1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 * Copyright (C) 2003-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
7 #include <linux/sched.h>
8 #include <linux/wait.h>
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
17 /******************************************************************************
21 ******************************************************************************/
24 * Rx theory of operation
26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27 * each of which point to Receive Buffers to be filled by the NIC. These get
28 * used not only for Rx frames, but for any command response or notification
29 * from the NIC. The driver and NIC manage the Rx buffers by means
30 * of indexes into the circular buffer.
33 * The host/firmware share two index registers for managing the Rx buffers.
35 * The READ index maps to the first position that the firmware may be writing
36 * to -- the driver can read up to (but not including) this position and get
38 * The READ index is managed by the firmware once the card is enabled.
40 * The WRITE index maps to the last position the driver has read from -- the
41 * position preceding WRITE is the last slot the firmware can place a packet.
43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
46 * During initialization, the host sets up the READ queue position to the first
47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
49 * When the firmware places a packet in a buffer, it will advance the READ index
50 * and fire the RX interrupt. The driver can then query the READ index and
51 * process as many packets as possible, moving the WRITE index forward as it
52 * resets the Rx queue buffers with new memory.
54 * The management in the driver is as follows:
55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56 * When the interrupt handler is called, the request is processed.
57 * The page is either stolen - transferred to the upper layer
58 * or reused - added immediately to the iwl->rxq->rx_free list.
59 * + When the page is stolen - the driver updates the matching queue's used
60 * count, detaches the RBD and transfers it to the queue used list.
61 * When there are two used RBDs - they are transferred to the allocator empty
62 * list. Work is then scheduled for the allocator to start allocating
64 * When there are another 6 used RBDs - they are transferred to the allocator
65 * empty list and the driver tries to claim the pre-allocated buffers and
66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
68 * When there are 8+ buffers in the free list - either from allocation or from
69 * 8 reused unstolen pages - restock is called to update the FW and indexes.
70 * + In order to make sure the allocator always has RBDs to use for allocation
71 * the allocator has initial pool in the size of num_queues*(8-2) - the
72 * maximum missing RBDs per allocation request (request posted with 2
73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74 * The queues supplies the recycle of the rest of the RBDs.
75 * + A received packet is processed and handed to the kernel network stack,
76 * detached from the iwl->rxq. The driver 'processed' index is updated.
77 * + If there are no allocated buffers in iwl->rxq->rx_free,
78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79 * If there were enough free buffers and RX_STALLED is set it is cleared.
84 * iwl_rxq_alloc() Allocates rx_free
85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
86 * iwl_pcie_rxq_restock.
87 * Used only during initialization.
88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
89 * queue, updates firmware pointers, and updates
91 * iwl_pcie_rx_allocator() Background work for allocating pages.
93 * -- enable interrupts --
94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
95 * READ INDEX, detaching the SKB from the pool.
96 * Moves the packet buffer from queue to rx_used.
97 * Posts and claims requests to the allocator.
98 * Calls iwl_pcie_rxq_restock to refill any empty
104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
106 * Regular Receive interrupt:
108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
111 * rxq.queue -> rxq.rx_free -> rxq.queue
117 * iwl_rxq_space - Return number of free slots available in queue.
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
121 /* Make sure rx queue size is a power of 2 */
122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 * between empty and completely full queues.
127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 * defined for negative dividends.
130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
138 return cpu_to_le32((u32)(dma_addr >> 8));
142 * iwl_pcie_rx_stop - stops the Rx DMA
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 /* TODO: remove this once fw does it */
148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 } else if (trans->trans_cfg->mq_rx_supported) {
152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
171 lockdep_assert_held(&rxq->lock);
174 * explicitly wake up the NIC if:
175 * 1. shadow registers aren't enabled
176 * 2. there is a chance that the NIC is asleep
178 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
185 iwl_set_bit(trans, CSR_GP_CNTRL,
186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 rxq->need_update = true;
192 rxq->write_actual = round_down(rxq->write, 8);
193 if (!trans->trans_cfg->mq_rx_supported)
194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
197 HBUS_TARG_WRPTR_RX_Q(rxq->id));
199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
208 for (i = 0; i < trans->num_rx_queues; i++) {
209 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
211 if (!rxq->need_update)
213 spin_lock_bh(&rxq->lock);
214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
215 rxq->need_update = false;
216 spin_unlock_bh(&rxq->lock);
220 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
222 struct iwl_rx_mem_buffer *rxb)
224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
225 struct iwl_rx_transfer_desc *bd = rxq->bd;
227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
232 __le64 *bd = rxq->bd;
234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
237 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
238 (u32)rxb->vid, rxq->id, rxq->write);
242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
244 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
247 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
248 struct iwl_rx_mem_buffer *rxb;
251 * If the device isn't enabled - no need to try to add buffers...
252 * This can happen when we stop the device and still have an interrupt
253 * pending. We stop the APM before we sync the interrupts because we
254 * have to (see comment there). On the other hand, since the APM is
255 * stopped, we cannot access the HW (in particular not prph).
256 * So don't try to restock if the APM has been already stopped.
258 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
261 spin_lock_bh(&rxq->lock);
262 while (rxq->free_count) {
263 /* Get next free Rx buffer, remove from free list */
264 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
266 list_del(&rxb->list);
267 rxb->invalid = false;
268 /* some low bits are expected to be unset (depending on hw) */
269 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
270 /* Point to Rx buffer via next RBD in circular buffer */
271 iwl_pcie_restock_bd(trans, rxq, rxb);
272 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
275 spin_unlock_bh(&rxq->lock);
278 * If we've added more space for the firmware to place data, tell it.
279 * Increment device's write pointer in multiples of 8.
281 if (rxq->write_actual != (rxq->write & ~0x7)) {
282 spin_lock_bh(&rxq->lock);
283 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
284 spin_unlock_bh(&rxq->lock);
289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
291 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
294 struct iwl_rx_mem_buffer *rxb;
297 * If the device isn't enabled - not need to try to add buffers...
298 * This can happen when we stop the device and still have an interrupt
299 * pending. We stop the APM before we sync the interrupts because we
300 * have to (see comment there). On the other hand, since the APM is
301 * stopped, we cannot access the HW (in particular not prph).
302 * So don't try to restock if the APM has been already stopped.
304 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
307 spin_lock_bh(&rxq->lock);
308 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
309 __le32 *bd = (__le32 *)rxq->bd;
310 /* The overwritten rxb must be a used one */
311 rxb = rxq->queue[rxq->write];
312 BUG_ON(rxb && rxb->page);
314 /* Get next free Rx buffer, remove from free list */
315 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
317 list_del(&rxb->list);
318 rxb->invalid = false;
320 /* Point to Rx buffer via next RBD in circular buffer */
321 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
322 rxq->queue[rxq->write] = rxb;
323 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
326 spin_unlock_bh(&rxq->lock);
328 /* If we've added more space for the firmware to place data, tell it.
329 * Increment device's write pointer in multiples of 8. */
330 if (rxq->write_actual != (rxq->write & ~0x7)) {
331 spin_lock_bh(&rxq->lock);
332 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
333 spin_unlock_bh(&rxq->lock);
338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
340 * If there are slots in the RX queue that need to be restocked,
341 * and we have free pre-allocated buffers, fill the ranks as much
342 * as we can, pulling from rx_free.
344 * This moves the 'write' index forward to catch up with 'processed', and
345 * also updates the memory address in the firmware to reference the new
349 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
351 if (trans->trans_cfg->mq_rx_supported)
352 iwl_pcie_rxmq_restock(trans, rxq);
354 iwl_pcie_rxsq_restock(trans, rxq);
358 * iwl_pcie_rx_alloc_page - allocates and returns a page.
361 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
362 u32 *offset, gfp_t priority)
364 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
365 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
366 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
368 gfp_t gfp_mask = priority;
370 if (trans_pcie->rx_page_order > 0)
371 gfp_mask |= __GFP_COMP;
373 if (trans_pcie->alloc_page) {
374 spin_lock_bh(&trans_pcie->alloc_page_lock);
376 if (trans_pcie->alloc_page) {
377 *offset = trans_pcie->alloc_page_used;
378 page = trans_pcie->alloc_page;
379 trans_pcie->alloc_page_used += rbsize;
380 if (trans_pcie->alloc_page_used >= allocsize)
381 trans_pcie->alloc_page = NULL;
384 spin_unlock_bh(&trans_pcie->alloc_page_lock);
387 spin_unlock_bh(&trans_pcie->alloc_page_lock);
390 /* Alloc a new receive buffer */
391 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
394 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
395 trans_pcie->rx_page_order);
397 * Issue an error if we don't have enough pre-allocated
400 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
402 "Failed to alloc_pages\n");
406 if (2 * rbsize <= allocsize) {
407 spin_lock_bh(&trans_pcie->alloc_page_lock);
408 if (!trans_pcie->alloc_page) {
410 trans_pcie->alloc_page = page;
411 trans_pcie->alloc_page_used = rbsize;
413 spin_unlock_bh(&trans_pcie->alloc_page_lock);
421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
423 * A used RBD is an Rx buffer that has been given to the stack. To use it again
424 * a page must be allocated and the RBD must point to the page. This function
425 * doesn't change the HW pointer but handles the list of pages that is used by
426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
429 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
432 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
433 struct iwl_rx_mem_buffer *rxb;
439 spin_lock_bh(&rxq->lock);
440 if (list_empty(&rxq->rx_used)) {
441 spin_unlock_bh(&rxq->lock);
444 spin_unlock_bh(&rxq->lock);
446 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
450 spin_lock_bh(&rxq->lock);
452 if (list_empty(&rxq->rx_used)) {
453 spin_unlock_bh(&rxq->lock);
454 __free_pages(page, trans_pcie->rx_page_order);
457 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
459 list_del(&rxb->list);
460 spin_unlock_bh(&rxq->lock);
464 rxb->offset = offset;
465 /* Get physical address of the RB */
467 dma_map_page(trans->dev, page, rxb->offset,
468 trans_pcie->rx_buf_bytes,
470 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
472 spin_lock_bh(&rxq->lock);
473 list_add(&rxb->list, &rxq->rx_used);
474 spin_unlock_bh(&rxq->lock);
475 __free_pages(page, trans_pcie->rx_page_order);
479 spin_lock_bh(&rxq->lock);
481 list_add_tail(&rxb->list, &rxq->rx_free);
484 spin_unlock_bh(&rxq->lock);
488 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
490 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
493 if (!trans_pcie->rx_pool)
496 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
497 if (!trans_pcie->rx_pool[i].page)
499 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
500 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
501 __free_pages(trans_pcie->rx_pool[i].page,
502 trans_pcie->rx_page_order);
503 trans_pcie->rx_pool[i].page = NULL;
508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
510 * Allocates for each received request 8 pages
511 * Called as a scheduled work item.
513 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
515 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
516 struct iwl_rb_allocator *rba = &trans_pcie->rba;
517 struct list_head local_empty;
518 int pending = atomic_read(&rba->req_pending);
520 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
522 /* If we were scheduled - there is at least one request */
523 spin_lock_bh(&rba->lock);
524 /* swap out the rba->rbd_empty to a local list */
525 list_replace_init(&rba->rbd_empty, &local_empty);
526 spin_unlock_bh(&rba->lock);
530 LIST_HEAD(local_allocated);
531 gfp_t gfp_mask = GFP_KERNEL;
533 /* Do not post a warning if there are only a few requests */
534 if (pending < RX_PENDING_WATERMARK)
535 gfp_mask |= __GFP_NOWARN;
537 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
538 struct iwl_rx_mem_buffer *rxb;
541 /* List should never be empty - each reused RBD is
542 * returned to the list, and initial pool covers any
543 * possible gap between the time the page is allocated
544 * to the time the RBD is added.
546 BUG_ON(list_empty(&local_empty));
547 /* Get the first rxb from the rbd list */
548 rxb = list_first_entry(&local_empty,
549 struct iwl_rx_mem_buffer, list);
552 /* Alloc a new receive buffer */
553 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
559 /* Get physical address of the RB */
560 rxb->page_dma = dma_map_page(trans->dev, page,
562 trans_pcie->rx_buf_bytes,
564 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
566 __free_pages(page, trans_pcie->rx_page_order);
570 /* move the allocated entry to the out list */
571 list_move(&rxb->list, &local_allocated);
575 atomic_dec(&rba->req_pending);
579 pending = atomic_read(&rba->req_pending);
582 "Got more pending allocation requests = %d\n",
586 spin_lock_bh(&rba->lock);
587 /* add the allocated rbds to the allocator allocated list */
588 list_splice_tail(&local_allocated, &rba->rbd_allocated);
589 /* get more empty RBDs for current pending requests */
590 list_splice_tail_init(&rba->rbd_empty, &local_empty);
591 spin_unlock_bh(&rba->lock);
593 atomic_inc(&rba->req_ready);
597 spin_lock_bh(&rba->lock);
598 /* return unused rbds to the allocator empty list */
599 list_splice_tail(&local_empty, &rba->rbd_empty);
600 spin_unlock_bh(&rba->lock);
602 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
608 .* Called by queue when the queue posted allocation request and
609 * has freed 8 RBDs in order to restock itself.
610 * This function directly moves the allocated RBs to the queue's ownership
611 * and updates the relevant counters.
613 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
616 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
617 struct iwl_rb_allocator *rba = &trans_pcie->rba;
620 lockdep_assert_held(&rxq->lock);
623 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
624 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
625 * function will return early, as there are no ready requests.
626 * atomic_dec_if_positive will perofrm the *actual* decrement only if
627 * req_ready > 0, i.e. - there are ready requests and the function
628 * hands one request to the caller.
630 if (atomic_dec_if_positive(&rba->req_ready) < 0)
633 spin_lock(&rba->lock);
634 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
635 /* Get next free Rx buffer, remove it from free list */
636 struct iwl_rx_mem_buffer *rxb =
637 list_first_entry(&rba->rbd_allocated,
638 struct iwl_rx_mem_buffer, list);
640 list_move(&rxb->list, &rxq->rx_free);
642 spin_unlock(&rba->lock);
644 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
645 rxq->free_count += RX_CLAIM_REQ_ALLOC;
648 void iwl_pcie_rx_allocator_work(struct work_struct *data)
650 struct iwl_rb_allocator *rba_p =
651 container_of(data, struct iwl_rb_allocator, rx_alloc);
652 struct iwl_trans_pcie *trans_pcie =
653 container_of(rba_p, struct iwl_trans_pcie, rba);
655 iwl_pcie_rx_allocator(trans_pcie->trans);
658 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
660 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
661 return sizeof(struct iwl_rx_transfer_desc);
663 return trans->trans_cfg->mq_rx_supported ?
664 sizeof(__le64) : sizeof(__le32);
667 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
669 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
670 return sizeof(struct iwl_rx_completion_desc_bz);
672 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
673 return sizeof(struct iwl_rx_completion_desc);
675 return sizeof(__le32);
678 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
681 int free_size = iwl_pcie_free_bd_size(trans);
684 dma_free_coherent(trans->dev,
685 free_size * rxq->queue_size,
686 rxq->bd, rxq->bd_dma);
690 rxq->rb_stts_dma = 0;
694 dma_free_coherent(trans->dev,
695 iwl_pcie_used_bd_size(trans) *
697 rxq->used_bd, rxq->used_bd_dma);
698 rxq->used_bd_dma = 0;
702 static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans)
704 bool use_rx_td = (trans->trans_cfg->device_family >=
705 IWL_DEVICE_FAMILY_AX210);
708 return sizeof(__le16);
710 return sizeof(struct iwl_rb_status);
713 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
716 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
717 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
718 struct device *dev = trans->dev;
722 spin_lock_init(&rxq->lock);
723 if (trans->trans_cfg->mq_rx_supported)
724 rxq->queue_size = trans->cfg->num_rbds;
726 rxq->queue_size = RX_QUEUE_SIZE;
728 free_size = iwl_pcie_free_bd_size(trans);
731 * Allocate the circular buffer of Read Buffer Descriptors
734 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
735 &rxq->bd_dma, GFP_KERNEL);
739 if (trans->trans_cfg->mq_rx_supported) {
740 rxq->used_bd = dma_alloc_coherent(dev,
741 iwl_pcie_used_bd_size(trans) *
749 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
751 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
756 for (i = 0; i < trans->num_rx_queues; i++) {
757 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
759 iwl_pcie_free_rxq_dma(trans, rxq);
765 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
767 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
768 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
769 struct iwl_rb_allocator *rba = &trans_pcie->rba;
772 if (WARN_ON(trans_pcie->rxq))
775 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
777 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
778 sizeof(trans_pcie->rx_pool[0]),
780 trans_pcie->global_table =
781 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
782 sizeof(trans_pcie->global_table[0]),
784 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
785 !trans_pcie->global_table) {
790 spin_lock_init(&rba->lock);
793 * Allocate the driver's pointer to receive buffer status.
794 * Allocate for all queues continuously (HW requirement).
796 trans_pcie->base_rb_stts =
797 dma_alloc_coherent(trans->dev,
798 rb_stts_size * trans->num_rx_queues,
799 &trans_pcie->base_rb_stts_dma,
801 if (!trans_pcie->base_rb_stts) {
806 for (i = 0; i < trans->num_rx_queues; i++) {
807 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
810 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
817 if (trans_pcie->base_rb_stts) {
818 dma_free_coherent(trans->dev,
819 rb_stts_size * trans->num_rx_queues,
820 trans_pcie->base_rb_stts,
821 trans_pcie->base_rb_stts_dma);
822 trans_pcie->base_rb_stts = NULL;
823 trans_pcie->base_rb_stts_dma = 0;
825 kfree(trans_pcie->rx_pool);
826 trans_pcie->rx_pool = NULL;
827 kfree(trans_pcie->global_table);
828 trans_pcie->global_table = NULL;
829 kfree(trans_pcie->rxq);
830 trans_pcie->rxq = NULL;
835 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
837 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
839 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
841 switch (trans_pcie->rx_buf_size) {
843 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
846 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
849 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
853 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
856 if (!iwl_trans_grab_nic_access(trans))
860 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
861 /* reset and flush pointers */
862 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
863 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
864 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
866 /* Reset driver's Rx queue write index */
867 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
869 /* Tell device where to find RBD circular buffer in DRAM */
870 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
871 (u32)(rxq->bd_dma >> 8));
873 /* Tell device where in DRAM to update its Rx status */
874 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
875 rxq->rb_stts_dma >> 4);
878 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
879 * the credit mechanism in 5000 HW RX FIFO
880 * Direct rx interrupts to hosts
881 * Rx buffer size 4 or 8k or 12k
885 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
886 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
887 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
888 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
890 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
891 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
893 iwl_trans_release_nic_access(trans);
895 /* Set interrupt coalescing timer to default (2048 usecs) */
896 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
898 /* W/A for interrupt coalescing bug in 7260 and 3160 */
899 if (trans->cfg->host_interrupt_operation_mode)
900 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
903 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
905 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
906 u32 rb_size, enabled = 0;
909 switch (trans_pcie->rx_buf_size) {
911 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
914 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
917 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
920 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
924 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
927 if (!iwl_trans_grab_nic_access(trans))
931 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
932 /* disable free amd used rx queue operation */
933 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
935 for (i = 0; i < trans->num_rx_queues; i++) {
936 /* Tell device where to find RBD free table in DRAM */
937 iwl_write_prph64_no_grab(trans,
938 RFH_Q_FRBDCB_BA_LSB(i),
939 trans_pcie->rxq[i].bd_dma);
940 /* Tell device where to find RBD used table in DRAM */
941 iwl_write_prph64_no_grab(trans,
942 RFH_Q_URBDCB_BA_LSB(i),
943 trans_pcie->rxq[i].used_bd_dma);
944 /* Tell device where in DRAM to update its Rx status */
945 iwl_write_prph64_no_grab(trans,
946 RFH_Q_URBD_STTS_WPTR_LSB(i),
947 trans_pcie->rxq[i].rb_stts_dma);
948 /* Reset device indice tables */
949 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
950 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
951 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
953 enabled |= BIT(i) | BIT(i + 16);
958 * Rx buffer size 4 or 8k or 12k
960 * Drop frames that exceed RB size
963 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
964 RFH_DMA_EN_ENABLE_VAL | rb_size |
965 RFH_RXF_DMA_MIN_RB_4_8 |
966 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
967 RFH_RXF_DMA_RBDCB_SIZE_512);
970 * Activate DMA snooping.
971 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
974 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
975 RFH_GEN_CFG_RFH_DMA_SNOOP |
976 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
977 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
978 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
979 trans->trans_cfg->integrated ?
980 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
981 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
982 /* Enable the relevant rx queues */
983 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
985 iwl_trans_release_nic_access(trans);
987 /* Set interrupt coalescing timer to default (2048 usecs) */
988 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
991 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
993 lockdep_assert_held(&rxq->lock);
995 INIT_LIST_HEAD(&rxq->rx_free);
996 INIT_LIST_HEAD(&rxq->rx_used);
1001 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1003 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1005 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1006 struct iwl_trans_pcie *trans_pcie;
1007 struct iwl_trans *trans;
1010 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1011 trans = trans_pcie->trans;
1013 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1015 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1016 rxq->id, ret, budget);
1019 spin_lock(&trans_pcie->irq_lock);
1020 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1021 _iwl_enable_interrupts(trans);
1022 spin_unlock(&trans_pcie->irq_lock);
1024 napi_complete_done(&rxq->napi, ret);
1030 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1032 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1033 struct iwl_trans_pcie *trans_pcie;
1034 struct iwl_trans *trans;
1037 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1038 trans = trans_pcie->trans;
1040 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1041 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1045 int irq_line = rxq->id;
1047 /* FIRST_RSS is shared with line 0 */
1048 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1052 spin_lock(&trans_pcie->irq_lock);
1053 iwl_pcie_clear_irq(trans, irq_line);
1054 spin_unlock(&trans_pcie->irq_lock);
1056 napi_complete_done(&rxq->napi, ret);
1062 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
1064 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1067 if (unlikely(!trans_pcie->rxq))
1070 for (i = 0; i < trans->num_rx_queues; i++) {
1071 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1073 if (rxq && rxq->napi.poll)
1074 napi_synchronize(&rxq->napi);
1078 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1080 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1081 struct iwl_rxq *def_rxq;
1082 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1083 int i, err, queue_size, allocator_pool_size, num_alloc;
1085 if (!trans_pcie->rxq) {
1086 err = iwl_pcie_rx_alloc(trans);
1090 def_rxq = trans_pcie->rxq;
1092 cancel_work_sync(&rba->rx_alloc);
1094 spin_lock_bh(&rba->lock);
1095 atomic_set(&rba->req_pending, 0);
1096 atomic_set(&rba->req_ready, 0);
1097 INIT_LIST_HEAD(&rba->rbd_allocated);
1098 INIT_LIST_HEAD(&rba->rbd_empty);
1099 spin_unlock_bh(&rba->lock);
1101 /* free all first - we overwrite everything here */
1102 iwl_pcie_free_rbs_pool(trans);
1104 for (i = 0; i < RX_QUEUE_SIZE; i++)
1105 def_rxq->queue[i] = NULL;
1107 for (i = 0; i < trans->num_rx_queues; i++) {
1108 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1110 spin_lock_bh(&rxq->lock);
1112 * Set read write pointer to reflect that we have processed
1113 * and used all buffers, but have not restocked the Rx queue
1114 * with fresh buffers
1118 rxq->write_actual = 0;
1119 memset(rxq->rb_stts, 0,
1120 (trans->trans_cfg->device_family >=
1121 IWL_DEVICE_FAMILY_AX210) ?
1122 sizeof(__le16) : sizeof(struct iwl_rb_status));
1124 iwl_pcie_rx_init_rxb_lists(rxq);
1126 spin_unlock_bh(&rxq->lock);
1128 if (!rxq->napi.poll) {
1129 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1131 if (trans_pcie->msix_enabled)
1132 poll = iwl_pcie_napi_poll_msix;
1134 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1136 napi_enable(&rxq->napi);
1141 /* move the pool to the default queue and allocator ownerships */
1142 queue_size = trans->trans_cfg->mq_rx_supported ?
1143 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1144 allocator_pool_size = trans->num_rx_queues *
1145 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1146 num_alloc = queue_size + allocator_pool_size;
1148 for (i = 0; i < num_alloc; i++) {
1149 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1151 if (i < allocator_pool_size)
1152 list_add(&rxb->list, &rba->rbd_empty);
1154 list_add(&rxb->list, &def_rxq->rx_used);
1155 trans_pcie->global_table[i] = rxb;
1156 rxb->vid = (u16)(i + 1);
1157 rxb->invalid = true;
1160 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1165 int iwl_pcie_rx_init(struct iwl_trans *trans)
1167 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1168 int ret = _iwl_pcie_rx_init(trans);
1173 if (trans->trans_cfg->mq_rx_supported)
1174 iwl_pcie_rx_mq_hw_init(trans);
1176 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1178 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1180 spin_lock_bh(&trans_pcie->rxq->lock);
1181 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1182 spin_unlock_bh(&trans_pcie->rxq->lock);
1187 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1189 /* Set interrupt coalescing timer to default (2048 usecs) */
1190 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1193 * We don't configure the RFH.
1194 * Restock will be done at alive, after firmware configured the RFH.
1196 return _iwl_pcie_rx_init(trans);
1199 void iwl_pcie_rx_free(struct iwl_trans *trans)
1201 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1202 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
1203 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1207 * if rxq is NULL, it means that nothing has been allocated,
1210 if (!trans_pcie->rxq) {
1211 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1215 cancel_work_sync(&rba->rx_alloc);
1217 iwl_pcie_free_rbs_pool(trans);
1219 if (trans_pcie->base_rb_stts) {
1220 dma_free_coherent(trans->dev,
1221 rb_stts_size * trans->num_rx_queues,
1222 trans_pcie->base_rb_stts,
1223 trans_pcie->base_rb_stts_dma);
1224 trans_pcie->base_rb_stts = NULL;
1225 trans_pcie->base_rb_stts_dma = 0;
1228 for (i = 0; i < trans->num_rx_queues; i++) {
1229 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1231 iwl_pcie_free_rxq_dma(trans, rxq);
1233 if (rxq->napi.poll) {
1234 napi_disable(&rxq->napi);
1235 netif_napi_del(&rxq->napi);
1238 kfree(trans_pcie->rx_pool);
1239 kfree(trans_pcie->global_table);
1240 kfree(trans_pcie->rxq);
1242 if (trans_pcie->alloc_page)
1243 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1246 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1247 struct iwl_rb_allocator *rba)
1249 spin_lock(&rba->lock);
1250 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1251 spin_unlock(&rba->lock);
1255 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1257 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1258 * When there are 2 empty RBDs - a request for allocation is posted
1260 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1261 struct iwl_rx_mem_buffer *rxb,
1262 struct iwl_rxq *rxq, bool emergency)
1264 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1265 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1267 /* Move the RBD to the used list, will be moved to allocator in batches
1268 * before claiming or posting a request*/
1269 list_add_tail(&rxb->list, &rxq->rx_used);
1271 if (unlikely(emergency))
1274 /* Count the allocator owned RBDs */
1277 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1278 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1279 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1280 * after but we still need to post another request.
1282 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1283 /* Move the 2 RBDs to the allocator ownership.
1284 Allocator has another 6 from pool for the request completion*/
1285 iwl_pcie_rx_move_to_allocator(rxq, rba);
1287 atomic_inc(&rba->req_pending);
1288 queue_work(rba->alloc_wq, &rba->rx_alloc);
1292 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1293 struct iwl_rxq *rxq,
1294 struct iwl_rx_mem_buffer *rxb,
1298 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1299 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1300 bool page_stolen = false;
1301 int max_len = trans_pcie->rx_buf_bytes;
1307 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1309 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1310 struct iwl_rx_packet *pkt;
1313 struct iwl_rx_cmd_buffer rxcb = {
1314 ._offset = rxb->offset + offset,
1315 ._rx_page_order = trans_pcie->rx_page_order,
1317 ._page_stolen = false,
1318 .truesize = max_len,
1321 pkt = rxb_addr(&rxcb);
1323 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1325 "Q %d: RB end marker at offset %d\n",
1330 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1331 FH_RSCSR_RXQ_POS != rxq->id,
1332 "frame on invalid queue - is on %d and indicates %d\n",
1334 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1338 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1340 iwl_get_cmd_string(trans,
1341 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1342 pkt->hdr.group_id, pkt->hdr.cmd,
1343 le16_to_cpu(pkt->hdr.sequence));
1345 len = iwl_rx_packet_len(pkt);
1346 len += sizeof(u32); /* account for status word */
1348 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1350 /* check that what the device tells us made sense */
1351 if (len < sizeof(*pkt) || offset > max_len)
1354 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1355 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1357 /* Reclaim a command buffer only if this packet is a response
1358 * to a (driver-originated) command.
1359 * If the packet (e.g. Rx frame) originated from uCode,
1360 * there is no command buffer to reclaim.
1361 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1362 * but apparently a few don't get set; catch them here. */
1363 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1364 if (reclaim && !pkt->hdr.group_id) {
1367 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1368 if (trans_pcie->no_reclaim_cmds[i] ==
1376 if (rxq->id == IWL_DEFAULT_RX_QUEUE)
1377 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1380 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1384 * After here, we should always check rxcb._page_stolen,
1385 * if it is true then one of the handlers took the page.
1389 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1390 int index = SEQ_TO_INDEX(sequence);
1391 int cmd_index = iwl_txq_get_cmd_index(txq, index);
1393 kfree_sensitive(txq->entries[cmd_index].free_buf);
1394 txq->entries[cmd_index].free_buf = NULL;
1396 /* Invoke any callbacks, transfer the buffer to caller,
1397 * and fire off the (possibly) blocking
1398 * iwl_trans_send_cmd()
1399 * as we reclaim the driver command queue */
1400 if (!rxcb._page_stolen)
1401 iwl_pcie_hcmd_complete(trans, &rxcb);
1403 IWL_WARN(trans, "Claim null rxb?\n");
1406 page_stolen |= rxcb._page_stolen;
1407 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1411 /* page was stolen from us -- free our reference */
1413 __free_pages(rxb->page, trans_pcie->rx_page_order);
1417 /* Reuse the page if possible. For notification packets and
1418 * SKBs that fail to Rx correctly, add them back into the
1419 * rx_free list for reuse later. */
1420 if (rxb->page != NULL) {
1422 dma_map_page(trans->dev, rxb->page, rxb->offset,
1423 trans_pcie->rx_buf_bytes,
1425 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1427 * free the page(s) as well to not break
1428 * the invariant that the items on the used
1429 * list have no page(s)
1431 __free_pages(rxb->page, trans_pcie->rx_page_order);
1433 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1435 list_add_tail(&rxb->list, &rxq->rx_free);
1439 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1442 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1443 struct iwl_rxq *rxq, int i,
1446 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1447 struct iwl_rx_mem_buffer *rxb;
1450 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1451 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1453 if (!trans->trans_cfg->mq_rx_supported) {
1454 rxb = rxq->queue[i];
1455 rxq->queue[i] = NULL;
1459 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1460 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1462 vid = le16_to_cpu(cd[i].rbid);
1463 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1464 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1465 struct iwl_rx_completion_desc *cd = rxq->used_bd;
1467 vid = le16_to_cpu(cd[i].rbid);
1468 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1470 __le32 *cd = rxq->used_bd;
1472 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1475 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1478 rxb = trans_pcie->global_table[vid - 1];
1482 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1484 rxb->invalid = true;
1489 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1490 iwl_force_nmi(trans);
1495 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1497 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1499 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1500 struct iwl_rxq *rxq;
1501 u32 r, i, count = 0, handled = 0;
1502 bool emergency = false;
1504 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1507 rxq = &trans_pcie->rxq[queue];
1510 spin_lock(&rxq->lock);
1511 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1512 * buffer that the driver may process (last buffer filled by ucode). */
1513 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1516 /* W/A 9000 device step A0 wrap-around bug */
1517 r &= (rxq->queue_size - 1);
1519 /* Rx interrupt, but nothing sent from uCode */
1521 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1523 while (i != r && ++handled < budget) {
1524 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1525 struct iwl_rx_mem_buffer *rxb;
1526 /* number of RBDs still waiting for page allocation */
1527 u32 rb_pending_alloc =
1528 atomic_read(&trans_pcie->rba.req_pending) *
1532 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1534 iwl_pcie_rx_move_to_allocator(rxq, rba);
1536 IWL_DEBUG_TPT(trans,
1537 "RX path is in emergency. Pending allocations %d\n",
1541 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1543 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1547 if (unlikely(join || rxq->next_rb_is_fragment)) {
1548 rxq->next_rb_is_fragment = join;
1550 * We can only get a multi-RB in the following cases:
1551 * - firmware issue, sending a too big notification
1552 * - sniffer mode with a large A-MSDU
1553 * - large MTU frames (>2k)
1554 * since the multi-RB functionality is limited to newer
1555 * hardware that cannot put multiple entries into a
1558 * Right now, the higher layers aren't set up to deal
1559 * with that, so discard all of these.
1561 list_add_tail(&rxb->list, &rxq->rx_free);
1564 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1567 i = (i + 1) & (rxq->queue_size - 1);
1570 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1571 * try to claim the pre-allocated buffers from the allocator.
1572 * If not ready - will try to reclaim next time.
1573 * There is no need to reschedule work - allocator exits only
1576 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1577 iwl_pcie_rx_allocator_get(trans, rxq);
1579 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1580 /* Add the remaining empty RBDs for allocator use */
1581 iwl_pcie_rx_move_to_allocator(rxq, rba);
1582 } else if (emergency) {
1586 if (rb_pending_alloc < rxq->queue_size / 3) {
1587 IWL_DEBUG_TPT(trans,
1588 "RX path exited emergency. Pending allocations %d\n",
1594 spin_unlock(&rxq->lock);
1595 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1596 iwl_pcie_rxq_restock(trans, rxq);
1602 /* Backtrack one entry */
1604 spin_unlock(&rxq->lock);
1607 * handle a case where in emergency there are some unallocated RBDs.
1608 * those RBDs are in the used list, but are not tracked by the queue's
1609 * used_count which counts allocator owned RBDs.
1610 * unallocated emergency RBDs must be allocated on exit, otherwise
1611 * when called again the function may not be in emergency mode and
1612 * they will be handed to the allocator with no tracking in the RBD
1613 * allocator counters, which will lead to them never being claimed back
1615 * by allocating them here, they are now in the queue free list, and
1616 * will be restocked by the next call of iwl_pcie_rxq_restock.
1618 if (unlikely(emergency && count))
1619 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1621 iwl_pcie_rxq_restock(trans, rxq);
1626 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1628 u8 queue = entry->entry;
1629 struct msix_entry *entries = entry - queue;
1631 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1635 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1636 * This interrupt handler should be used with RSS queue only.
1638 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1640 struct msix_entry *entry = dev_id;
1641 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1642 struct iwl_trans *trans = trans_pcie->trans;
1643 struct iwl_rxq *rxq;
1645 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1647 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1650 if (!trans_pcie->rxq) {
1651 if (net_ratelimit())
1653 "[%d] Got MSI-X interrupt before we have Rx queues\n",
1658 rxq = &trans_pcie->rxq[entry->entry];
1659 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1660 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1663 if (napi_schedule_prep(&rxq->napi))
1664 __napi_schedule(&rxq->napi);
1666 iwl_pcie_clear_irq(trans, entry->entry);
1669 lock_map_release(&trans->sync_cmd_lockdep_map);
1675 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1677 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1681 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1682 if (trans->cfg->internal_wimax_coex &&
1683 !trans->cfg->apmg_not_supported &&
1684 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1685 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1686 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1687 APMG_PS_CTRL_VAL_RESET_REQ))) {
1688 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1689 iwl_op_mode_wimax_active(trans->op_mode);
1690 wake_up(&trans->wait_command_queue);
1694 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1695 if (!trans->txqs.txq[i])
1697 del_timer(&trans->txqs.txq[i]->stuck_timer);
1700 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1701 * before we wake up the command caller, to ensure a proper cleanup. */
1702 iwl_trans_fw_error(trans, false);
1704 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1705 wake_up(&trans->wait_command_queue);
1708 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1712 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1714 trace_iwlwifi_dev_irq(trans->dev);
1716 /* Discover which interrupts are active/pending */
1717 inta = iwl_read32(trans, CSR_INT);
1719 /* the thread will service interrupts and re-enable them */
1723 /* a device (PCI-E) page is 4096 bytes long */
1724 #define ICT_SHIFT 12
1725 #define ICT_SIZE (1 << ICT_SHIFT)
1726 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1728 /* interrupt handler using ict table, with this interrupt driver will
1729 * stop using INTA register to get device's interrupt, reading this register
1730 * is expensive, device will write interrupts in ICT dram table, increment
1731 * index then will fire interrupt to driver, driver will OR all ICT table
1732 * entries from current index up to table entry with 0 value. the result is
1733 * the interrupt we need to service, driver will set the entries back to 0 and
1736 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1738 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1743 trace_iwlwifi_dev_irq(trans->dev);
1745 /* Ignore interrupt if there's nothing in NIC to service.
1746 * This may be due to IRQ shared with another device,
1747 * or due to sporadic interrupts thrown from our NIC. */
1748 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1749 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1754 * Collect all entries up to the first 0, starting from ict_index;
1755 * note we already read at ict_index.
1759 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1760 trans_pcie->ict_index, read);
1761 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1762 trans_pcie->ict_index =
1763 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1765 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1766 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1770 /* We should not get this value, just ignore it. */
1771 if (val == 0xffffffff)
1775 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1776 * (bit 15 before shifting it to 31) to clear when using interrupt
1777 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1778 * so we use them to decide on the real state of the Rx bit.
1779 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1784 inta = (0xff & val) | ((0xff00 & val) << 16);
1788 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1790 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1791 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1792 bool hw_rfkill, prev, report;
1794 mutex_lock(&trans_pcie->mutex);
1795 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1796 hw_rfkill = iwl_is_rfkill_set(trans);
1798 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1799 set_bit(STATUS_RFKILL_HW, &trans->status);
1801 if (trans_pcie->opmode_down)
1804 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1806 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1807 hw_rfkill ? "disable radio" : "enable radio");
1809 isr_stats->rfkill++;
1812 iwl_trans_pcie_rf_kill(trans, report);
1813 mutex_unlock(&trans_pcie->mutex);
1816 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1818 IWL_DEBUG_RF_KILL(trans,
1819 "Rfkill while SYNC HCMD in flight\n");
1820 wake_up(&trans->wait_command_queue);
1822 clear_bit(STATUS_RFKILL_HW, &trans->status);
1823 if (trans_pcie->opmode_down)
1824 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1828 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1830 struct iwl_trans *trans = dev_id;
1831 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1832 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1835 bool polling = false;
1837 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1839 spin_lock_bh(&trans_pcie->irq_lock);
1841 /* dram interrupt table not set yet,
1842 * use legacy interrupt.
1844 if (likely(trans_pcie->use_ict))
1845 inta = iwl_pcie_int_cause_ict(trans);
1847 inta = iwl_pcie_int_cause_non_ict(trans);
1849 if (iwl_have_debug_level(IWL_DL_ISR)) {
1850 IWL_DEBUG_ISR(trans,
1851 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1852 inta, trans_pcie->inta_mask,
1853 iwl_read32(trans, CSR_INT_MASK),
1854 iwl_read32(trans, CSR_FH_INT_STATUS));
1855 if (inta & (~trans_pcie->inta_mask))
1856 IWL_DEBUG_ISR(trans,
1857 "We got a masked interrupt (0x%08x)\n",
1858 inta & (~trans_pcie->inta_mask));
1861 inta &= trans_pcie->inta_mask;
1864 * Ignore interrupt if there's nothing in NIC to service.
1865 * This may be due to IRQ shared with another device,
1866 * or due to sporadic interrupts thrown from our NIC.
1868 if (unlikely(!inta)) {
1869 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1871 * Re-enable interrupts here since we don't
1872 * have anything to service
1874 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1875 _iwl_enable_interrupts(trans);
1876 spin_unlock_bh(&trans_pcie->irq_lock);
1877 lock_map_release(&trans->sync_cmd_lockdep_map);
1881 if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) {
1883 * Hardware disappeared. It might have
1884 * already raised an interrupt.
1886 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1887 spin_unlock_bh(&trans_pcie->irq_lock);
1891 /* Ack/clear/reset pending uCode interrupts.
1892 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1894 /* There is a hardware bug in the interrupt mask function that some
1895 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1896 * they are disabled in the CSR_INT_MASK register. Furthermore the
1897 * ICT interrupt handling mechanism has another bug that might cause
1898 * these unmasked interrupts fail to be detected. We workaround the
1899 * hardware bugs here by ACKing all the possible interrupts so that
1900 * interrupt coalescing can still be achieved.
1902 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1904 if (iwl_have_debug_level(IWL_DL_ISR))
1905 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1906 inta, iwl_read32(trans, CSR_INT_MASK));
1908 spin_unlock_bh(&trans_pcie->irq_lock);
1910 /* Now service all interrupt bits discovered above. */
1911 if (inta & CSR_INT_BIT_HW_ERR) {
1912 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1914 /* Tell the device to stop sending interrupts */
1915 iwl_disable_interrupts(trans);
1918 iwl_pcie_irq_handle_error(trans);
1920 handled |= CSR_INT_BIT_HW_ERR;
1925 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1926 if (inta & CSR_INT_BIT_SCD) {
1927 IWL_DEBUG_ISR(trans,
1928 "Scheduler finished to transmit the frame/frames.\n");
1932 /* Alive notification via Rx interrupt will do the real work */
1933 if (inta & CSR_INT_BIT_ALIVE) {
1934 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1936 if (trans->trans_cfg->gen2) {
1938 * We can restock, since firmware configured
1941 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1944 handled |= CSR_INT_BIT_ALIVE;
1947 /* Safely ignore these bits for debug checks below */
1948 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1950 /* HW RF KILL switch toggled */
1951 if (inta & CSR_INT_BIT_RF_KILL) {
1952 iwl_pcie_handle_rfkill_irq(trans);
1953 handled |= CSR_INT_BIT_RF_KILL;
1956 /* Chip got too hot and stopped itself */
1957 if (inta & CSR_INT_BIT_CT_KILL) {
1958 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1959 isr_stats->ctkill++;
1960 handled |= CSR_INT_BIT_CT_KILL;
1963 /* Error detected by uCode */
1964 if (inta & CSR_INT_BIT_SW_ERR) {
1965 IWL_ERR(trans, "Microcode SW error detected. "
1966 " Restarting 0x%X.\n", inta);
1968 iwl_pcie_irq_handle_error(trans);
1969 handled |= CSR_INT_BIT_SW_ERR;
1972 /* uCode wakes up after power-down sleep */
1973 if (inta & CSR_INT_BIT_WAKEUP) {
1974 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1975 iwl_pcie_rxq_check_wrptr(trans);
1976 iwl_pcie_txq_check_wrptrs(trans);
1978 isr_stats->wakeup++;
1980 handled |= CSR_INT_BIT_WAKEUP;
1983 /* All uCode command responses, including Tx command responses,
1984 * Rx "responses" (frame-received notification), and other
1985 * notifications from uCode come through here*/
1986 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1987 CSR_INT_BIT_RX_PERIODIC)) {
1988 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1989 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1990 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1991 iwl_write32(trans, CSR_FH_INT_STATUS,
1992 CSR_FH_INT_RX_MASK);
1994 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1995 handled |= CSR_INT_BIT_RX_PERIODIC;
1997 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1999 /* Sending RX interrupt require many steps to be done in the
2001 * 1- write interrupt to current index in ICT table.
2003 * 3- update RX shared data to indicate last write index.
2004 * 4- send interrupt.
2005 * This could lead to RX race, driver could receive RX interrupt
2006 * but the shared data changes does not reflect this;
2007 * periodic interrupt will detect any dangling Rx activity.
2010 /* Disable periodic interrupt; we use it as just a one-shot. */
2011 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2012 CSR_INT_PERIODIC_DIS);
2015 * Enable periodic interrupt in 8 msec only if we received
2016 * real RX interrupt (instead of just periodic int), to catch
2017 * any dangling Rx interrupt. If it was just the periodic
2018 * interrupt, there was no dangling Rx activity, and no need
2019 * to extend the periodic interrupt; one-shot is enough.
2021 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2022 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2023 CSR_INT_PERIODIC_ENA);
2028 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2030 __napi_schedule(&trans_pcie->rxq[0].napi);
2035 /* This "Tx" DMA channel is used only for loading uCode */
2036 if (inta & CSR_INT_BIT_FH_TX) {
2037 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2038 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2040 handled |= CSR_INT_BIT_FH_TX;
2041 /* Wake up uCode load routine, now that load is complete */
2042 trans_pcie->ucode_write_complete = true;
2043 wake_up(&trans_pcie->ucode_write_waitq);
2044 /* Wake up IMR write routine, now that write to SRAM is complete */
2045 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2046 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2047 wake_up(&trans_pcie->ucode_write_waitq);
2051 if (inta & ~handled) {
2052 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2053 isr_stats->unhandled++;
2056 if (inta & ~(trans_pcie->inta_mask)) {
2057 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2058 inta & ~trans_pcie->inta_mask);
2062 spin_lock_bh(&trans_pcie->irq_lock);
2063 /* only Re-enable all interrupt if disabled by irq */
2064 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2065 _iwl_enable_interrupts(trans);
2066 /* we are loading the firmware, enable FH_TX interrupt only */
2067 else if (handled & CSR_INT_BIT_FH_TX)
2068 iwl_enable_fw_load_int(trans);
2069 /* Re-enable RF_KILL if it occurred */
2070 else if (handled & CSR_INT_BIT_RF_KILL)
2071 iwl_enable_rfkill_int(trans);
2072 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2073 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2074 iwl_enable_fw_load_int_ctx_info(trans);
2075 spin_unlock_bh(&trans_pcie->irq_lock);
2079 lock_map_release(&trans->sync_cmd_lockdep_map);
2083 /******************************************************************************
2087 ******************************************************************************/
2089 /* Free dram table */
2090 void iwl_pcie_free_ict(struct iwl_trans *trans)
2092 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2094 if (trans_pcie->ict_tbl) {
2095 dma_free_coherent(trans->dev, ICT_SIZE,
2096 trans_pcie->ict_tbl,
2097 trans_pcie->ict_tbl_dma);
2098 trans_pcie->ict_tbl = NULL;
2099 trans_pcie->ict_tbl_dma = 0;
2104 * allocate dram shared table, it is an aligned memory
2105 * block of ICT_SIZE.
2106 * also reset all data related to ICT table interrupt.
2108 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2110 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2112 trans_pcie->ict_tbl =
2113 dma_alloc_coherent(trans->dev, ICT_SIZE,
2114 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2115 if (!trans_pcie->ict_tbl)
2118 /* just an API sanity check ... it is guaranteed to be aligned */
2119 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2120 iwl_pcie_free_ict(trans);
2127 /* Device is going up inform it about using ICT interrupt table,
2128 * also we need to tell the driver to start using ICT interrupt.
2130 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2132 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2135 if (!trans_pcie->ict_tbl)
2138 spin_lock_bh(&trans_pcie->irq_lock);
2139 _iwl_disable_interrupts(trans);
2141 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2143 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2145 val |= CSR_DRAM_INT_TBL_ENABLE |
2146 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2147 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2149 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2151 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2152 trans_pcie->use_ict = true;
2153 trans_pcie->ict_index = 0;
2154 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2155 _iwl_enable_interrupts(trans);
2156 spin_unlock_bh(&trans_pcie->irq_lock);
2159 /* Device is going down disable ict interrupt usage */
2160 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2162 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2164 spin_lock_bh(&trans_pcie->irq_lock);
2165 trans_pcie->use_ict = false;
2166 spin_unlock_bh(&trans_pcie->irq_lock);
2169 irqreturn_t iwl_pcie_isr(int irq, void *data)
2171 struct iwl_trans *trans = data;
2176 /* Disable (but don't clear!) interrupts here to avoid
2177 * back-to-back ISRs and sporadic interrupts from our NIC.
2178 * If we have something to service, the tasklet will re-enable ints.
2179 * If we *don't* have something, we'll re-enable before leaving here.
2181 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2183 return IRQ_WAKE_THREAD;
2186 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2188 return IRQ_WAKE_THREAD;
2191 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2193 struct msix_entry *entry = dev_id;
2194 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2195 struct iwl_trans *trans = trans_pcie->trans;
2196 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2197 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2198 u32 inta_fh, inta_hw;
2199 bool polling = false;
2202 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2203 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2205 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2206 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2208 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2210 spin_lock_bh(&trans_pcie->irq_lock);
2211 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2212 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2214 * Clear causes registers to avoid being handling the same cause.
2216 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2217 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2218 spin_unlock_bh(&trans_pcie->irq_lock);
2220 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2222 if (unlikely(!(inta_fh | inta_hw))) {
2223 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2224 lock_map_release(&trans->sync_cmd_lockdep_map);
2228 if (iwl_have_debug_level(IWL_DL_ISR)) {
2229 IWL_DEBUG_ISR(trans,
2230 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2231 entry->entry, inta_fh, trans_pcie->fh_mask,
2232 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2233 if (inta_fh & ~trans_pcie->fh_mask)
2234 IWL_DEBUG_ISR(trans,
2235 "We got a masked interrupt (0x%08x)\n",
2236 inta_fh & ~trans_pcie->fh_mask);
2239 inta_fh &= trans_pcie->fh_mask;
2241 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2242 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2244 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2246 __napi_schedule(&trans_pcie->rxq[0].napi);
2251 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2252 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2254 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2256 __napi_schedule(&trans_pcie->rxq[1].napi);
2261 /* This "Tx" DMA channel is used only for loading uCode */
2262 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2263 trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2264 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2267 /* Wake up IMR routine once write to SRAM is complete */
2268 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2269 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2270 wake_up(&trans_pcie->ucode_write_waitq);
2272 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2273 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2276 * Wake up uCode load routine,
2277 * now that load is complete
2279 trans_pcie->ucode_write_complete = true;
2280 wake_up(&trans_pcie->ucode_write_waitq);
2282 /* Wake up IMR routine once write to SRAM is complete */
2283 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2284 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2285 wake_up(&trans_pcie->ucode_write_waitq);
2289 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2290 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2292 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2294 /* Error detected by uCode */
2295 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2297 "Microcode SW error detected. Restarting 0x%X.\n",
2300 /* during FW reset flow report errors from there */
2301 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2302 trans_pcie->imr_status = IMR_D2S_ERROR;
2303 wake_up(&trans_pcie->imr_waitq);
2304 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2305 trans_pcie->fw_reset_state = FW_RESET_ERROR;
2306 wake_up(&trans_pcie->fw_reset_waitq);
2308 iwl_pcie_irq_handle_error(trans);
2312 /* After checking FH register check HW register */
2313 if (iwl_have_debug_level(IWL_DL_ISR)) {
2314 IWL_DEBUG_ISR(trans,
2315 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2316 entry->entry, inta_hw, trans_pcie->hw_mask,
2317 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2318 if (inta_hw & ~trans_pcie->hw_mask)
2319 IWL_DEBUG_ISR(trans,
2320 "We got a masked interrupt 0x%08x\n",
2321 inta_hw & ~trans_pcie->hw_mask);
2324 inta_hw &= trans_pcie->hw_mask;
2326 /* Alive notification via Rx interrupt will do the real work */
2327 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2328 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2330 if (trans->trans_cfg->gen2) {
2331 /* We can restock, since firmware configured the RFH */
2332 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2337 * In some rare cases when the HW is in a bad state, we may
2338 * get this interrupt too early, when prph_info is still NULL.
2339 * So make sure that it's not NULL to prevent crashing.
2341 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2343 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2344 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2345 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2346 IWL_DEBUG_ISR(trans,
2347 "Sx interrupt: sleep notification = 0x%x\n",
2349 trans_pcie->sx_complete = true;
2350 wake_up(&trans_pcie->sx_waitq);
2352 /* uCode wakes up after power-down sleep */
2353 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2354 iwl_pcie_rxq_check_wrptr(trans);
2355 iwl_pcie_txq_check_wrptrs(trans);
2357 isr_stats->wakeup++;
2361 /* Chip got too hot and stopped itself */
2362 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2363 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2364 isr_stats->ctkill++;
2367 /* HW RF KILL switch toggled */
2368 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2369 iwl_pcie_handle_rfkill_irq(trans);
2371 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2373 "Hardware error detected. Restarting.\n");
2376 trans->dbg.hw_error = true;
2377 iwl_pcie_irq_handle_error(trans);
2380 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2381 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2382 trans_pcie->fw_reset_state = FW_RESET_OK;
2383 wake_up(&trans_pcie->fw_reset_waitq);
2387 iwl_pcie_clear_irq(trans, entry->entry);
2389 lock_map_release(&trans->sync_cmd_lockdep_map);