iwlwifi: don't call netif_napi_add() with rxq->lock held (was Re: Lockdep warning...
[platform/kernel/linux-rpi.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2003-2014, 2018-2020 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16
17 /******************************************************************************
18  *
19  * RX path functions
20  *
21  ******************************************************************************/
22
23 /*
24  * Rx theory of operation
25  *
26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27  * each of which point to Receive Buffers to be filled by the NIC.  These get
28  * used not only for Rx frames, but for any command response or notification
29  * from the NIC.  The driver and NIC manage the Rx buffers by means
30  * of indexes into the circular buffer.
31  *
32  * Rx Queue Indexes
33  * The host/firmware share two index registers for managing the Rx buffers.
34  *
35  * The READ index maps to the first position that the firmware may be writing
36  * to -- the driver can read up to (but not including) this position and get
37  * good data.
38  * The READ index is managed by the firmware once the card is enabled.
39  *
40  * The WRITE index maps to the last position the driver has read from -- the
41  * position preceding WRITE is the last slot the firmware can place a packet.
42  *
43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44  * WRITE = READ.
45  *
46  * During initialization, the host sets up the READ queue position to the first
47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
48  *
49  * When the firmware places a packet in a buffer, it will advance the READ index
50  * and fire the RX interrupt.  The driver can then query the READ index and
51  * process as many packets as possible, moving the WRITE index forward as it
52  * resets the Rx queue buffers with new memory.
53  *
54  * The management in the driver is as follows:
55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56  *   When the interrupt handler is called, the request is processed.
57  *   The page is either stolen - transferred to the upper layer
58  *   or reused - added immediately to the iwl->rxq->rx_free list.
59  * + When the page is stolen - the driver updates the matching queue's used
60  *   count, detaches the RBD and transfers it to the queue used list.
61  *   When there are two used RBDs - they are transferred to the allocator empty
62  *   list. Work is then scheduled for the allocator to start allocating
63  *   eight buffers.
64  *   When there are another 6 used RBDs - they are transferred to the allocator
65  *   empty list and the driver tries to claim the pre-allocated buffers and
66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67  *   until ready.
68  *   When there are 8+ buffers in the free list - either from allocation or from
69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
70  * + In order to make sure the allocator always has RBDs to use for allocation
71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
72  *   maximum missing RBDs per allocation request (request posted with 2
73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74  *   The queues supplies the recycle of the rest of the RBDs.
75  * + A received packet is processed and handed to the kernel network stack,
76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
77  * + If there are no allocated buffers in iwl->rxq->rx_free,
78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
80  *
81  *
82  * Driver sequence:
83  *
84  * iwl_rxq_alloc()            Allocates rx_free
85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
86  *                            iwl_pcie_rxq_restock.
87  *                            Used only during initialization.
88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
89  *                            queue, updates firmware pointers, and updates
90  *                            the WRITE index.
91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
92  *
93  * -- enable interrupts --
94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
95  *                            READ INDEX, detaching the SKB from the pool.
96  *                            Moves the packet buffer from queue to rx_used.
97  *                            Posts and claims requests to the allocator.
98  *                            Calls iwl_pcie_rxq_restock to refill any empty
99  *                            slots.
100  *
101  * RBD life-cycle:
102  *
103  * Init:
104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105  *
106  * Regular Receive interrupt:
107  * Page Stolen:
108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110  * Page not Stolen:
111  * rxq.queue -> rxq.rx_free -> rxq.queue
112  * ...
113  *
114  */
115
116 /*
117  * iwl_rxq_space - Return number of free slots available in queue.
118  */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121         /* Make sure rx queue size is a power of 2 */
122         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123
124         /*
125          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126          * between empty and completely full queues.
127          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128          * defined for negative dividends.
129          */
130         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132
133 /*
134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135  */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138         return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140
141 /*
142  * iwl_pcie_rx_stop - stops the Rx DMA
143  */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147                 /* TODO: remove this once fw does it */
148                 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149                 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150                                               RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151         } else if (trans->trans_cfg->mq_rx_supported) {
152                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155         } else {
156                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159                                            1000);
160         }
161 }
162
163 /*
164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165  */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167                                     struct iwl_rxq *rxq)
168 {
169         u32 reg;
170
171         lockdep_assert_held(&rxq->lock);
172
173         /*
174          * explicitly wake up the NIC if:
175          * 1. shadow registers aren't enabled
176          * 2. there is a chance that the NIC is asleep
177          */
178         if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181
182                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184                                        reg);
185                         iwl_set_bit(trans, CSR_GP_CNTRL,
186                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187                         rxq->need_update = true;
188                         return;
189                 }
190         }
191
192         rxq->write_actual = round_down(rxq->write, 8);
193         if (trans->trans_cfg->mq_rx_supported)
194                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
195                             rxq->write_actual);
196         else
197                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
198 }
199
200 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
201 {
202         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
203         int i;
204
205         for (i = 0; i < trans->num_rx_queues; i++) {
206                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
207
208                 if (!rxq->need_update)
209                         continue;
210                 spin_lock_bh(&rxq->lock);
211                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
212                 rxq->need_update = false;
213                 spin_unlock_bh(&rxq->lock);
214         }
215 }
216
217 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
218                                 struct iwl_rxq *rxq,
219                                 struct iwl_rx_mem_buffer *rxb)
220 {
221         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
222                 struct iwl_rx_transfer_desc *bd = rxq->bd;
223
224                 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
225
226                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
227                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
228         } else {
229                 __le64 *bd = rxq->bd;
230
231                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
232         }
233
234         IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
235                      (u32)rxb->vid, rxq->id, rxq->write);
236 }
237
238 /*
239  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
240  */
241 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
242                                   struct iwl_rxq *rxq)
243 {
244         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
245         struct iwl_rx_mem_buffer *rxb;
246
247         /*
248          * If the device isn't enabled - no need to try to add buffers...
249          * This can happen when we stop the device and still have an interrupt
250          * pending. We stop the APM before we sync the interrupts because we
251          * have to (see comment there). On the other hand, since the APM is
252          * stopped, we cannot access the HW (in particular not prph).
253          * So don't try to restock if the APM has been already stopped.
254          */
255         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256                 return;
257
258         spin_lock_bh(&rxq->lock);
259         while (rxq->free_count) {
260                 /* Get next free Rx buffer, remove from free list */
261                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
262                                        list);
263                 list_del(&rxb->list);
264                 rxb->invalid = false;
265                 /* some low bits are expected to be unset (depending on hw) */
266                 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
267                 /* Point to Rx buffer via next RBD in circular buffer */
268                 iwl_pcie_restock_bd(trans, rxq, rxb);
269                 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
270                 rxq->free_count--;
271         }
272         spin_unlock_bh(&rxq->lock);
273
274         /*
275          * If we've added more space for the firmware to place data, tell it.
276          * Increment device's write pointer in multiples of 8.
277          */
278         if (rxq->write_actual != (rxq->write & ~0x7)) {
279                 spin_lock_bh(&rxq->lock);
280                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
281                 spin_unlock_bh(&rxq->lock);
282         }
283 }
284
285 /*
286  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
287  */
288 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
289                                   struct iwl_rxq *rxq)
290 {
291         struct iwl_rx_mem_buffer *rxb;
292
293         /*
294          * If the device isn't enabled - not need to try to add buffers...
295          * This can happen when we stop the device and still have an interrupt
296          * pending. We stop the APM before we sync the interrupts because we
297          * have to (see comment there). On the other hand, since the APM is
298          * stopped, we cannot access the HW (in particular not prph).
299          * So don't try to restock if the APM has been already stopped.
300          */
301         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
302                 return;
303
304         spin_lock_bh(&rxq->lock);
305         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
306                 __le32 *bd = (__le32 *)rxq->bd;
307                 /* The overwritten rxb must be a used one */
308                 rxb = rxq->queue[rxq->write];
309                 BUG_ON(rxb && rxb->page);
310
311                 /* Get next free Rx buffer, remove from free list */
312                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
313                                        list);
314                 list_del(&rxb->list);
315                 rxb->invalid = false;
316
317                 /* Point to Rx buffer via next RBD in circular buffer */
318                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319                 rxq->queue[rxq->write] = rxb;
320                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
321                 rxq->free_count--;
322         }
323         spin_unlock_bh(&rxq->lock);
324
325         /* If we've added more space for the firmware to place data, tell it.
326          * Increment device's write pointer in multiples of 8. */
327         if (rxq->write_actual != (rxq->write & ~0x7)) {
328                 spin_lock_bh(&rxq->lock);
329                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330                 spin_unlock_bh(&rxq->lock);
331         }
332 }
333
334 /*
335  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
336  *
337  * If there are slots in the RX queue that need to be restocked,
338  * and we have free pre-allocated buffers, fill the ranks as much
339  * as we can, pulling from rx_free.
340  *
341  * This moves the 'write' index forward to catch up with 'processed', and
342  * also updates the memory address in the firmware to reference the new
343  * target buffer.
344  */
345 static
346 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
347 {
348         if (trans->trans_cfg->mq_rx_supported)
349                 iwl_pcie_rxmq_restock(trans, rxq);
350         else
351                 iwl_pcie_rxsq_restock(trans, rxq);
352 }
353
354 /*
355  * iwl_pcie_rx_alloc_page - allocates and returns a page.
356  *
357  */
358 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
359                                            u32 *offset, gfp_t priority)
360 {
361         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
362         unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
363         unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
364         struct page *page;
365         gfp_t gfp_mask = priority;
366
367         if (trans_pcie->rx_page_order > 0)
368                 gfp_mask |= __GFP_COMP;
369
370         if (trans_pcie->alloc_page) {
371                 spin_lock_bh(&trans_pcie->alloc_page_lock);
372                 /* recheck */
373                 if (trans_pcie->alloc_page) {
374                         *offset = trans_pcie->alloc_page_used;
375                         page = trans_pcie->alloc_page;
376                         trans_pcie->alloc_page_used += rbsize;
377                         if (trans_pcie->alloc_page_used >= allocsize)
378                                 trans_pcie->alloc_page = NULL;
379                         else
380                                 get_page(page);
381                         spin_unlock_bh(&trans_pcie->alloc_page_lock);
382                         return page;
383                 }
384                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
385         }
386
387         /* Alloc a new receive buffer */
388         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
389         if (!page) {
390                 if (net_ratelimit())
391                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
392                                        trans_pcie->rx_page_order);
393                 /*
394                  * Issue an error if we don't have enough pre-allocated
395                   * buffers.
396                  */
397                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
398                         IWL_CRIT(trans,
399                                  "Failed to alloc_pages\n");
400                 return NULL;
401         }
402
403         if (2 * rbsize <= allocsize) {
404                 spin_lock_bh(&trans_pcie->alloc_page_lock);
405                 if (!trans_pcie->alloc_page) {
406                         get_page(page);
407                         trans_pcie->alloc_page = page;
408                         trans_pcie->alloc_page_used = rbsize;
409                 }
410                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
411         }
412
413         *offset = 0;
414         return page;
415 }
416
417 /*
418  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
419  *
420  * A used RBD is an Rx buffer that has been given to the stack. To use it again
421  * a page must be allocated and the RBD must point to the page. This function
422  * doesn't change the HW pointer but handles the list of pages that is used by
423  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
424  * allocated buffers.
425  */
426 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
427                             struct iwl_rxq *rxq)
428 {
429         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
430         struct iwl_rx_mem_buffer *rxb;
431         struct page *page;
432
433         while (1) {
434                 unsigned int offset;
435
436                 spin_lock_bh(&rxq->lock);
437                 if (list_empty(&rxq->rx_used)) {
438                         spin_unlock_bh(&rxq->lock);
439                         return;
440                 }
441                 spin_unlock_bh(&rxq->lock);
442
443                 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
444                 if (!page)
445                         return;
446
447                 spin_lock_bh(&rxq->lock);
448
449                 if (list_empty(&rxq->rx_used)) {
450                         spin_unlock_bh(&rxq->lock);
451                         __free_pages(page, trans_pcie->rx_page_order);
452                         return;
453                 }
454                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
455                                        list);
456                 list_del(&rxb->list);
457                 spin_unlock_bh(&rxq->lock);
458
459                 BUG_ON(rxb->page);
460                 rxb->page = page;
461                 rxb->offset = offset;
462                 /* Get physical address of the RB */
463                 rxb->page_dma =
464                         dma_map_page(trans->dev, page, rxb->offset,
465                                      trans_pcie->rx_buf_bytes,
466                                      DMA_FROM_DEVICE);
467                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
468                         rxb->page = NULL;
469                         spin_lock_bh(&rxq->lock);
470                         list_add(&rxb->list, &rxq->rx_used);
471                         spin_unlock_bh(&rxq->lock);
472                         __free_pages(page, trans_pcie->rx_page_order);
473                         return;
474                 }
475
476                 spin_lock_bh(&rxq->lock);
477
478                 list_add_tail(&rxb->list, &rxq->rx_free);
479                 rxq->free_count++;
480
481                 spin_unlock_bh(&rxq->lock);
482         }
483 }
484
485 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
486 {
487         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
488         int i;
489
490         for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
491                 if (!trans_pcie->rx_pool[i].page)
492                         continue;
493                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
494                                trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
495                 __free_pages(trans_pcie->rx_pool[i].page,
496                              trans_pcie->rx_page_order);
497                 trans_pcie->rx_pool[i].page = NULL;
498         }
499 }
500
501 /*
502  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
503  *
504  * Allocates for each received request 8 pages
505  * Called as a scheduled work item.
506  */
507 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
508 {
509         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
510         struct iwl_rb_allocator *rba = &trans_pcie->rba;
511         struct list_head local_empty;
512         int pending = atomic_read(&rba->req_pending);
513
514         IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
515
516         /* If we were scheduled - there is at least one request */
517         spin_lock_bh(&rba->lock);
518         /* swap out the rba->rbd_empty to a local list */
519         list_replace_init(&rba->rbd_empty, &local_empty);
520         spin_unlock_bh(&rba->lock);
521
522         while (pending) {
523                 int i;
524                 LIST_HEAD(local_allocated);
525                 gfp_t gfp_mask = GFP_KERNEL;
526
527                 /* Do not post a warning if there are only a few requests */
528                 if (pending < RX_PENDING_WATERMARK)
529                         gfp_mask |= __GFP_NOWARN;
530
531                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
532                         struct iwl_rx_mem_buffer *rxb;
533                         struct page *page;
534
535                         /* List should never be empty - each reused RBD is
536                          * returned to the list, and initial pool covers any
537                          * possible gap between the time the page is allocated
538                          * to the time the RBD is added.
539                          */
540                         BUG_ON(list_empty(&local_empty));
541                         /* Get the first rxb from the rbd list */
542                         rxb = list_first_entry(&local_empty,
543                                                struct iwl_rx_mem_buffer, list);
544                         BUG_ON(rxb->page);
545
546                         /* Alloc a new receive buffer */
547                         page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
548                                                       gfp_mask);
549                         if (!page)
550                                 continue;
551                         rxb->page = page;
552
553                         /* Get physical address of the RB */
554                         rxb->page_dma = dma_map_page(trans->dev, page,
555                                                      rxb->offset,
556                                                      trans_pcie->rx_buf_bytes,
557                                                      DMA_FROM_DEVICE);
558                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
559                                 rxb->page = NULL;
560                                 __free_pages(page, trans_pcie->rx_page_order);
561                                 continue;
562                         }
563
564                         /* move the allocated entry to the out list */
565                         list_move(&rxb->list, &local_allocated);
566                         i++;
567                 }
568
569                 atomic_dec(&rba->req_pending);
570                 pending--;
571
572                 if (!pending) {
573                         pending = atomic_read(&rba->req_pending);
574                         if (pending)
575                                 IWL_DEBUG_TPT(trans,
576                                               "Got more pending allocation requests = %d\n",
577                                               pending);
578                 }
579
580                 spin_lock_bh(&rba->lock);
581                 /* add the allocated rbds to the allocator allocated list */
582                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
583                 /* get more empty RBDs for current pending requests */
584                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
585                 spin_unlock_bh(&rba->lock);
586
587                 atomic_inc(&rba->req_ready);
588
589         }
590
591         spin_lock_bh(&rba->lock);
592         /* return unused rbds to the allocator empty list */
593         list_splice_tail(&local_empty, &rba->rbd_empty);
594         spin_unlock_bh(&rba->lock);
595
596         IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
597 }
598
599 /*
600  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
601 .*
602 .* Called by queue when the queue posted allocation request and
603  * has freed 8 RBDs in order to restock itself.
604  * This function directly moves the allocated RBs to the queue's ownership
605  * and updates the relevant counters.
606  */
607 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
608                                       struct iwl_rxq *rxq)
609 {
610         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
611         struct iwl_rb_allocator *rba = &trans_pcie->rba;
612         int i;
613
614         lockdep_assert_held(&rxq->lock);
615
616         /*
617          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
618          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
619          * function will return early, as there are no ready requests.
620          * atomic_dec_if_positive will perofrm the *actual* decrement only if
621          * req_ready > 0, i.e. - there are ready requests and the function
622          * hands one request to the caller.
623          */
624         if (atomic_dec_if_positive(&rba->req_ready) < 0)
625                 return;
626
627         spin_lock(&rba->lock);
628         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
629                 /* Get next free Rx buffer, remove it from free list */
630                 struct iwl_rx_mem_buffer *rxb =
631                         list_first_entry(&rba->rbd_allocated,
632                                          struct iwl_rx_mem_buffer, list);
633
634                 list_move(&rxb->list, &rxq->rx_free);
635         }
636         spin_unlock(&rba->lock);
637
638         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
639         rxq->free_count += RX_CLAIM_REQ_ALLOC;
640 }
641
642 void iwl_pcie_rx_allocator_work(struct work_struct *data)
643 {
644         struct iwl_rb_allocator *rba_p =
645                 container_of(data, struct iwl_rb_allocator, rx_alloc);
646         struct iwl_trans_pcie *trans_pcie =
647                 container_of(rba_p, struct iwl_trans_pcie, rba);
648
649         iwl_pcie_rx_allocator(trans_pcie->trans);
650 }
651
652 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
653 {
654         struct iwl_rx_transfer_desc *rx_td;
655
656         if (use_rx_td)
657                 return sizeof(*rx_td);
658         else
659                 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
660                         sizeof(__le32);
661 }
662
663 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
664                                   struct iwl_rxq *rxq)
665 {
666         struct device *dev = trans->dev;
667         bool use_rx_td = (trans->trans_cfg->device_family >=
668                           IWL_DEVICE_FAMILY_AX210);
669         int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
670
671         if (rxq->bd)
672                 dma_free_coherent(trans->dev,
673                                   free_size * rxq->queue_size,
674                                   rxq->bd, rxq->bd_dma);
675         rxq->bd_dma = 0;
676         rxq->bd = NULL;
677
678         rxq->rb_stts_dma = 0;
679         rxq->rb_stts = NULL;
680
681         if (rxq->used_bd)
682                 dma_free_coherent(trans->dev,
683                                   (use_rx_td ? sizeof(*rxq->cd) :
684                                    sizeof(__le32)) * rxq->queue_size,
685                                   rxq->used_bd, rxq->used_bd_dma);
686         rxq->used_bd_dma = 0;
687         rxq->used_bd = NULL;
688
689         if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
690                 return;
691
692         if (rxq->tr_tail)
693                 dma_free_coherent(dev, sizeof(__le16),
694                                   rxq->tr_tail, rxq->tr_tail_dma);
695         rxq->tr_tail_dma = 0;
696         rxq->tr_tail = NULL;
697
698         if (rxq->cr_tail)
699                 dma_free_coherent(dev, sizeof(__le16),
700                                   rxq->cr_tail, rxq->cr_tail_dma);
701         rxq->cr_tail_dma = 0;
702         rxq->cr_tail = NULL;
703 }
704
705 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
706                                   struct iwl_rxq *rxq)
707 {
708         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
709         struct device *dev = trans->dev;
710         int i;
711         int free_size;
712         bool use_rx_td = (trans->trans_cfg->device_family >=
713                           IWL_DEVICE_FAMILY_AX210);
714         size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
715                               sizeof(struct iwl_rb_status);
716
717         spin_lock_init(&rxq->lock);
718         if (trans->trans_cfg->mq_rx_supported)
719                 rxq->queue_size = trans->cfg->num_rbds;
720         else
721                 rxq->queue_size = RX_QUEUE_SIZE;
722
723         free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
724
725         /*
726          * Allocate the circular buffer of Read Buffer Descriptors
727          * (RBDs)
728          */
729         rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
730                                      &rxq->bd_dma, GFP_KERNEL);
731         if (!rxq->bd)
732                 goto err;
733
734         if (trans->trans_cfg->mq_rx_supported) {
735                 rxq->used_bd = dma_alloc_coherent(dev,
736                                                   (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
737                                                   &rxq->used_bd_dma,
738                                                   GFP_KERNEL);
739                 if (!rxq->used_bd)
740                         goto err;
741         }
742
743         rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
744         rxq->rb_stts_dma =
745                 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
746
747         if (!use_rx_td)
748                 return 0;
749
750         /* Allocate the driver's pointer to TR tail */
751         rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
752                                           &rxq->tr_tail_dma, GFP_KERNEL);
753         if (!rxq->tr_tail)
754                 goto err;
755
756         /* Allocate the driver's pointer to CR tail */
757         rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
758                                           &rxq->cr_tail_dma, GFP_KERNEL);
759         if (!rxq->cr_tail)
760                 goto err;
761
762         return 0;
763
764 err:
765         for (i = 0; i < trans->num_rx_queues; i++) {
766                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
767
768                 iwl_pcie_free_rxq_dma(trans, rxq);
769         }
770
771         return -ENOMEM;
772 }
773
774 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
775 {
776         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
777         struct iwl_rb_allocator *rba = &trans_pcie->rba;
778         int i, ret;
779         size_t rb_stts_size = trans->trans_cfg->device_family >=
780                                 IWL_DEVICE_FAMILY_AX210 ?
781                               sizeof(__le16) : sizeof(struct iwl_rb_status);
782
783         if (WARN_ON(trans_pcie->rxq))
784                 return -EINVAL;
785
786         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
787                                   GFP_KERNEL);
788         trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
789                                       sizeof(trans_pcie->rx_pool[0]),
790                                       GFP_KERNEL);
791         trans_pcie->global_table =
792                 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
793                         sizeof(trans_pcie->global_table[0]),
794                         GFP_KERNEL);
795         if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
796             !trans_pcie->global_table) {
797                 ret = -ENOMEM;
798                 goto err;
799         }
800
801         spin_lock_init(&rba->lock);
802
803         /*
804          * Allocate the driver's pointer to receive buffer status.
805          * Allocate for all queues continuously (HW requirement).
806          */
807         trans_pcie->base_rb_stts =
808                         dma_alloc_coherent(trans->dev,
809                                            rb_stts_size * trans->num_rx_queues,
810                                            &trans_pcie->base_rb_stts_dma,
811                                            GFP_KERNEL);
812         if (!trans_pcie->base_rb_stts) {
813                 ret = -ENOMEM;
814                 goto err;
815         }
816
817         for (i = 0; i < trans->num_rx_queues; i++) {
818                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
819
820                 rxq->id = i;
821                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
822                 if (ret)
823                         goto err;
824         }
825         return 0;
826
827 err:
828         if (trans_pcie->base_rb_stts) {
829                 dma_free_coherent(trans->dev,
830                                   rb_stts_size * trans->num_rx_queues,
831                                   trans_pcie->base_rb_stts,
832                                   trans_pcie->base_rb_stts_dma);
833                 trans_pcie->base_rb_stts = NULL;
834                 trans_pcie->base_rb_stts_dma = 0;
835         }
836         kfree(trans_pcie->rx_pool);
837         trans_pcie->rx_pool = NULL;
838         kfree(trans_pcie->global_table);
839         trans_pcie->global_table = NULL;
840         kfree(trans_pcie->rxq);
841         trans_pcie->rxq = NULL;
842
843         return ret;
844 }
845
846 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
847 {
848         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
849         u32 rb_size;
850         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
851
852         switch (trans_pcie->rx_buf_size) {
853         case IWL_AMSDU_4K:
854                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
855                 break;
856         case IWL_AMSDU_8K:
857                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
858                 break;
859         case IWL_AMSDU_12K:
860                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
861                 break;
862         default:
863                 WARN_ON(1);
864                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
865         }
866
867         if (!iwl_trans_grab_nic_access(trans))
868                 return;
869
870         /* Stop Rx DMA */
871         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
872         /* reset and flush pointers */
873         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
874         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
875         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
876
877         /* Reset driver's Rx queue write index */
878         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
879
880         /* Tell device where to find RBD circular buffer in DRAM */
881         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
882                     (u32)(rxq->bd_dma >> 8));
883
884         /* Tell device where in DRAM to update its Rx status */
885         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
886                     rxq->rb_stts_dma >> 4);
887
888         /* Enable Rx DMA
889          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
890          *      the credit mechanism in 5000 HW RX FIFO
891          * Direct rx interrupts to hosts
892          * Rx buffer size 4 or 8k or 12k
893          * RB timeout 0x10
894          * 256 RBDs
895          */
896         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
897                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
898                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
899                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
900                     rb_size |
901                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
902                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
903
904         iwl_trans_release_nic_access(trans);
905
906         /* Set interrupt coalescing timer to default (2048 usecs) */
907         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
908
909         /* W/A for interrupt coalescing bug in 7260 and 3160 */
910         if (trans->cfg->host_interrupt_operation_mode)
911                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
912 }
913
914 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
915 {
916         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
917         u32 rb_size, enabled = 0;
918         int i;
919
920         switch (trans_pcie->rx_buf_size) {
921         case IWL_AMSDU_2K:
922                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
923                 break;
924         case IWL_AMSDU_4K:
925                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
926                 break;
927         case IWL_AMSDU_8K:
928                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
929                 break;
930         case IWL_AMSDU_12K:
931                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
932                 break;
933         default:
934                 WARN_ON(1);
935                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
936         }
937
938         if (!iwl_trans_grab_nic_access(trans))
939                 return;
940
941         /* Stop Rx DMA */
942         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
943         /* disable free amd used rx queue operation */
944         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
945
946         for (i = 0; i < trans->num_rx_queues; i++) {
947                 /* Tell device where to find RBD free table in DRAM */
948                 iwl_write_prph64_no_grab(trans,
949                                          RFH_Q_FRBDCB_BA_LSB(i),
950                                          trans_pcie->rxq[i].bd_dma);
951                 /* Tell device where to find RBD used table in DRAM */
952                 iwl_write_prph64_no_grab(trans,
953                                          RFH_Q_URBDCB_BA_LSB(i),
954                                          trans_pcie->rxq[i].used_bd_dma);
955                 /* Tell device where in DRAM to update its Rx status */
956                 iwl_write_prph64_no_grab(trans,
957                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
958                                          trans_pcie->rxq[i].rb_stts_dma);
959                 /* Reset device indice tables */
960                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
961                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
962                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
963
964                 enabled |= BIT(i) | BIT(i + 16);
965         }
966
967         /*
968          * Enable Rx DMA
969          * Rx buffer size 4 or 8k or 12k
970          * Min RB size 4 or 8
971          * Drop frames that exceed RB size
972          * 512 RBDs
973          */
974         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
975                                RFH_DMA_EN_ENABLE_VAL | rb_size |
976                                RFH_RXF_DMA_MIN_RB_4_8 |
977                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
978                                RFH_RXF_DMA_RBDCB_SIZE_512);
979
980         /*
981          * Activate DMA snooping.
982          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
983          * Default queue is 0
984          */
985         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
986                                RFH_GEN_CFG_RFH_DMA_SNOOP |
987                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
988                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
989                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
990                                                trans->trans_cfg->integrated ?
991                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
992                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
993         /* Enable the relevant rx queues */
994         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
995
996         iwl_trans_release_nic_access(trans);
997
998         /* Set interrupt coalescing timer to default (2048 usecs) */
999         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1000 }
1001
1002 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1003 {
1004         lockdep_assert_held(&rxq->lock);
1005
1006         INIT_LIST_HEAD(&rxq->rx_free);
1007         INIT_LIST_HEAD(&rxq->rx_used);
1008         rxq->free_count = 0;
1009         rxq->used_count = 0;
1010 }
1011
1012 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1013
1014 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1015 {
1016         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1017         struct iwl_trans_pcie *trans_pcie;
1018         struct iwl_trans *trans;
1019         int ret;
1020
1021         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1022         trans = trans_pcie->trans;
1023
1024         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1025
1026         if (ret < budget) {
1027                 spin_lock(&trans_pcie->irq_lock);
1028                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1029                         _iwl_enable_interrupts(trans);
1030                 spin_unlock(&trans_pcie->irq_lock);
1031
1032                 napi_complete_done(&rxq->napi, ret);
1033         }
1034
1035         return ret;
1036 }
1037
1038 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1039 {
1040         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1041         struct iwl_trans_pcie *trans_pcie;
1042         struct iwl_trans *trans;
1043         int ret;
1044
1045         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1046         trans = trans_pcie->trans;
1047
1048         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1049
1050         if (ret < budget) {
1051                 spin_lock(&trans_pcie->irq_lock);
1052                 iwl_pcie_clear_irq(trans, rxq->id);
1053                 spin_unlock(&trans_pcie->irq_lock);
1054
1055                 napi_complete_done(&rxq->napi, ret);
1056         }
1057
1058         return ret;
1059 }
1060
1061 static int iwl_pcie_napi_poll_msix_shared(struct napi_struct *napi, int budget)
1062 {
1063         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1064         struct iwl_trans_pcie *trans_pcie;
1065         struct iwl_trans *trans;
1066         int ret;
1067
1068         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1069         trans = trans_pcie->trans;
1070
1071         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1072
1073         if (ret < budget) {
1074                 spin_lock(&trans_pcie->irq_lock);
1075                 iwl_pcie_clear_irq(trans, 0);
1076                 spin_unlock(&trans_pcie->irq_lock);
1077
1078                 napi_complete_done(&rxq->napi, ret);
1079         }
1080
1081         return ret;
1082 }
1083
1084 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1085 {
1086         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1087         struct iwl_rxq *def_rxq;
1088         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1089         int i, err, queue_size, allocator_pool_size, num_alloc;
1090
1091         if (!trans_pcie->rxq) {
1092                 err = iwl_pcie_rx_alloc(trans);
1093                 if (err)
1094                         return err;
1095         }
1096         def_rxq = trans_pcie->rxq;
1097
1098         cancel_work_sync(&rba->rx_alloc);
1099
1100         spin_lock_bh(&rba->lock);
1101         atomic_set(&rba->req_pending, 0);
1102         atomic_set(&rba->req_ready, 0);
1103         INIT_LIST_HEAD(&rba->rbd_allocated);
1104         INIT_LIST_HEAD(&rba->rbd_empty);
1105         spin_unlock_bh(&rba->lock);
1106
1107         /* free all first - we might be reconfigured for a different size */
1108         iwl_pcie_free_rbs_pool(trans);
1109
1110         for (i = 0; i < RX_QUEUE_SIZE; i++)
1111                 def_rxq->queue[i] = NULL;
1112
1113         for (i = 0; i < trans->num_rx_queues; i++) {
1114                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1115
1116                 spin_lock_bh(&rxq->lock);
1117                 /*
1118                  * Set read write pointer to reflect that we have processed
1119                  * and used all buffers, but have not restocked the Rx queue
1120                  * with fresh buffers
1121                  */
1122                 rxq->read = 0;
1123                 rxq->write = 0;
1124                 rxq->write_actual = 0;
1125                 memset(rxq->rb_stts, 0,
1126                        (trans->trans_cfg->device_family >=
1127                         IWL_DEVICE_FAMILY_AX210) ?
1128                        sizeof(__le16) : sizeof(struct iwl_rb_status));
1129
1130                 iwl_pcie_rx_init_rxb_lists(rxq);
1131
1132                 spin_unlock_bh(&rxq->lock);
1133
1134                 if (!rxq->napi.poll) {
1135                         int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1136
1137                         if (trans_pcie->msix_enabled) {
1138                                 poll = iwl_pcie_napi_poll_msix;
1139
1140                                 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX &&
1141                                     i == 0)
1142                                         poll = iwl_pcie_napi_poll_msix_shared;
1143
1144                                 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1145                                     i == 1)
1146                                         poll = iwl_pcie_napi_poll_msix_shared;
1147                         }
1148
1149                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1150                                        poll, NAPI_POLL_WEIGHT);
1151                         napi_enable(&rxq->napi);
1152                 }
1153
1154         }
1155
1156         /* move the pool to the default queue and allocator ownerships */
1157         queue_size = trans->trans_cfg->mq_rx_supported ?
1158                         trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1159         allocator_pool_size = trans->num_rx_queues *
1160                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1161         num_alloc = queue_size + allocator_pool_size;
1162
1163         for (i = 0; i < num_alloc; i++) {
1164                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1165
1166                 if (i < allocator_pool_size)
1167                         list_add(&rxb->list, &rba->rbd_empty);
1168                 else
1169                         list_add(&rxb->list, &def_rxq->rx_used);
1170                 trans_pcie->global_table[i] = rxb;
1171                 rxb->vid = (u16)(i + 1);
1172                 rxb->invalid = true;
1173         }
1174
1175         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1176
1177         return 0;
1178 }
1179
1180 int iwl_pcie_rx_init(struct iwl_trans *trans)
1181 {
1182         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1183         int ret = _iwl_pcie_rx_init(trans);
1184
1185         if (ret)
1186                 return ret;
1187
1188         if (trans->trans_cfg->mq_rx_supported)
1189                 iwl_pcie_rx_mq_hw_init(trans);
1190         else
1191                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1192
1193         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1194
1195         spin_lock_bh(&trans_pcie->rxq->lock);
1196         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1197         spin_unlock_bh(&trans_pcie->rxq->lock);
1198
1199         return 0;
1200 }
1201
1202 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1203 {
1204         /* Set interrupt coalescing timer to default (2048 usecs) */
1205         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1206
1207         /*
1208          * We don't configure the RFH.
1209          * Restock will be done at alive, after firmware configured the RFH.
1210          */
1211         return _iwl_pcie_rx_init(trans);
1212 }
1213
1214 void iwl_pcie_rx_free(struct iwl_trans *trans)
1215 {
1216         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1217         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1218         int i;
1219         size_t rb_stts_size = trans->trans_cfg->device_family >=
1220                                 IWL_DEVICE_FAMILY_AX210 ?
1221                               sizeof(__le16) : sizeof(struct iwl_rb_status);
1222
1223         /*
1224          * if rxq is NULL, it means that nothing has been allocated,
1225          * exit now
1226          */
1227         if (!trans_pcie->rxq) {
1228                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1229                 return;
1230         }
1231
1232         cancel_work_sync(&rba->rx_alloc);
1233
1234         iwl_pcie_free_rbs_pool(trans);
1235
1236         if (trans_pcie->base_rb_stts) {
1237                 dma_free_coherent(trans->dev,
1238                                   rb_stts_size * trans->num_rx_queues,
1239                                   trans_pcie->base_rb_stts,
1240                                   trans_pcie->base_rb_stts_dma);
1241                 trans_pcie->base_rb_stts = NULL;
1242                 trans_pcie->base_rb_stts_dma = 0;
1243         }
1244
1245         for (i = 0; i < trans->num_rx_queues; i++) {
1246                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1247
1248                 iwl_pcie_free_rxq_dma(trans, rxq);
1249
1250                 if (rxq->napi.poll) {
1251                         napi_disable(&rxq->napi);
1252                         netif_napi_del(&rxq->napi);
1253                 }
1254         }
1255         kfree(trans_pcie->rx_pool);
1256         kfree(trans_pcie->global_table);
1257         kfree(trans_pcie->rxq);
1258
1259         if (trans_pcie->alloc_page)
1260                 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1261 }
1262
1263 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1264                                           struct iwl_rb_allocator *rba)
1265 {
1266         spin_lock(&rba->lock);
1267         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1268         spin_unlock(&rba->lock);
1269 }
1270
1271 /*
1272  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1273  *
1274  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1275  * When there are 2 empty RBDs - a request for allocation is posted
1276  */
1277 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1278                                   struct iwl_rx_mem_buffer *rxb,
1279                                   struct iwl_rxq *rxq, bool emergency)
1280 {
1281         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1282         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1283
1284         /* Move the RBD to the used list, will be moved to allocator in batches
1285          * before claiming or posting a request*/
1286         list_add_tail(&rxb->list, &rxq->rx_used);
1287
1288         if (unlikely(emergency))
1289                 return;
1290
1291         /* Count the allocator owned RBDs */
1292         rxq->used_count++;
1293
1294         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1295          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1296          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1297          * after but we still need to post another request.
1298          */
1299         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1300                 /* Move the 2 RBDs to the allocator ownership.
1301                  Allocator has another 6 from pool for the request completion*/
1302                 iwl_pcie_rx_move_to_allocator(rxq, rba);
1303
1304                 atomic_inc(&rba->req_pending);
1305                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1306         }
1307 }
1308
1309 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1310                                 struct iwl_rxq *rxq,
1311                                 struct iwl_rx_mem_buffer *rxb,
1312                                 bool emergency,
1313                                 int i)
1314 {
1315         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1316         struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1317         bool page_stolen = false;
1318         int max_len = trans_pcie->rx_buf_bytes;
1319         u32 offset = 0;
1320
1321         if (WARN_ON(!rxb))
1322                 return;
1323
1324         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1325
1326         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1327                 struct iwl_rx_packet *pkt;
1328                 bool reclaim;
1329                 int len;
1330                 struct iwl_rx_cmd_buffer rxcb = {
1331                         ._offset = rxb->offset + offset,
1332                         ._rx_page_order = trans_pcie->rx_page_order,
1333                         ._page = rxb->page,
1334                         ._page_stolen = false,
1335                         .truesize = max_len,
1336                 };
1337
1338                 pkt = rxb_addr(&rxcb);
1339
1340                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1341                         IWL_DEBUG_RX(trans,
1342                                      "Q %d: RB end marker at offset %d\n",
1343                                      rxq->id, offset);
1344                         break;
1345                 }
1346
1347                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1348                         FH_RSCSR_RXQ_POS != rxq->id,
1349                      "frame on invalid queue - is on %d and indicates %d\n",
1350                      rxq->id,
1351                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1352                         FH_RSCSR_RXQ_POS);
1353
1354                 IWL_DEBUG_RX(trans,
1355                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1356                              rxq->id, offset,
1357                              iwl_get_cmd_string(trans,
1358                                                 iwl_cmd_id(pkt->hdr.cmd,
1359                                                            pkt->hdr.group_id,
1360                                                            0)),
1361                              pkt->hdr.group_id, pkt->hdr.cmd,
1362                              le16_to_cpu(pkt->hdr.sequence));
1363
1364                 len = iwl_rx_packet_len(pkt);
1365                 len += sizeof(u32); /* account for status word */
1366
1367                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1368
1369                 /* check that what the device tells us made sense */
1370                 if (offset > max_len)
1371                         break;
1372
1373                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1374                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1375
1376                 /* Reclaim a command buffer only if this packet is a response
1377                  *   to a (driver-originated) command.
1378                  * If the packet (e.g. Rx frame) originated from uCode,
1379                  *   there is no command buffer to reclaim.
1380                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1381                  *   but apparently a few don't get set; catch them here. */
1382                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1383                 if (reclaim && !pkt->hdr.group_id) {
1384                         int i;
1385
1386                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1387                                 if (trans_pcie->no_reclaim_cmds[i] ==
1388                                                         pkt->hdr.cmd) {
1389                                         reclaim = false;
1390                                         break;
1391                                 }
1392                         }
1393                 }
1394
1395                 if (rxq->id == trans_pcie->def_rx_queue)
1396                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1397                                        &rxcb);
1398                 else
1399                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1400                                            &rxcb, rxq->id);
1401
1402                 /*
1403                  * After here, we should always check rxcb._page_stolen,
1404                  * if it is true then one of the handlers took the page.
1405                  */
1406
1407                 if (reclaim) {
1408                         u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1409                         int index = SEQ_TO_INDEX(sequence);
1410                         int cmd_index = iwl_txq_get_cmd_index(txq, index);
1411
1412                         kfree_sensitive(txq->entries[cmd_index].free_buf);
1413                         txq->entries[cmd_index].free_buf = NULL;
1414
1415                         /* Invoke any callbacks, transfer the buffer to caller,
1416                          * and fire off the (possibly) blocking
1417                          * iwl_trans_send_cmd()
1418                          * as we reclaim the driver command queue */
1419                         if (!rxcb._page_stolen)
1420                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1421                         else
1422                                 IWL_WARN(trans, "Claim null rxb?\n");
1423                 }
1424
1425                 page_stolen |= rxcb._page_stolen;
1426                 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1427                         break;
1428         }
1429
1430         /* page was stolen from us -- free our reference */
1431         if (page_stolen) {
1432                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1433                 rxb->page = NULL;
1434         }
1435
1436         /* Reuse the page if possible. For notification packets and
1437          * SKBs that fail to Rx correctly, add them back into the
1438          * rx_free list for reuse later. */
1439         if (rxb->page != NULL) {
1440                 rxb->page_dma =
1441                         dma_map_page(trans->dev, rxb->page, rxb->offset,
1442                                      trans_pcie->rx_buf_bytes,
1443                                      DMA_FROM_DEVICE);
1444                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1445                         /*
1446                          * free the page(s) as well to not break
1447                          * the invariant that the items on the used
1448                          * list have no page(s)
1449                          */
1450                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1451                         rxb->page = NULL;
1452                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1453                 } else {
1454                         list_add_tail(&rxb->list, &rxq->rx_free);
1455                         rxq->free_count++;
1456                 }
1457         } else
1458                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1459 }
1460
1461 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1462                                                   struct iwl_rxq *rxq, int i,
1463                                                   bool *join)
1464 {
1465         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1466         struct iwl_rx_mem_buffer *rxb;
1467         u16 vid;
1468
1469         BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1470
1471         if (!trans->trans_cfg->mq_rx_supported) {
1472                 rxb = rxq->queue[i];
1473                 rxq->queue[i] = NULL;
1474                 return rxb;
1475         }
1476
1477         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1478                 vid = le16_to_cpu(rxq->cd[i].rbid);
1479                 *join = rxq->cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1480         } else {
1481                 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1482         }
1483
1484         if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1485                 goto out_err;
1486
1487         rxb = trans_pcie->global_table[vid - 1];
1488         if (rxb->invalid)
1489                 goto out_err;
1490
1491         IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1492
1493         rxb->invalid = true;
1494
1495         return rxb;
1496
1497 out_err:
1498         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1499         iwl_force_nmi(trans);
1500         return NULL;
1501 }
1502
1503 /*
1504  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1505  */
1506 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1507 {
1508         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1509         struct iwl_rxq *rxq;
1510         u32 r, i, count = 0, handled = 0;
1511         bool emergency = false;
1512
1513         if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1514                 return budget;
1515
1516         rxq = &trans_pcie->rxq[queue];
1517
1518 restart:
1519         spin_lock(&rxq->lock);
1520         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1521          * buffer that the driver may process (last buffer filled by ucode). */
1522         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1523         i = rxq->read;
1524
1525         /* W/A 9000 device step A0 wrap-around bug */
1526         r &= (rxq->queue_size - 1);
1527
1528         /* Rx interrupt, but nothing sent from uCode */
1529         if (i == r)
1530                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1531
1532         while (i != r && ++handled < budget) {
1533                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1534                 struct iwl_rx_mem_buffer *rxb;
1535                 /* number of RBDs still waiting for page allocation */
1536                 u32 rb_pending_alloc =
1537                         atomic_read(&trans_pcie->rba.req_pending) *
1538                         RX_CLAIM_REQ_ALLOC;
1539                 bool join = false;
1540
1541                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1542                              !emergency)) {
1543                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1544                         emergency = true;
1545                         IWL_DEBUG_TPT(trans,
1546                                       "RX path is in emergency. Pending allocations %d\n",
1547                                       rb_pending_alloc);
1548                 }
1549
1550                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1551
1552                 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1553                 if (!rxb)
1554                         goto out;
1555
1556                 if (unlikely(join || rxq->next_rb_is_fragment)) {
1557                         rxq->next_rb_is_fragment = join;
1558                         /*
1559                          * We can only get a multi-RB in the following cases:
1560                          *  - firmware issue, sending a too big notification
1561                          *  - sniffer mode with a large A-MSDU
1562                          *  - large MTU frames (>2k)
1563                          * since the multi-RB functionality is limited to newer
1564                          * hardware that cannot put multiple entries into a
1565                          * single RB.
1566                          *
1567                          * Right now, the higher layers aren't set up to deal
1568                          * with that, so discard all of these.
1569                          */
1570                         list_add_tail(&rxb->list, &rxq->rx_free);
1571                         rxq->free_count++;
1572                 } else {
1573                         iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1574                 }
1575
1576                 i = (i + 1) & (rxq->queue_size - 1);
1577
1578                 /*
1579                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1580                  * try to claim the pre-allocated buffers from the allocator.
1581                  * If not ready - will try to reclaim next time.
1582                  * There is no need to reschedule work - allocator exits only
1583                  * on success
1584                  */
1585                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1586                         iwl_pcie_rx_allocator_get(trans, rxq);
1587
1588                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1589                         /* Add the remaining empty RBDs for allocator use */
1590                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1591                 } else if (emergency) {
1592                         count++;
1593                         if (count == 8) {
1594                                 count = 0;
1595                                 if (rb_pending_alloc < rxq->queue_size / 3) {
1596                                         IWL_DEBUG_TPT(trans,
1597                                                       "RX path exited emergency. Pending allocations %d\n",
1598                                                       rb_pending_alloc);
1599                                         emergency = false;
1600                                 }
1601
1602                                 rxq->read = i;
1603                                 spin_unlock(&rxq->lock);
1604                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1605                                 iwl_pcie_rxq_restock(trans, rxq);
1606                                 goto restart;
1607                         }
1608                 }
1609         }
1610 out:
1611         /* Backtrack one entry */
1612         rxq->read = i;
1613         /* update cr tail with the rxq read pointer */
1614         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1615                 *rxq->cr_tail = cpu_to_le16(r);
1616         spin_unlock(&rxq->lock);
1617
1618         /*
1619          * handle a case where in emergency there are some unallocated RBDs.
1620          * those RBDs are in the used list, but are not tracked by the queue's
1621          * used_count which counts allocator owned RBDs.
1622          * unallocated emergency RBDs must be allocated on exit, otherwise
1623          * when called again the function may not be in emergency mode and
1624          * they will be handed to the allocator with no tracking in the RBD
1625          * allocator counters, which will lead to them never being claimed back
1626          * by the queue.
1627          * by allocating them here, they are now in the queue free list, and
1628          * will be restocked by the next call of iwl_pcie_rxq_restock.
1629          */
1630         if (unlikely(emergency && count))
1631                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1632
1633         iwl_pcie_rxq_restock(trans, rxq);
1634
1635         return handled;
1636 }
1637
1638 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1639 {
1640         u8 queue = entry->entry;
1641         struct msix_entry *entries = entry - queue;
1642
1643         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1644 }
1645
1646 /*
1647  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1648  * This interrupt handler should be used with RSS queue only.
1649  */
1650 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1651 {
1652         struct msix_entry *entry = dev_id;
1653         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1654         struct iwl_trans *trans = trans_pcie->trans;
1655         struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1656
1657         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1658
1659         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1660                 return IRQ_NONE;
1661
1662         if (WARN_ONCE(!rxq, "Got MSI-X interrupt before we have Rx queues"))
1663                 return IRQ_NONE;
1664
1665         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1666
1667         local_bh_disable();
1668         if (napi_schedule_prep(&rxq->napi))
1669                 __napi_schedule(&rxq->napi);
1670         else
1671                 iwl_pcie_clear_irq(trans, entry->entry);
1672         local_bh_enable();
1673
1674         lock_map_release(&trans->sync_cmd_lockdep_map);
1675
1676         return IRQ_HANDLED;
1677 }
1678
1679 /*
1680  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1681  */
1682 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1683 {
1684         int i;
1685
1686         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1687         if (trans->cfg->internal_wimax_coex &&
1688             !trans->cfg->apmg_not_supported &&
1689             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1690                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1691              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1692                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1693                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1694                 iwl_op_mode_wimax_active(trans->op_mode);
1695                 wake_up(&trans->wait_command_queue);
1696                 return;
1697         }
1698
1699         for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1700                 if (!trans->txqs.txq[i])
1701                         continue;
1702                 del_timer(&trans->txqs.txq[i]->stuck_timer);
1703         }
1704
1705         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1706          * before we wake up the command caller, to ensure a proper cleanup. */
1707         iwl_trans_fw_error(trans);
1708
1709         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1710         wake_up(&trans->wait_command_queue);
1711 }
1712
1713 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1714 {
1715         u32 inta;
1716
1717         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1718
1719         trace_iwlwifi_dev_irq(trans->dev);
1720
1721         /* Discover which interrupts are active/pending */
1722         inta = iwl_read32(trans, CSR_INT);
1723
1724         /* the thread will service interrupts and re-enable them */
1725         return inta;
1726 }
1727
1728 /* a device (PCI-E) page is 4096 bytes long */
1729 #define ICT_SHIFT       12
1730 #define ICT_SIZE        (1 << ICT_SHIFT)
1731 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1732
1733 /* interrupt handler using ict table, with this interrupt driver will
1734  * stop using INTA register to get device's interrupt, reading this register
1735  * is expensive, device will write interrupts in ICT dram table, increment
1736  * index then will fire interrupt to driver, driver will OR all ICT table
1737  * entries from current index up to table entry with 0 value. the result is
1738  * the interrupt we need to service, driver will set the entries back to 0 and
1739  * set index.
1740  */
1741 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1742 {
1743         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1744         u32 inta;
1745         u32 val = 0;
1746         u32 read;
1747
1748         trace_iwlwifi_dev_irq(trans->dev);
1749
1750         /* Ignore interrupt if there's nothing in NIC to service.
1751          * This may be due to IRQ shared with another device,
1752          * or due to sporadic interrupts thrown from our NIC. */
1753         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1754         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1755         if (!read)
1756                 return 0;
1757
1758         /*
1759          * Collect all entries up to the first 0, starting from ict_index;
1760          * note we already read at ict_index.
1761          */
1762         do {
1763                 val |= read;
1764                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1765                                 trans_pcie->ict_index, read);
1766                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1767                 trans_pcie->ict_index =
1768                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1769
1770                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1771                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1772                                            read);
1773         } while (read);
1774
1775         /* We should not get this value, just ignore it. */
1776         if (val == 0xffffffff)
1777                 val = 0;
1778
1779         /*
1780          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1781          * (bit 15 before shifting it to 31) to clear when using interrupt
1782          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1783          * so we use them to decide on the real state of the Rx bit.
1784          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1785          */
1786         if (val & 0xC0000)
1787                 val |= 0x8000;
1788
1789         inta = (0xff & val) | ((0xff00 & val) << 16);
1790         return inta;
1791 }
1792
1793 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1794 {
1795         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1796         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1797         bool hw_rfkill, prev, report;
1798
1799         mutex_lock(&trans_pcie->mutex);
1800         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1801         hw_rfkill = iwl_is_rfkill_set(trans);
1802         if (hw_rfkill) {
1803                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1804                 set_bit(STATUS_RFKILL_HW, &trans->status);
1805         }
1806         if (trans_pcie->opmode_down)
1807                 report = hw_rfkill;
1808         else
1809                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1810
1811         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1812                  hw_rfkill ? "disable radio" : "enable radio");
1813
1814         isr_stats->rfkill++;
1815
1816         if (prev != report)
1817                 iwl_trans_pcie_rf_kill(trans, report);
1818         mutex_unlock(&trans_pcie->mutex);
1819
1820         if (hw_rfkill) {
1821                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1822                                        &trans->status))
1823                         IWL_DEBUG_RF_KILL(trans,
1824                                           "Rfkill while SYNC HCMD in flight\n");
1825                 wake_up(&trans->wait_command_queue);
1826         } else {
1827                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1828                 if (trans_pcie->opmode_down)
1829                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1830         }
1831 }
1832
1833 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1834 {
1835         struct iwl_trans *trans = dev_id;
1836         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1837         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1838         u32 inta = 0;
1839         u32 handled = 0;
1840         bool polling = false;
1841
1842         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1843
1844         spin_lock_bh(&trans_pcie->irq_lock);
1845
1846         /* dram interrupt table not set yet,
1847          * use legacy interrupt.
1848          */
1849         if (likely(trans_pcie->use_ict))
1850                 inta = iwl_pcie_int_cause_ict(trans);
1851         else
1852                 inta = iwl_pcie_int_cause_non_ict(trans);
1853
1854         if (iwl_have_debug_level(IWL_DL_ISR)) {
1855                 IWL_DEBUG_ISR(trans,
1856                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1857                               inta, trans_pcie->inta_mask,
1858                               iwl_read32(trans, CSR_INT_MASK),
1859                               iwl_read32(trans, CSR_FH_INT_STATUS));
1860                 if (inta & (~trans_pcie->inta_mask))
1861                         IWL_DEBUG_ISR(trans,
1862                                       "We got a masked interrupt (0x%08x)\n",
1863                                       inta & (~trans_pcie->inta_mask));
1864         }
1865
1866         inta &= trans_pcie->inta_mask;
1867
1868         /*
1869          * Ignore interrupt if there's nothing in NIC to service.
1870          * This may be due to IRQ shared with another device,
1871          * or due to sporadic interrupts thrown from our NIC.
1872          */
1873         if (unlikely(!inta)) {
1874                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1875                 /*
1876                  * Re-enable interrupts here since we don't
1877                  * have anything to service
1878                  */
1879                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1880                         _iwl_enable_interrupts(trans);
1881                 spin_unlock_bh(&trans_pcie->irq_lock);
1882                 lock_map_release(&trans->sync_cmd_lockdep_map);
1883                 return IRQ_NONE;
1884         }
1885
1886         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1887                 /*
1888                  * Hardware disappeared. It might have
1889                  * already raised an interrupt.
1890                  */
1891                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1892                 spin_unlock_bh(&trans_pcie->irq_lock);
1893                 goto out;
1894         }
1895
1896         /* Ack/clear/reset pending uCode interrupts.
1897          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1898          */
1899         /* There is a hardware bug in the interrupt mask function that some
1900          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1901          * they are disabled in the CSR_INT_MASK register. Furthermore the
1902          * ICT interrupt handling mechanism has another bug that might cause
1903          * these unmasked interrupts fail to be detected. We workaround the
1904          * hardware bugs here by ACKing all the possible interrupts so that
1905          * interrupt coalescing can still be achieved.
1906          */
1907         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1908
1909         if (iwl_have_debug_level(IWL_DL_ISR))
1910                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1911                               inta, iwl_read32(trans, CSR_INT_MASK));
1912
1913         spin_unlock_bh(&trans_pcie->irq_lock);
1914
1915         /* Now service all interrupt bits discovered above. */
1916         if (inta & CSR_INT_BIT_HW_ERR) {
1917                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1918
1919                 /* Tell the device to stop sending interrupts */
1920                 iwl_disable_interrupts(trans);
1921
1922                 isr_stats->hw++;
1923                 iwl_pcie_irq_handle_error(trans);
1924
1925                 handled |= CSR_INT_BIT_HW_ERR;
1926
1927                 goto out;
1928         }
1929
1930         /* NIC fires this, but we don't use it, redundant with WAKEUP */
1931         if (inta & CSR_INT_BIT_SCD) {
1932                 IWL_DEBUG_ISR(trans,
1933                               "Scheduler finished to transmit the frame/frames.\n");
1934                 isr_stats->sch++;
1935         }
1936
1937         /* Alive notification via Rx interrupt will do the real work */
1938         if (inta & CSR_INT_BIT_ALIVE) {
1939                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1940                 isr_stats->alive++;
1941                 if (trans->trans_cfg->gen2) {
1942                         /*
1943                          * We can restock, since firmware configured
1944                          * the RFH
1945                          */
1946                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1947                 }
1948
1949                 handled |= CSR_INT_BIT_ALIVE;
1950         }
1951
1952         /* Safely ignore these bits for debug checks below */
1953         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1954
1955         /* HW RF KILL switch toggled */
1956         if (inta & CSR_INT_BIT_RF_KILL) {
1957                 iwl_pcie_handle_rfkill_irq(trans);
1958                 handled |= CSR_INT_BIT_RF_KILL;
1959         }
1960
1961         /* Chip got too hot and stopped itself */
1962         if (inta & CSR_INT_BIT_CT_KILL) {
1963                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1964                 isr_stats->ctkill++;
1965                 handled |= CSR_INT_BIT_CT_KILL;
1966         }
1967
1968         /* Error detected by uCode */
1969         if (inta & CSR_INT_BIT_SW_ERR) {
1970                 IWL_ERR(trans, "Microcode SW error detected. "
1971                         " Restarting 0x%X.\n", inta);
1972                 isr_stats->sw++;
1973                 iwl_pcie_irq_handle_error(trans);
1974                 handled |= CSR_INT_BIT_SW_ERR;
1975         }
1976
1977         /* uCode wakes up after power-down sleep */
1978         if (inta & CSR_INT_BIT_WAKEUP) {
1979                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1980                 iwl_pcie_rxq_check_wrptr(trans);
1981                 iwl_pcie_txq_check_wrptrs(trans);
1982
1983                 isr_stats->wakeup++;
1984
1985                 handled |= CSR_INT_BIT_WAKEUP;
1986         }
1987
1988         /* All uCode command responses, including Tx command responses,
1989          * Rx "responses" (frame-received notification), and other
1990          * notifications from uCode come through here*/
1991         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1992                     CSR_INT_BIT_RX_PERIODIC)) {
1993                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1994                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1995                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1996                         iwl_write32(trans, CSR_FH_INT_STATUS,
1997                                         CSR_FH_INT_RX_MASK);
1998                 }
1999                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
2000                         handled |= CSR_INT_BIT_RX_PERIODIC;
2001                         iwl_write32(trans,
2002                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
2003                 }
2004                 /* Sending RX interrupt require many steps to be done in the
2005                  * the device:
2006                  * 1- write interrupt to current index in ICT table.
2007                  * 2- dma RX frame.
2008                  * 3- update RX shared data to indicate last write index.
2009                  * 4- send interrupt.
2010                  * This could lead to RX race, driver could receive RX interrupt
2011                  * but the shared data changes does not reflect this;
2012                  * periodic interrupt will detect any dangling Rx activity.
2013                  */
2014
2015                 /* Disable periodic interrupt; we use it as just a one-shot. */
2016                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2017                             CSR_INT_PERIODIC_DIS);
2018
2019                 /*
2020                  * Enable periodic interrupt in 8 msec only if we received
2021                  * real RX interrupt (instead of just periodic int), to catch
2022                  * any dangling Rx interrupt.  If it was just the periodic
2023                  * interrupt, there was no dangling Rx activity, and no need
2024                  * to extend the periodic interrupt; one-shot is enough.
2025                  */
2026                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2027                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
2028                                    CSR_INT_PERIODIC_ENA);
2029
2030                 isr_stats->rx++;
2031
2032                 local_bh_disable();
2033                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2034                         polling = true;
2035                         __napi_schedule(&trans_pcie->rxq[0].napi);
2036                 }
2037                 local_bh_enable();
2038         }
2039
2040         /* This "Tx" DMA channel is used only for loading uCode */
2041         if (inta & CSR_INT_BIT_FH_TX) {
2042                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2043                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2044                 isr_stats->tx++;
2045                 handled |= CSR_INT_BIT_FH_TX;
2046                 /* Wake up uCode load routine, now that load is complete */
2047                 trans_pcie->ucode_write_complete = true;
2048                 wake_up(&trans_pcie->ucode_write_waitq);
2049         }
2050
2051         if (inta & ~handled) {
2052                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2053                 isr_stats->unhandled++;
2054         }
2055
2056         if (inta & ~(trans_pcie->inta_mask)) {
2057                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2058                          inta & ~trans_pcie->inta_mask);
2059         }
2060
2061         if (!polling) {
2062                 spin_lock_bh(&trans_pcie->irq_lock);
2063                 /* only Re-enable all interrupt if disabled by irq */
2064                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2065                         _iwl_enable_interrupts(trans);
2066                 /* we are loading the firmware, enable FH_TX interrupt only */
2067                 else if (handled & CSR_INT_BIT_FH_TX)
2068                         iwl_enable_fw_load_int(trans);
2069                 /* Re-enable RF_KILL if it occurred */
2070                 else if (handled & CSR_INT_BIT_RF_KILL)
2071                         iwl_enable_rfkill_int(trans);
2072                 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2073                 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2074                         iwl_enable_fw_load_int_ctx_info(trans);
2075                 spin_unlock_bh(&trans_pcie->irq_lock);
2076         }
2077
2078 out:
2079         lock_map_release(&trans->sync_cmd_lockdep_map);
2080         return IRQ_HANDLED;
2081 }
2082
2083 /******************************************************************************
2084  *
2085  * ICT functions
2086  *
2087  ******************************************************************************/
2088
2089 /* Free dram table */
2090 void iwl_pcie_free_ict(struct iwl_trans *trans)
2091 {
2092         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2093
2094         if (trans_pcie->ict_tbl) {
2095                 dma_free_coherent(trans->dev, ICT_SIZE,
2096                                   trans_pcie->ict_tbl,
2097                                   trans_pcie->ict_tbl_dma);
2098                 trans_pcie->ict_tbl = NULL;
2099                 trans_pcie->ict_tbl_dma = 0;
2100         }
2101 }
2102
2103 /*
2104  * allocate dram shared table, it is an aligned memory
2105  * block of ICT_SIZE.
2106  * also reset all data related to ICT table interrupt.
2107  */
2108 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2109 {
2110         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2111
2112         trans_pcie->ict_tbl =
2113                 dma_alloc_coherent(trans->dev, ICT_SIZE,
2114                                    &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2115         if (!trans_pcie->ict_tbl)
2116                 return -ENOMEM;
2117
2118         /* just an API sanity check ... it is guaranteed to be aligned */
2119         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2120                 iwl_pcie_free_ict(trans);
2121                 return -EINVAL;
2122         }
2123
2124         return 0;
2125 }
2126
2127 /* Device is going up inform it about using ICT interrupt table,
2128  * also we need to tell the driver to start using ICT interrupt.
2129  */
2130 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2131 {
2132         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2133         u32 val;
2134
2135         if (!trans_pcie->ict_tbl)
2136                 return;
2137
2138         spin_lock_bh(&trans_pcie->irq_lock);
2139         _iwl_disable_interrupts(trans);
2140
2141         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2142
2143         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2144
2145         val |= CSR_DRAM_INT_TBL_ENABLE |
2146                CSR_DRAM_INIT_TBL_WRAP_CHECK |
2147                CSR_DRAM_INIT_TBL_WRITE_POINTER;
2148
2149         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2150
2151         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2152         trans_pcie->use_ict = true;
2153         trans_pcie->ict_index = 0;
2154         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2155         _iwl_enable_interrupts(trans);
2156         spin_unlock_bh(&trans_pcie->irq_lock);
2157 }
2158
2159 /* Device is going down disable ict interrupt usage */
2160 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2161 {
2162         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2163
2164         spin_lock_bh(&trans_pcie->irq_lock);
2165         trans_pcie->use_ict = false;
2166         spin_unlock_bh(&trans_pcie->irq_lock);
2167 }
2168
2169 irqreturn_t iwl_pcie_isr(int irq, void *data)
2170 {
2171         struct iwl_trans *trans = data;
2172
2173         if (!trans)
2174                 return IRQ_NONE;
2175
2176         /* Disable (but don't clear!) interrupts here to avoid
2177          * back-to-back ISRs and sporadic interrupts from our NIC.
2178          * If we have something to service, the tasklet will re-enable ints.
2179          * If we *don't* have something, we'll re-enable before leaving here.
2180          */
2181         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2182
2183         return IRQ_WAKE_THREAD;
2184 }
2185
2186 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2187 {
2188         return IRQ_WAKE_THREAD;
2189 }
2190
2191 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2192 {
2193         struct msix_entry *entry = dev_id;
2194         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2195         struct iwl_trans *trans = trans_pcie->trans;
2196         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2197         u32 inta_fh, inta_hw;
2198         bool polling = false;
2199
2200         lock_map_acquire(&trans->sync_cmd_lockdep_map);
2201
2202         spin_lock_bh(&trans_pcie->irq_lock);
2203         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2204         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2205         /*
2206          * Clear causes registers to avoid being handling the same cause.
2207          */
2208         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2209         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2210         spin_unlock_bh(&trans_pcie->irq_lock);
2211
2212         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2213
2214         if (unlikely(!(inta_fh | inta_hw))) {
2215                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2216                 lock_map_release(&trans->sync_cmd_lockdep_map);
2217                 return IRQ_NONE;
2218         }
2219
2220         if (iwl_have_debug_level(IWL_DL_ISR)) {
2221                 IWL_DEBUG_ISR(trans,
2222                               "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2223                               inta_fh, trans_pcie->fh_mask,
2224                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2225                 if (inta_fh & ~trans_pcie->fh_mask)
2226                         IWL_DEBUG_ISR(trans,
2227                                       "We got a masked interrupt (0x%08x)\n",
2228                                       inta_fh & ~trans_pcie->fh_mask);
2229         }
2230
2231         inta_fh &= trans_pcie->fh_mask;
2232
2233         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2234             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2235                 local_bh_disable();
2236                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2237                         polling = true;
2238                         __napi_schedule(&trans_pcie->rxq[0].napi);
2239                 }
2240                 local_bh_enable();
2241         }
2242
2243         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2244             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2245                 local_bh_disable();
2246                 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2247                         polling = true;
2248                         __napi_schedule(&trans_pcie->rxq[1].napi);
2249                 }
2250                 local_bh_enable();
2251         }
2252
2253         /* This "Tx" DMA channel is used only for loading uCode */
2254         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2255                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2256                 isr_stats->tx++;
2257                 /*
2258                  * Wake up uCode load routine,
2259                  * now that load is complete
2260                  */
2261                 trans_pcie->ucode_write_complete = true;
2262                 wake_up(&trans_pcie->ucode_write_waitq);
2263         }
2264
2265         /* Error detected by uCode */
2266         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2267             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2268                 IWL_ERR(trans,
2269                         "Microcode SW error detected. Restarting 0x%X.\n",
2270                         inta_fh);
2271                 isr_stats->sw++;
2272                 iwl_pcie_irq_handle_error(trans);
2273         }
2274
2275         /* After checking FH register check HW register */
2276         if (iwl_have_debug_level(IWL_DL_ISR)) {
2277                 IWL_DEBUG_ISR(trans,
2278                               "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2279                               inta_hw, trans_pcie->hw_mask,
2280                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2281                 if (inta_hw & ~trans_pcie->hw_mask)
2282                         IWL_DEBUG_ISR(trans,
2283                                       "We got a masked interrupt 0x%08x\n",
2284                                       inta_hw & ~trans_pcie->hw_mask);
2285         }
2286
2287         inta_hw &= trans_pcie->hw_mask;
2288
2289         /* Alive notification via Rx interrupt will do the real work */
2290         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2291                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2292                 isr_stats->alive++;
2293                 if (trans->trans_cfg->gen2) {
2294                         /* We can restock, since firmware configured the RFH */
2295                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2296                 }
2297         }
2298
2299         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2300                 u32 sleep_notif =
2301                         le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2302                 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2303                     sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2304                         IWL_DEBUG_ISR(trans,
2305                                       "Sx interrupt: sleep notification = 0x%x\n",
2306                                       sleep_notif);
2307                         trans_pcie->sx_complete = true;
2308                         wake_up(&trans_pcie->sx_waitq);
2309                 } else {
2310                         /* uCode wakes up after power-down sleep */
2311                         IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2312                         iwl_pcie_rxq_check_wrptr(trans);
2313                         iwl_pcie_txq_check_wrptrs(trans);
2314
2315                         isr_stats->wakeup++;
2316                 }
2317         }
2318
2319         /* Chip got too hot and stopped itself */
2320         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2321                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2322                 isr_stats->ctkill++;
2323         }
2324
2325         /* HW RF KILL switch toggled */
2326         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2327                 iwl_pcie_handle_rfkill_irq(trans);
2328
2329         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2330                 IWL_ERR(trans,
2331                         "Hardware error detected. Restarting.\n");
2332
2333                 isr_stats->hw++;
2334                 trans->dbg.hw_error = true;
2335                 iwl_pcie_irq_handle_error(trans);
2336         }
2337
2338         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2339                 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2340                 trans_pcie->fw_reset_done = true;
2341                 wake_up(&trans_pcie->fw_reset_waitq);
2342         }
2343
2344         if (!polling)
2345                 iwl_pcie_clear_irq(trans, entry->entry);
2346
2347         lock_map_release(&trans->sync_cmd_lockdep_map);
2348
2349         return IRQ_HANDLED;
2350 }