Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[platform/kernel/linux-starfive.git] / drivers / net / wireless / ath / wil6210 / txrx.c
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5  */
6
7 #include <linux/etherdevice.h>
8 #include <net/ieee80211_radiotap.h>
9 #include <linux/if_arp.h>
10 #include <linux/moduleparam.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/if_vlan.h>
14 #include <net/ipv6.h>
15 #include <linux/prefetch.h>
16
17 #include "wil6210.h"
18 #include "wmi.h"
19 #include "txrx.h"
20 #include "trace.h"
21 #include "txrx_edma.h"
22
23 bool rx_align_2;
24 module_param(rx_align_2, bool, 0444);
25 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
26
27 bool rx_large_buf;
28 module_param(rx_large_buf, bool, 0444);
29 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
30
31 /* Drop Tx packets in case Tx ring is full */
32 bool drop_if_ring_full;
33
34 static inline uint wil_rx_snaplen(void)
35 {
36         return rx_align_2 ? 6 : 0;
37 }
38
39 /* wil_ring_wmark_low - low watermark for available descriptor space */
40 static inline int wil_ring_wmark_low(struct wil_ring *ring)
41 {
42         return ring->size / 8;
43 }
44
45 /* wil_ring_wmark_high - high watermark for available descriptor space */
46 static inline int wil_ring_wmark_high(struct wil_ring *ring)
47 {
48         return ring->size / 4;
49 }
50
51 /* returns true if num avail descriptors is lower than wmark_low */
52 static inline int wil_ring_avail_low(struct wil_ring *ring)
53 {
54         return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
55 }
56
57 /* returns true if num avail descriptors is higher than wmark_high */
58 static inline int wil_ring_avail_high(struct wil_ring *ring)
59 {
60         return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
61 }
62
63 /* returns true when all tx vrings are empty */
64 bool wil_is_tx_idle(struct wil6210_priv *wil)
65 {
66         int i;
67         unsigned long data_comp_to;
68         int min_ring_id = wil_get_min_tx_ring_id(wil);
69
70         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
71                 struct wil_ring *vring = &wil->ring_tx[i];
72                 int vring_index = vring - wil->ring_tx;
73                 struct wil_ring_tx_data *txdata =
74                         &wil->ring_tx_data[vring_index];
75
76                 spin_lock(&txdata->lock);
77
78                 if (!vring->va || !txdata->enabled) {
79                         spin_unlock(&txdata->lock);
80                         continue;
81                 }
82
83                 data_comp_to = jiffies + msecs_to_jiffies(
84                                         WIL_DATA_COMPLETION_TO_MS);
85                 if (test_bit(wil_status_napi_en, wil->status)) {
86                         while (!wil_ring_is_empty(vring)) {
87                                 if (time_after(jiffies, data_comp_to)) {
88                                         wil_dbg_pm(wil,
89                                                    "TO waiting for idle tx\n");
90                                         spin_unlock(&txdata->lock);
91                                         return false;
92                                 }
93                                 wil_dbg_ratelimited(wil,
94                                                     "tx vring is not empty -> NAPI\n");
95                                 spin_unlock(&txdata->lock);
96                                 napi_synchronize(&wil->napi_tx);
97                                 msleep(20);
98                                 spin_lock(&txdata->lock);
99                                 if (!vring->va || !txdata->enabled)
100                                         break;
101                         }
102                 }
103
104                 spin_unlock(&txdata->lock);
105         }
106
107         return true;
108 }
109
110 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
111 {
112         struct device *dev = wil_to_dev(wil);
113         size_t sz = vring->size * sizeof(vring->va[0]);
114         uint i;
115
116         wil_dbg_misc(wil, "vring_alloc:\n");
117
118         BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
119
120         vring->swhead = 0;
121         vring->swtail = 0;
122         vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
123         if (!vring->ctx) {
124                 vring->va = NULL;
125                 return -ENOMEM;
126         }
127
128         /* vring->va should be aligned on its size rounded up to power of 2
129          * This is granted by the dma_alloc_coherent.
130          *
131          * HW has limitation that all vrings addresses must share the same
132          * upper 16 msb bits part of 48 bits address. To workaround that,
133          * if we are using more than 32 bit addresses switch to 32 bit
134          * allocation before allocating vring memory.
135          *
136          * There's no check for the return value of dma_set_mask_and_coherent,
137          * since we assume if we were able to set the mask during
138          * initialization in this system it will not fail if we set it again
139          */
140         if (wil->dma_addr_size > 32)
141                 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
142
143         vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
144         if (!vring->va) {
145                 kfree(vring->ctx);
146                 vring->ctx = NULL;
147                 return -ENOMEM;
148         }
149
150         if (wil->dma_addr_size > 32)
151                 dma_set_mask_and_coherent(dev,
152                                           DMA_BIT_MASK(wil->dma_addr_size));
153
154         /* initially, all descriptors are SW owned
155          * For Tx and Rx, ownership bit is at the same location, thus
156          * we can use any
157          */
158         for (i = 0; i < vring->size; i++) {
159                 volatile struct vring_tx_desc *_d =
160                         &vring->va[i].tx.legacy;
161
162                 _d->dma.status = TX_DMA_STATUS_DU;
163         }
164
165         wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
166                      vring->va, &vring->pa, vring->ctx);
167
168         return 0;
169 }
170
171 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
172                              struct wil_ctx *ctx)
173 {
174         struct vring_tx_desc *d = &desc->legacy;
175         dma_addr_t pa = wil_desc_addr(&d->dma.addr);
176         u16 dmalen = le16_to_cpu(d->dma.length);
177
178         switch (ctx->mapped_as) {
179         case wil_mapped_as_single:
180                 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
181                 break;
182         case wil_mapped_as_page:
183                 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
184                 break;
185         default:
186                 break;
187         }
188 }
189
190 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
191 {
192         struct device *dev = wil_to_dev(wil);
193         size_t sz = vring->size * sizeof(vring->va[0]);
194
195         lockdep_assert_held(&wil->mutex);
196         if (!vring->is_rx) {
197                 int vring_index = vring - wil->ring_tx;
198
199                 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
200                              vring_index, vring->size, vring->va,
201                              &vring->pa, vring->ctx);
202         } else {
203                 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
204                              vring->size, vring->va,
205                              &vring->pa, vring->ctx);
206         }
207
208         while (!wil_ring_is_empty(vring)) {
209                 dma_addr_t pa;
210                 u16 dmalen;
211                 struct wil_ctx *ctx;
212
213                 if (!vring->is_rx) {
214                         struct vring_tx_desc dd, *d = &dd;
215                         volatile struct vring_tx_desc *_d =
216                                         &vring->va[vring->swtail].tx.legacy;
217
218                         ctx = &vring->ctx[vring->swtail];
219                         if (!ctx) {
220                                 wil_dbg_txrx(wil,
221                                              "ctx(%d) was already completed\n",
222                                              vring->swtail);
223                                 vring->swtail = wil_ring_next_tail(vring);
224                                 continue;
225                         }
226                         *d = *_d;
227                         wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
228                         if (ctx->skb)
229                                 dev_kfree_skb_any(ctx->skb);
230                         vring->swtail = wil_ring_next_tail(vring);
231                 } else { /* rx */
232                         struct vring_rx_desc dd, *d = &dd;
233                         volatile struct vring_rx_desc *_d =
234                                 &vring->va[vring->swhead].rx.legacy;
235
236                         ctx = &vring->ctx[vring->swhead];
237                         *d = *_d;
238                         pa = wil_desc_addr(&d->dma.addr);
239                         dmalen = le16_to_cpu(d->dma.length);
240                         dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
241                         kfree_skb(ctx->skb);
242                         wil_ring_advance_head(vring, 1);
243                 }
244         }
245         dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
246         kfree(vring->ctx);
247         vring->pa = 0;
248         vring->va = NULL;
249         vring->ctx = NULL;
250 }
251
252 /* Allocate one skb for Rx VRING
253  *
254  * Safe to call from IRQ
255  */
256 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
257                                u32 i, int headroom)
258 {
259         struct device *dev = wil_to_dev(wil);
260         unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
261         struct vring_rx_desc dd, *d = &dd;
262         volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
263         dma_addr_t pa;
264         struct sk_buff *skb = dev_alloc_skb(sz + headroom);
265
266         if (unlikely(!skb))
267                 return -ENOMEM;
268
269         skb_reserve(skb, headroom);
270         skb_put(skb, sz);
271
272         /**
273          * Make sure that the network stack calculates checksum for packets
274          * which failed the HW checksum calculation
275          */
276         skb->ip_summed = CHECKSUM_NONE;
277
278         pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
279         if (unlikely(dma_mapping_error(dev, pa))) {
280                 kfree_skb(skb);
281                 return -ENOMEM;
282         }
283
284         d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
285         wil_desc_addr_set(&d->dma.addr, pa);
286         /* ip_length don't care */
287         /* b11 don't care */
288         /* error don't care */
289         d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
290         d->dma.length = cpu_to_le16(sz);
291         *_d = *d;
292         vring->ctx[i].skb = skb;
293
294         return 0;
295 }
296
297 /* Adds radiotap header
298  *
299  * Any error indicated as "Bad FCS"
300  *
301  * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
302  *  - Rx descriptor: 32 bytes
303  *  - Phy info
304  */
305 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
306                                        struct sk_buff *skb)
307 {
308         struct wil6210_rtap {
309                 struct ieee80211_radiotap_header rthdr;
310                 /* fields should be in the order of bits in rthdr.it_present */
311                 /* flags */
312                 u8 flags;
313                 /* channel */
314                 __le16 chnl_freq __aligned(2);
315                 __le16 chnl_flags;
316                 /* MCS */
317                 u8 mcs_present;
318                 u8 mcs_flags;
319                 u8 mcs_index;
320         } __packed;
321         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
322         struct wil6210_rtap *rtap;
323         int rtap_len = sizeof(struct wil6210_rtap);
324         struct ieee80211_channel *ch = wil->monitor_chandef.chan;
325
326         if (skb_headroom(skb) < rtap_len &&
327             pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
328                 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
329                 return;
330         }
331
332         rtap = skb_push(skb, rtap_len);
333         memset(rtap, 0, rtap_len);
334
335         rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
336         rtap->rthdr.it_len = cpu_to_le16(rtap_len);
337         rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
338                         (1 << IEEE80211_RADIOTAP_CHANNEL) |
339                         (1 << IEEE80211_RADIOTAP_MCS));
340         if (d->dma.status & RX_DMA_STATUS_ERROR)
341                 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
342
343         rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
344         rtap->chnl_flags = cpu_to_le16(0);
345
346         rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
347         rtap->mcs_flags = 0;
348         rtap->mcs_index = wil_rxdesc_mcs(d);
349 }
350
351 static bool wil_is_rx_idle(struct wil6210_priv *wil)
352 {
353         struct vring_rx_desc *_d;
354         struct wil_ring *ring = &wil->ring_rx;
355
356         _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
357         if (_d->dma.status & RX_DMA_STATUS_DU)
358                 return false;
359
360         return true;
361 }
362
363 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
364 {
365         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
366         int mid = wil_rxdesc_mid(d);
367         struct wil6210_vif *vif = wil->vifs[mid];
368         /* cid from DMA descriptor is limited to 3 bits.
369          * In case of cid>=8, the value would be cid modulo 8 and we need to
370          * find real cid by locating the transmitter (ta) inside sta array
371          */
372         int cid = wil_rxdesc_cid(d);
373         unsigned int snaplen = wil_rx_snaplen();
374         struct ieee80211_hdr_3addr *hdr;
375         int i;
376         unsigned char *ta;
377         u8 ftype;
378
379         /* in monitor mode there are no connections */
380         if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
381                 return cid;
382
383         ftype = wil_rxdesc_ftype(d) << 2;
384         if (likely(ftype == IEEE80211_FTYPE_DATA)) {
385                 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
386                         wil_err_ratelimited(wil,
387                                             "Short data frame, len = %d\n",
388                                             skb->len);
389                         return -ENOENT;
390                 }
391                 ta = wil_skb_get_sa(skb);
392         } else {
393                 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
394                         wil_err_ratelimited(wil, "Short frame, len = %d\n",
395                                             skb->len);
396                         return -ENOENT;
397                 }
398                 hdr = (void *)skb->data;
399                 ta = hdr->addr2;
400         }
401
402         if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
403                 return cid;
404
405         /* assuming no concurrency between AP interfaces and STA interfaces.
406          * multista is used only in P2P_GO or AP mode. In other modes return
407          * cid from the rx descriptor
408          */
409         if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
410             vif->wdev.iftype != NL80211_IFTYPE_AP)
411                 return cid;
412
413         /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
414          * to find the real cid, compare transmitter address with the stored
415          * stations mac address in the driver sta array
416          */
417         for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
418                 if (wil->sta[i].status != wil_sta_unused &&
419                     ether_addr_equal(wil->sta[i].addr, ta)) {
420                         cid = i;
421                         break;
422                 }
423         }
424         if (i >= wil->max_assoc_sta) {
425                 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
426                                     ta, vif->wdev.iftype, ftype, skb->len);
427                 cid = -ENOENT;
428         }
429
430         return cid;
431 }
432
433 /* reap 1 frame from @swhead
434  *
435  * Rx descriptor copied to skb->cb
436  *
437  * Safe to call from IRQ
438  */
439 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
440                                          struct wil_ring *vring)
441 {
442         struct device *dev = wil_to_dev(wil);
443         struct wil6210_vif *vif;
444         struct net_device *ndev;
445         volatile struct vring_rx_desc *_d;
446         struct vring_rx_desc *d;
447         struct sk_buff *skb;
448         dma_addr_t pa;
449         unsigned int snaplen = wil_rx_snaplen();
450         unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
451         u16 dmalen;
452         u8 ftype;
453         int cid, mid;
454         int i;
455         struct wil_net_stats *stats;
456
457         BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
458
459 again:
460         if (unlikely(wil_ring_is_empty(vring)))
461                 return NULL;
462
463         i = (int)vring->swhead;
464         _d = &vring->va[i].rx.legacy;
465         if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
466                 /* it is not error, we just reached end of Rx done area */
467                 return NULL;
468         }
469
470         skb = vring->ctx[i].skb;
471         vring->ctx[i].skb = NULL;
472         wil_ring_advance_head(vring, 1);
473         if (!skb) {
474                 wil_err(wil, "No Rx skb at [%d]\n", i);
475                 goto again;
476         }
477         d = wil_skb_rxdesc(skb);
478         *d = *_d;
479         pa = wil_desc_addr(&d->dma.addr);
480
481         dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
482         dmalen = le16_to_cpu(d->dma.length);
483
484         trace_wil6210_rx(i, d);
485         wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
486         wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
487                           (const void *)d, sizeof(*d), false);
488
489         mid = wil_rxdesc_mid(d);
490         vif = wil->vifs[mid];
491
492         if (unlikely(!vif)) {
493                 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
494                              mid);
495                 kfree_skb(skb);
496                 goto again;
497         }
498         ndev = vif_to_ndev(vif);
499         if (unlikely(dmalen > sz)) {
500                 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
501                                     dmalen);
502                 kfree_skb(skb);
503                 goto again;
504         }
505         skb_trim(skb, dmalen);
506
507         prefetch(skb->data);
508
509         wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
510                           skb->data, skb_headlen(skb), false);
511
512         cid = wil_rx_get_cid_by_skb(wil, skb);
513         if (cid == -ENOENT) {
514                 kfree_skb(skb);
515                 goto again;
516         }
517         wil_skb_set_cid(skb, (u8)cid);
518         stats = &wil->sta[cid].stats;
519
520         stats->last_mcs_rx = wil_rxdesc_mcs(d);
521         if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
522                 stats->rx_per_mcs[stats->last_mcs_rx]++;
523
524         /* use radiotap header only if required */
525         if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
526                 wil_rx_add_radiotap_header(wil, skb);
527
528         /* no extra checks if in sniffer mode */
529         if (ndev->type != ARPHRD_ETHER)
530                 return skb;
531         /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
532          * Driver should recognize it by frame type, that is found
533          * in Rx descriptor. If type is not data, it is 802.11 frame as is
534          */
535         ftype = wil_rxdesc_ftype(d) << 2;
536         if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
537                 u8 fc1 = wil_rxdesc_fc1(d);
538                 int tid = wil_rxdesc_tid(d);
539                 u16 seq = wil_rxdesc_seq(d);
540
541                 wil_dbg_txrx(wil,
542                              "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
543                              fc1, mid, cid, tid, seq);
544                 stats->rx_non_data_frame++;
545                 if (wil_is_back_req(fc1)) {
546                         wil_dbg_txrx(wil,
547                                      "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
548                                      mid, cid, tid, seq);
549                         wil_rx_bar(wil, vif, cid, tid, seq);
550                 } else {
551                         /* print again all info. One can enable only this
552                          * without overhead for printing every Rx frame
553                          */
554                         wil_dbg_txrx(wil,
555                                      "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
556                                      fc1, mid, cid, tid, seq);
557                         wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
558                                           (const void *)d, sizeof(*d), false);
559                         wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
560                                           skb->data, skb_headlen(skb), false);
561                 }
562                 kfree_skb(skb);
563                 goto again;
564         }
565
566         /* L4 IDENT is on when HW calculated checksum, check status
567          * and in case of error drop the packet
568          * higher stack layers will handle retransmission (if required)
569          */
570         if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
571                 /* L4 protocol identified, csum calculated */
572                 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
573                         skb->ip_summed = CHECKSUM_UNNECESSARY;
574                 /* If HW reports bad checksum, let IP stack re-check it
575                  * For example, HW don't understand Microsoft IP stack that
576                  * mis-calculates TCP checksum - if it should be 0x0,
577                  * it writes 0xffff in violation of RFC 1624
578                  */
579                 else
580                         stats->rx_csum_err++;
581         }
582
583         if (snaplen) {
584                 /* Packet layout
585                  * +-------+-------+---------+------------+------+
586                  * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
587                  * +-------+-------+---------+------------+------+
588                  * Need to remove SNAP, shifting SA and DA forward
589                  */
590                 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
591                 skb_pull(skb, snaplen);
592         }
593
594         return skb;
595 }
596
597 /* allocate and fill up to @count buffers in rx ring
598  * buffers posted at @swtail
599  * Note: we have a single RX queue for servicing all VIFs, but we
600  * allocate skbs with headroom according to main interface only. This
601  * means it will not work with monitor interface together with other VIFs.
602  * Currently we only support monitor interface on its own without other VIFs,
603  * and we will need to fix this code once we add support.
604  */
605 static int wil_rx_refill(struct wil6210_priv *wil, int count)
606 {
607         struct net_device *ndev = wil->main_ndev;
608         struct wil_ring *v = &wil->ring_rx;
609         u32 next_tail;
610         int rc = 0;
611         int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
612                         WIL6210_RTAP_SIZE : 0;
613
614         for (; next_tail = wil_ring_next_tail(v),
615              (next_tail != v->swhead) && (count-- > 0);
616              v->swtail = next_tail) {
617                 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
618                 if (unlikely(rc)) {
619                         wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
620                                             rc, v->swtail);
621                         break;
622                 }
623         }
624
625         /* make sure all writes to descriptors (shared memory) are done before
626          * committing them to HW
627          */
628         wmb();
629
630         wil_w(wil, v->hwtail, v->swtail);
631
632         return rc;
633 }
634
635 /**
636  * reverse_memcmp - Compare two areas of memory, in reverse order
637  * @cs: One area of memory
638  * @ct: Another area of memory
639  * @count: The size of the area.
640  *
641  * Cut'n'paste from original memcmp (see lib/string.c)
642  * with minimal modifications
643  */
644 int reverse_memcmp(const void *cs, const void *ct, size_t count)
645 {
646         const unsigned char *su1, *su2;
647         int res = 0;
648
649         for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
650              --su1, --su2, count--) {
651                 res = *su1 - *su2;
652                 if (res)
653                         break;
654         }
655         return res;
656 }
657
658 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
659 {
660         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
661         int cid = wil_skb_get_cid(skb);
662         int tid = wil_rxdesc_tid(d);
663         int key_id = wil_rxdesc_key_id(d);
664         int mc = wil_rxdesc_mcast(d);
665         struct wil_sta_info *s = &wil->sta[cid];
666         struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
667                                       &s->tid_crypto_rx[tid];
668         struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
669         const u8 *pn = (u8 *)&d->mac.pn_15_0;
670
671         if (!cc->key_set) {
672                 wil_err_ratelimited(wil,
673                                     "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
674                                     cid, tid, mc, key_id);
675                 return -EINVAL;
676         }
677
678         if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
679                 wil_err_ratelimited(wil,
680                                     "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
681                                     cid, tid, mc, key_id, pn, cc->pn);
682                 return -EINVAL;
683         }
684         memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
685
686         return 0;
687 }
688
689 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
690                               struct wil_net_stats *stats)
691 {
692         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
693
694         if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
695             (d->dma.error & RX_DMA_ERROR_MIC)) {
696                 stats->rx_mic_error++;
697                 wil_dbg_txrx(wil, "MIC error, dropping packet\n");
698                 return -EFAULT;
699         }
700
701         return 0;
702 }
703
704 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
705                                     int *security)
706 {
707         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
708
709         *cid = wil_skb_get_cid(skb);
710         *security = wil_rxdesc_security(d);
711 }
712
713 /*
714  * Check if skb is ptk eapol key message
715  *
716  * returns a pointer to the start of the eapol key structure, NULL
717  * if frame is not PTK eapol key
718  */
719 static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
720                                                   struct sk_buff *skb)
721 {
722         u8 *buf;
723         const struct wil_1x_hdr *hdr;
724         struct wil_eapol_key *key;
725         u16 key_info;
726         int len = skb->len;
727
728         if (!skb_mac_header_was_set(skb)) {
729                 wil_err(wil, "mac header was not set\n");
730                 return NULL;
731         }
732
733         len -= skb_mac_offset(skb);
734
735         if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
736             sizeof(struct wil_eapol_key))
737                 return NULL;
738
739         buf = skb_mac_header(skb) + sizeof(struct ethhdr);
740
741         hdr = (const struct wil_1x_hdr *)buf;
742         if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
743                 return NULL;
744
745         key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
746         if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
747             key->type != WIL_EAPOL_KEY_TYPE_RSN)
748                 return NULL;
749
750         key_info = be16_to_cpu(key->key_info);
751         if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
752                 return NULL;
753
754         return key;
755 }
756
757 static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
758 {
759         struct wil_eapol_key *key;
760         u16 key_info;
761
762         key = wil_is_ptk_eapol_key(wil, skb);
763         if (!key)
764                 return false;
765
766         key_info = be16_to_cpu(key->key_info);
767         if (key_info & (WIL_KEY_INFO_MIC |
768                         WIL_KEY_INFO_ENCR_KEY_DATA)) {
769                 /* 3/4 of 4-Way Handshake */
770                 wil_dbg_misc(wil, "EAPOL key message 3\n");
771                 return true;
772         }
773         /* 1/4 of 4-Way Handshake */
774         wil_dbg_misc(wil, "EAPOL key message 1\n");
775
776         return false;
777 }
778
779 static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
780 {
781         struct wil_eapol_key *key;
782         u32 *nonce, i;
783
784         key = wil_is_ptk_eapol_key(wil, skb);
785         if (!key)
786                 return false;
787
788         nonce = (u32 *)key->key_nonce;
789         for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
790                 if (*nonce != 0) {
791                         /* message 2/4 */
792                         wil_dbg_misc(wil, "EAPOL key message 2\n");
793                         return false;
794                 }
795         }
796         wil_dbg_misc(wil, "EAPOL key message 4\n");
797
798         return true;
799 }
800
801 void wil_enable_tx_key_worker(struct work_struct *work)
802 {
803         struct wil6210_vif *vif = container_of(work,
804                         struct wil6210_vif, enable_tx_key_worker);
805         struct wil6210_priv *wil = vif_to_wil(vif);
806         int rc, cid;
807
808         rtnl_lock();
809         if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
810                 wil_dbg_misc(wil, "Invalid rekey state = %d\n",
811                              vif->ptk_rekey_state);
812                 rtnl_unlock();
813                 return;
814         }
815
816         cid =  wil_find_cid_by_idx(wil, vif->mid, 0);
817         if (!wil_cid_valid(wil, cid)) {
818                 wil_err(wil, "Invalid cid = %d\n", cid);
819                 rtnl_unlock();
820                 return;
821         }
822
823         wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
824         rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
825                                 WMI_KEY_USE_APPLY_PTK);
826
827         vif->ptk_rekey_state = WIL_REKEY_IDLE;
828         rtnl_unlock();
829
830         if (rc)
831                 wil_err(wil, "Apply PTK key failed %d\n", rc);
832 }
833
834 void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
835 {
836         struct wil6210_priv *wil = vif_to_wil(vif);
837         struct wireless_dev *wdev = vif_to_wdev(vif);
838         bool q = false;
839
840         if (wdev->iftype != NL80211_IFTYPE_STATION ||
841             !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
842                 return;
843
844         /* check if skb is an EAP message 4/4 */
845         if (!wil_skb_is_eap_4(wil, skb))
846                 return;
847
848         spin_lock_bh(&wil->eap_lock);
849         switch (vif->ptk_rekey_state) {
850         case WIL_REKEY_IDLE:
851                 /* ignore idle state, can happen due to M4 retransmission */
852                 break;
853         case WIL_REKEY_M3_RECEIVED:
854                 vif->ptk_rekey_state = WIL_REKEY_IDLE;
855                 break;
856         case WIL_REKEY_WAIT_M4_SENT:
857                 q = true;
858                 break;
859         default:
860                 wil_err(wil, "Unknown rekey state = %d",
861                         vif->ptk_rekey_state);
862         }
863         spin_unlock_bh(&wil->eap_lock);
864
865         if (q) {
866                 q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
867                 wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
868                              q);
869         }
870 }
871
872 static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
873 {
874         struct wil6210_priv *wil = vif_to_wil(vif);
875         struct wireless_dev *wdev = vif_to_wdev(vif);
876
877         if (wdev->iftype != NL80211_IFTYPE_STATION ||
878             !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
879                 return;
880
881         /* check if skb is a EAP message 3/4 */
882         if (!wil_skb_is_eap_3(wil, skb))
883                 return;
884
885         if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
886                 vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
887 }
888
889 /*
890  * Pass Rx packet to the netif. Update statistics.
891  * Called in softirq context (NAPI poll).
892  */
893 void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
894                   struct wil_net_stats *stats, bool gro)
895 {
896         struct wil6210_vif *vif = ndev_to_vif(ndev);
897         struct wil6210_priv *wil = ndev_to_wil(ndev);
898         struct wireless_dev *wdev = vif_to_wdev(vif);
899         unsigned int len = skb->len;
900         u8 *sa, *da = wil_skb_get_da(skb);
901         /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
902          * is not suitable, need to look at data
903          */
904         int mcast = is_multicast_ether_addr(da);
905         struct sk_buff *xmit_skb = NULL;
906
907         if (wdev->iftype == NL80211_IFTYPE_STATION) {
908                 sa = wil_skb_get_sa(skb);
909                 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
910                         /* mcast packet looped back to us */
911                         dev_kfree_skb(skb);
912                         ndev->stats.rx_dropped++;
913                         stats->rx_dropped++;
914                         wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
915                         return;
916                 }
917         } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
918                 if (mcast) {
919                         /* send multicast frames both to higher layers in
920                          * local net stack and back to the wireless medium
921                          */
922                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
923                 } else {
924                         int xmit_cid = wil_find_cid(wil, vif->mid, da);
925
926                         if (xmit_cid >= 0) {
927                                 /* The destination station is associated to
928                                  * this AP (in this VLAN), so send the frame
929                                  * directly to it and do not pass it to local
930                                  * net stack.
931                                  */
932                                 xmit_skb = skb;
933                                 skb = NULL;
934                         }
935                 }
936         }
937         if (xmit_skb) {
938                 /* Send to wireless media and increase priority by 256 to
939                  * keep the received priority instead of reclassifying
940                  * the frame (see cfg80211_classify8021d).
941                  */
942                 xmit_skb->dev = ndev;
943                 xmit_skb->priority += 256;
944                 xmit_skb->protocol = htons(ETH_P_802_3);
945                 skb_reset_network_header(xmit_skb);
946                 skb_reset_mac_header(xmit_skb);
947                 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
948                 dev_queue_xmit(xmit_skb);
949         }
950
951         if (skb) { /* deliver to local stack */
952                 skb->protocol = eth_type_trans(skb, ndev);
953                 skb->dev = ndev;
954
955                 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
956                         wil_rx_handle_eapol(vif, skb);
957
958                 if (gro)
959                         napi_gro_receive(&wil->napi_rx, skb);
960                 else
961                         netif_rx(skb);
962         }
963         ndev->stats.rx_packets++;
964         stats->rx_packets++;
965         ndev->stats.rx_bytes += len;
966         stats->rx_bytes += len;
967         if (mcast)
968                 ndev->stats.multicast++;
969 }
970
971 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
972 {
973         int cid, security;
974         struct wil6210_priv *wil = ndev_to_wil(ndev);
975         struct wil_net_stats *stats;
976
977         wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
978
979         stats = &wil->sta[cid].stats;
980
981         skb_orphan(skb);
982
983         if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
984                 wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
985                 dev_kfree_skb(skb);
986                 ndev->stats.rx_dropped++;
987                 stats->rx_replay++;
988                 stats->rx_dropped++;
989                 return;
990         }
991
992         /* check errors reported by HW and update statistics */
993         if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
994                 dev_kfree_skb(skb);
995                 return;
996         }
997
998         wil_netif_rx(skb, ndev, cid, stats, true);
999 }
1000
1001 /* Proceed all completed skb's from Rx VRING
1002  *
1003  * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
1004  */
1005 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
1006 {
1007         struct net_device *ndev = wil->main_ndev;
1008         struct wireless_dev *wdev = ndev->ieee80211_ptr;
1009         struct wil_ring *v = &wil->ring_rx;
1010         struct sk_buff *skb;
1011
1012         if (unlikely(!v->va)) {
1013                 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
1014                 return;
1015         }
1016         wil_dbg_txrx(wil, "rx_handle\n");
1017         while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
1018                 (*quota)--;
1019
1020                 /* monitor is currently supported on main interface only */
1021                 if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1022                         skb->dev = ndev;
1023                         skb_reset_mac_header(skb);
1024                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1025                         skb->pkt_type = PACKET_OTHERHOST;
1026                         skb->protocol = htons(ETH_P_802_2);
1027                         wil_netif_rx_any(skb, ndev);
1028                 } else {
1029                         wil_rx_reorder(wil, skb);
1030                 }
1031         }
1032         wil_rx_refill(wil, v->size);
1033 }
1034
1035 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
1036 {
1037         wil->rx_buf_len = rx_large_buf ?
1038                 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
1039         if (mtu_max > wil->rx_buf_len) {
1040                 /* do not allow RX buffers to be smaller than mtu_max, for
1041                  * backward compatibility (mtu_max parameter was also used
1042                  * to support receiving large packets)
1043                  */
1044                 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
1045                 wil->rx_buf_len = mtu_max;
1046         }
1047 }
1048
1049 static int wil_rx_init(struct wil6210_priv *wil, uint order)
1050 {
1051         struct wil_ring *vring = &wil->ring_rx;
1052         int rc;
1053
1054         wil_dbg_misc(wil, "rx_init\n");
1055
1056         if (vring->va) {
1057                 wil_err(wil, "Rx ring already allocated\n");
1058                 return -EINVAL;
1059         }
1060
1061         wil_rx_buf_len_init(wil);
1062
1063         vring->size = 1 << order;
1064         vring->is_rx = true;
1065         rc = wil_vring_alloc(wil, vring);
1066         if (rc)
1067                 return rc;
1068
1069         rc = wmi_rx_chain_add(wil, vring);
1070         if (rc)
1071                 goto err_free;
1072
1073         rc = wil_rx_refill(wil, vring->size);
1074         if (rc)
1075                 goto err_free;
1076
1077         return 0;
1078  err_free:
1079         wil_vring_free(wil, vring);
1080
1081         return rc;
1082 }
1083
1084 static void wil_rx_fini(struct wil6210_priv *wil)
1085 {
1086         struct wil_ring *vring = &wil->ring_rx;
1087
1088         wil_dbg_misc(wil, "rx_fini\n");
1089
1090         if (vring->va)
1091                 wil_vring_free(wil, vring);
1092 }
1093
1094 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
1095                            u32 len, int vring_index)
1096 {
1097         struct vring_tx_desc *d = &desc->legacy;
1098
1099         wil_desc_addr_set(&d->dma.addr, pa);
1100         d->dma.ip_length = 0;
1101         /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1102         d->dma.b11 = 0/*14 | BIT(7)*/;
1103         d->dma.error = 0;
1104         d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1105         d->dma.length = cpu_to_le16((u16)len);
1106         d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1107         d->mac.d[0] = 0;
1108         d->mac.d[1] = 0;
1109         d->mac.d[2] = 0;
1110         d->mac.ucode_cmd = 0;
1111         /* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
1112         d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1113                       (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1114
1115         return 0;
1116 }
1117
1118 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
1119 {
1120         spin_lock_bh(&txdata->lock);
1121         txdata->dot1x_open = false;
1122         txdata->enabled = 0;
1123         txdata->idle = 0;
1124         txdata->last_idle = 0;
1125         txdata->begin = 0;
1126         txdata->agg_wsize = 0;
1127         txdata->agg_timeout = 0;
1128         txdata->agg_amsdu = 0;
1129         txdata->addba_in_progress = false;
1130         txdata->mid = U8_MAX;
1131         spin_unlock_bh(&txdata->lock);
1132 }
1133
1134 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
1135                              int cid, int tid)
1136 {
1137         struct wil6210_priv *wil = vif_to_wil(vif);
1138         int rc;
1139         struct wmi_vring_cfg_cmd cmd = {
1140                 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1141                 .vring_cfg = {
1142                         .tx_sw_ring = {
1143                                 .max_mpdu_size =
1144                                         cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1145                                 .ring_size = cpu_to_le16(size),
1146                         },
1147                         .ringid = id,
1148                         .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1149                         .mac_ctrl = 0,
1150                         .to_resolution = 0,
1151                         .agg_max_wsize = 0,
1152                         .schd_params = {
1153                                 .priority = cpu_to_le16(0),
1154                                 .timeslot_us = cpu_to_le16(0xfff),
1155                         },
1156                 },
1157         };
1158         struct {
1159                 struct wmi_cmd_hdr wmi;
1160                 struct wmi_vring_cfg_done_event cmd;
1161         } __packed reply = {
1162                 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1163         };
1164         struct wil_ring *vring = &wil->ring_tx[id];
1165         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1166
1167         if (cid >= WIL6210_RX_DESC_MAX_CID) {
1168                 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1169                 cmd.vring_cfg.cid = cid;
1170                 cmd.vring_cfg.tid = tid;
1171         } else {
1172                 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1173         }
1174
1175         wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1176                      cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1177         lockdep_assert_held(&wil->mutex);
1178
1179         if (vring->va) {
1180                 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1181                 rc = -EINVAL;
1182                 goto out;
1183         }
1184
1185         wil_tx_data_init(txdata);
1186         vring->is_rx = false;
1187         vring->size = size;
1188         rc = wil_vring_alloc(wil, vring);
1189         if (rc)
1190                 goto out;
1191
1192         wil->ring2cid_tid[id][0] = cid;
1193         wil->ring2cid_tid[id][1] = tid;
1194
1195         cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1196
1197         if (!vif->privacy)
1198                 txdata->dot1x_open = true;
1199         rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1200                       WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1201                       WIL_WMI_CALL_GENERAL_TO_MS);
1202         if (rc)
1203                 goto out_free;
1204
1205         if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1206                 wil_err(wil, "Tx config failed, status 0x%02x\n",
1207                         reply.cmd.status);
1208                 rc = -EINVAL;
1209                 goto out_free;
1210         }
1211
1212         spin_lock_bh(&txdata->lock);
1213         vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1214         txdata->mid = vif->mid;
1215         txdata->enabled = 1;
1216         spin_unlock_bh(&txdata->lock);
1217
1218         if (txdata->dot1x_open && (agg_wsize >= 0))
1219                 wil_addba_tx_request(wil, id, agg_wsize);
1220
1221         return 0;
1222  out_free:
1223         spin_lock_bh(&txdata->lock);
1224         txdata->dot1x_open = false;
1225         txdata->enabled = 0;
1226         spin_unlock_bh(&txdata->lock);
1227         wil_vring_free(wil, vring);
1228         wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1229         wil->ring2cid_tid[id][1] = 0;
1230
1231  out:
1232
1233         return rc;
1234 }
1235
1236 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1237                                int tid)
1238 {
1239         struct wil6210_priv *wil = vif_to_wil(vif);
1240         int rc;
1241         struct wmi_vring_cfg_cmd cmd = {
1242                 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1243                 .vring_cfg = {
1244                         .tx_sw_ring = {
1245                                 .max_mpdu_size =
1246                                         cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1247                                 .ring_size = 0,
1248                         },
1249                         .ringid = ring_id,
1250                         .cidxtid = mk_cidxtid(cid, tid),
1251                         .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1252                         .mac_ctrl = 0,
1253                         .to_resolution = 0,
1254                         .agg_max_wsize = 0,
1255                         .schd_params = {
1256                                 .priority = cpu_to_le16(0),
1257                                 .timeslot_us = cpu_to_le16(0xfff),
1258                         },
1259                 },
1260         };
1261         struct {
1262                 struct wmi_cmd_hdr wmi;
1263                 struct wmi_vring_cfg_done_event cmd;
1264         } __packed reply = {
1265                 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1266         };
1267         struct wil_ring *vring = &wil->ring_tx[ring_id];
1268         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1269
1270         wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1271                      cid, tid);
1272         lockdep_assert_held(&wil->mutex);
1273
1274         if (!vring->va) {
1275                 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1276                 return -EINVAL;
1277         }
1278
1279         if (wil->ring2cid_tid[ring_id][0] != cid ||
1280             wil->ring2cid_tid[ring_id][1] != tid) {
1281                 wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1282                         wil->ring2cid_tid[ring_id][0],
1283                         wil->ring2cid_tid[ring_id][1]);
1284         }
1285
1286         cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1287
1288         rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1289                       WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1290                       WIL_WMI_CALL_GENERAL_TO_MS);
1291         if (rc)
1292                 goto fail;
1293
1294         if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1295                 wil_err(wil, "Tx modify failed, status 0x%02x\n",
1296                         reply.cmd.status);
1297                 rc = -EINVAL;
1298                 goto fail;
1299         }
1300
1301         /* set BA aggregation window size to 0 to force a new BA with the
1302          * new AP
1303          */
1304         txdata->agg_wsize = 0;
1305         if (txdata->dot1x_open && agg_wsize >= 0)
1306                 wil_addba_tx_request(wil, ring_id, agg_wsize);
1307
1308         return 0;
1309 fail:
1310         spin_lock_bh(&txdata->lock);
1311         txdata->dot1x_open = false;
1312         txdata->enabled = 0;
1313         spin_unlock_bh(&txdata->lock);
1314         wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1315         wil->ring2cid_tid[ring_id][1] = 0;
1316         return rc;
1317 }
1318
1319 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1320 {
1321         struct wil6210_priv *wil = vif_to_wil(vif);
1322         int rc;
1323         struct wmi_bcast_vring_cfg_cmd cmd = {
1324                 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1325                 .vring_cfg = {
1326                         .tx_sw_ring = {
1327                                 .max_mpdu_size =
1328                                         cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1329                                 .ring_size = cpu_to_le16(size),
1330                         },
1331                         .ringid = id,
1332                         .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1333                 },
1334         };
1335         struct {
1336                 struct wmi_cmd_hdr wmi;
1337                 struct wmi_vring_cfg_done_event cmd;
1338         } __packed reply = {
1339                 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1340         };
1341         struct wil_ring *vring = &wil->ring_tx[id];
1342         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1343
1344         wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1345                      cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1346         lockdep_assert_held(&wil->mutex);
1347
1348         if (vring->va) {
1349                 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1350                 rc = -EINVAL;
1351                 goto out;
1352         }
1353
1354         wil_tx_data_init(txdata);
1355         vring->is_rx = false;
1356         vring->size = size;
1357         rc = wil_vring_alloc(wil, vring);
1358         if (rc)
1359                 goto out;
1360
1361         wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1362         wil->ring2cid_tid[id][1] = 0; /* TID */
1363
1364         cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1365
1366         if (!vif->privacy)
1367                 txdata->dot1x_open = true;
1368         rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1369                       &cmd, sizeof(cmd),
1370                       WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1371                       WIL_WMI_CALL_GENERAL_TO_MS);
1372         if (rc)
1373                 goto out_free;
1374
1375         if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1376                 wil_err(wil, "Tx config failed, status 0x%02x\n",
1377                         reply.cmd.status);
1378                 rc = -EINVAL;
1379                 goto out_free;
1380         }
1381
1382         spin_lock_bh(&txdata->lock);
1383         vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1384         txdata->mid = vif->mid;
1385         txdata->enabled = 1;
1386         spin_unlock_bh(&txdata->lock);
1387
1388         return 0;
1389  out_free:
1390         spin_lock_bh(&txdata->lock);
1391         txdata->enabled = 0;
1392         txdata->dot1x_open = false;
1393         spin_unlock_bh(&txdata->lock);
1394         wil_vring_free(wil, vring);
1395  out:
1396
1397         return rc;
1398 }
1399
1400 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1401                                           struct wil6210_vif *vif,
1402                                           struct sk_buff *skb)
1403 {
1404         int i, cid;
1405         const u8 *da = wil_skb_get_da(skb);
1406         int min_ring_id = wil_get_min_tx_ring_id(wil);
1407
1408         cid = wil_find_cid(wil, vif->mid, da);
1409
1410         if (cid < 0 || cid >= wil->max_assoc_sta)
1411                 return NULL;
1412
1413         /* TODO: fix for multiple TID */
1414         for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1415                 if (!wil->ring_tx_data[i].dot1x_open &&
1416                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1417                         continue;
1418                 if (wil->ring2cid_tid[i][0] == cid) {
1419                         struct wil_ring *v = &wil->ring_tx[i];
1420                         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1421
1422                         wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1423                                      da, i);
1424                         if (v->va && txdata->enabled) {
1425                                 return v;
1426                         } else {
1427                                 wil_dbg_txrx(wil,
1428                                              "find_tx_ucast: vring[%d] not valid\n",
1429                                              i);
1430                                 return NULL;
1431                         }
1432                 }
1433         }
1434
1435         return NULL;
1436 }
1437
1438 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1439                        struct wil_ring *ring, struct sk_buff *skb);
1440
1441 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1442                                              struct wil6210_vif *vif,
1443                                              struct sk_buff *skb)
1444 {
1445         struct wil_ring *ring;
1446         int i;
1447         u8 cid;
1448         struct wil_ring_tx_data  *txdata;
1449         int min_ring_id = wil_get_min_tx_ring_id(wil);
1450
1451         /* In the STA mode, it is expected to have only 1 VRING
1452          * for the AP we connected to.
1453          * find 1-st vring eligible for this skb and use it.
1454          */
1455         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1456                 ring = &wil->ring_tx[i];
1457                 txdata = &wil->ring_tx_data[i];
1458                 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1459                         continue;
1460
1461                 cid = wil->ring2cid_tid[i][0];
1462                 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1463                         continue;
1464
1465                 if (!wil->ring_tx_data[i].dot1x_open &&
1466                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1467                         continue;
1468
1469                 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1470
1471                 return ring;
1472         }
1473
1474         wil_dbg_txrx(wil, "Tx while no rings active?\n");
1475
1476         return NULL;
1477 }
1478
1479 /* Use one of 2 strategies:
1480  *
1481  * 1. New (real broadcast):
1482  *    use dedicated broadcast vring
1483  * 2. Old (pseudo-DMS):
1484  *    Find 1-st vring and return it;
1485  *    duplicate skb and send it to other active vrings;
1486  *    in all cases override dest address to unicast peer's address
1487  * Use old strategy when new is not supported yet:
1488  *  - for PBSS
1489  */
1490 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1491                                             struct wil6210_vif *vif,
1492                                             struct sk_buff *skb)
1493 {
1494         struct wil_ring *v;
1495         struct wil_ring_tx_data *txdata;
1496         int i = vif->bcast_ring;
1497
1498         if (i < 0)
1499                 return NULL;
1500         v = &wil->ring_tx[i];
1501         txdata = &wil->ring_tx_data[i];
1502         if (!v->va || !txdata->enabled)
1503                 return NULL;
1504         if (!wil->ring_tx_data[i].dot1x_open &&
1505             skb->protocol != cpu_to_be16(ETH_P_PAE))
1506                 return NULL;
1507
1508         return v;
1509 }
1510
1511 /* apply multicast to unicast only for ARP and IP packets
1512  * (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info)
1513  */
1514 static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil,
1515                                            struct sk_buff *skb)
1516 {
1517         const struct ethhdr *eth = (void *)skb->data;
1518         const struct vlan_ethhdr *ethvlan = (void *)skb->data;
1519         __be16 ethertype;
1520
1521         if (!wil->multicast_to_unicast)
1522                 return false;
1523
1524         /* multicast to unicast conversion only for some payload */
1525         ethertype = eth->h_proto;
1526         if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN)
1527                 ethertype = ethvlan->h_vlan_encapsulated_proto;
1528         switch (ethertype) {
1529         case htons(ETH_P_ARP):
1530         case htons(ETH_P_IP):
1531         case htons(ETH_P_IPV6):
1532                 break;
1533         default:
1534                 return false;
1535         }
1536
1537         return true;
1538 }
1539
1540 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1541                                  struct sk_buff *skb, int vring_index)
1542 {
1543         u8 *da = wil_skb_get_da(skb);
1544         int cid = wil->ring2cid_tid[vring_index][0];
1545
1546         ether_addr_copy(da, wil->sta[cid].addr);
1547 }
1548
1549 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1550                                             struct wil6210_vif *vif,
1551                                             struct sk_buff *skb)
1552 {
1553         struct wil_ring *v, *v2;
1554         struct sk_buff *skb2;
1555         int i;
1556         u8 cid;
1557         const u8 *src = wil_skb_get_sa(skb);
1558         struct wil_ring_tx_data *txdata, *txdata2;
1559         int min_ring_id = wil_get_min_tx_ring_id(wil);
1560
1561         /* find 1-st vring eligible for data */
1562         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1563                 v = &wil->ring_tx[i];
1564                 txdata = &wil->ring_tx_data[i];
1565                 if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1566                         continue;
1567
1568                 cid = wil->ring2cid_tid[i][0];
1569                 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1570                         continue;
1571                 if (!wil->ring_tx_data[i].dot1x_open &&
1572                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1573                         continue;
1574
1575                 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1576                 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1577                         continue;
1578
1579                 goto found;
1580         }
1581
1582         wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1583
1584         return NULL;
1585
1586 found:
1587         wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1588         wil_set_da_for_vring(wil, skb, i);
1589
1590         /* find other active vrings and duplicate skb for each */
1591         for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1592                 v2 = &wil->ring_tx[i];
1593                 txdata2 = &wil->ring_tx_data[i];
1594                 if (!v2->va || txdata2->mid != vif->mid)
1595                         continue;
1596                 cid = wil->ring2cid_tid[i][0];
1597                 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1598                         continue;
1599                 if (!wil->ring_tx_data[i].dot1x_open &&
1600                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1601                         continue;
1602
1603                 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1604                         continue;
1605
1606                 skb2 = skb_copy(skb, GFP_ATOMIC);
1607                 if (skb2) {
1608                         wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1609                         wil_set_da_for_vring(wil, skb2, i);
1610                         wil_tx_ring(wil, vif, v2, skb2);
1611                         /* successful call to wil_tx_ring takes skb2 ref */
1612                         dev_kfree_skb_any(skb2);
1613                 } else {
1614                         wil_err(wil, "skb_copy failed\n");
1615                 }
1616         }
1617
1618         return v;
1619 }
1620
1621 static inline
1622 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1623 {
1624         d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1625 }
1626
1627 /* Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1628  * @skb is used to obtain the protocol and headers length.
1629  * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1630  * 2 - middle, 3 - last descriptor.
1631  */
1632
1633 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1634                                           struct sk_buff *skb,
1635                                           int tso_desc_type, bool is_ipv4,
1636                                           int tcp_hdr_len, int skb_net_hdr_len)
1637 {
1638         d->dma.b11 = ETH_HLEN; /* MAC header length */
1639         d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1640
1641         d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1642         /* L4 header len: TCP header length */
1643         d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1644
1645         /* Setup TSO: bit and desc type */
1646         d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1647                 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1648         d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1649
1650         d->dma.ip_length = skb_net_hdr_len;
1651         /* Enable TCP/UDP checksum */
1652         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1653         /* Calculate pseudo-header */
1654         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1655 }
1656
1657 /* Sets the descriptor @d up for csum. The corresponding
1658  * @skb is used to obtain the protocol and headers length.
1659  * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1660  * Note, if d==NULL, the function only returns the protocol result.
1661  *
1662  * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1663  * is "if unrolling" to optimize the critical path.
1664  */
1665
1666 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1667                                      struct sk_buff *skb){
1668         int protocol;
1669
1670         if (skb->ip_summed != CHECKSUM_PARTIAL)
1671                 return 0;
1672
1673         d->dma.b11 = ETH_HLEN; /* MAC header length */
1674
1675         switch (skb->protocol) {
1676         case cpu_to_be16(ETH_P_IP):
1677                 protocol = ip_hdr(skb)->protocol;
1678                 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1679                 break;
1680         case cpu_to_be16(ETH_P_IPV6):
1681                 protocol = ipv6_hdr(skb)->nexthdr;
1682                 break;
1683         default:
1684                 return -EINVAL;
1685         }
1686
1687         switch (protocol) {
1688         case IPPROTO_TCP:
1689                 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1690                 /* L4 header len: TCP header length */
1691                 d->dma.d0 |=
1692                 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1693                 break;
1694         case IPPROTO_UDP:
1695                 /* L4 header len: UDP header length */
1696                 d->dma.d0 |=
1697                 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1698                 break;
1699         default:
1700                 return -EINVAL;
1701         }
1702
1703         d->dma.ip_length = skb_network_header_len(skb);
1704         /* Enable TCP/UDP checksum */
1705         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1706         /* Calculate pseudo-header */
1707         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1708
1709         return 0;
1710 }
1711
1712 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1713 {
1714         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1715               BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1716               BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1717 }
1718
1719 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1720 {
1721         d->dma.d0 |= wil_tso_type_lst <<
1722                   DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1723 }
1724
1725 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1726                               struct wil_ring *vring, struct sk_buff *skb)
1727 {
1728         struct device *dev = wil_to_dev(wil);
1729
1730         /* point to descriptors in shared memory */
1731         volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1732                                       *_first_desc = NULL;
1733
1734         /* pointers to shadow descriptors */
1735         struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1736                              *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1737                              *first_desc = &first_desc_mem;
1738
1739         /* pointer to shadow descriptors' context */
1740         struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1741
1742         int descs_used = 0; /* total number of used descriptors */
1743         int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1744
1745         u32 swhead = vring->swhead;
1746         int used, avail = wil_ring_avail_tx(vring);
1747         int nr_frags = skb_shinfo(skb)->nr_frags;
1748         int min_desc_required = nr_frags + 1;
1749         int mss = skb_shinfo(skb)->gso_size;    /* payload size w/o headers */
1750         int f, len, hdrlen, headlen;
1751         int vring_index = vring - wil->ring_tx;
1752         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1753         uint i = swhead;
1754         dma_addr_t pa;
1755         const skb_frag_t *frag = NULL;
1756         int rem_data = mss;
1757         int lenmss;
1758         int hdr_compensation_need = true;
1759         int desc_tso_type = wil_tso_type_first;
1760         bool is_ipv4;
1761         int tcp_hdr_len;
1762         int skb_net_hdr_len;
1763         int gso_type;
1764         int rc = -EINVAL;
1765
1766         wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1767                      vring_index);
1768
1769         if (unlikely(!txdata->enabled))
1770                 return -EINVAL;
1771
1772         /* A typical page 4K is 3-4 payloads, we assume each fragment
1773          * is a full payload, that's how min_desc_required has been
1774          * calculated. In real we might need more or less descriptors,
1775          * this is the initial check only.
1776          */
1777         if (unlikely(avail < min_desc_required)) {
1778                 wil_err_ratelimited(wil,
1779                                     "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1780                                     vring_index, min_desc_required);
1781                 return -ENOMEM;
1782         }
1783
1784         /* Header Length = MAC header len + IP header len + TCP header len*/
1785         hdrlen = ETH_HLEN +
1786                 (int)skb_network_header_len(skb) +
1787                 tcp_hdrlen(skb);
1788
1789         gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1790         switch (gso_type) {
1791         case SKB_GSO_TCPV4:
1792                 /* TCP v4, zero out the IP length and IPv4 checksum fields
1793                  * as required by the offloading doc
1794                  */
1795                 ip_hdr(skb)->tot_len = 0;
1796                 ip_hdr(skb)->check = 0;
1797                 is_ipv4 = true;
1798                 break;
1799         case SKB_GSO_TCPV6:
1800                 /* TCP v6, zero out the payload length */
1801                 ipv6_hdr(skb)->payload_len = 0;
1802                 is_ipv4 = false;
1803                 break;
1804         default:
1805                 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1806                  * It is also illegal for both to be set simultaneously
1807                  */
1808                 return -EINVAL;
1809         }
1810
1811         if (skb->ip_summed != CHECKSUM_PARTIAL)
1812                 return -EINVAL;
1813
1814         /* tcp header length and skb network header length are fixed for all
1815          * packet's descriptors - read then once here
1816          */
1817         tcp_hdr_len = tcp_hdrlen(skb);
1818         skb_net_hdr_len = skb_network_header_len(skb);
1819
1820         _hdr_desc = &vring->va[i].tx.legacy;
1821
1822         pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1823         if (unlikely(dma_mapping_error(dev, pa))) {
1824                 wil_err(wil, "TSO: Skb head DMA map error\n");
1825                 goto err_exit;
1826         }
1827
1828         wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1829                                   hdrlen, vring_index);
1830         wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1831                                       tcp_hdr_len, skb_net_hdr_len);
1832         wil_tx_last_desc(hdr_desc);
1833
1834         vring->ctx[i].mapped_as = wil_mapped_as_single;
1835         hdr_ctx = &vring->ctx[i];
1836
1837         descs_used++;
1838         headlen = skb_headlen(skb) - hdrlen;
1839
1840         for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1841                 if (headlen) {
1842                         len = headlen;
1843                         wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1844                                      len);
1845                 } else {
1846                         frag = &skb_shinfo(skb)->frags[f];
1847                         len = skb_frag_size(frag);
1848                         wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1849                 }
1850
1851                 while (len) {
1852                         wil_dbg_txrx(wil,
1853                                      "TSO: len %d, rem_data %d, descs_used %d\n",
1854                                      len, rem_data, descs_used);
1855
1856                         if (descs_used == avail)  {
1857                                 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1858                                 rc = -ENOMEM;
1859                                 goto mem_error;
1860                         }
1861
1862                         lenmss = min_t(int, rem_data, len);
1863                         i = (swhead + descs_used) % vring->size;
1864                         wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1865
1866                         if (!headlen) {
1867                                 pa = skb_frag_dma_map(dev, frag,
1868                                                       skb_frag_size(frag) - len,
1869                                                       lenmss, DMA_TO_DEVICE);
1870                                 vring->ctx[i].mapped_as = wil_mapped_as_page;
1871                         } else {
1872                                 pa = dma_map_single(dev,
1873                                                     skb->data +
1874                                                     skb_headlen(skb) - headlen,
1875                                                     lenmss,
1876                                                     DMA_TO_DEVICE);
1877                                 vring->ctx[i].mapped_as = wil_mapped_as_single;
1878                                 headlen -= lenmss;
1879                         }
1880
1881                         if (unlikely(dma_mapping_error(dev, pa))) {
1882                                 wil_err(wil, "TSO: DMA map page error\n");
1883                                 goto mem_error;
1884                         }
1885
1886                         _desc = &vring->va[i].tx.legacy;
1887
1888                         if (!_first_desc) {
1889                                 _first_desc = _desc;
1890                                 first_ctx = &vring->ctx[i];
1891                                 d = first_desc;
1892                         } else {
1893                                 d = &desc_mem;
1894                         }
1895
1896                         wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1897                                                   pa, lenmss, vring_index);
1898                         wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1899                                                       is_ipv4, tcp_hdr_len,
1900                                                       skb_net_hdr_len);
1901
1902                         /* use tso_type_first only once */
1903                         desc_tso_type = wil_tso_type_mid;
1904
1905                         descs_used++;  /* desc used so far */
1906                         sg_desc_cnt++; /* desc used for this segment */
1907                         len -= lenmss;
1908                         rem_data -= lenmss;
1909
1910                         wil_dbg_txrx(wil,
1911                                      "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1912                                      len, rem_data, descs_used, sg_desc_cnt);
1913
1914                         /* Close the segment if reached mss size or last frag*/
1915                         if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1916                                 if (hdr_compensation_need) {
1917                                         /* first segment include hdr desc for
1918                                          * release
1919                                          */
1920                                         hdr_ctx->nr_frags = sg_desc_cnt;
1921                                         wil_tx_desc_set_nr_frags(first_desc,
1922                                                                  sg_desc_cnt +
1923                                                                  1);
1924                                         hdr_compensation_need = false;
1925                                 } else {
1926                                         wil_tx_desc_set_nr_frags(first_desc,
1927                                                                  sg_desc_cnt);
1928                                 }
1929                                 first_ctx->nr_frags = sg_desc_cnt - 1;
1930
1931                                 wil_tx_last_desc(d);
1932
1933                                 /* first descriptor may also be the last
1934                                  * for this mss - make sure not to copy
1935                                  * it twice
1936                                  */
1937                                 if (first_desc != d)
1938                                         *_first_desc = *first_desc;
1939
1940                                 /*last descriptor will be copied at the end
1941                                  * of this TS processing
1942                                  */
1943                                 if (f < nr_frags - 1 || len > 0)
1944                                         *_desc = *d;
1945
1946                                 rem_data = mss;
1947                                 _first_desc = NULL;
1948                                 sg_desc_cnt = 0;
1949                         } else if (first_desc != d) /* update mid descriptor */
1950                                         *_desc = *d;
1951                 }
1952         }
1953
1954         if (!_desc)
1955                 goto mem_error;
1956
1957         /* first descriptor may also be the last.
1958          * in this case d pointer is invalid
1959          */
1960         if (_first_desc == _desc)
1961                 d = first_desc;
1962
1963         /* Last data descriptor */
1964         wil_set_tx_desc_last_tso(d);
1965         *_desc = *d;
1966
1967         /* Fill the total number of descriptors in first desc (hdr)*/
1968         wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1969         *_hdr_desc = *hdr_desc;
1970
1971         /* hold reference to skb
1972          * to prevent skb release before accounting
1973          * in case of immediate "tx done"
1974          */
1975         vring->ctx[i].skb = skb_get(skb);
1976
1977         /* performance monitoring */
1978         used = wil_ring_used_tx(vring);
1979         if (wil_val_in_range(wil->ring_idle_trsh,
1980                              used, used + descs_used)) {
1981                 txdata->idle += get_cycles() - txdata->last_idle;
1982                 wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1983                              vring_index, used, used + descs_used);
1984         }
1985
1986         /* Make sure to advance the head only after descriptor update is done.
1987          * This will prevent a race condition where the completion thread
1988          * will see the DU bit set from previous run and will handle the
1989          * skb before it was completed.
1990          */
1991         wmb();
1992
1993         /* advance swhead */
1994         wil_ring_advance_head(vring, descs_used);
1995         wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1996
1997         /* make sure all writes to descriptors (shared memory) are done before
1998          * committing them to HW
1999          */
2000         wmb();
2001
2002         if (wil->tx_latency)
2003                 *(ktime_t *)&skb->cb = ktime_get();
2004         else
2005                 memset(skb->cb, 0, sizeof(ktime_t));
2006
2007         wil_w(wil, vring->hwtail, vring->swhead);
2008         return 0;
2009
2010 mem_error:
2011         while (descs_used > 0) {
2012                 struct wil_ctx *ctx;
2013
2014                 i = (swhead + descs_used - 1) % vring->size;
2015                 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
2016                 _desc = &vring->va[i].tx.legacy;
2017                 *d = *_desc;
2018                 _desc->dma.status = TX_DMA_STATUS_DU;
2019                 ctx = &vring->ctx[i];
2020                 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
2021                 memset(ctx, 0, sizeof(*ctx));
2022                 descs_used--;
2023         }
2024 err_exit:
2025         return rc;
2026 }
2027
2028 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2029                          struct wil_ring *ring, struct sk_buff *skb)
2030 {
2031         struct device *dev = wil_to_dev(wil);
2032         struct vring_tx_desc dd, *d = &dd;
2033         volatile struct vring_tx_desc *_d;
2034         u32 swhead = ring->swhead;
2035         int avail = wil_ring_avail_tx(ring);
2036         int nr_frags = skb_shinfo(skb)->nr_frags;
2037         uint f = 0;
2038         int ring_index = ring - wil->ring_tx;
2039         struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
2040         uint i = swhead;
2041         dma_addr_t pa;
2042         int used;
2043         bool mcast = (ring_index == vif->bcast_ring);
2044         uint len = skb_headlen(skb);
2045
2046         wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
2047                      skb->len, ring_index, nr_frags);
2048
2049         if (unlikely(!txdata->enabled))
2050                 return -EINVAL;
2051
2052         if (unlikely(avail < 1 + nr_frags)) {
2053                 wil_err_ratelimited(wil,
2054                                     "Tx ring[%2d] full. No space for %d fragments\n",
2055                                     ring_index, 1 + nr_frags);
2056                 return -ENOMEM;
2057         }
2058         _d = &ring->va[i].tx.legacy;
2059
2060         pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
2061
2062         wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
2063                      skb_headlen(skb), skb->data, &pa);
2064         wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
2065                           skb->data, skb_headlen(skb), false);
2066
2067         if (unlikely(dma_mapping_error(dev, pa)))
2068                 return -EINVAL;
2069         ring->ctx[i].mapped_as = wil_mapped_as_single;
2070         /* 1-st segment */
2071         wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
2072                                    ring_index);
2073         if (unlikely(mcast)) {
2074                 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
2075                 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
2076                         d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
2077         }
2078         /* Process TCP/UDP checksum offloading */
2079         if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
2080                 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
2081                         ring_index);
2082                 goto dma_error;
2083         }
2084
2085         ring->ctx[i].nr_frags = nr_frags;
2086         wil_tx_desc_set_nr_frags(d, nr_frags + 1);
2087
2088         /* middle segments */
2089         for (; f < nr_frags; f++) {
2090                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2091                 int len = skb_frag_size(frag);
2092
2093                 *_d = *d;
2094                 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2095                 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2096                                   (const void *)d, sizeof(*d), false);
2097                 i = (swhead + f + 1) % ring->size;
2098                 _d = &ring->va[i].tx.legacy;
2099                 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
2100                                       DMA_TO_DEVICE);
2101                 if (unlikely(dma_mapping_error(dev, pa))) {
2102                         wil_err(wil, "Tx[%2d] failed to map fragment\n",
2103                                 ring_index);
2104                         goto dma_error;
2105                 }
2106                 ring->ctx[i].mapped_as = wil_mapped_as_page;
2107                 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
2108                                            pa, len, ring_index);
2109                 /* no need to check return code -
2110                  * if it succeeded for 1-st descriptor,
2111                  * it will succeed here too
2112                  */
2113                 wil_tx_desc_offload_setup(d, skb);
2114         }
2115         /* for the last seg only */
2116         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
2117         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
2118         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
2119         *_d = *d;
2120         wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2121         wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2122                           (const void *)d, sizeof(*d), false);
2123
2124         /* hold reference to skb
2125          * to prevent skb release before accounting
2126          * in case of immediate "tx done"
2127          */
2128         ring->ctx[i].skb = skb_get(skb);
2129
2130         /* performance monitoring */
2131         used = wil_ring_used_tx(ring);
2132         if (wil_val_in_range(wil->ring_idle_trsh,
2133                              used, used + nr_frags + 1)) {
2134                 txdata->idle += get_cycles() - txdata->last_idle;
2135                 wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
2136                              ring_index, used, used + nr_frags + 1);
2137         }
2138
2139         /* Make sure to advance the head only after descriptor update is done.
2140          * This will prevent a race condition where the completion thread
2141          * will see the DU bit set from previous run and will handle the
2142          * skb before it was completed.
2143          */
2144         wmb();
2145
2146         /* advance swhead */
2147         wil_ring_advance_head(ring, nr_frags + 1);
2148         wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
2149                      ring->swhead);
2150         trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
2151
2152         /* make sure all writes to descriptors (shared memory) are done before
2153          * committing them to HW
2154          */
2155         wmb();
2156
2157         if (wil->tx_latency)
2158                 *(ktime_t *)&skb->cb = ktime_get();
2159         else
2160                 memset(skb->cb, 0, sizeof(ktime_t));
2161
2162         wil_w(wil, ring->hwtail, ring->swhead);
2163
2164         return 0;
2165  dma_error:
2166         /* unmap what we have mapped */
2167         nr_frags = f + 1; /* frags mapped + one for skb head */
2168         for (f = 0; f < nr_frags; f++) {
2169                 struct wil_ctx *ctx;
2170
2171                 i = (swhead + f) % ring->size;
2172                 ctx = &ring->ctx[i];
2173                 _d = &ring->va[i].tx.legacy;
2174                 *d = *_d;
2175                 _d->dma.status = TX_DMA_STATUS_DU;
2176                 wil->txrx_ops.tx_desc_unmap(dev,
2177                                             (union wil_tx_desc *)d,
2178                                             ctx);
2179
2180                 memset(ctx, 0, sizeof(*ctx));
2181         }
2182
2183         return -EINVAL;
2184 }
2185
2186 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2187                        struct wil_ring *ring, struct sk_buff *skb)
2188 {
2189         int ring_index = ring - wil->ring_tx;
2190         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2191         int rc;
2192
2193         spin_lock(&txdata->lock);
2194
2195         if (test_bit(wil_status_suspending, wil->status) ||
2196             test_bit(wil_status_suspended, wil->status) ||
2197             test_bit(wil_status_resuming, wil->status)) {
2198                 wil_dbg_txrx(wil,
2199                              "suspend/resume in progress. drop packet\n");
2200                 spin_unlock(&txdata->lock);
2201                 return -EINVAL;
2202         }
2203
2204         rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2205              (wil, vif, ring, skb);
2206
2207         spin_unlock(&txdata->lock);
2208
2209         return rc;
2210 }
2211
2212 /* Check status of tx vrings and stop/wake net queues if needed
2213  * It will start/stop net queues of a specific VIF net_device.
2214  *
2215  * This function does one of two checks:
2216  * In case check_stop is true, will check if net queues need to be stopped. If
2217  * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2218  * In case check_stop is false, will check if net queues need to be waked. If
2219  * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2220  * vring is the vring which is currently being modified by either adding
2221  * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2222  * be null when irrelevant (e.g. connect/disconnect events).
2223  *
2224  * The implementation is to stop net queues if modified vring has low
2225  * descriptor availability. Wake if all vrings are not in low descriptor
2226  * availability and modified vring has high descriptor availability.
2227  */
2228 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2229                                            struct wil6210_vif *vif,
2230                                            struct wil_ring *ring,
2231                                            bool check_stop)
2232 {
2233         int i;
2234         int min_ring_id = wil_get_min_tx_ring_id(wil);
2235
2236         if (unlikely(!vif))
2237                 return;
2238
2239         if (ring)
2240                 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2241                              (int)(ring - wil->ring_tx), vif->mid, check_stop,
2242                              vif->net_queue_stopped);
2243         else
2244                 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2245                              check_stop, vif->mid, vif->net_queue_stopped);
2246
2247         if (ring && drop_if_ring_full)
2248                 /* no need to stop/wake net queues */
2249                 return;
2250
2251         if (check_stop == vif->net_queue_stopped)
2252                 /* net queues already in desired state */
2253                 return;
2254
2255         if (check_stop) {
2256                 if (!ring || unlikely(wil_ring_avail_low(ring))) {
2257                         /* not enough room in the vring */
2258                         netif_tx_stop_all_queues(vif_to_ndev(vif));
2259                         vif->net_queue_stopped = true;
2260                         wil_dbg_txrx(wil, "netif_tx_stop called\n");
2261                 }
2262                 return;
2263         }
2264
2265         /* Do not wake the queues in suspend flow */
2266         if (test_bit(wil_status_suspending, wil->status) ||
2267             test_bit(wil_status_suspended, wil->status))
2268                 return;
2269
2270         /* check wake */
2271         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2272                 struct wil_ring *cur_ring = &wil->ring_tx[i];
2273                 struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2274
2275                 if (txdata->mid != vif->mid || !cur_ring->va ||
2276                     !txdata->enabled || cur_ring == ring)
2277                         continue;
2278
2279                 if (wil_ring_avail_low(cur_ring)) {
2280                         wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2281                                      (int)(cur_ring - wil->ring_tx));
2282                         return;
2283                 }
2284         }
2285
2286         if (!ring || wil_ring_avail_high(ring)) {
2287                 /* enough room in the ring */
2288                 wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2289                 netif_tx_wake_all_queues(vif_to_ndev(vif));
2290                 vif->net_queue_stopped = false;
2291         }
2292 }
2293
2294 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2295                            struct wil_ring *ring, bool check_stop)
2296 {
2297         spin_lock(&wil->net_queue_lock);
2298         __wil_update_net_queues(wil, vif, ring, check_stop);
2299         spin_unlock(&wil->net_queue_lock);
2300 }
2301
2302 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2303                               struct wil_ring *ring, bool check_stop)
2304 {
2305         spin_lock_bh(&wil->net_queue_lock);
2306         __wil_update_net_queues(wil, vif, ring, check_stop);
2307         spin_unlock_bh(&wil->net_queue_lock);
2308 }
2309
2310 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2311 {
2312         struct wil6210_vif *vif = ndev_to_vif(ndev);
2313         struct wil6210_priv *wil = vif_to_wil(vif);
2314         const u8 *da = wil_skb_get_da(skb);
2315         bool bcast = is_multicast_ether_addr(da);
2316         struct wil_ring *ring;
2317         static bool pr_once_fw;
2318         int rc;
2319
2320         wil_dbg_txrx(wil, "start_xmit\n");
2321         if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2322                 if (!pr_once_fw) {
2323                         wil_err(wil, "FW not ready\n");
2324                         pr_once_fw = true;
2325                 }
2326                 goto drop;
2327         }
2328         if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2329                 wil_dbg_ratelimited(wil,
2330                                     "VIF not connected, packet dropped\n");
2331                 goto drop;
2332         }
2333         if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2334                 wil_err(wil, "Xmit in monitor mode not supported\n");
2335                 goto drop;
2336         }
2337         pr_once_fw = false;
2338
2339         /* find vring */
2340         if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2341                 /* in STA mode (ESS), all to same VRING (to AP) */
2342                 ring = wil_find_tx_ring_sta(wil, vif, skb);
2343         } else if (bcast) {
2344                 if (vif->pbss || wil_check_multicast_to_unicast(wil, skb))
2345                         /* in pbss, no bcast VRING - duplicate skb in
2346                          * all stations VRINGs
2347                          */
2348                         ring = wil_find_tx_bcast_2(wil, vif, skb);
2349                 else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2350                         /* AP has a dedicated bcast VRING */
2351                         ring = wil_find_tx_bcast_1(wil, vif, skb);
2352                 else
2353                         /* unexpected combination, fallback to duplicating
2354                          * the skb in all stations VRINGs
2355                          */
2356                         ring = wil_find_tx_bcast_2(wil, vif, skb);
2357         } else {
2358                 /* unicast, find specific VRING by dest. address */
2359                 ring = wil_find_tx_ucast(wil, vif, skb);
2360         }
2361         if (unlikely(!ring)) {
2362                 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2363                 goto drop;
2364         }
2365         /* set up vring entry */
2366         rc = wil_tx_ring(wil, vif, ring, skb);
2367
2368         switch (rc) {
2369         case 0:
2370                 /* shall we stop net queues? */
2371                 wil_update_net_queues_bh(wil, vif, ring, true);
2372                 /* statistics will be updated on the tx_complete */
2373                 dev_kfree_skb_any(skb);
2374                 return NETDEV_TX_OK;
2375         case -ENOMEM:
2376                 if (drop_if_ring_full)
2377                         goto drop;
2378                 return NETDEV_TX_BUSY;
2379         default:
2380                 break; /* goto drop; */
2381         }
2382  drop:
2383         ndev->stats.tx_dropped++;
2384         dev_kfree_skb_any(skb);
2385
2386         return NET_XMIT_DROP;
2387 }
2388
2389 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2390                          struct wil_sta_info *sta)
2391 {
2392         int skb_time_us;
2393         int bin;
2394
2395         if (!wil->tx_latency)
2396                 return;
2397
2398         if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2399                 return;
2400
2401         skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2402         bin = skb_time_us / wil->tx_latency_res;
2403         bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2404
2405         wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2406         sta->tx_latency_bins[bin]++;
2407         sta->stats.tx_latency_total_us += skb_time_us;
2408         if (skb_time_us < sta->stats.tx_latency_min_us)
2409                 sta->stats.tx_latency_min_us = skb_time_us;
2410         if (skb_time_us > sta->stats.tx_latency_max_us)
2411                 sta->stats.tx_latency_max_us = skb_time_us;
2412 }
2413
2414 /* Clean up transmitted skb's from the Tx VRING
2415  *
2416  * Return number of descriptors cleared
2417  *
2418  * Safe to call from IRQ
2419  */
2420 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2421 {
2422         struct wil6210_priv *wil = vif_to_wil(vif);
2423         struct net_device *ndev = vif_to_ndev(vif);
2424         struct device *dev = wil_to_dev(wil);
2425         struct wil_ring *vring = &wil->ring_tx[ringid];
2426         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2427         int done = 0;
2428         int cid = wil->ring2cid_tid[ringid][0];
2429         struct wil_net_stats *stats = NULL;
2430         volatile struct vring_tx_desc *_d;
2431         int used_before_complete;
2432         int used_new;
2433
2434         if (unlikely(!vring->va)) {
2435                 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2436                 return 0;
2437         }
2438
2439         if (unlikely(!txdata->enabled)) {
2440                 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2441                 return 0;
2442         }
2443
2444         wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2445
2446         used_before_complete = wil_ring_used_tx(vring);
2447
2448         if (cid < wil->max_assoc_sta)
2449                 stats = &wil->sta[cid].stats;
2450
2451         while (!wil_ring_is_empty(vring)) {
2452                 int new_swtail;
2453                 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2454                 /* For the fragmented skb, HW will set DU bit only for the
2455                  * last fragment. look for it.
2456                  * In TSO the first DU will include hdr desc
2457                  */
2458                 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2459                 /* TODO: check we are not past head */
2460
2461                 _d = &vring->va[lf].tx.legacy;
2462                 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2463                         break;
2464
2465                 new_swtail = (lf + 1) % vring->size;
2466                 while (vring->swtail != new_swtail) {
2467                         struct vring_tx_desc dd, *d = &dd;
2468                         u16 dmalen;
2469                         struct sk_buff *skb;
2470
2471                         ctx = &vring->ctx[vring->swtail];
2472                         skb = ctx->skb;
2473                         _d = &vring->va[vring->swtail].tx.legacy;
2474
2475                         *d = *_d;
2476
2477                         dmalen = le16_to_cpu(d->dma.length);
2478                         trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2479                                               d->dma.error);
2480                         wil_dbg_txrx(wil,
2481                                      "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2482                                      ringid, vring->swtail, dmalen,
2483                                      d->dma.status, d->dma.error);
2484                         wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2485                                           (const void *)d, sizeof(*d), false);
2486
2487                         wil->txrx_ops.tx_desc_unmap(dev,
2488                                                     (union wil_tx_desc *)d,
2489                                                     ctx);
2490
2491                         if (skb) {
2492                                 if (likely(d->dma.error == 0)) {
2493                                         ndev->stats.tx_packets++;
2494                                         ndev->stats.tx_bytes += skb->len;
2495                                         if (stats) {
2496                                                 stats->tx_packets++;
2497                                                 stats->tx_bytes += skb->len;
2498
2499                                                 wil_tx_latency_calc(wil, skb,
2500                                                         &wil->sta[cid]);
2501                                         }
2502                                 } else {
2503                                         ndev->stats.tx_errors++;
2504                                         if (stats)
2505                                                 stats->tx_errors++;
2506                                 }
2507
2508                                 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
2509                                         wil_tx_complete_handle_eapol(vif, skb);
2510
2511                                 wil_consume_skb(skb, d->dma.error == 0);
2512                         }
2513                         memset(ctx, 0, sizeof(*ctx));
2514                         /* Make sure the ctx is zeroed before updating the tail
2515                          * to prevent a case where wil_tx_ring will see
2516                          * this descriptor as used and handle it before ctx zero
2517                          * is completed.
2518                          */
2519                         wmb();
2520                         /* There is no need to touch HW descriptor:
2521                          * - ststus bit TX_DMA_STATUS_DU is set by design,
2522                          *   so hardware will not try to process this desc.,
2523                          * - rest of descriptor will be initialized on Tx.
2524                          */
2525                         vring->swtail = wil_ring_next_tail(vring);
2526                         done++;
2527                 }
2528         }
2529
2530         /* performance monitoring */
2531         used_new = wil_ring_used_tx(vring);
2532         if (wil_val_in_range(wil->ring_idle_trsh,
2533                              used_new, used_before_complete)) {
2534                 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2535                              ringid, used_before_complete, used_new);
2536                 txdata->last_idle = get_cycles();
2537         }
2538
2539         /* shall we wake net queues? */
2540         if (done)
2541                 wil_update_net_queues(wil, vif, vring, false);
2542
2543         return done;
2544 }
2545
2546 static inline int wil_tx_init(struct wil6210_priv *wil)
2547 {
2548         return 0;
2549 }
2550
2551 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2552
2553 static void wil_get_reorder_params(struct wil6210_priv *wil,
2554                                    struct sk_buff *skb, int *tid, int *cid,
2555                                    int *mid, u16 *seq, int *mcast, int *retry)
2556 {
2557         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2558
2559         *tid = wil_rxdesc_tid(d);
2560         *cid = wil_skb_get_cid(skb);
2561         *mid = wil_rxdesc_mid(d);
2562         *seq = wil_rxdesc_seq(d);
2563         *mcast = wil_rxdesc_mcast(d);
2564         *retry = wil_rxdesc_retry(d);
2565 }
2566
2567 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2568 {
2569         wil->txrx_ops.configure_interrupt_moderation =
2570                 wil_configure_interrupt_moderation;
2571         /* TX ops */
2572         wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2573         wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2574         wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2575         wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2576         wil->txrx_ops.ring_fini_tx = wil_vring_free;
2577         wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2578         wil->txrx_ops.tx_init = wil_tx_init;
2579         wil->txrx_ops.tx_fini = wil_tx_fini;
2580         wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2581         /* RX ops */
2582         wil->txrx_ops.rx_init = wil_rx_init;
2583         wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2584         wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2585         wil->txrx_ops.get_netif_rx_params =
2586                 wil_get_netif_rx_params;
2587         wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2588         wil->txrx_ops.rx_error_check = wil_rx_error_check;
2589         wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2590         wil->txrx_ops.rx_fini = wil_rx_fini;
2591 }