5388                 if (err) {
5389                         printk(KERN_ERR DRV_NAME
5390                                ": %s: Could not disable adapter %d\n",
5391                                priv->net_dev->name, err);
5392                         return err;
5393                 }
5394         }
5395
5396         /* send cmd to firmware */
5397         err = ipw2100_hw_send_command(priv, &cmd);
5398
5399         if (!batch_mode)
5400                 ipw2100_enable_adapter(priv);
5401
5402         return err;
5403 }
5404
5405 struct ipw2100_wep_key {
5406         u8 idx;
5407         u8 len;
5408         u8 key[13];
5409 };
5410
5411 /* Macros to ease up priting WEP keys */
5412 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5413 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5414 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5415 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5416
5417 /**
5418  * Set a the wep key
5419  *
5420  * @priv: struct to work on
5421  * @idx: index of the key we want to set
5422  * @key: ptr to the key data to set
5423  * @len: length of the buffer at @key
5424  * @batch_mode: FIXME perform the operation in batch mode, not
5425  *              disabling the device.
5426  *
5427  * @returns 0 if OK, < 0 errno code on error.
5428  *
5429  * Fill out a command structure with the new wep key, length an
5430  * index and send it down the wire.
5431  */
5432 static int ipw2100_set_key(struct ipw2100_priv *priv,
5433                            int idx, char *key, int len, int batch_mode)
5434 {
5435         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5436         struct host_command cmd = {
5437                 .host_command = WEP_KEY_INFO,
5438                 .host_command_sequence = 0,
5439                 .host_command_length = sizeof(struct ipw2100_wep_key),
5440         };
5441         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5442         int err;
5443
5444         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5445                      idx, keylen, len);
5446
5447         /* NOTE: We don't check cached values in case the firmware was reset
5448          * or some other problem is occurring.  If the user is setting the key,
5449          * then we push the change */
5450
5451         wep_key->idx = idx;
5452         wep_key->len = keylen;
5453
5454         if (keylen) {
5455                 memcpy(wep_key->key, key, len);
5456                 memset(wep_key->key + len, 0, keylen - len);
5457         }
5458
5459         /* Will be optimized out on debug not being configured in */
5460         if (keylen == 0)
5461                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5462                               priv->net_dev->name, wep_key->idx);
5463         else if (keylen == 5)
5464                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5465                               priv->net_dev->name, wep_key->idx, wep_key->len,
5466                               WEP_STR_64(wep_key->key));
5467         else
5468                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5469                               "\n",
5470                               priv->net_dev->name, wep_key->idx, wep_key->len,
5471                               WEP_STR_128(wep_key->key));
5472
5473         if (!batch_mode) {
5474                 err = ipw2100_disable_adapter(priv);
5475                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5476                 if (err) {
5477                         printk(KERN_ERR DRV_NAME
5478                                ": %s: Could not disable adapter %d\n",
5479                                priv->net_dev->name, err);
5480                         return err;
5481                 }
5482         }
5483
5484         /* send cmd to firmware */
5485         err = ipw2100_hw_send_command(priv, &cmd);
5486
5487         if (!batch_mode) {
5488                 int err2 = ipw2100_enable_adapter(priv);
5489                 if (err == 0)
5490                         err = err2;
5491         }
5492         return err;
5493 }
5494
5495 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5496                                  int idx, int batch_mode)
5497 {
5498         struct host_command cmd = {
5499                 .host_command = WEP_KEY_INDEX,
5500                 .host_command_sequence = 0,
5501                 .host_command_length = 4,
5502                 .host_command_parameters = {idx},
5503         };
5504         int err;
5505
5506         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5507
5508         if (idx < 0 || idx > 3)
5509                 return -EINVAL;
5510
5511         if (!batch_mode) {
5512                 err = ipw2100_disable_adapter(priv);
5513                 if (err) {
5514                         printk(KERN_ERR DRV_NAME
5515                                ": %s: Could not disable adapter %d\n",
5516                                priv->net_dev->name, err);
5517                         return err;
5518                 }
5519         }
5520
5521         /* send cmd to firmware */
5522         err = ipw2100_hw_send_command(priv, &cmd);
5523
5524         if (!batch_mode)
5525                 ipw2100_enable_adapter(priv);
5526
5527         return err;
5528 }
5529
5530 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5531 {
5532         int i, err, auth_mode, sec_level, use_group;
5533
5534         if (!(priv->status & STATUS_RUNNING))
5535                 return 0;
5536
5537         if (!batch_mode) {
5538                 err = ipw2100_disable_adapter(priv);
5539                 if (err)
5540                         return err;
5541         }
5542
5543         if (!priv->ieee->sec.enabled) {
5544                 err =
5545                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5546                                                      SEC_LEVEL_0, 0, 1);
5547         } else {
5548                 auth_mode = IPW_AUTH_OPEN;
5549                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5550                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5551                                 auth_mode = IPW_AUTH_SHARED;
5552                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5553                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5554                 }
5555
5556                 sec_level = SEC_LEVEL_0;
5557                 if (priv->ieee->sec.flags & SEC_LEVEL)
5558                         sec_level = priv->ieee->sec.level;
5559
5560                 use_group = 0;
5561                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5562                         use_group = priv->ieee->sec.unicast_uses_group;
5563
5564                 err =
5565                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5566                                                      use_group, 1);
5567         }
5568
5569         if (err)
5570                 goto exit;
5571
5572         if (priv->ieee->sec.enabled) {
5573                 for (i = 0; i < 4; i++) {
5574                         if (!(priv->ieee->sec.flags & (1 << i))) {
5575                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5576                                 priv->ieee->sec.key_sizes[i] = 0;
5577                         } else {
5578                                 err = ipw2100_set_key(priv, i,
5579                                                       priv->ieee->sec.keys[i],
5580                                                       priv->ieee->sec.
5581                                                       key_sizes[i], 1);
5582                                 if (err)
5583                                         goto exit;
5584                         }
5585                 }
5586
5587                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5588         }
5589
5590         /* Always enable privacy so the Host can filter WEP packets if
5591          * encrypted data is sent up */
5592         err =
5593             ipw2100_set_wep_flags(priv,
5594                                   priv->ieee->sec.
5595                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5596         if (err)
5597                 goto exit;
5598
5599         priv->status &= ~STATUS_SECURITY_UPDATED;
5600
5601       exit:
5602         if (!batch_mode)
5603                 ipw2100_enable_adapter(priv);
5604
5605         return err;
5606 }
5607
5608 static void ipw2100_security_work(struct work_struct *work)
5609 {
5610         struct ipw2100_priv *priv =
5611                 container_of(work, struct ipw2100_priv, security_work.work);
5612
5613         /* If we happen to have reconnected before we get a chance to
5614          * process this, then update the security settings--which causes
5615          * a disassociation to occur */
5616         if (!(priv->status & STATUS_ASSOCIATED) &&
5617             priv->status & STATUS_SECURITY_UPDATED)
5618                 ipw2100_configure_security(priv, 0);
5619 }
5620
5621 static void shim__set_security(struct net_device *dev,
5622                                struct libipw_security *sec)
5623 {
5624         struct ipw2100_priv *priv = libipw_priv(dev);
5625         int i, force_update = 0;
5626
5627         mutex_lock(&priv->action_mutex);
5628         if (!(priv->status & STATUS_INITIALIZED))
5629                 goto done;
5630
5631         for (i = 0; i < 4; i++) {
5632                 if (sec->flags & (1 << i)) {
5633                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5634                         if (sec->key_sizes[i] == 0)
5635                                 priv->ieee->sec.flags &= ~(1 << i);
5636                         else
5637                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5638                                        sec->key_sizes[i]);
5639                         if (sec->level == SEC_LEVEL_1) {
5640                                 priv->ieee->sec.flags |= (1 << i);
5641                                 priv->status |= STATUS_SECURITY_UPDATED;
5642                         } else
5643                                 priv->ieee->sec.flags &= ~(1 << i);
5644                 }
5645         }
5646
5647         if ((sec->flags & SEC_ACTIVE_KEY) &&
5648             priv->ieee->sec.active_key != sec->active_key) {
5649                 if (sec->active_key <= 3) {
5650                         priv->ieee->sec.active_key = sec->active_key;
5651                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5652                 } else
5653                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5654
5655                 priv->status |= STATUS_SECURITY_UPDATED;
5656         }
5657
5658         if ((sec->flags & SEC_AUTH_MODE) &&
5659             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5660                 priv->ieee->sec.auth_mode = sec->auth_mode;
5661                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5662                 priv->status |= STATUS_SECURITY_UPDATED;
5663         }
5664
5665         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5666                 priv->ieee->sec.flags |= SEC_ENABLED;
5667                 priv->ieee->sec.enabled = sec->enabled;
5668                 priv->status |= STATUS_SECURITY_UPDATED;
5669                 force_update = 1;
5670         }
5671
5672         if (sec->flags & SEC_ENCRYPT)
5673                 priv->ieee->sec.encrypt = sec->encrypt;
5674
5675         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5676                 priv->ieee->sec.level = sec->level;
5677                 priv->ieee->sec.flags |= SEC_LEVEL;
5678                 priv->status |= STATUS_SECURITY_UPDATED;
5679         }
5680
5681         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5682                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5683                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5684                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5685                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5686                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5687                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5688                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5689                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5690                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5691
5692 /* As a temporary work around to enable WPA until we figure out why
5693  * wpa_supplicant toggles the security capability of the driver, which
5694  * forces a disassocation with force_update...
5695  *
5696  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5697         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5698                 ipw2100_configure_security(priv, 0);
5699       done:
5700         mutex_unlock(&priv->action_mutex);
5701 }
5702
5703 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5704 {
5705         int err;
5706         int batch_mode = 1;
5707         u8 *bssid;
5708
5709         IPW_DEBUG_INFO("enter\n");
5710
5711         err = ipw2100_disable_adapter(priv);
5712         if (err)
5713                 return err;
5714 #ifdef CONFIG_IPW2100_MONITOR
5715         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5716                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5717                 if (err)
5718                         return err;
5719
5720                 IPW_DEBUG_INFO("exit\n");
5721
5722                 return 0;
5723         }
5724 #endif                          /* CONFIG_IPW2100_MONITOR */
5725
5726         err = ipw2100_read_mac_address(priv);
5727         if (err)
5728                 return -EIO;
5729
5730         err = ipw2100_set_mac_address(priv, batch_mode);
5731         if (err)
5732                 return err;
5733
5734         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5735         if (err)
5736                 return err;
5737
5738         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5739                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5740                 if (err)
5741                         return err;
5742         }
5743
5744         err = ipw2100_system_config(priv, batch_mode);
5745         if (err)
5746                 return err;
5747
5748         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5749         if (err)
5750                 return err;
5751
5752         /* Default to power mode OFF */
5753         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5754         if (err)
5755                 return err;
5756
5757         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5758         if (err)
5759                 return err;
5760
5761         if (priv->config & CFG_STATIC_BSSID)
5762                 bssid = priv->bssid;
5763         else
5764                 bssid = NULL;
5765         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5766         if (err)
5767                 return err;
5768
5769         if (priv->config & CFG_STATIC_ESSID)
5770                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5771                                         batch_mode);
5772         else
5773                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5774         if (err)
5775                 return err;
5776
5777         err = ipw2100_configure_security(priv, batch_mode);
5778         if (err)
5779                 return err;
5780
5781         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5782                 err =
5783                     ipw2100_set_ibss_beacon_interval(priv,
5784                                                      priv->beacon_interval,
5785                                                      batch_mode);
5786                 if (err)
5787                         return err;
5788
5789                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5790                 if (err)
5791                         return err;
5792         }
5793
5794         /*
5795            err = ipw2100_set_fragmentation_threshold(
5796            priv, priv->frag_threshold, batch_mode);
5797            if (err)
5798            return err;
5799          */
5800
5801         IPW_DEBUG_INFO("exit\n");
5802
5803         return 0;
5804 }
5805
5806 /*************************************************************************
5807  *
5808  * EXTERNALLY CALLED METHODS
5809  *
5810  *************************************************************************/
5811
5812 /* This method is called by the network layer -- not to be confused with
5813  * ipw2100_set_mac_address() declared above called by this driver (and this
5814  * method as well) to talk to the firmware */
5815 static int ipw2100_set_address(struct net_device *dev, void *p)
5816 {
5817         struct ipw2100_priv *priv = libipw_priv(dev);
5818         struct sockaddr *addr = p;
5819         int err = 0;
5820
5821         if (!is_valid_ether_addr(addr->sa_data))
5822                 return -EADDRNOTAVAIL;
5823
5824         mutex_lock(&priv->action_mutex);
5825
5826         priv->config |= CFG_CUSTOM_MAC;
5827         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5828
5829         err = ipw2100_set_mac_address(priv, 0);
5830         if (err)
5831                 goto done;
5832
5833         priv->reset_backoff = 0;
5834         mutex_unlock(&priv->action_mutex);
5835         ipw2100_reset_adapter(&priv->reset_work.work);
5836         return 0;
5837
5838       done:
5839         mutex_unlock(&priv->action_mutex);
5840         return err;
5841 }
5842
5843 static int ipw2100_open(struct net_device *dev)
5844 {
5845         struct ipw2100_priv *priv = libipw_priv(dev);
5846         unsigned long flags;
5847         IPW_DEBUG_INFO("dev->open\n");
5848
5849         spin_lock_irqsave(&priv->low_lock, flags);
5850         if (priv->status & STATUS_ASSOCIATED) {
5851                 netif_carrier_on(dev);
5852                 netif_start_queue(dev);
5853         }
5854         spin_unlock_irqrestore(&priv->low_lock, flags);
5855
5856         return 0;
5857 }
5858
5859 static int ipw2100_close(struct net_device *dev)
5860 {
5861         struct ipw2100_priv *priv = libipw_priv(dev);
5862         unsigned long flags;
5863         struct list_head *element;
5864         struct ipw2100_tx_packet *packet;
5865
5866         IPW_DEBUG_INFO("enter\n");
5867
5868         spin_lock_irqsave(&priv->low_lock, flags);
5869
5870         if (priv->status & STATUS_ASSOCIATED)
5871                 netif_carrier_off(dev);
5872         netif_stop_queue(dev);
5873
5874         /* Flush the TX queue ... */
5875         while (!list_empty(&priv->tx_pend_list)) {
5876                 element = priv->tx_pend_list.next;
5877                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5878
5879                 list_del(element);
5880                 DEC_STAT(&priv->tx_pend_stat);
5881
5882                 libipw_txb_free(packet->info.d_struct.txb);
5883                 packet->info.d_struct.txb = NULL;
5884
5885                 list_add_tail(element, &priv->tx_free_list);
5886                 INC_STAT(&priv->tx_free_stat);
5887         }
5888         spin_unlock_irqrestore(&priv->low_lock, flags);
5889
5890         IPW_DEBUG_INFO("exit\n");
5891
5892         return 0;
5893 }
5894
5895 /*
5896  * TODO:  Fix this function... its just wrong
5897  */
5898 static void ipw2100_tx_timeout(struct net_device *dev)
5899 {
5900         struct ipw2100_priv *priv = libipw_priv(dev);
5901
5902         dev->stats.tx_errors++;
5903
5904 #ifdef CONFIG_IPW2100_MONITOR
5905         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5906                 return;
5907 #endif
5908
5909         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5910                        dev->name);
5911         schedule_reset(priv);
5912 }
5913
5914 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5915 {
5916         /* This is called when wpa_supplicant loads and closes the driver
5917          * interface. */
5918         priv->ieee->wpa_enabled = value;
5919         return 0;
5920 }
5921
5922 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5923 {
5924
5925         struct libipw_device *ieee = priv->ieee;
5926         struct libipw_security sec = {
5927                 .flags = SEC_AUTH_MODE,
5928         };
5929         int ret = 0;
5930
5931         if (value & IW_AUTH_ALG_SHARED_KEY) {
5932                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5933                 ieee->open_wep = 0;
5934         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5935                 sec.auth_mode = WLAN_AUTH_OPEN;
5936                 ieee->open_wep = 1;
5937         } else if (value & IW_AUTH_ALG_LEAP) {
5938                 sec.auth_mode = WLAN_AUTH_LEAP;
5939                 ieee->open_wep = 1;
5940         } else
5941                 return -EINVAL;
5942
5943         if (ieee->set_security)
5944                 ieee->set_security(ieee->dev, &sec);
5945         else
5946                 ret = -EOPNOTSUPP;
5947
5948         return ret;
5949 }
5950
5951 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5952                                     char *wpa_ie, int wpa_ie_len)
5953 {
5954
5955         struct ipw2100_wpa_assoc_frame frame;
5956
5957         frame.fixed_ie_mask = 0;
5958
5959         /* copy WPA IE */
5960         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5961         frame.var_ie_len = wpa_ie_len;
5962
5963         /* make sure WPA is enabled */
5964         ipw2100_wpa_enable(priv, 1);
5965         ipw2100_set_wpa_ie(priv, &frame, 0);
5966 }
5967
5968 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5969                                     struct ethtool_drvinfo *info)
5970 {
5971         struct ipw2100_priv *priv = libipw_priv(dev);
5972         char fw_ver[64], ucode_ver[64];
5973
5974         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5975         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5976
5977         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5978         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5979
5980         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5981                  fw_ver, priv->eeprom_version, ucode_ver);
5982
5983         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5984                 sizeof(info->bus_info));
5985 }
5986
5987 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5988 {
5989         struct ipw2100_priv *priv = libipw_priv(dev);
5990         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5991 }
5992
5993 static const struct ethtool_ops ipw2100_ethtool_ops = {
5994         .get_link = ipw2100_ethtool_get_link,
5995         .get_drvinfo = ipw_ethtool_get_drvinfo,
5996 };
5997
5998 static void ipw2100_hang_check(struct work_struct *work)
5999 {
6000         struct ipw2100_priv *priv =
6001                 container_of(work, struct ipw2100_priv, hang_check.work);
6002         unsigned long flags;
6003         u32 rtc = 0xa5a5a5a5;
6004         u32 len = sizeof(rtc);
6005         int restart = 0;
6006
6007         spin_lock_irqsave(&priv->low_lock, flags);
6008
6009         if (priv->fatal_error != 0) {
6010                 /* If fatal_error is set then we need to restart */
6011                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6012                                priv->net_dev->name);
6013
6014                 restart = 1;
6015         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6016                    (rtc == priv->last_rtc)) {
6017                 /* Check if firmware is hung */
6018                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6019                                priv->net_dev->name);
6020
6021                 restart = 1;
6022         }
6023
6024         if (restart) {
6025                 /* Kill timer */
6026                 priv->stop_hang_check = 1;
6027                 priv->hangs++;
6028
6029                 /* Restart the NIC */
6030                 schedule_reset(priv);
6031         }
6032
6033         priv->last_rtc = rtc;
6034
6035         if (!priv->stop_hang_check)
6036                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6037
6038         spin_unlock_irqrestore(&priv->low_lock, flags);
6039 }
6040
6041 static void ipw2100_rf_kill(struct work_struct *work)
6042 {
6043         struct ipw2100_priv *priv =
6044                 container_of(work, struct ipw2100_priv, rf_kill.work);
6045         unsigned long flags;
6046
6047         spin_lock_irqsave(&priv->low_lock, flags);
6048
6049         if (rf_kill_active(priv)) {
6050                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6051                 if (!priv->stop_rf_kill)
6052                         schedule_delayed_work(&priv->rf_kill,
6053                                               round_jiffies_relative(HZ));
6054                 goto exit_unlock;
6055         }
6056
6057         /* RF Kill is now disabled, so bring the device back up */
6058
6059         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6060                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6061                                   "device\n");
6062                 schedule_reset(priv);
6063         } else
6064                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6065                                   "enabled\n");
6066
6067       exit_unlock:
6068         spin_unlock_irqrestore(&priv->low_lock, flags);
6069 }
6070
6071 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6072
6073 static const struct net_device_ops ipw2100_netdev_ops = {
6074         .ndo_open               = ipw2100_open,
6075         .ndo_stop               = ipw2100_close,
6076         .ndo_start_xmit         = libipw_xmit,
6077         .ndo_change_mtu         = libipw_change_mtu,
6078         .ndo_tx_timeout         = ipw2100_tx_timeout,
6079         .ndo_set_mac_address    = ipw2100_set_address,
6080         .ndo_validate_addr      = eth_validate_addr,
6081 };
6082
6083 /* Look into using netdev destructor to shutdown libipw? */
6084
6085 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6086                                                void __iomem * ioaddr)
6087 {
6088         struct ipw2100_priv *priv;
6089         struct net_device *dev;
6090
6091         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6092         if (!dev)
6093                 return NULL;
6094         priv = libipw_priv(dev);
6095         priv->ieee = netdev_priv(dev);
6096         priv->pci_dev = pci_dev;
6097         priv->net_dev = dev;
6098         priv->ioaddr = ioaddr;
6099
6100         priv->ieee->hard_start_xmit = ipw2100_tx;
6101         priv->ieee->set_security = shim__set_security;
6102
6103         priv->ieee->perfect_rssi = -20;
6104         priv->ieee->worst_rssi = -85;
6105
6106         dev->netdev_ops = &ipw2100_netdev_ops;
6107         dev->ethtool_ops = &ipw2100_ethtool_ops;
6108         dev->wireless_handlers = &ipw2100_wx_handler_def;
6109         priv->wireless_data.libipw = priv->ieee;
6110         dev->wireless_data = &priv->wireless_data;
6111         dev->watchdog_timeo = 3 * HZ;
6112         dev->irq = 0;
6113
6114         /* NOTE: We don't use the wireless_handlers hook
6115          * in dev as the system will start throwing WX requests
6116          * to us before we're actually initialized and it just
6117          * ends up causing problems.  So, we just handle
6118          * the WX extensions through the ipw2100_ioctl interface */
6119
6120         /* memset() puts everything to 0, so we only have explicitly set
6121          * those values that need to be something else */
6122
6123         /* If power management is turned on, default to AUTO mode */
6124         priv->power_mode = IPW_POWER_AUTO;
6125
6126 #ifdef CONFIG_IPW2100_MONITOR
6127         priv->config |= CFG_CRC_CHECK;
6128 #endif
6129         priv->ieee->wpa_enabled = 0;
6130         priv->ieee->drop_unencrypted = 0;
6131         priv->ieee->privacy_invoked = 0;
6132         priv->ieee->ieee802_1x = 1;
6133
6134         /* Set module parameters */
6135         switch (network_mode) {
6136         case 1:
6137                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6138                 break;
6139 #ifdef CONFIG_IPW2100_MONITOR
6140         case 2:
6141                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6142                 break;
6143 #endif
6144         default:
6145         case 0:
6146                 priv->ieee->iw_mode = IW_MODE_INFRA;
6147                 break;
6148         }
6149
6150         if (disable == 1)
6151                 priv->status |= STATUS_RF_KILL_SW;
6152
6153         if (channel != 0 &&
6154             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6155                 priv->config |= CFG_STATIC_CHANNEL;
6156                 priv->channel = channel;
6157         }
6158
6159         if (associate)
6160                 priv->config |= CFG_ASSOCIATE;
6161
6162         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6163         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6164         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6165         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6166         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6167         priv->tx_power = IPW_TX_POWER_DEFAULT;
6168         priv->tx_rates = DEFAULT_TX_RATES;
6169
6170         strcpy(priv->nick, "ipw2100");
6171
6172         spin_lock_init(&priv->low_lock);
6173         mutex_init(&priv->action_mutex);
6174         mutex_init(&priv->adapter_mutex);
6175
6176         init_waitqueue_head(&priv->wait_command_queue);
6177
6178         netif_carrier_off(dev);
6179
6180         INIT_LIST_HEAD(&priv->msg_free_list);
6181         INIT_LIST_HEAD(&priv->msg_pend_list);
6182         INIT_STAT(&priv->msg_free_stat);
6183         INIT_STAT(&priv->msg_pend_stat);
6184
6185         INIT_LIST_HEAD(&priv->tx_free_list);
6186         INIT_LIST_HEAD(&priv->tx_pend_list);
6187         INIT_STAT(&priv->tx_free_stat);
6188         INIT_STAT(&priv->tx_pend_stat);
6189
6190         INIT_LIST_HEAD(&priv->fw_pend_list);
6191         INIT_STAT(&priv->fw_pend_stat);
6192
6193         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6194         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6195         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6196         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6197         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6198         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6199         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6200
6201         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6202                      ipw2100_irq_tasklet, (unsigned long)priv);
6203
6204         /* NOTE:  We do not start the deferred work for status checks yet */
6205         priv->stop_rf_kill = 1;
6206         priv->stop_hang_check = 1;
6207
6208         return dev;
6209 }
6210
6211 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6212                                 const struct pci_device_id *ent)
6213 {
6214         void __iomem *ioaddr;
6215         struct net_device *dev = NULL;
6216         struct ipw2100_priv *priv = NULL;
6217         int err = 0;
6218         int registered = 0;
6219         u32 val;
6220
6221         IPW_DEBUG_INFO("enter\n");
6222
6223         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6224                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6225                 err = -ENODEV;
6226                 goto out;
6227         }
6228
6229         ioaddr = pci_iomap(pci_dev, 0, 0);
6230         if (!ioaddr) {
6231                 printk(KERN_WARNING DRV_NAME
6232                        "Error calling ioremap_nocache.\n");
6233                 err = -EIO;
6234                 goto fail;
6235         }
6236
6237         /* allocate and initialize our net_device */
6238         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6239         if (!dev) {
6240                 printk(KERN_WARNING DRV_NAME
6241                        "Error calling ipw2100_alloc_device.\n");
6242                 err = -ENOMEM;
6243                 goto fail;
6244         }
6245
6246         /* set up PCI mappings for device */
6247         err = pci_enable_device(pci_dev);
6248         if (err) {
6249                 printk(KERN_WARNING DRV_NAME
6250                        "Error calling pci_enable_device.\n");
6251                 return err;
6252         }
6253
6254         priv = libipw_priv(dev);
6255
6256         pci_set_master(pci_dev);
6257         pci_set_drvdata(pci_dev, priv);
6258
6259         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6260         if (err) {
6261                 printk(KERN_WARNING DRV_NAME
6262                        "Error calling pci_set_dma_mask.\n");
6263                 pci_disable_device(pci_dev);
6264                 return err;
6265         }
6266
6267         err = pci_request_regions(pci_dev, DRV_NAME);
6268         if (err) {
6269                 printk(KERN_WARNING DRV_NAME
6270                        "Error calling pci_request_regions.\n");
6271                 pci_disable_device(pci_dev);
6272                 return err;
6273         }
6274
6275         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6276          * PCI Tx retries from interfering with C3 CPU state */
6277         pci_read_config_dword(pci_dev, 0x40, &val);
6278         if ((val & 0x0000ff00) != 0)
6279                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6280
6281         pci_set_power_state(pci_dev, PCI_D0);
6282
6283         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6284                 printk(KERN_WARNING DRV_NAME
6285                        "Device not found via register read.\n");
6286                 err = -ENODEV;
6287                 goto fail;
6288         }
6289
6290         SET_NETDEV_DEV(dev, &pci_dev->dev);
6291
6292         /* Force interrupts to be shut off on the device */
6293         priv->status |= STATUS_INT_ENABLED;
6294         ipw2100_disable_interrupts(priv);
6295
6296         /* Allocate and initialize the Tx/Rx queues and lists */
6297         if (ipw2100_queues_allocate(priv)) {
6298                 printk(KERN_WARNING DRV_NAME
6299                        "Error calling ipw2100_queues_allocate.\n");
6300                 err = -ENOMEM;
6301                 goto fail;
6302         }
6303         ipw2100_queues_initialize(priv);
6304
6305         err = request_irq(pci_dev->irq,
6306                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6307         if (err) {
6308                 printk(KERN_WARNING DRV_NAME
6309                        "Error calling request_irq: %d.\n", pci_dev->irq);
6310                 goto fail;
6311         }
6312         dev->irq = pci_dev->irq;
6313
6314         IPW_DEBUG_INFO("Attempting to register device...\n");
6315
6316         printk(KERN_INFO DRV_NAME
6317                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6318
6319         err = ipw2100_up(priv, 1);
6320         if (err)
6321                 goto fail;
6322
6323         err = ipw2100_wdev_init(dev);
6324         if (err)
6325                 goto fail;
6326         registered = 1;
6327
6328         /* Bring up the interface.  Pre 0.46, after we registered the
6329          * network device we would call ipw2100_up.  This introduced a race
6330          * condition with newer hotplug configurations (network was coming
6331          * up and making calls before the device was initialized).
6332          */
6333         err = register_netdev(dev);
6334         if (err) {
6335                 printk(KERN_WARNING DRV_NAME
6336                        "Error calling register_netdev.\n");
6337                 goto fail;
6338         }
6339         registered = 2;
6340
6341         mutex_lock(&priv->action_mutex);
6342
6343         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6344
6345         /* perform this after register_netdev so that dev->name is set */
6346         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6347         if (err)
6348                 goto fail_unlock;
6349
6350         /* If the RF Kill switch is disabled, go ahead and complete the
6351          * startup sequence */
6352         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6353                 /* Enable the adapter - sends HOST_COMPLETE */
6354                 if (ipw2100_enable_adapter(priv)) {
6355                         printk(KERN_WARNING DRV_NAME
6356                                ": %s: failed in call to enable adapter.\n",
6357                                priv->net_dev->name);
6358                         ipw2100_hw_stop_adapter(priv);
6359                         err = -EIO;
6360                         goto fail_unlock;
6361                 }
6362
6363                 /* Start a scan . . . */
6364                 ipw2100_set_scan_options(priv);
6365                 ipw2100_start_scan(priv);
6366         }
6367
6368         IPW_DEBUG_INFO("exit\n");
6369
6370         priv->status |= STATUS_INITIALIZED;
6371
6372         mutex_unlock(&priv->action_mutex);
6373 out:
6374         return err;
6375
6376       fail_unlock:
6377         mutex_unlock(&priv->action_mutex);
6378       fail:
6379         if (dev) {
6380                 if (registered >= 2)
6381                         unregister_netdev(dev);
6382
6383                 if (registered) {
6384                         wiphy_unregister(priv->ieee->wdev.wiphy);
6385                         kfree(priv->ieee->bg_band.channels);
6386                 }
6387
6388                 ipw2100_hw_stop_adapter(priv);
6389
6390                 ipw2100_disable_interrupts(priv);
6391
6392                 if (dev->irq)
6393                         free_irq(dev->irq, priv);
6394
6395                 ipw2100_kill_works(priv);
6396
6397                 /* These are safe to call even if they weren't allocated */
6398                 ipw2100_queues_free(priv);
6399                 sysfs_remove_group(&pci_dev->dev.kobj,
6400                                    &ipw2100_attribute_group);
6401
6402                 free_libipw(dev, 0);
6403                 pci_set_drvdata(pci_dev, NULL);
6404         }
6405
6406         pci_iounmap(pci_dev, ioaddr);
6407
6408         pci_release_regions(pci_dev);
6409         pci_disable_device(pci_dev);
6410         goto out;
6411 }
6412
6413 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6414 {
6415         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6416         struct net_device *dev = priv->net_dev;
6417
6418         mutex_lock(&priv->action_mutex);
6419
6420         priv->status &= ~STATUS_INITIALIZED;
6421
6422         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6423
6424 #ifdef CONFIG_PM
6425         if (ipw2100_firmware.version)
6426                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6427 #endif
6428         /* Take down the hardware */
6429         ipw2100_down(priv);
6430
6431         /* Release the mutex so that the network subsystem can
6432          * complete any needed calls into the driver... */
6433         mutex_unlock(&priv->action_mutex);
6434
6435         /* Unregister the device first - this results in close()
6436          * being called if the device is open.  If we free storage
6437          * first, then close() will crash.
6438          * FIXME: remove the comment above. */
6439         unregister_netdev(dev);
6440
6441         ipw2100_kill_works(priv);
6442
6443         ipw2100_queues_free(priv);
6444
6445         /* Free potential debugging firmware snapshot */
6446         ipw2100_snapshot_free(priv);
6447
6448         free_irq(dev->irq, priv);
6449
6450         pci_iounmap(pci_dev, priv->ioaddr);
6451
6452         /* wiphy_unregister needs to be here, before free_libipw */
6453         wiphy_unregister(priv->ieee->wdev.wiphy);
6454         kfree(priv->ieee->bg_band.channels);
6455         free_libipw(dev, 0);
6456
6457         pci_release_regions(pci_dev);
6458         pci_disable_device(pci_dev);
6459
6460         IPW_DEBUG_INFO("exit\n");
6461 }
6462
6463 #ifdef CONFIG_PM
6464 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6465 {
6466         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6467         struct net_device *dev = priv->net_dev;
6468
6469         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6470
6471         mutex_lock(&priv->action_mutex);
6472         if (priv->status & STATUS_INITIALIZED) {
6473                 /* Take down the device; powers it off, etc. */
6474                 ipw2100_down(priv);
6475         }
6476
6477         /* Remove the PRESENT state of the device */
6478         netif_device_detach(dev);
6479
6480         pci_save_state(pci_dev);
6481         pci_disable_device(pci_dev);
6482         pci_set_power_state(pci_dev, PCI_D3hot);
6483
6484         priv->suspend_at = get_seconds();
6485
6486         mutex_unlock(&priv->action_mutex);
6487
6488         return 0;
6489 }
6490
6491 static int ipw2100_resume(struct pci_dev *pci_dev)
6492 {
6493         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6494         struct net_device *dev = priv->net_dev;
6495         int err;
6496         u32 val;
6497
6498         if (IPW2100_PM_DISABLED)
6499                 return 0;
6500
6501         mutex_lock(&priv->action_mutex);
6502
6503         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6504
6505         pci_set_power_state(pci_dev, PCI_D0);
6506         err = pci_enable_device(pci_dev);
6507         if (err) {
6508                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6509                        dev->name);
6510                 mutex_unlock(&priv->action_mutex);
6511                 return err;
6512         }
6513         pci_restore_state(pci_dev);
6514
6515         /*
6516          * Suspend/Resume resets the PCI configuration space, so we have to
6517          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6518          * from interfering with C3 CPU state. pci_restore_state won't help
6519          * here since it only restores the first 64 bytes pci config header.
6520          */
6521         pci_read_config_dword(pci_dev, 0x40, &val);
6522         if ((val & 0x0000ff00) != 0)
6523                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6524
6525         /* Set the device back into the PRESENT state; this will also wake
6526          * the queue of needed */
6527         netif_device_attach(dev);
6528
6529         priv->suspend_time = get_seconds() - priv->suspend_at;
6530
6531         /* Bring the device back up */
6532         if (!(priv->status & STATUS_RF_KILL_SW))
6533                 ipw2100_up(priv, 0);
6534
6535         mutex_unlock(&priv->action_mutex);
6536
6537         return 0;
6538 }
6539 #endif
6540
6541 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6542 {
6543         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6544
6545         /* Take down the device; powers it off, etc. */
6546         ipw2100_down(priv);
6547
6548         pci_disable_device(pci_dev);
6549 }
6550
6551 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6552
6553 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6554         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6555         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6556         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6557         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6558         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6559         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6560         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6561         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6562         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6563         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6564         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6565         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6566         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6567
6568         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6569         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6570         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6571         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6572         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6573
6574         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6575         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6576         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6577         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6578         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6579         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6580         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6581
6582         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6583
6584         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6585         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6586         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6587         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6588         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6589         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6590         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6591
6592         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6593         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6594         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6595         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6596         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6597         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6598
6599         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6600         {0,},
6601 };
6602
6603 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6604
6605 static struct pci_driver ipw2100_pci_driver = {
6606         .name = DRV_NAME,
6607         .id_table = ipw2100_pci_id_table,
6608         .probe = ipw2100_pci_init_one,
6609         .remove = ipw2100_pci_remove_one,
6610 #ifdef CONFIG_PM
6611         .suspend = ipw2100_suspend,
6612         .resume = ipw2100_resume,
6613 #endif
6614         .shutdown = ipw2100_shutdown,
6615 };
6616
6617 /**
6618  * Initialize the ipw2100 driver/module
6619  *
6620  * @returns 0 if ok, < 0 errno node con error.
6621  *
6622  * Note: we cannot init the /proc stuff until the PCI driver is there,
6623  * or we risk an unlikely race condition on someone accessing
6624  * uninitialized data in the PCI dev struct through /proc.
6625  */
6626 static int __init ipw2100_init(void)
6627 {
6628         int ret;
6629
6630         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6631         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6632
6633         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6634                            PM_QOS_DEFAULT_VALUE);
6635
6636         ret = pci_register_driver(&ipw2100_pci_driver);
6637         if (ret)
6638                 goto out;
6639
6640 #ifdef CONFIG_IPW2100_DEBUG
6641         ipw2100_debug_level = debug;
6642         ret = driver_create_file(&ipw2100_pci_driver.driver,
6643                                  &driver_attr_debug_level);
6644 #endif
6645
6646 out:
6647         return ret;
6648 }
6649
6650 /**
6651  * Cleanup ipw2100 driver registration
6652  */
6653 static void __exit ipw2100_exit(void)
6654 {
6655         /* FIXME: IPG: check that we have no instances of the devices open */
6656 #ifdef CONFIG_IPW2100_DEBUG
6657         driver_remove_file(&ipw2100_pci_driver.driver,
6658                            &driver_attr_debug_level);
6659 #endif
6660         pci_unregister_driver(&ipw2100_pci_driver);
6661         pm_qos_remove_request(&ipw2100_pm_qos_req);
6662 }
6663
6664 module_init(ipw2100_init);
6665 module_exit(ipw2100_exit);
6666
6667 static int ipw2100_wx_get_name(struct net_device *dev,
6668                                struct iw_request_info *info,
6669                                union iwreq_data *wrqu, char *extra)
6670 {
6671         /*
6672          * This can be called at any time.  No action lock required
6673          */
6674
6675         struct ipw2100_priv *priv = libipw_priv(dev);
6676         if (!(priv->status & STATUS_ASSOCIATED))
6677                 strcpy(wrqu->name, "unassociated");
6678         else
6679                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6680
6681         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6682         return 0;
6683 }
6684
6685 static int ipw2100_wx_set_freq(struct net_device *dev,
6686                                struct iw_request_info *info,
6687                                union iwreq_data *wrqu, char *extra)
6688 {
6689         struct ipw2100_priv *priv = libipw_priv(dev);
6690         struct iw_freq *fwrq = &wrqu->freq;
6691         int err = 0;
6692
6693         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6694                 return -EOPNOTSUPP;
6695
6696         mutex_lock(&priv->action_mutex);
6697         if (!(priv->status & STATUS_INITIALIZED)) {
6698                 err = -EIO;
6699                 goto done;
6700         }
6701
6702         /* if setting by freq convert to channel */
6703         if (fwrq->e == 1) {
6704                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6705                         int f = fwrq->m / 100000;
6706                         int c = 0;
6707
6708                         while ((c < REG_MAX_CHANNEL) &&
6709                                (f != ipw2100_frequencies[c]))
6710                                 c++;
6711
6712                         /* hack to fall through */
6713                         fwrq->e = 0;
6714                         fwrq->m = c + 1;
6715                 }
6716         }
6717
6718         if (fwrq->e > 0 || fwrq->m > 1000) {
6719                 err = -EOPNOTSUPP;
6720                 goto done;
6721         } else {                /* Set the channel */
6722                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6723                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6724         }
6725
6726       done:
6727         mutex_unlock(&priv->action_mutex);
6728         return err;
6729 }
6730
6731 static int ipw2100_wx_get_freq(struct net_device *dev,
6732                                struct iw_request_info *info,
6733                                union iwreq_data *wrqu, char *extra)
6734 {
6735         /*
6736          * This can be called at any time.  No action lock required
6737          */
6738
6739         struct ipw2100_priv *priv = libipw_priv(dev);
6740
6741         wrqu->freq.e = 0;
6742
6743         /* If we are associated, trying to associate, or have a statically
6744          * configured CHANNEL then return that; otherwise return ANY */
6745         if (priv->config & CFG_STATIC_CHANNEL ||
6746             priv->status & STATUS_ASSOCIATED)
6747                 wrqu->freq.m = priv->channel;
6748         else
6749                 wrqu->freq.m = 0;
6750
6751         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6752         return 0;
6753
6754 }
6755
6756 static int ipw2100_wx_set_mode(struct net_device *dev,
6757                                struct iw_request_info *info,
6758                                union iwreq_data *wrqu, char *extra)
6759 {
6760         struct ipw2100_priv *priv = libipw_priv(dev);
6761         int err = 0;
6762
6763         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6764
6765         if (wrqu->mode == priv->ieee->iw_mode)
6766                 return 0;
6767
6768         mutex_lock(&priv->action_mutex);
6769         if (!(priv->status & STATUS_INITIALIZED)) {
6770                 err = -EIO;
6771                 goto done;
6772         }
6773
6774         switch (wrqu->mode) {
6775 #ifdef CONFIG_IPW2100_MONITOR
6776         case IW_MODE_MONITOR:
6777                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6778                 break;
6779 #endif                          /* CONFIG_IPW2100_MONITOR */
6780         case IW_MODE_ADHOC:
6781                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6782                 break;
6783         case IW_MODE_INFRA:
6784         case IW_MODE_AUTO:
6785         default:
6786                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6787                 break;
6788         }
6789
6790       done:
6791         mutex_unlock(&priv->action_mutex);
6792         return err;
6793 }
6794
6795 static int ipw2100_wx_get_mode(struct net_device *dev,
6796                                struct iw_request_info *info,
6797                                union iwreq_data *wrqu, char *extra)
6798 {
6799         /*
6800          * This can be called at any time.  No action lock required
6801          */
6802
6803         struct ipw2100_priv *priv = libipw_priv(dev);
6804
6805         wrqu->mode = priv->ieee->iw_mode;
6806         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6807
6808         return 0;
6809 }
6810
6811 #define POWER_MODES 5
6812
6813 /* Values are in microsecond */
6814 static const s32 timeout_duration[POWER_MODES] = {
6815         350000,
6816         250000,
6817         75000,
6818         37000,
6819         25000,
6820 };
6821
6822 static const s32 period_duration[POWER_MODES] = {
6823         400000,
6824         700000,
6825         1000000,
6826         1000000,
6827         1000000
6828 };
6829
6830 static int ipw2100_wx_get_range(struct net_device *dev,
6831                                 struct iw_request_info *info,
6832                                 union iwreq_data *wrqu, char *extra)
6833 {
6834         /*
6835          * This can be called at any time.  No action lock required
6836          */
6837
6838         struct ipw2100_priv *priv = libipw_priv(dev);
6839         struct iw_range *range = (struct iw_range *)extra;
6840         u16 val;
6841         int i, level;
6842
6843         wrqu->data.length = sizeof(*range);
6844         memset(range, 0, sizeof(*range));
6845
6846         /* Let's try to keep this struct in the same order as in
6847          * linux/include/wireless.h
6848          */
6849
6850         /* TODO: See what values we can set, and remove the ones we can't
6851          * set, or fill them with some default data.
6852          */
6853
6854         /* ~5 Mb/s real (802.11b) */
6855         range->throughput = 5 * 1000 * 1000;
6856
6857 //      range->sensitivity;     /* signal level threshold range */
6858
6859         range->max_qual.qual = 100;
6860         /* TODO: Find real max RSSI and stick here */
6861         range->max_qual.level = 0;
6862         range->max_qual.noise = 0;
6863         range->max_qual.updated = 7;    /* Updated all three */
6864
6865         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6866         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6867         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6868         range->avg_qual.noise = 0;
6869         range->avg_qual.updated = 7;    /* Updated all three */
6870
6871         range->num_bitrates = RATE_COUNT;
6872
6873         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6874                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6875         }
6876
6877         range->min_rts = MIN_RTS_THRESHOLD;
6878         range->max_rts = MAX_RTS_THRESHOLD;
6879         range->min_frag = MIN_FRAG_THRESHOLD;
6880         range->max_frag = MAX_FRAG_THRESHOLD;
6881
6882         range->min_pmp = period_duration[0];    /* Minimal PM period */
6883         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6884         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6885         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6886
6887         /* How to decode max/min PM period */
6888         range->pmp_flags = IW_POWER_PERIOD;
6889         /* How to decode max/min PM period */
6890         range->pmt_flags = IW_POWER_TIMEOUT;
6891         /* What PM options are supported */
6892         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6893
6894         range->encoding_size[0] = 5;
6895         range->encoding_size[1] = 13;   /* Different token sizes */
6896         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6897         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6898 //      range->encoding_login_index;            /* token index for login token */
6899
6900         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6901                 range->txpower_capa = IW_TXPOW_DBM;
6902                 range->num_txpower = IW_MAX_TXPOWER;
6903                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6904                      i < IW_MAX_TXPOWER;
6905                      i++, level -=
6906                      ((IPW_TX_POWER_MAX_DBM -
6907                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6908                         range->txpower[i] = level / 16;
6909         } else {
6910                 range->txpower_capa = 0;
6911                 range->num_txpower = 0;
6912         }
6913
6914         /* Set the Wireless Extension versions */
6915         range->we_version_compiled = WIRELESS_EXT;
6916         range->we_version_source = 18;
6917
6918 //      range->retry_capa;      /* What retry options are supported */
6919 //      range->retry_flags;     /* How to decode max/min retry limit */
6920 //      range->r_time_flags;    /* How to decode max/min retry life */
6921 //      range->min_retry;       /* Minimal number of retries */
6922 //      range->max_retry;       /* Maximal number of retries */
6923 //      range->min_r_time;      /* Minimal retry lifetime */
6924 //      range->max_r_time;      /* Maximal retry lifetime */
6925
6926         range->num_channels = FREQ_COUNT;
6927
6928         val = 0;
6929         for (i = 0; i < FREQ_COUNT; i++) {
6930                 // TODO: Include only legal frequencies for some countries
6931 //              if (local->channel_mask & (1 << i)) {
6932                 range->freq[val].i = i + 1;
6933                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6934                 range->freq[val].e = 1;
6935                 val++;
6936 //              }
6937                 if (val == IW_MAX_FREQUENCIES)
6938                         break;
6939         }
6940         range->num_frequency = val;
6941
6942         /* Event capability (kernel + driver) */
6943         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6944                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6945         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6946
6947         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6948                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6949
6950         IPW_DEBUG_WX("GET Range\n");
6951
6952         return 0;
6953 }
6954
6955 static int ipw2100_wx_set_wap(struct net_device *dev,
6956                               struct iw_request_info *info,
6957                               union iwreq_data *wrqu, char *extra)
6958 {
6959         struct ipw2100_priv *priv = libipw_priv(dev);
6960         int err = 0;
6961
6962         // sanity checks
6963         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6964                 return -EINVAL;
6965
6966         mutex_lock(&priv->action_mutex);
6967         if (!(priv->status & STATUS_INITIALIZED)) {
6968                 err = -EIO;
6969                 goto done;
6970         }
6971
6972         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6973             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6974                 /* we disable mandatory BSSID association */
6975                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6976                 priv->config &= ~CFG_STATIC_BSSID;
6977                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6978                 goto done;
6979         }
6980
6981         priv->config |= CFG_STATIC_BSSID;
6982         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6983
6984         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6985
6986         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6987
6988       done:
6989         mutex_unlock(&priv->action_mutex);
6990         return err;
6991 }
6992
6993 static int ipw2100_wx_get_wap(struct net_device *dev,
6994                               struct iw_request_info *info,
6995                               union iwreq_data *wrqu, char *extra)
6996 {
6997         /*
6998          * This can be called at any time.  No action lock required
6999          */
7000
7001         struct ipw2100_priv *priv = libipw_priv(dev);
7002
7003         /* If we are associated, trying to associate, or have a statically
7004          * configured BSSID then return that; otherwise return ANY */
7005         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7006                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7007                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7008         } else
7009                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7010
7011         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7012         return 0;
7013 }
7014
7015 static int ipw2100_wx_set_essid(struct net_device *dev,
7016                                 struct iw_request_info *info,
7017                                 union iwreq_data *wrqu, char *extra)
7018 {
7019         struct ipw2100_priv *priv = libipw_priv(dev);
7020         char *essid = "";       /* ANY */
7021         int length = 0;
7022         int err = 0;
7023         DECLARE_SSID_BUF(ssid);
7024
7025         mutex_lock(&priv->action_mutex);
7026         if (!(priv->status & STATUS_INITIALIZED)) {
7027                 err = -EIO;
7028                 goto done;
7029         }
7030
7031         if (wrqu->essid.flags && wrqu->essid.length) {
7032                 length = wrqu->essid.length;
7033                 essid = extra;
7034         }
7035
7036         if (length == 0) {
7037                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7038                 priv->config &= ~CFG_STATIC_ESSID;
7039                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7040                 goto done;
7041         }
7042
7043         length = min(length, IW_ESSID_MAX_SIZE);
7044
7045         priv->config |= CFG_STATIC_ESSID;
7046
7047         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7048                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7049                 err = 0;
7050                 goto done;
7051         }
7052
7053         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7054                      print_ssid(ssid, essid, length), length);
7055
7056         priv->essid_len = length;
7057         memcpy(priv->essid, essid, priv->essid_len);
7058
7059         err = ipw2100_set_essid(priv, essid, length, 0);
7060
7061       done:
7062         mutex_unlock(&priv->action_mutex);
7063         return err;
7064 }
7065
7066 static int ipw2100_wx_get_essid(struct net_device *dev,
7067                                 struct iw_request_info *info,
7068                                 union iwreq_data *wrqu, char *extra)
7069 {
7070         /*
7071          * This can be called at any time.  No action lock required
7072          */
7073
7074         struct ipw2100_priv *priv = libipw_priv(dev);
7075         DECLARE_SSID_BUF(ssid);
7076
7077         /* If we are associated, trying to associate, or have a statically
7078          * configured ESSID then return that; otherwise return ANY */
7079         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7080                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7081                              print_ssid(ssid, priv->essid, priv->essid_len));
7082                 memcpy(extra, priv->essid, priv->essid_len);
7083                 wrqu->essid.length = priv->essid_len;
7084                 wrqu->essid.flags = 1;  /* active */
7085         } else {
7086                 IPW_DEBUG_WX("Getting essid: ANY\n");
7087                 wrqu->essid.length = 0;
7088                 wrqu->essid.flags = 0;  /* active */
7089         }
7090
7091         return 0;
7092 }
7093
7094 static int ipw2100_wx_set_nick(struct net_device *dev,
7095                                struct iw_request_info *info,
7096                                union iwreq_data *wrqu, char *extra)
7097 {
7098         /*
7099          * This can be called at any time.  No action lock required
7100          */
7101
7102         struct ipw2100_priv *priv = libipw_priv(dev);
7103
7104         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7105                 return -E2BIG;
7106
7107         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7108         memset(priv->nick, 0, sizeof(priv->nick));
7109         memcpy(priv->nick, extra, wrqu->data.length);
7110
7111         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7112
7113         return 0;
7114 }
7115
7116 static int ipw2100_wx_get_nick(struct net_device *dev,
7117                                struct iw_request_info *info,
7118                                union iwreq_data *wrqu, char *extra)
7119 {
7120         /*
7121          * This can be called at any time.  No action lock required
7122          */
7123
7124         struct ipw2100_priv *priv = libipw_priv(dev);
7125
7126         wrqu->data.length = strlen(priv->nick);
7127         memcpy(extra, priv->nick, wrqu->data.length);
7128         wrqu->data.flags = 1;   /* active */
7129
7130         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7131
7132         return 0;
7133 }
7134
7135 static int ipw2100_wx_set_rate(struct net_device *dev,
7136                                struct iw_request_info *info,
7137                                union iwreq_data *wrqu, char *extra)
7138 {
7139         struct ipw2100_priv *priv = libipw_priv(dev);
7140         u32 target_rate = wrqu->bitrate.value;
7141         u32 rate;
7142         int err = 0;
7143
7144         mutex_lock(&priv->action_mutex);
7145         if (!(priv->status & STATUS_INITIALIZED)) {
7146                 err = -EIO;
7147                 goto done;
7148         }
7149
7150         rate = 0;
7151
7152         if (target_rate == 1000000 ||
7153             (!wrqu->bitrate.fixed && target_rate > 1000000))
7154                 rate |= TX_RATE_1_MBIT;
7155         if (target_rate == 2000000 ||
7156             (!wrqu->bitrate.fixed && target_rate > 2000000))
7157                 rate |= TX_RATE_2_MBIT;
7158         if (target_rate == 5500000 ||
7159             (!wrqu->bitrate.fixed && target_rate > 5500000))
7160                 rate |= TX_RATE_5_5_MBIT;
7161         if (target_rate == 11000000 ||
7162             (!wrqu->bitrate.fixed && target_rate > 11000000))
7163                 rate |= TX_RATE_11_MBIT;
7164         if (rate == 0)
7165                 rate = DEFAULT_TX_RATES;
7166
7167         err = ipw2100_set_tx_rates(priv, rate, 0);
7168
7169         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7170       done:
7171         mutex_unlock(&priv->action_mutex);
7172         return err;
7173 }
7174
7175 static int ipw2100_wx_get_rate(struct net_device *dev,
7176                                struct iw_request_info *info,
7177                                union iwreq_data *wrqu, char *extra)
7178 {
7179         struct ipw2100_priv *priv = libipw_priv(dev);
7180         int val;
7181         unsigned int len = sizeof(val);
7182         int err = 0;
7183
7184         if (!(priv->status & STATUS_ENABLED) ||
7185             priv->status & STATUS_RF_KILL_MASK ||
7186             !(priv->status & STATUS_ASSOCIATED)) {
7187                 wrqu->bitrate.value = 0;
7188                 return 0;
7189         }
7190
7191         mutex_lock(&priv->action_mutex);
7192         if (!(priv->status & STATUS_INITIALIZED)) {
7193                 err = -EIO;
7194                 goto done;
7195         }
7196
7197         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7198         if (err) {
7199                 IPW_DEBUG_WX("failed querying ordinals.\n");
7200                 goto done;
7201         }
7202
7203         switch (val & TX_RATE_MASK) {
7204         case TX_RATE_1_MBIT:
7205                 wrqu->bitrate.value = 1000000;
7206                 break;
7207         case TX_RATE_2_MBIT:
7208                 wrqu->bitrate.value = 2000000;
7209                 break;
7210         case TX_RATE_5_5_MBIT:
7211                 wrqu->bitrate.value = 5500000;
7212                 break;
7213         case TX_RATE_11_MBIT:
7214                 wrqu->bitrate.value = 11000000;
7215                 break;
7216         default:
7217                 wrqu->bitrate.value = 0;
7218         }
7219
7220         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7221
7222       done:
7223         mutex_unlock(&priv->action_mutex);
7224         return err;
7225 }
7226
7227 static int ipw2100_wx_set_rts(struct net_device *dev,
7228                               struct iw_request_info *info,
7229                               union iwreq_data *wrqu, char *extra)
7230 {
7231         struct ipw2100_priv *priv = libipw_priv(dev);
7232         int value, err;
7233
7234         /* Auto RTS not yet supported */
7235         if (wrqu->rts.fixed == 0)
7236                 return -EINVAL;
7237
7238         mutex_lock(&priv->action_mutex);
7239         if (!(priv->status & STATUS_INITIALIZED)) {
7240                 err = -EIO;
7241                 goto done;
7242         }
7243
7244         if (wrqu->rts.disabled)
7245                 value = priv->rts_threshold | RTS_DISABLED;
7246         else {
7247                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7248                         err = -EINVAL;
7249                         goto done;
7250                 }
7251                 value = wrqu->rts.value;
7252         }
7253
7254         err = ipw2100_set_rts_threshold(priv, value);
7255
7256         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7257       done:
7258         mutex_unlock(&priv->action_mutex);
7259         return err;
7260 }
7261
7262 static int ipw2100_wx_get_rts(struct net_device *dev,
7263                               struct iw_request_info *info,
7264                               union iwreq_data *wrqu, char *extra)
7265 {
7266         /*
7267          * This can be called at any time.  No action lock required
7268          */
7269
7270         struct ipw2100_priv *priv = libipw_priv(dev);
7271
7272         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7273         wrqu->rts.fixed = 1;    /* no auto select */
7274
7275         /* If RTS is set to the default value, then it is disabled */
7276         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7277
7278         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7279
7280         return 0;
7281 }
7282
7283 static int ipw2100_wx_set_txpow(struct net_device *dev,
7284                                 struct iw_request_info *info,
7285                                 union iwreq_data *wrqu, char *extra)
7286 {
7287         struct ipw2100_priv *priv = libipw_priv(dev);
7288         int err = 0, value;
7289         
7290         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7291                 return -EINPROGRESS;
7292
7293         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7294                 return 0;
7295
7296         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7297                 return -EINVAL;
7298
7299         if (wrqu->txpower.fixed == 0)
7300                 value = IPW_TX_POWER_DEFAULT;
7301         else {
7302                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7303                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7304                         return -EINVAL;
7305
7306                 value = wrqu->txpower.value;
7307         }
7308
7309         mutex_lock(&priv->action_mutex);
7310         if (!(priv->status & STATUS_INITIALIZED)) {
7311                 err = -EIO;
7312                 goto done;
7313         }
7314
7315         err = ipw2100_set_tx_power(priv, value);
7316
7317         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7318
7319       done:
7320         mutex_unlock(&priv->action_mutex);
7321         return err;
7322 }
7323
7324 static int ipw2100_wx_get_txpow(struct net_device *dev,
7325                                 struct iw_request_info *info,
7326                                 union iwreq_data *wrqu, char *extra)
7327 {
7328         /*
7329          * This can be called at any time.  No action lock required
7330          */
7331
7332         struct ipw2100_priv *priv = libipw_priv(dev);
7333
7334         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7335
7336         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7337                 wrqu->txpower.fixed = 0;
7338                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7339         } else {
7340                 wrqu->txpower.fixed = 1;
7341                 wrqu->txpower.value = priv->tx_power;
7342         }
7343
7344         wrqu->txpower.flags = IW_TXPOW_DBM;
7345
7346         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7347
7348         return 0;
7349 }
7350
7351 static int ipw2100_wx_set_frag(struct net_device *dev,
7352                                struct iw_request_info *info,
7353                                union iwreq_data *wrqu, char *extra)
7354 {
7355         /*
7356          * This can be called at any time.  No action lock required
7357          */
7358
7359         struct ipw2100_priv *priv = libipw_priv(dev);
7360
7361         if (!wrqu->frag.fixed)
7362                 return -EINVAL;
7363
7364         if (wrqu->frag.disabled) {
7365                 priv->frag_threshold |= FRAG_DISABLED;
7366                 priv->ieee->fts = DEFAULT_FTS;
7367         } else {
7368                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7369                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7370                         return -EINVAL;
7371
7372                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7373                 priv->frag_threshold = priv->ieee->fts;
7374         }
7375
7376         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7377
7378         return 0;
7379 }
7380
7381 static int ipw2100_wx_get_frag(struct net_device *dev,
7382                                struct iw_request_info *info,
7383                                union iwreq_data *wrqu, char *extra)
7384 {
7385         /*
7386          * This can be called at any time.  No action lock required
7387          */
7388
7389         struct ipw2100_priv *priv = libipw_priv(dev);
7390         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7391         wrqu->frag.fixed = 0;   /* no auto select */
7392         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7393
7394         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7395
7396         return 0;
7397 }
7398
7399 static int ipw2100_wx_set_retry(struct net_device *dev,
7400                                 struct iw_request_info *info,
7401                                 union iwreq_data *wrqu, char *extra)
7402 {
7403         struct ipw2100_priv *priv = libipw_priv(dev);
7404         int err = 0;
7405
7406         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7407                 return -EINVAL;
7408
7409         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7410                 return 0;
7411
7412         mutex_lock(&priv->action_mutex);
7413         if (!(priv->status & STATUS_INITIALIZED)) {
7414                 err = -EIO;
7415                 goto done;
7416         }
7417
7418         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7419                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7420                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7421                              wrqu->retry.value);
7422                 goto done;
7423         }
7424
7425         if (wrqu->retry.flags & IW_RETRY_LONG) {
7426                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7427                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7428                              wrqu->retry.value);
7429                 goto done;
7430         }
7431
7432         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7433         if (!err)
7434                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7435
7436         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7437
7438       done:
7439         mutex_unlock(&priv->action_mutex);
7440         return err;
7441 }
7442
7443 static int ipw2100_wx_get_retry(struct net_device *dev,
7444                                 struct iw_request_info *info,
7445                                 union iwreq_data *wrqu, char *extra)
7446 {
7447         /*
7448          * This can be called at any time.  No action lock required
7449          */
7450
7451         struct ipw2100_priv *priv = libipw_priv(dev);
7452
7453         wrqu->retry.disabled = 0;       /* can't be disabled */
7454
7455         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7456                 return -EINVAL;
7457
7458         if (wrqu->retry.flags & IW_RETRY_LONG) {
7459                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7460                 wrqu->retry.value = priv->long_retry_limit;
7461         } else {
7462                 wrqu->retry.flags =
7463                     (priv->short_retry_limit !=
7464                      priv->long_retry_limit) ?
7465                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7466
7467                 wrqu->retry.value = priv->short_retry_limit;
7468         }
7469
7470         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7471
7472         return 0;
7473 }
7474
7475 static int ipw2100_wx_set_scan(struct net_device *dev,
7476                                struct iw_request_info *info,
7477                                union iwreq_data *wrqu, char *extra)
7478 {
7479         struct ipw2100_priv *priv = libipw_priv(dev);
7480         int err = 0;
7481
7482         mutex_lock(&priv->action_mutex);
7483         if (!(priv->status & STATUS_INITIALIZED)) {
7484                 err = -EIO;
7485                 goto done;
7486         }
7487
7488         IPW_DEBUG_WX("Initiating scan...\n");
7489
7490         priv->user_requested_scan = 1;
7491         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7492                 IPW_DEBUG_WX("Start scan failed.\n");
7493
7494                 /* TODO: Mark a scan as pending so when hardware initialized
7495                  *       a scan starts */
7496         }
7497
7498       done:
7499         mutex_unlock(&priv->action_mutex);
7500         return err;
7501 }
7502
7503 static int ipw2100_wx_get_scan(struct net_device *dev,
7504                                struct iw_request_info *info,
7505                                union iwreq_data *wrqu, char *extra)
7506 {
7507         /*
7508          * This can be called at any time.  No action lock required
7509          */
7510
7511         struct ipw2100_priv *priv = libipw_priv(dev);
7512         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7513 }
7514
7515 /*
7516  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7517  */
7518 static int ipw2100_wx_set_encode(struct net_device *dev,
7519                                  struct iw_request_info *info,
7520                                  union iwreq_data *wrqu, char *key)
7521 {
7522         /*
7523          * No check of STATUS_INITIALIZED required
7524          */
7525
7526         struct ipw2100_priv *priv = libipw_priv(dev);
7527         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7528 }
7529
7530 static int ipw2100_wx_get_encode(struct net_device *dev,
7531                                  struct iw_request_info *info,
7532                                  union iwreq_data *wrqu, char *key)
7533 {
7534         /*
7535          * This can be called at any time.  No action lock required
7536          */
7537
7538         struct ipw2100_priv *priv = libipw_priv(dev);
7539         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7540 }
7541
7542 static int ipw2100_wx_set_power(struct net_device *dev,
7543                                 struct iw_request_info *info,
7544                                 union iwreq_data *wrqu, char *extra)
7545 {
7546         struct ipw2100_priv *priv = libipw_priv(dev);
7547         int err = 0;
7548
7549         mutex_lock(&priv->action_mutex);
7550         if (!(priv->status & STATUS_INITIALIZED)) {
7551                 err = -EIO;
7552                 goto done;
7553         }
7554
7555         if (wrqu->power.disabled) {
7556                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7557                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7558                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7559                 goto done;
7560         }
7561
7562         switch (wrqu->power.flags & IW_POWER_MODE) {
7563         case IW_POWER_ON:       /* If not specified */
7564         case IW_POWER_MODE:     /* If set all mask */
7565         case IW_POWER_ALL_R:    /* If explicitly state all */
7566                 break;
7567         default:                /* Otherwise we don't support it */
7568                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7569                              wrqu->power.flags);
7570                 err = -EOPNOTSUPP;
7571                 goto done;
7572         }
7573
7574         /* If the user hasn't specified a power management mode yet, default
7575          * to BATTERY */
7576         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7577         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7578
7579         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7580
7581       done:
7582         mutex_unlock(&priv->action_mutex);
7583         return err;
7584
7585 }
7586
7587 static int ipw2100_wx_get_power(struct net_device *dev,
7588                                 struct iw_request_info *info,
7589                                 union iwreq_data *wrqu, char *extra)
7590 {
7591         /*
7592          * This can be called at any time.  No action lock required
7593          */
7594
7595         struct ipw2100_priv *priv = libipw_priv(dev);
7596
7597         if (!(priv->power_mode & IPW_POWER_ENABLED))
7598                 wrqu->power.disabled = 1;
7599         else {
7600                 wrqu->power.disabled = 0;
7601                 wrqu->power.flags = 0;
7602         }
7603
7604         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7605
7606         return 0;
7607 }
7608
7609 /*
7610  * WE-18 WPA support
7611  */
7612
7613 /* SIOCSIWGENIE */
7614 static int ipw2100_wx_set_genie(struct net_device *dev,
7615                                 struct iw_request_info *info,
7616                                 union iwreq_data *wrqu, char *extra)
7617 {
7618
7619         struct ipw2100_priv *priv = libipw_priv(dev);
7620         struct libipw_device *ieee = priv->ieee;
7621         u8 *buf;
7622
7623         if (!ieee->wpa_enabled)
7624                 return -EOPNOTSUPP;
7625
7626         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7627             (wrqu->data.length && extra == NULL))
7628                 return -EINVAL;
7629
7630         if (wrqu->data.length) {
7631                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7632                 if (buf == NULL)
7633                         return -ENOMEM;
7634
7635                 kfree(ieee->wpa_ie);
7636                 ieee->wpa_ie = buf;
7637                 ieee->wpa_ie_len = wrqu->data.length;
7638         } else {
7639                 kfree(ieee->wpa_ie);
7640                 ieee->wpa_ie = NULL;
7641                 ieee->wpa_ie_len = 0;
7642         }
7643
7644         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7645
7646         return 0;
7647 }
7648
7649 /* SIOCGIWGENIE */
7650 static int ipw2100_wx_get_genie(struct net_device *dev,
7651                                 struct iw_request_info *info,
7652                                 union iwreq_data *wrqu, char *extra)
7653 {
7654         struct ipw2100_priv *priv = libipw_priv(dev);
7655         struct libipw_device *ieee = priv->ieee;
7656
7657         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7658                 wrqu->data.length = 0;
7659                 return 0;
7660         }
7661
7662         if (wrqu->data.length < ieee->wpa_ie_len)
7663                 return -E2BIG;
7664
7665         wrqu->data.length = ieee->wpa_ie_len;
7666         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7667
7668         return 0;
7669 }
7670
7671 /* SIOCSIWAUTH */
7672 static int ipw2100_wx_set_auth(struct net_device *dev,
7673                                struct iw_request_info *info,
7674                                union iwreq_data *wrqu, char *extra)
7675 {
7676         struct ipw2100_priv *priv = libipw_priv(dev);
7677         struct libipw_device *ieee = priv->ieee;
7678         struct iw_param *param = &wrqu->param;
7679         struct lib80211_crypt_data *crypt;
7680         unsigned long flags;
7681         int ret = 0;
7682
7683         switch (param->flags & IW_AUTH_INDEX) {
7684         case IW_AUTH_WPA_VERSION:
7685         case IW_AUTH_CIPHER_PAIRWISE:
7686         case IW_AUTH_CIPHER_GROUP:
7687         case IW_AUTH_KEY_MGMT:
7688                 /*
7689                  * ipw2200 does not use these parameters
7690                  */
7691                 break;
7692
7693         case IW_AUTH_TKIP_COUNTERMEASURES:
7694                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7695                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7696                         break;
7697
7698                 flags = crypt->ops->get_flags(crypt->priv);
7699
7700                 if (param->value)
7701                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7702                 else
7703                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7704
7705                 crypt->ops->set_flags(flags, crypt->priv);
7706
7707                 break;
7708
7709         case IW_AUTH_DROP_UNENCRYPTED:{
7710                         /* HACK:
7711                          *
7712                          * wpa_supplicant calls set_wpa_enabled when the driver
7713                          * is loaded and unloaded, regardless of if WPA is being
7714                          * used.  No other calls are made which can be used to
7715                          * determine if encryption will be used or not prior to
7716                          * association being expected.  If encryption is not being
7717                          * used, drop_unencrypted is set to false, else true -- we
7718                          * can use this to determine if the CAP_PRIVACY_ON bit should
7719                          * be set.
7720                          */
7721                         struct libipw_security sec = {
7722                                 .flags = SEC_ENABLED,
7723                                 .enabled = param->value,
7724                         };
7725                         priv->ieee->drop_unencrypted = param->value;
7726                         /* We only change SEC_LEVEL for open mode. Others
7727                          * are set by ipw_wpa_set_encryption.
7728                          */
7729                         if (!param->value) {
7730                                 sec.flags |= SEC_LEVEL;
7731                                 sec.level = SEC_LEVEL_0;
7732                         } else {
7733                                 sec.flags |= SEC_LEVEL;
7734                                 sec.level = SEC_LEVEL_1;
7735                         }
7736                         if (priv->ieee->set_security)
7737                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7738                         break;
7739                 }
7740
7741         case IW_AUTH_80211_AUTH_ALG:
7742                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7743                 break;
7744
7745         case IW_AUTH_WPA_ENABLED:
7746                 ret = ipw2100_wpa_enable(priv, param->value);
7747                 break;
7748
7749         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7750                 ieee->ieee802_1x = param->value;
7751                 break;
7752
7753                 //case IW_AUTH_ROAMING_CONTROL:
7754         case IW_AUTH_PRIVACY_INVOKED:
7755                 ieee->privacy_invoked = param->value;
7756                 break;
7757
7758         default:
7759                 return -EOPNOTSUPP;
7760         }
7761         return ret;
7762 }
7763
7764 /* SIOCGIWAUTH */
7765 static int ipw2100_wx_get_auth(struct net_device *dev,
7766                                struct iw_request_info *info,
7767                                union iwreq_data *wrqu, char *extra)
7768 {
7769         struct ipw2100_priv *priv = libipw_priv(dev);
7770         struct libipw_device *ieee = priv->ieee;
7771         struct lib80211_crypt_data *crypt;
7772         struct iw_param *param = &wrqu->param;
7773         int ret = 0;
7774
7775         switch (param->flags & IW_AUTH_INDEX) {
7776         case IW_AUTH_WPA_VERSION:
7777         case IW_AUTH_CIPHER_PAIRWISE:
7778         case IW_AUTH_CIPHER_GROUP:
7779         case IW_AUTH_KEY_MGMT:
7780                 /*
7781                  * wpa_supplicant will control these internally
7782                  */
7783                 ret = -EOPNOTSUPP;
7784                 break;
7785
7786         case IW_AUTH_TKIP_COUNTERMEASURES:
7787                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7788                 if (!crypt || !crypt->ops->get_flags) {
7789                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7790                                           "crypt not set!\n");
7791                         break;
7792                 }
7793
7794                 param->value = (crypt->ops->get_flags(crypt->priv) &
7795                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7796
7797                 break;
7798
7799         case IW_AUTH_DROP_UNENCRYPTED:
7800                 param->value = ieee->drop_unencrypted;
7801                 break;
7802
7803         case IW_AUTH_80211_AUTH_ALG:
7804                 param->value = priv->ieee->sec.auth_mode;
7805                 break;
7806
7807         case IW_AUTH_WPA_ENABLED:
7808                 param->value = ieee->wpa_enabled;
7809                 break;
7810
7811         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7812                 param->value = ieee->ieee802_1x;
7813                 break;
7814
7815         case IW_AUTH_ROAMING_CONTROL:
7816         case IW_AUTH_PRIVACY_INVOKED:
7817                 param->value = ieee->privacy_invoked;
7818                 break;
7819
7820         default:
7821                 return -EOPNOTSUPP;
7822         }
7823         return 0;
7824 }
7825
7826 /* SIOCSIWENCODEEXT */
7827 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7828                                     struct iw_request_info *info,
7829                                     union iwreq_data *wrqu, char *extra)
7830 {
7831         struct ipw2100_priv *priv = libipw_priv(dev);
7832         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7833 }
7834
7835 /* SIOCGIWENCODEEXT */
7836 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7837                                     struct iw_request_info *info,
7838                                     union iwreq_data *wrqu, char *extra)
7839 {
7840         struct ipw2100_priv *priv = libipw_priv(dev);
7841         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7842 }
7843
7844 /* SIOCSIWMLME */
7845 static int ipw2100_wx_set_mlme(struct net_device *dev,
7846                                struct iw_request_info *info,
7847                                union iwreq_data *wrqu, char *extra)
7848 {
7849         struct ipw2100_priv *priv = libipw_priv(dev);
7850         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7851         __le16 reason;
7852
7853         reason = cpu_to_le16(mlme->reason_code);
7854
7855         switch (mlme->cmd) {
7856         case IW_MLME_DEAUTH:
7857                 // silently ignore
7858                 break;
7859
7860         case IW_MLME_DISASSOC:
7861                 ipw2100_disassociate_bssid(priv);
7862                 break;
7863
7864         default:
7865                 return -EOPNOTSUPP;
7866         }
7867         return 0;
7868 }
7869
7870 /*
7871  *
7872  * IWPRIV handlers
7873  *
7874  */
7875 #ifdef CONFIG_IPW2100_MONITOR
7876 static int ipw2100_wx_set_promisc(struct net_device *dev,
7877                                   struct iw_request_info *info,
7878                                   union iwreq_data *wrqu, char *extra)
7879 {
7880         struct ipw2100_priv *priv = libipw_priv(dev);
7881         int *parms = (int *)extra;
7882         int enable = (parms[0] > 0);
7883         int err = 0;
7884
7885         mutex_lock(&priv->action_mutex);
7886         if (!(priv->status & STATUS_INITIALIZED)) {
7887                 err = -EIO;
7888                 goto done;
7889         }
7890
7891         if (enable) {
7892                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7893                         err = ipw2100_set_channel(priv, parms[1], 0);
7894                         goto done;
7895                 }
7896                 priv->channel = parms[1];
7897                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7898         } else {
7899                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7900                         err = ipw2100_switch_mode(priv, priv->last_mode);
7901         }
7902       done:
7903         mutex_unlock(&priv->action_mutex);
7904         return err;
7905 }
7906
7907 static int ipw2100_wx_reset(struct net_device *dev,
7908                             struct iw_request_info *info,
7909                             union iwreq_data *wrqu, char *extra)
7910 {
7911         struct ipw2100_priv *priv = libipw_priv(dev);
7912         if (priv->status & STATUS_INITIALIZED)
7913                 schedule_reset(priv);
7914         return 0;
7915 }
7916
7917 #endif
7918
7919 static int ipw2100_wx_set_powermode(struct net_device *dev,
7920                                     struct iw_request_info *info,
7921                                     union iwreq_data *wrqu, char *extra)
7922 {
7923         struct ipw2100_priv *priv = libipw_priv(dev);
7924         int err = 0, mode = *(int *)extra;
7925
7926         mutex_lock(&priv->action_mutex);
7927         if (!(priv->status & STATUS_INITIALIZED)) {
7928                 err = -EIO;
7929                 goto done;
7930         }
7931
7932         if ((mode < 0) || (mode > POWER_MODES))
7933                 mode = IPW_POWER_AUTO;
7934
7935         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7936                 err = ipw2100_set_power_mode(priv, mode);
7937       done:
7938         mutex_unlock(&priv->action_mutex);
7939         return err;
7940 }
7941
7942 #define MAX_POWER_STRING 80
7943 static int ipw2100_wx_get_powermode(struct net_device *dev,
7944                                     struct iw_request_info *info,
7945                                     union iwreq_data *wrqu, char *extra)
7946 {
7947         /*
7948          * This can be called at any time.  No action lock required
7949          */
7950
7951         struct ipw2100_priv *priv = libipw_priv(dev);
7952         int level = IPW_POWER_LEVEL(priv->power_mode);
7953         s32 timeout, period;
7954
7955         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7956                 snprintf(extra, MAX_POWER_STRING,
7957                          "Power save level: %d (Off)", level);
7958         } else {
7959                 switch (level) {
7960                 case IPW_POWER_MODE_CAM:
7961                         snprintf(extra, MAX_POWER_STRING,
7962                                  "Power save level: %d (None)", level);
7963                         break;
7964                 case IPW_POWER_AUTO:
7965                         snprintf(extra, MAX_POWER_STRING,
7966                                  "Power save level: %d (Auto)", level);
7967                         break;
7968                 default:
7969                         timeout = timeout_duration[level - 1] / 1000;
7970                         period = period_duration[level - 1] / 1000;
7971                         snprintf(extra, MAX_POWER_STRING,
7972                                  "Power save level: %d "
7973                                  "(Timeout %dms, Period %dms)",
7974                                  level, timeout, period);
7975                 }
7976         }
7977
7978         wrqu->data.length = strlen(extra) + 1;
7979
7980         return 0;
7981 }
7982
7983 static int ipw2100_wx_set_preamble(struct net_device *dev,
7984                                    struct iw_request_info *info,
7985                                    union iwreq_data *wrqu, char *extra)
7986 {
7987         struct ipw2100_priv *priv = libipw_priv(dev);
7988         int err, mode = *(int *)extra;
7989
7990         mutex_lock(&priv->action_mutex);
7991         if (!(priv->status & STATUS_INITIALIZED)) {
7992                 err = -EIO;
7993                 goto done;
7994         }
7995
7996         if (mode == 1)
7997                 priv->config |= CFG_LONG_PREAMBLE;
7998         else if (mode == 0)
7999                 priv->config &= ~CFG_LONG_PREAMBLE;
8000         else {
8001                 err = -EINVAL;
8002                 goto done;
8003         }
8004
8005         err = ipw2100_system_config(priv, 0);
8006
8007       done:
8008         mutex_unlock(&priv->action_mutex);
8009         return err;
8010 }
8011
8012 static int ipw2100_wx_get_preamble(struct net_device *dev,
8013                                    struct iw_request_info *info,
8014                                    union iwreq_data *wrqu, char *extra)
8015 {
8016         /*
8017          * This can be called at any time.  No action lock required
8018          */
8019
8020         struct ipw2100_priv *priv = libipw_priv(dev);
8021
8022         if (priv->config & CFG_LONG_PREAMBLE)
8023                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8024         else
8025                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8026
8027         return 0;
8028 }
8029
8030 #ifdef CONFIG_IPW2100_MONITOR
8031 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8032                                     struct iw_request_info *info,
8033                                     union iwreq_data *wrqu, char *extra)
8034 {
8035         struct ipw2100_priv *priv = libipw_priv(dev);
8036         int err, mode = *(int *)extra;
8037
8038         mutex_lock(&priv->action_mutex);
8039         if (!(priv->status & STATUS_INITIALIZED)) {
8040                 err = -EIO;
8041                 goto done;
8042         }
8043
8044         if (mode == 1)
8045                 priv->config |= CFG_CRC_CHECK;
8046         else if (mode == 0)
8047                 priv->config &= ~CFG_CRC_CHECK;
8048         else {
8049                 err = -EINVAL;
8050                 goto done;
8051         }
8052         err = 0;
8053
8054       done:
8055         mutex_unlock(&priv->action_mutex);
8056         return err;
8057 }
8058
8059 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8060                                     struct iw_request_info *info,
8061                                     union iwreq_data *wrqu, char *extra)
8062 {
8063         /*
8064          * This can be called at any time.  No action lock required
8065          */
8066
8067         struct ipw2100_priv *priv = libipw_priv(dev);
8068
8069         if (priv->config & CFG_CRC_CHECK)
8070                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8071         else
8072                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8073
8074         return 0;
8075 }
8076 #endif                          /* CONFIG_IPW2100_MONITOR */
8077
8078 static iw_handler ipw2100_wx_handlers[] = {
8079         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8080         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8081         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8082         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8083         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8084         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8085         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8086         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8087         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8088         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8089         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8090         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8091         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8092         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8093         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8094         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8095         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8096         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8097         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8098         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8099         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8100         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8101         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8102         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8103         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8104         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8105         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8106         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8107         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8108         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8109         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8110         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8111         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8112         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8113         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8114 };
8115
8116 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8117 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8118 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8119 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8120 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8121 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8122 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8123 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8124
8125 static const struct iw_priv_args ipw2100_private_args[] = {
8126
8127 #ifdef CONFIG_IPW2100_MONITOR
8128         {
8129          IPW2100_PRIV_SET_MONITOR,
8130          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8131         {
8132          IPW2100_PRIV_RESET,
8133          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8134 #endif                          /* CONFIG_IPW2100_MONITOR */
8135
8136         {
8137          IPW2100_PRIV_SET_POWER,
8138          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8139         {
8140          IPW2100_PRIV_GET_POWER,
8141          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8142          "get_power"},
8143         {
8144          IPW2100_PRIV_SET_LONGPREAMBLE,
8145          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8146         {
8147          IPW2100_PRIV_GET_LONGPREAMBLE,
8148          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8149 #ifdef CONFIG_IPW2100_MONITOR
8150         {
8151          IPW2100_PRIV_SET_CRC_CHECK,
8152          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8153         {
8154          IPW2100_PRIV_GET_CRC_CHECK,
8155          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8156 #endif                          /* CONFIG_IPW2100_MONITOR */
8157 };
8158
8159 static iw_handler ipw2100_private_handler[] = {
8160 #ifdef CONFIG_IPW2100_MONITOR
8161         ipw2100_wx_set_promisc,
8162         ipw2100_wx_reset,
8163 #else                           /* CONFIG_IPW2100_MONITOR */
8164         NULL,
8165         NULL,
8166 #endif                          /* CONFIG_IPW2100_MONITOR */
8167         ipw2100_wx_set_powermode,
8168         ipw2100_wx_get_powermode,
8169         ipw2100_wx_set_preamble,
8170         ipw2100_wx_get_preamble,
8171 #ifdef CONFIG_IPW2100_MONITOR
8172         ipw2100_wx_set_crc_check,
8173         ipw2100_wx_get_crc_check,
8174 #else                           /* CONFIG_IPW2100_MONITOR */
8175         NULL,
8176         NULL,
8177 #endif                          /* CONFIG_IPW2100_MONITOR */
8178 };
8179
8180 /*
8181  * Get wireless statistics.
8182  * Called by /proc/net/wireless
8183  * Also called by SIOCGIWSTATS
8184  */
8185 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8186 {
8187         enum {
8188                 POOR = 30,
8189                 FAIR = 60,
8190                 GOOD = 80,
8191                 VERY_GOOD = 90,
8192                 EXCELLENT = 95,
8193                 PERFECT = 100
8194         };
8195         int rssi_qual;
8196         int tx_qual;
8197         int beacon_qual;
8198         int quality;
8199
8200         struct ipw2100_priv *priv = libipw_priv(dev);
8201         struct iw_statistics *wstats;
8202         u32 rssi, tx_retries, missed_beacons, tx_failures;
8203         u32 ord_len = sizeof(u32);
8204
8205         if (!priv)
8206                 return (struct iw_statistics *)NULL;
8207
8208         wstats = &priv->wstats;
8209
8210         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8211          * ipw2100_wx_wireless_stats seems to be called before fw is
8212          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8213          * and associated; if not associcated, the values are all meaningless
8214          * anyway, so set them all to NULL and INVALID */
8215         if (!(priv->status & STATUS_ASSOCIATED)) {
8216                 wstats->miss.beacon = 0;
8217                 wstats->discard.retries = 0;
8218                 wstats->qual.qual = 0;
8219                 wstats->qual.level = 0;
8220                 wstats->qual.noise = 0;
8221                 wstats->qual.updated = 7;
8222                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8223                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8224                 return wstats;
8225         }
8226
8227         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8228                                 &missed_beacons, &ord_len))
8229                 goto fail_get_ordinal;
8230
8231         /* If we don't have a connection the quality and level is 0 */
8232         if (!(priv->status & STATUS_ASSOCIATED)) {
8233                 wstats->qual.qual = 0;
8234                 wstats->qual.level = 0;
8235         } else {
8236                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8237                                         &rssi, &ord_len))
8238                         goto fail_get_ordinal;
8239                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8240                 if (rssi < 10)
8241                         rssi_qual = rssi * POOR / 10;
8242                 else if (rssi < 15)
8243                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8244                 else if (rssi < 20)
8245                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8246                 else if (rssi < 30)
8247                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8248                             10 + GOOD;
8249                 else
8250                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8251                             10 + VERY_GOOD;
8252
8253                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8254                                         &tx_retries, &ord_len))
8255                         goto fail_get_ordinal;
8256
8257                 if (tx_retries > 75)
8258                         tx_qual = (90 - tx_retries) * POOR / 15;
8259                 else if (tx_retries > 70)
8260                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8261                 else if (tx_retries > 65)
8262                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8263                 else if (tx_retries > 50)
8264                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8265                             15 + GOOD;
8266                 else
8267                         tx_qual = (50 - tx_retries) *
8268                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8269
8270                 if (missed_beacons > 50)
8271                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8272                 else if (missed_beacons > 40)
8273                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8274                             10 + POOR;
8275                 else if (missed_beacons > 32)
8276                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8277                             18 + FAIR;
8278                 else if (missed_beacons > 20)
8279                         beacon_qual = (32 - missed_beacons) *
8280                             (VERY_GOOD - GOOD) / 20 + GOOD;
8281                 else
8282                         beacon_qual = (20 - missed_beacons) *
8283                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8284
8285                 quality = min(tx_qual, rssi_qual);
8286                 quality = min(beacon_qual, quality);
8287
8288 #ifdef CONFIG_IPW2100_DEBUG
8289                 if (beacon_qual == quality)
8290                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8291                 else if (tx_qual == quality)
8292                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8293                 else if (quality != 100)
8294                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8295                 else
8296                         IPW_DEBUG_WX("Quality not clamped.\n");
8297 #endif
8298
8299                 wstats->qual.qual = quality;
8300                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8301         }
8302
8303         wstats->qual.noise = 0;
8304         wstats->qual.updated = 7;
8305         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8306
8307         /* FIXME: this is percent and not a # */
8308         wstats->miss.beacon = missed_beacons;
8309
8310         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8311                                 &tx_failures, &ord_len))
8312                 goto fail_get_ordinal;
8313         wstats->discard.retries = tx_failures;
8314
8315         return wstats;
8316
8317       fail_get_ordinal:
8318         IPW_DEBUG_WX("failed querying ordinals.\n");
8319
8320         return (struct iw_statistics *)NULL;
8321 }
8322
8323 static struct iw_handler_def ipw2100_wx_handler_def = {
8324         .standard = ipw2100_wx_handlers,
8325         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8326         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8327         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8328         .private = (iw_handler *) ipw2100_private_handler,
8329         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8330         .get_wireless_stats = ipw2100_wx_wireless_stats,
8331 };
8332
8333 static void ipw2100_wx_event_work(struct work_struct *work)
8334 {
8335         struct ipw2100_priv *priv =
8336                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8337         union iwreq_data wrqu;
8338         unsigned int len = ETH_ALEN;
8339
8340         if (priv->status & STATUS_STOPPING)
8341                 return;
8342
8343         mutex_lock(&priv->action_mutex);
8344
8345         IPW_DEBUG_WX("enter\n");
8346
8347         mutex_unlock(&priv->action_mutex);
8348
8349         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8350
8351         /* Fetch BSSID from the hardware */
8352         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8353             priv->status & STATUS_RF_KILL_MASK ||
8354             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8355                                 &priv->bssid, &len)) {
8356                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8357         } else {
8358                 /* We now have the BSSID, so can finish setting to the full
8359                  * associated state */
8360                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8361                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8362                 priv->status &= ~STATUS_ASSOCIATING;
8363                 priv->status |= STATUS_ASSOCIATED;
8364                 netif_carrier_on(priv->net_dev);
8365                 netif_wake_queue(priv->net_dev);
8366         }
8367
8368         if (!(priv->status & STATUS_ASSOCIATED)) {
8369                 IPW_DEBUG_WX("Configuring ESSID\n");
8370                 mutex_lock(&priv->action_mutex);
8371                 /* This is a disassociation event, so kick the firmware to
8372                  * look for another AP */
8373                 if (priv->config & CFG_STATIC_ESSID)
8374                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8375                                           0);
8376                 else
8377                         ipw2100_set_essid(priv, NULL, 0, 0);
8378                 mutex_unlock(&priv->action_mutex);
8379         }
8380
8381         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8382 }
8383
8384 #define IPW2100_FW_MAJOR_VERSION 1
8385 #define IPW2100_FW_MINOR_VERSION 3
8386
8387 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8388 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8389
8390 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8391                              IPW2100_FW_MAJOR_VERSION)
8392
8393 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8394 "." __stringify(IPW2100_FW_MINOR_VERSION)
8395
8396 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8397
8398 /*
8399
8400 BINARY FIRMWARE HEADER FORMAT
8401
8402 offset      length   desc
8403 0           2        version
8404 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8405 4           4        fw_len
8406 8           4        uc_len
8407 C           fw_len   firmware data
8408 12 + fw_len uc_len   microcode data
8409
8410 */
8411
8412 struct ipw2100_fw_header {
8413         short version;
8414         short mode;
8415         unsigned int fw_size;
8416         unsigned int uc_size;
8417 } __packed;
8418
8419 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8420 {
8421         struct ipw2100_fw_header *h =
8422             (struct ipw2100_fw_header *)fw->fw_entry->data;
8423
8424         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8425                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8426                        "(detected version id of %u). "
8427                        "See Documentation/networking/README.ipw2100\n",
8428                        h->version);
8429                 return 1;
8430         }
8431
8432         fw->version = h->version;
8433         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8434         fw->fw.size = h->fw_size;
8435         fw->uc.data = fw->fw.data + h->fw_size;
8436         fw->uc.size = h->uc_size;
8437
8438         return 0;
8439 }
8440
8441 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8442                                 struct ipw2100_fw *fw)
8443 {
8444         char *fw_name;
8445         int rc;
8446
8447         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8448                        priv->net_dev->name);
8449
8450         switch (priv->ieee->iw_mode) {
8451         case IW_MODE_ADHOC:
8452                 fw_name = IPW2100_FW_NAME("-i");
8453                 break;
8454 #ifdef CONFIG_IPW2100_MONITOR
8455         case IW_MODE_MONITOR:
8456                 fw_name = IPW2100_FW_NAME("-p");
8457                 break;
8458 #endif
8459         case IW_MODE_INFRA:
8460         default:
8461                 fw_name = IPW2100_FW_NAME("");
8462                 break;
8463         }
8464
8465         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8466
8467         if (rc < 0) {
8468                 printk(KERN_ERR DRV_NAME ": "
8469                        "%s: Firmware '%s' not available or load failed.\n",
8470                        priv->net_dev->name, fw_name);
8471                 return rc;
8472         }
8473         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8474                        fw->fw_entry->size);
8475
8476         ipw2100_mod_firmware_load(fw);
8477
8478         return 0;
8479 }
8480
8481 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8482 #ifdef CONFIG_IPW2100_MONITOR
8483 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8484 #endif
8485 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8486
8487 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8488                                      struct ipw2100_fw *fw)
8489 {
8490         fw->version = 0;
8491         release_firmware(fw->fw_entry);
8492         fw->fw_entry = NULL;
8493 }
8494
8495 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8496                                  size_t max)
8497 {
8498         char ver[MAX_FW_VERSION_LEN];
8499         u32 len = MAX_FW_VERSION_LEN;
8500         u32 tmp;
8501         int i;
8502         /* firmware version is an ascii string (max len of 14) */
8503         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8504                 return -EIO;
8505         tmp = max;
8506         if (len >= max)
8507                 len = max - 1;
8508         for (i = 0; i < len; i++)
8509                 buf[i] = ver[i];
8510         buf[i] = '\0';
8511         return tmp;
8512 }
8513
8514 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8515                                     size_t max)
8516 {
8517         u32 ver;
8518         u32 len = sizeof(ver);
8519         /* microcode version is a 32 bit integer */
8520         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8521                 return -EIO;
8522         return snprintf(buf, max, "%08X", ver);
8523 }
8524
8525 /*
8526  * On exit, the firmware will have been freed from the fw list
8527  */
8528 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8529 {
8530         /* firmware is constructed of N contiguous entries, each entry is
8531          * structured as:
8532          *
8533          * offset    sie         desc
8534          * 0         4           address to write to
8535          * 4         2           length of data run
8536          * 6         length      data
8537          */
8538         unsigned int addr;
8539         unsigned short len;
8540
8541         const unsigned char *firmware_data = fw->fw.data;
8542         unsigned int firmware_data_left = fw->fw.size;
8543
8544         while (firmware_data_left > 0) {
8545                 addr = *(u32 *) (firmware_data);
8546                 firmware_data += 4;
8547                 firmware_data_left -= 4;
8548
8549                 len = *(u16 *) (firmware_data);
8550                 firmware_data += 2;
8551                 firmware_data_left -= 2;
8552
8553                 if (len > 32) {
8554                         printk(KERN_ERR DRV_NAME ": "
8555                                "Invalid firmware run-length of %d bytes\n",
8556                                len);
8557                         return -EINVAL;
8558                 }
8559
8560                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8561                 firmware_data += len;
8562                 firmware_data_left -= len;
8563         }
8564
8565         return 0;
8566 }
8567
8568 struct symbol_alive_response {
8569         u8 cmd_id;
8570         u8 seq_num;
8571         u8 ucode_rev;
8572         u8 eeprom_valid;
8573         u16 valid_flags;
8574         u8 IEEE_addr[6];
8575         u16 flags;
8576         u16 pcb_rev;
8577         u16 clock_settle_time;  // 1us LSB
8578         u16 powerup_settle_time;        // 1us LSB
8579         u16 hop_settle_time;    // 1us LSB
8580         u8 date[3];             // month, day, year
8581         u8 time[2];             // hours, minutes
8582         u8 ucode_valid;
8583 };
8584
8585 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8586                                   struct ipw2100_fw *fw)
8587 {
8588         struct net_device *dev = priv->net_dev;
8589         const unsigned char *microcode_data = fw->uc.data;
8590         unsigned int microcode_data_left = fw->uc.size;
8591         void __iomem *reg = priv->ioaddr;
8592
8593         struct symbol_alive_response response;
8594         int i, j;
8595         u8 data;
8596
8597         /* Symbol control */
8598         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8599         readl(reg);
8600         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8601         readl(reg);
8602
8603         /* HW config */
8604         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8605         readl(reg);
8606         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8607         readl(reg);
8608
8609         /* EN_CS_ACCESS bit to reset control store pointer */
8610         write_nic_byte(dev, 0x210000, 0x40);
8611         readl(reg);
8612         write_nic_byte(dev, 0x210000, 0x0);
8613         readl(reg);
8614         write_nic_byte(dev, 0x210000, 0x40);
8615         readl(reg);
8616
8617         /* copy microcode from buffer into Symbol */
8618
8619         while (microcode_data_left > 0) {
8620                 write_nic_byte(dev, 0x210010, *microcode_data++);
8621                 write_nic_byte(dev, 0x210010, *microcode_data++);
8622                 microcode_data_left -= 2;
8623         }
8624
8625         /* EN_CS_ACCESS bit to reset the control store pointer */
8626         write_nic_byte(dev, 0x210000, 0x0);
8627         readl(reg);
8628
8629         /* Enable System (Reg 0)
8630          * first enable causes garbage in RX FIFO */
8631         write_nic_byte(dev, 0x210000, 0x0);
8632         readl(reg);
8633         write_nic_byte(dev, 0x210000, 0x80);
8634         readl(reg);
8635
8636         /* Reset External Baseband Reg */
8637         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8638         readl(reg);
8639         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8640         readl(reg);
8641
8642         /* HW Config (Reg 5) */
8643         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8644         readl(reg);
8645         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8646         readl(reg);
8647
8648         /* Enable System (Reg 0)
8649          * second enable should be OK */
8650         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8651         readl(reg);
8652         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8653
8654         /* check Symbol is enabled - upped this from 5 as it wasn't always
8655          * catching the update */
8656         for (i = 0; i < 10; i++) {
8657                 udelay(10);
8658
8659                 /* check Dino is enabled bit */
8660                 read_nic_byte(dev, 0x210000, &data);
8661                 if (data & 0x1)
8662                         break;
8663         }
8664
8665         if (i == 10) {
8666                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8667                        dev->name);
8668                 return -EIO;
8669         }
8670
8671         /* Get Symbol alive response */
8672         for (i = 0; i < 30; i++) {
8673                 /* Read alive response structure */
8674                 for (j = 0;
8675                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8676                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8677
8678                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8679                         break;
8680                 udelay(10);
8681         }
8682
8683         if (i == 30) {
8684                 printk(KERN_ERR DRV_NAME
8685                        ": %s: No response from Symbol - hw not alive\n",
8686                        dev->name);
8687                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8688                 return -EIO;
8689         }
8690
8691         return 0;
8692 }