2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
38 static u16 bits_per_symbol[][2] = {
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq,
54 struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 struct ath_txq *txq, struct list_head *bf_q,
57 struct ieee80211_sta *sta,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
68 struct ath_atx_tid *tid,
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 struct ath_tx_control *txctl);
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 struct ieee80211_sta *sta = info->status.status_driver_data[0];
89 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
90 IEEE80211_TX_STATUS_EOSP)) {
91 ieee80211_tx_status(hw, skb);
96 ieee80211_tx_status_noskb(hw, sta, info);
101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
102 __releases(&txq->axq_lock)
104 struct ieee80211_hw *hw = sc->hw;
105 struct sk_buff_head q;
108 __skb_queue_head_init(&q);
109 skb_queue_splice_init(&txq->complete_q, &q);
110 spin_unlock_bh(&txq->axq_lock);
112 while ((skb = __skb_dequeue(&q)))
113 ath_tx_status(hw, skb);
116 void __ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
118 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
119 struct ath_chanctx *ctx = avp->chanctx;
121 struct list_head *tid_list;
122 u8 acno = TID_TO_WME_AC(tid->tidno);
124 if (!ctx || !list_empty(&tid->list))
128 acq = &ctx->acq[acno];
129 if ((sc->airtime_flags & AIRTIME_USE_NEW_QUEUES) &&
130 tid->an->airtime_deficit[acno] > 0)
131 tid_list = &acq->acq_new;
133 tid_list = &acq->acq_old;
135 list_add_tail(&tid->list, tid_list);
138 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
140 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
141 struct ath_chanctx *ctx = avp->chanctx;
144 if (!ctx || !list_empty(&tid->list))
147 acq = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
148 spin_lock_bh(&acq->lock);
149 __ath_tx_queue_tid(sc, tid);
150 spin_unlock_bh(&acq->lock);
154 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
156 struct ath_softc *sc = hw->priv;
157 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
158 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
159 struct ath_txq *txq = tid->txq;
161 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
162 queue->sta ? queue->sta->addr : queue->vif->addr,
165 ath_txq_lock(sc, txq);
167 tid->has_queued = true;
168 ath_tx_queue_tid(sc, tid);
169 ath_txq_schedule(sc, txq);
171 ath_txq_unlock(sc, txq);
174 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
176 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
177 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
178 sizeof(tx_info->rate_driver_data));
179 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
182 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
187 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
188 seqno << IEEE80211_SEQ_SEQ_SHIFT);
191 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
194 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
195 ARRAY_SIZE(bf->rates));
198 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
201 struct ath_frame_info *fi = get_frame_info(skb);
207 txq = sc->tx.txq_map[q];
208 if (WARN_ON(--txq->pending_frames < 0))
209 txq->pending_frames = 0;
213 static struct ath_atx_tid *
214 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
216 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
217 return ATH_AN_2_TID(an, tidno);
220 static struct sk_buff *
221 ath_tid_pull(struct ath_atx_tid *tid)
223 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
224 struct ath_softc *sc = tid->an->sc;
225 struct ieee80211_hw *hw = sc->hw;
226 struct ath_tx_control txctl = {
231 struct ath_frame_info *fi;
234 if (!tid->has_queued)
237 skb = ieee80211_tx_dequeue(hw, txq);
239 tid->has_queued = false;
243 if (ath_tx_prepare(hw, skb, &txctl)) {
244 ieee80211_free_txskb(hw, skb);
248 q = skb_get_queue_mapping(skb);
249 if (tid->txq == sc->tx.txq_map[q]) {
250 fi = get_frame_info(skb);
252 ++tid->txq->pending_frames;
259 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
261 return !skb_queue_empty(&tid->retry_q) || tid->has_queued;
264 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
268 skb = __skb_dequeue(&tid->retry_q);
270 skb = ath_tid_pull(tid);
275 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
277 struct ath_txq *txq = tid->txq;
280 struct list_head bf_head;
281 struct ath_tx_status ts;
282 struct ath_frame_info *fi;
283 bool sendbar = false;
285 INIT_LIST_HEAD(&bf_head);
287 memset(&ts, 0, sizeof(ts));
289 while ((skb = __skb_dequeue(&tid->retry_q))) {
290 fi = get_frame_info(skb);
293 ath_txq_skb_done(sc, txq, skb);
294 ieee80211_free_txskb(sc->hw, skb);
298 if (fi->baw_tracked) {
299 ath_tx_update_baw(sc, tid, bf);
303 list_add_tail(&bf->list, &bf_head);
304 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
308 ath_txq_unlock(sc, txq);
309 ath_send_bar(tid, tid->seq_start);
310 ath_txq_lock(sc, txq);
314 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
317 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
318 u16 seqno = bf->bf_state.seqno;
321 if (!fi->baw_tracked)
324 index = ATH_BA_INDEX(tid->seq_start, seqno);
325 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
327 __clear_bit(cindex, tid->tx_buf);
329 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
330 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
331 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
332 if (tid->bar_index >= 0)
337 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
340 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
341 u16 seqno = bf->bf_state.seqno;
347 index = ATH_BA_INDEX(tid->seq_start, seqno);
348 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
349 __set_bit(cindex, tid->tx_buf);
352 if (index >= ((tid->baw_tail - tid->baw_head) &
353 (ATH_TID_MAX_BUFS - 1))) {
354 tid->baw_tail = cindex;
355 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
359 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
360 struct ath_atx_tid *tid)
365 struct list_head bf_head;
366 struct ath_tx_status ts;
367 struct ath_frame_info *fi;
369 memset(&ts, 0, sizeof(ts));
370 INIT_LIST_HEAD(&bf_head);
372 while ((skb = ath_tid_dequeue(tid))) {
373 fi = get_frame_info(skb);
377 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
381 list_add_tail(&bf->list, &bf_head);
382 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
386 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
387 struct sk_buff *skb, int count)
389 struct ath_frame_info *fi = get_frame_info(skb);
390 struct ath_buf *bf = fi->bf;
391 struct ieee80211_hdr *hdr;
392 int prev = fi->retries;
394 TX_STAT_INC(sc, txq->axq_qnum, a_retries);
395 fi->retries += count;
400 hdr = (struct ieee80211_hdr *)skb->data;
401 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
402 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
403 sizeof(*hdr), DMA_TO_DEVICE);
406 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
408 struct ath_buf *bf = NULL;
410 spin_lock_bh(&sc->tx.txbuflock);
412 if (unlikely(list_empty(&sc->tx.txbuf))) {
413 spin_unlock_bh(&sc->tx.txbuflock);
417 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
420 spin_unlock_bh(&sc->tx.txbuflock);
425 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
427 spin_lock_bh(&sc->tx.txbuflock);
428 list_add_tail(&bf->list, &sc->tx.txbuf);
429 spin_unlock_bh(&sc->tx.txbuflock);
432 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
436 tbf = ath_tx_get_buffer(sc);
440 ATH_TXBUF_RESET(tbf);
442 tbf->bf_mpdu = bf->bf_mpdu;
443 tbf->bf_buf_addr = bf->bf_buf_addr;
444 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
445 tbf->bf_state = bf->bf_state;
446 tbf->bf_state.stale = false;
451 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
452 struct ath_tx_status *ts, int txok,
453 int *nframes, int *nbad)
455 struct ath_frame_info *fi;
457 u32 ba[WME_BA_BMP_SIZE >> 5];
464 isaggr = bf_isaggr(bf);
466 seq_st = ts->ts_seqnum;
467 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
471 fi = get_frame_info(bf->bf_mpdu);
472 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
475 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
483 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
484 struct ath_buf *bf, struct list_head *bf_q,
485 struct ieee80211_sta *sta,
486 struct ath_atx_tid *tid,
487 struct ath_tx_status *ts, int txok)
489 struct ath_node *an = NULL;
491 struct ieee80211_hdr *hdr;
492 struct ieee80211_tx_info *tx_info;
493 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
494 struct list_head bf_head;
495 struct sk_buff_head bf_pending;
496 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
497 u32 ba[WME_BA_BMP_SIZE >> 5];
498 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
499 bool rc_update = true, isba;
500 struct ieee80211_tx_rate rates[4];
501 struct ath_frame_info *fi;
503 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
508 hdr = (struct ieee80211_hdr *)skb->data;
510 tx_info = IEEE80211_SKB_CB(skb);
512 memcpy(rates, bf->rates, sizeof(rates));
514 retries = ts->ts_longretry + 1;
515 for (i = 0; i < ts->ts_rateindex; i++)
516 retries += rates[i].count;
519 INIT_LIST_HEAD(&bf_head);
521 bf_next = bf->bf_next;
523 if (!bf->bf_state.stale || bf_next != NULL)
524 list_move_tail(&bf->list, &bf_head);
526 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
533 an = (struct ath_node *)sta->drv_priv;
534 seq_first = tid->seq_start;
535 isba = ts->ts_flags & ATH9K_TX_BA;
538 * The hardware occasionally sends a tx status for the wrong TID.
539 * In this case, the BA status cannot be considered valid and all
540 * subframes need to be retransmitted
542 * Only BlockAcks have a TID and therefore normal Acks cannot be
545 if (isba && tid->tidno != ts->tid)
548 isaggr = bf_isaggr(bf);
549 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
551 if (isaggr && txok) {
552 if (ts->ts_flags & ATH9K_TX_BA) {
553 seq_st = ts->ts_seqnum;
554 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
557 * AR5416 can become deaf/mute when BA
558 * issue happens. Chip needs to be reset.
559 * But AP code may have sychronization issues
560 * when perform internal reset in this routine.
561 * Only enable reset in STA mode for now.
563 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
568 __skb_queue_head_init(&bf_pending);
570 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
572 u16 seqno = bf->bf_state.seqno;
574 txfail = txpending = sendbar = 0;
575 bf_next = bf->bf_next;
578 tx_info = IEEE80211_SKB_CB(skb);
579 fi = get_frame_info(skb);
581 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
584 * Outside of the current BlockAck window,
585 * maybe part of a previous session
588 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
589 /* transmit completion, subframe is
590 * acked by block ack */
592 } else if (!isaggr && txok) {
593 /* transmit completion */
597 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
598 if (txok || !an->sleeping)
599 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
606 bar_index = max_t(int, bar_index,
607 ATH_BA_INDEX(seq_first, seqno));
611 * Make sure the last desc is reclaimed if it
612 * not a holding desc.
614 INIT_LIST_HEAD(&bf_head);
615 if (bf_next != NULL || !bf_last->bf_state.stale)
616 list_move_tail(&bf->list, &bf_head);
620 * complete the acked-ones/xretried ones; update
623 ath_tx_update_baw(sc, tid, bf);
625 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
626 memcpy(tx_info->control.rates, rates, sizeof(rates));
627 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
629 if (bf == bf->bf_lastbf)
630 ath_dynack_sample_tx_ts(sc->sc_ah,
635 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
638 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
639 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
640 ieee80211_sta_eosp(sta);
642 /* retry the un-acked ones */
643 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
646 tbf = ath_clone_txbuf(sc, bf_last);
648 * Update tx baw and complete the
649 * frame with failed status if we
653 ath_tx_update_baw(sc, tid, bf);
655 ath_tx_complete_buf(sc, bf, txq,
658 bar_index = max_t(int, bar_index,
659 ATH_BA_INDEX(seq_first, seqno));
667 * Put this buffer to the temporary pending
668 * queue to retain ordering
670 __skb_queue_tail(&bf_pending, skb);
676 /* prepend un-acked frames to the beginning of the pending frame queue */
677 if (!skb_queue_empty(&bf_pending)) {
679 ieee80211_sta_set_buffered(sta, tid->tidno, true);
681 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
683 ath_tx_queue_tid(sc, tid);
685 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
686 tid->clear_ps_filter = true;
690 if (bar_index >= 0) {
691 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
693 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
694 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
696 ath_txq_unlock(sc, txq);
697 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
698 ath_txq_lock(sc, txq);
702 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
705 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
707 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
708 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
711 static void ath_tx_count_airtime(struct ath_softc *sc, struct ath_node *an,
712 struct ath_atx_tid *tid, struct ath_buf *bf,
713 struct ath_tx_status *ts)
715 struct ath_txq *txq = tid->txq;
719 airtime += ts->duration * (ts->ts_longretry + 1);
720 for(i = 0; i < ts->ts_rateindex; i++) {
721 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
722 airtime += rate_dur * bf->rates[i].count;
725 if (sc->airtime_flags & AIRTIME_USE_TX) {
726 int q = txq->mac80211_qnum;
727 struct ath_acq *acq = &sc->cur_chan->acq[q];
729 spin_lock_bh(&acq->lock);
730 an->airtime_deficit[q] -= airtime;
731 if (an->airtime_deficit[q] <= 0)
732 __ath_tx_queue_tid(sc, tid);
733 spin_unlock_bh(&acq->lock);
735 ath_debug_airtime(sc, an, 0, airtime);
738 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
739 struct ath_tx_status *ts, struct ath_buf *bf,
740 struct list_head *bf_head)
742 struct ieee80211_hw *hw = sc->hw;
743 struct ieee80211_tx_info *info;
744 struct ieee80211_sta *sta;
745 struct ieee80211_hdr *hdr;
746 struct ath_atx_tid *tid = NULL;
749 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
750 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
751 txq->axq_tx_inprogress = false;
754 if (bf_is_ampdu_not_probing(bf))
755 txq->axq_ampdu_depth--;
757 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
760 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
761 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
763 struct ath_node *an = (struct ath_node *)sta->drv_priv;
764 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
765 ath_tx_count_airtime(sc, an, tid, bf, ts);
766 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
767 tid->clear_ps_filter = true;
770 if (!bf_isampdu(bf)) {
772 info = IEEE80211_SKB_CB(bf->bf_mpdu);
773 memcpy(info->control.rates, bf->rates,
774 sizeof(info->control.rates));
775 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
776 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
779 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
781 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
784 ath_txq_schedule(sc, txq);
787 static bool ath_lookup_legacy(struct ath_buf *bf)
790 struct ieee80211_tx_info *tx_info;
791 struct ieee80211_tx_rate *rates;
795 tx_info = IEEE80211_SKB_CB(skb);
796 rates = tx_info->control.rates;
798 for (i = 0; i < 4; i++) {
799 if (!rates[i].count || rates[i].idx < 0)
802 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
809 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
810 struct ath_atx_tid *tid)
813 struct ieee80211_tx_info *tx_info;
814 struct ieee80211_tx_rate *rates;
815 u32 max_4ms_framelen, frmlen;
816 u16 aggr_limit, bt_aggr_limit, legacy = 0;
817 int q = tid->txq->mac80211_qnum;
821 tx_info = IEEE80211_SKB_CB(skb);
825 * Find the lowest frame length among the rate series that will have a
826 * 4ms (or TXOP limited) transmit duration.
828 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
830 for (i = 0; i < 4; i++) {
836 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
841 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
846 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
849 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
850 max_4ms_framelen = min(max_4ms_framelen, frmlen);
854 * limit aggregate size by the minimum rate if rate selected is
855 * not a probe rate, if rate selected is a probe rate then
856 * avoid aggregation of this packet.
858 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
861 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
864 * Override the default aggregation limit for BTCOEX.
866 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
868 aggr_limit = bt_aggr_limit;
870 if (tid->an->maxampdu)
871 aggr_limit = min(aggr_limit, tid->an->maxampdu);
877 * Returns the number of delimiters to be added to
878 * meet the minimum required mpdudensity.
880 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
881 struct ath_buf *bf, u16 frmlen,
884 #define FIRST_DESC_NDELIMS 60
885 u32 nsymbits, nsymbols;
888 int width, streams, half_gi, ndelim, mindelim;
889 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
891 /* Select standard number of delimiters based on frame length alone */
892 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
895 * If encryption enabled, hardware requires some more padding between
897 * TODO - this could be improved to be dependent on the rate.
898 * The hardware can keep up at lower rates, but not higher rates
900 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
901 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
902 ndelim += ATH_AGGR_ENCRYPTDELIM;
905 * Add delimiter when using RTS/CTS with aggregation
906 * and non enterprise AR9003 card
908 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
909 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
910 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
913 * Convert desired mpdu density from microeconds to bytes based
914 * on highest rate in rate series (i.e. first rate) to determine
915 * required minimum length for subframe. Take into account
916 * whether high rate is 20 or 40Mhz and half or full GI.
918 * If there is no mpdu density restriction, no further calculation
922 if (tid->an->mpdudensity == 0)
925 rix = bf->rates[0].idx;
926 flags = bf->rates[0].flags;
927 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
928 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
931 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
933 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
938 streams = HT_RC_2_STREAMS(rix);
939 nsymbits = bits_per_symbol[rix % 8][width] * streams;
940 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
942 if (frmlen < minlen) {
943 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
944 ndelim = max(mindelim, ndelim);
950 static struct ath_buf *
951 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
952 struct ath_atx_tid *tid)
954 struct ieee80211_tx_info *tx_info;
955 struct ath_frame_info *fi;
956 struct sk_buff *skb, *first_skb = NULL;
961 skb = ath_tid_dequeue(tid);
965 fi = get_frame_info(skb);
968 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
970 bf->bf_state.stale = false;
973 ath_txq_skb_done(sc, txq, skb);
974 ieee80211_free_txskb(sc->hw, skb);
981 tx_info = IEEE80211_SKB_CB(skb);
982 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
983 IEEE80211_TX_STATUS_EOSP);
986 * No aggregation session is running, but there may be frames
987 * from a previous session or a failed attempt in the queue.
988 * Send them out as normal data frames
991 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
993 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
994 bf->bf_state.bf_type = 0;
998 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
999 seqno = bf->bf_state.seqno;
1001 /* do not step over block-ack window */
1002 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
1003 __skb_queue_tail(&tid->retry_q, skb);
1005 /* If there are other skbs in the retry q, they are
1006 * probably within the BAW, so loop immediately to get
1007 * one of them. Otherwise the queue can get stuck. */
1008 if (!skb_queue_is_first(&tid->retry_q, skb) &&
1009 !WARN_ON(skb == first_skb)) {
1010 if(!first_skb) /* infinite loop prevention */
1017 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1018 struct ath_tx_status ts = {};
1019 struct list_head bf_head;
1021 INIT_LIST_HEAD(&bf_head);
1022 list_add(&bf->list, &bf_head);
1023 ath_tx_update_baw(sc, tid, bf);
1024 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1029 ath_tx_addto_baw(sc, tid, bf);
1038 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1039 struct ath_atx_tid *tid, struct list_head *bf_q,
1040 struct ath_buf *bf_first)
1042 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1043 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1044 int nframes = 0, ndelim;
1045 u16 aggr_limit = 0, al = 0, bpad = 0,
1046 al_delta, h_baw = tid->baw_size / 2;
1047 struct ieee80211_tx_info *tx_info;
1048 struct ath_frame_info *fi;
1049 struct sk_buff *skb;
1053 aggr_limit = ath_lookup_rate(sc, bf, tid);
1058 fi = get_frame_info(skb);
1060 /* do not exceed aggregation limit */
1061 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1063 if (aggr_limit < al + bpad + al_delta ||
1064 ath_lookup_legacy(bf) || nframes >= h_baw)
1067 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1068 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1069 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1073 /* add padding for previous frame to aggregation length */
1074 al += bpad + al_delta;
1077 * Get the delimiters needed to meet the MPDU
1078 * density for this node.
1080 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1082 bpad = PADBYTES(al_delta) + (ndelim << 2);
1087 /* link buffers of this frame to the aggregate */
1088 bf->bf_state.ndelim = ndelim;
1090 list_add_tail(&bf->list, bf_q);
1092 bf_prev->bf_next = bf;
1096 bf = ath_tx_get_tid_subframe(sc, txq, tid);
1100 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1103 bf->bf_lastbf = bf_prev;
1105 if (bf == bf_prev) {
1106 al = get_frame_info(bf->bf_mpdu)->framelen;
1107 bf->bf_state.bf_type = BUF_AMPDU;
1109 TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1118 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1119 * width - 0 for 20 MHz, 1 for 40 MHz
1120 * half_gi - to use 4us v/s 3.6 us for symbol time
1122 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1123 int width, int half_gi, bool shortPreamble)
1125 u32 nbits, nsymbits, duration, nsymbols;
1128 /* find number of symbols: PLCP + data */
1129 streams = HT_RC_2_STREAMS(rix);
1130 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1131 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1132 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1135 duration = SYMBOL_TIME(nsymbols);
1137 duration = SYMBOL_TIME_HALFGI(nsymbols);
1139 /* addup duration for legacy/ht training and signal fields */
1140 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1145 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1147 int streams = HT_RC_2_STREAMS(mcs);
1151 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1152 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1153 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1154 bits -= OFDM_PLCP_BITS;
1162 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1164 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1167 /* 4ms is the default (and maximum) duration */
1168 if (!txop || txop > 4096)
1171 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1172 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1173 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1174 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1175 for (mcs = 0; mcs < 32; mcs++) {
1176 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1177 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1178 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1179 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1183 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1184 u8 rateidx, bool is_40, bool is_cck)
1187 struct sk_buff *skb;
1188 struct ath_frame_info *fi;
1189 struct ieee80211_tx_info *info;
1190 struct ath_hw *ah = sc->sc_ah;
1192 if (sc->tx99_state || !ah->tpc_enabled)
1193 return MAX_RATE_POWER;
1196 fi = get_frame_info(skb);
1197 info = IEEE80211_SKB_CB(skb);
1199 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1200 int txpower = fi->tx_power;
1204 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1205 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1207 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1209 struct modal_eep_header *pmodal;
1211 is_2ghz = info->band == NL80211_BAND_2GHZ;
1212 pmodal = &eep->modalHeader[is_2ghz];
1213 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1215 power_ht40delta = 2;
1217 txpower += power_ht40delta;
1220 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1222 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1223 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1226 power_offset = ah->eep_ops->get_eeprom(ah,
1227 EEP_PWR_TABLE_OFFSET);
1228 txpower -= 2 * power_offset;
1231 if (OLC_FOR_AR9280_20_LATER && is_cck)
1234 txpower = max(txpower, 0);
1235 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1237 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1238 * max_power is set to 0, frames are transmitted at max
1241 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1243 } else if (!bf->bf_state.bfs_paprd) {
1244 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1245 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1248 max_power = min_t(u8, ah->tx_power[rateidx],
1251 max_power = ah->paprd_training_power;
1257 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1258 struct ath_tx_info *info, int len, bool rts)
1260 struct ath_hw *ah = sc->sc_ah;
1261 struct ath_common *common = ath9k_hw_common(ah);
1262 struct sk_buff *skb;
1263 struct ieee80211_tx_info *tx_info;
1264 struct ieee80211_tx_rate *rates;
1265 const struct ieee80211_rate *rate;
1266 struct ieee80211_hdr *hdr;
1267 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1268 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1273 tx_info = IEEE80211_SKB_CB(skb);
1275 hdr = (struct ieee80211_hdr *)skb->data;
1277 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1278 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1279 info->rtscts_rate = fi->rtscts_rate;
1281 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1282 bool is_40, is_sgi, is_sp, is_cck;
1285 if (!rates[i].count || (rates[i].idx < 0))
1289 info->rates[i].Tries = rates[i].count;
1292 * Handle RTS threshold for unaggregated HT frames.
1294 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1295 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1296 unlikely(rts_thresh != (u32) -1)) {
1297 if (!rts_thresh || (len > rts_thresh))
1301 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1302 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1303 info->flags |= ATH9K_TXDESC_RTSENA;
1304 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1305 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1306 info->flags |= ATH9K_TXDESC_CTSENA;
1309 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1310 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1311 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1312 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1314 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1315 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1316 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1318 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1320 info->rates[i].Rate = rix | 0x80;
1321 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1322 ah->txchainmask, info->rates[i].Rate);
1323 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1324 is_40, is_sgi, is_sp);
1325 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1326 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1328 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1334 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1335 if ((tx_info->band == NL80211_BAND_2GHZ) &&
1336 !(rate->flags & IEEE80211_RATE_ERP_G))
1337 phy = WLAN_RC_PHY_CCK;
1339 phy = WLAN_RC_PHY_OFDM;
1341 info->rates[i].Rate = rate->hw_value;
1342 if (rate->hw_value_short) {
1343 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1344 info->rates[i].Rate |= rate->hw_value_short;
1349 if (bf->bf_state.bfs_paprd)
1350 info->rates[i].ChSel = ah->txchainmask;
1352 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1353 ah->txchainmask, info->rates[i].Rate);
1355 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1356 phy, rate->bitrate * 100, len, rix, is_sp);
1358 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1359 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1363 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1364 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1365 info->flags &= ~ATH9K_TXDESC_RTSENA;
1367 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1368 if (info->flags & ATH9K_TXDESC_RTSENA)
1369 info->flags &= ~ATH9K_TXDESC_CTSENA;
1372 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1374 struct ieee80211_hdr *hdr;
1375 enum ath9k_pkt_type htype;
1378 hdr = (struct ieee80211_hdr *)skb->data;
1379 fc = hdr->frame_control;
1381 if (ieee80211_is_beacon(fc))
1382 htype = ATH9K_PKT_TYPE_BEACON;
1383 else if (ieee80211_is_probe_resp(fc))
1384 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1385 else if (ieee80211_is_atim(fc))
1386 htype = ATH9K_PKT_TYPE_ATIM;
1387 else if (ieee80211_is_pspoll(fc))
1388 htype = ATH9K_PKT_TYPE_PSPOLL;
1390 htype = ATH9K_PKT_TYPE_NORMAL;
1395 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1396 struct ath_txq *txq, int len)
1398 struct ath_hw *ah = sc->sc_ah;
1399 struct ath_buf *bf_first = NULL;
1400 struct ath_tx_info info;
1401 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1404 memset(&info, 0, sizeof(info));
1405 info.is_first = true;
1406 info.is_last = true;
1407 info.qcu = txq->axq_qnum;
1410 struct sk_buff *skb = bf->bf_mpdu;
1411 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1412 struct ath_frame_info *fi = get_frame_info(skb);
1413 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1415 info.type = get_hw_packet_type(skb);
1417 info.link = bf->bf_next->bf_daddr;
1419 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1424 if (!sc->tx99_state)
1425 info.flags = ATH9K_TXDESC_INTREQ;
1426 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1427 txq == sc->tx.uapsdq)
1428 info.flags |= ATH9K_TXDESC_CLRDMASK;
1430 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1431 info.flags |= ATH9K_TXDESC_NOACK;
1432 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1433 info.flags |= ATH9K_TXDESC_LDPC;
1435 if (bf->bf_state.bfs_paprd)
1436 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1437 ATH9K_TXDESC_PAPRD_S;
1440 * mac80211 doesn't handle RTS threshold for HT because
1441 * the decision has to be taken based on AMPDU length
1442 * and aggregation is done entirely inside ath9k.
1443 * Set the RTS/CTS flag for the first subframe based
1446 if (aggr && (bf == bf_first) &&
1447 unlikely(rts_thresh != (u32) -1)) {
1449 * "len" is the size of the entire AMPDU.
1451 if (!rts_thresh || (len > rts_thresh))
1458 ath_buf_set_rate(sc, bf, &info, len, rts);
1461 info.buf_addr[0] = bf->bf_buf_addr;
1462 info.buf_len[0] = skb->len;
1463 info.pkt_len = fi->framelen;
1464 info.keyix = fi->keyix;
1465 info.keytype = fi->keytype;
1469 info.aggr = AGGR_BUF_FIRST;
1470 else if (bf == bf_first->bf_lastbf)
1471 info.aggr = AGGR_BUF_LAST;
1473 info.aggr = AGGR_BUF_MIDDLE;
1475 info.ndelim = bf->bf_state.ndelim;
1476 info.aggr_len = len;
1479 if (bf == bf_first->bf_lastbf)
1482 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1488 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1489 struct ath_atx_tid *tid, struct list_head *bf_q,
1490 struct ath_buf *bf_first)
1492 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1496 struct ieee80211_tx_info *tx_info;
1499 list_add_tail(&bf->list, bf_q);
1501 bf_prev->bf_next = bf;
1507 bf = ath_tx_get_tid_subframe(sc, txq, tid);
1511 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1512 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1513 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1517 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1521 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1522 struct ath_atx_tid *tid)
1525 struct ieee80211_tx_info *tx_info;
1526 struct list_head bf_q;
1530 if (!ath_tid_has_buffered(tid))
1533 INIT_LIST_HEAD(&bf_q);
1535 bf = ath_tx_get_tid_subframe(sc, txq, tid);
1539 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1540 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1541 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1542 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1543 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1547 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1549 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1551 ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1553 if (list_empty(&bf_q))
1556 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1557 tid->clear_ps_filter = false;
1558 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1561 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1562 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1566 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1569 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1570 struct ath_atx_tid *txtid;
1571 struct ath_txq *txq;
1572 struct ath_node *an;
1575 ath_dbg(common, XMIT, "%s called\n", __func__);
1577 an = (struct ath_node *)sta->drv_priv;
1578 txtid = ATH_AN_2_TID(an, tid);
1581 ath_txq_lock(sc, txq);
1583 /* update ampdu factor/density, they may have changed. This may happen
1584 * in HT IBSS when a beacon with HT-info is received after the station
1585 * has already been added.
1587 if (sta->ht_cap.ht_supported) {
1588 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1589 sta->ht_cap.ampdu_factor)) - 1;
1590 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1591 an->mpdudensity = density;
1594 txtid->active = true;
1595 *ssn = txtid->seq_start = txtid->seq_next;
1596 txtid->bar_index = -1;
1598 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1599 txtid->baw_head = txtid->baw_tail = 0;
1601 ath_txq_unlock_complete(sc, txq);
1606 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1608 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1609 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1610 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1611 struct ath_txq *txq = txtid->txq;
1613 ath_dbg(common, XMIT, "%s called\n", __func__);
1615 ath_txq_lock(sc, txq);
1616 txtid->active = false;
1617 ath_tx_flush_tid(sc, txtid);
1618 ath_txq_unlock_complete(sc, txq);
1621 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1622 struct ath_node *an)
1624 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1625 struct ath_atx_tid *tid;
1626 struct ath_txq *txq;
1629 ath_dbg(common, XMIT, "%s called\n", __func__);
1631 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1632 tid = ath_node_to_tid(an, tidno);
1635 ath_txq_lock(sc, txq);
1637 if (list_empty(&tid->list)) {
1638 ath_txq_unlock(sc, txq);
1642 if (!skb_queue_empty(&tid->retry_q))
1643 ieee80211_sta_set_buffered(sta, tid->tidno, true);
1645 list_del_init(&tid->list);
1647 ath_txq_unlock(sc, txq);
1651 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1653 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1654 struct ath_atx_tid *tid;
1655 struct ath_txq *txq;
1658 ath_dbg(common, XMIT, "%s called\n", __func__);
1660 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1661 tid = ath_node_to_tid(an, tidno);
1664 ath_txq_lock(sc, txq);
1665 tid->clear_ps_filter = true;
1666 if (ath_tid_has_buffered(tid)) {
1667 ath_tx_queue_tid(sc, tid);
1668 ath_txq_schedule(sc, txq);
1670 ath_txq_unlock_complete(sc, txq);
1676 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1678 struct ieee80211_hdr *hdr;
1679 u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1680 u16 mask_val = mask * val;
1682 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1683 if ((hdr->frame_control & mask) != mask_val) {
1684 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1685 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1686 sizeof(*hdr), DMA_TO_DEVICE);
1690 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1691 struct ieee80211_sta *sta,
1692 u16 tids, int nframes,
1693 enum ieee80211_frame_release_type reason,
1696 struct ath_softc *sc = hw->priv;
1697 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1698 struct ath_txq *txq = sc->tx.uapsdq;
1699 struct ieee80211_tx_info *info;
1700 struct list_head bf_q;
1701 struct ath_buf *bf_tail = NULL, *bf;
1705 INIT_LIST_HEAD(&bf_q);
1706 for (i = 0; tids && nframes; i++, tids >>= 1) {
1707 struct ath_atx_tid *tid;
1712 tid = ATH_AN_2_TID(an, i);
1714 ath_txq_lock(sc, tid->txq);
1715 while (nframes > 0) {
1716 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1720 ath9k_set_moredata(sc, bf, true);
1721 list_add_tail(&bf->list, &bf_q);
1722 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1724 bf->bf_state.bf_type &= ~BUF_AGGR;
1726 bf_tail->bf_next = bf;
1731 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1733 if (an->sta && skb_queue_empty(&tid->retry_q))
1734 ieee80211_sta_set_buffered(an->sta, i, false);
1736 ath_txq_unlock_complete(sc, tid->txq);
1739 if (list_empty(&bf_q))
1743 ath9k_set_moredata(sc, bf_tail, false);
1745 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1746 info->flags |= IEEE80211_TX_STATUS_EOSP;
1748 bf = list_first_entry(&bf_q, struct ath_buf, list);
1749 ath_txq_lock(sc, txq);
1750 ath_tx_fill_desc(sc, bf, txq, 0);
1751 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1752 ath_txq_unlock(sc, txq);
1755 /********************/
1756 /* Queue Management */
1757 /********************/
1759 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1761 struct ath_hw *ah = sc->sc_ah;
1762 struct ath9k_tx_queue_info qi;
1763 static const int subtype_txq_to_hwq[] = {
1764 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1765 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1766 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1767 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1771 memset(&qi, 0, sizeof(qi));
1772 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1773 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1774 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1775 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1776 qi.tqi_physCompBuf = 0;
1779 * Enable interrupts only for EOL and DESC conditions.
1780 * We mark tx descriptors to receive a DESC interrupt
1781 * when a tx queue gets deep; otherwise waiting for the
1782 * EOL to reap descriptors. Note that this is done to
1783 * reduce interrupt load and this only defers reaping
1784 * descriptors, never transmitting frames. Aside from
1785 * reducing interrupts this also permits more concurrency.
1786 * The only potential downside is if the tx queue backs
1787 * up in which case the top half of the kernel may backup
1788 * due to a lack of tx descriptors.
1790 * The UAPSD queue is an exception, since we take a desc-
1791 * based intr on the EOSP frames.
1793 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1794 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1796 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1797 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1799 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1800 TXQ_FLAG_TXDESCINT_ENABLE;
1802 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1803 if (axq_qnum == -1) {
1805 * NB: don't print a message, this happens
1806 * normally on parts with too few tx queues
1810 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1811 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1813 txq->axq_qnum = axq_qnum;
1814 txq->mac80211_qnum = -1;
1815 txq->axq_link = NULL;
1816 __skb_queue_head_init(&txq->complete_q);
1817 INIT_LIST_HEAD(&txq->axq_q);
1818 spin_lock_init(&txq->axq_lock);
1820 txq->axq_ampdu_depth = 0;
1821 txq->axq_tx_inprogress = false;
1822 sc->tx.txqsetup |= 1<<axq_qnum;
1824 txq->txq_headidx = txq->txq_tailidx = 0;
1825 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1826 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1828 return &sc->tx.txq[axq_qnum];
1831 int ath_txq_update(struct ath_softc *sc, int qnum,
1832 struct ath9k_tx_queue_info *qinfo)
1834 struct ath_hw *ah = sc->sc_ah;
1836 struct ath9k_tx_queue_info qi;
1838 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1840 ath9k_hw_get_txq_props(ah, qnum, &qi);
1841 qi.tqi_aifs = qinfo->tqi_aifs;
1842 qi.tqi_cwmin = qinfo->tqi_cwmin;
1843 qi.tqi_cwmax = qinfo->tqi_cwmax;
1844 qi.tqi_burstTime = qinfo->tqi_burstTime;
1845 qi.tqi_readyTime = qinfo->tqi_readyTime;
1847 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1848 ath_err(ath9k_hw_common(sc->sc_ah),
1849 "Unable to update hardware queue %u!\n", qnum);
1852 ath9k_hw_resettxqueue(ah, qnum);
1858 int ath_cabq_update(struct ath_softc *sc)
1860 struct ath9k_tx_queue_info qi;
1861 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1862 int qnum = sc->beacon.cabq->axq_qnum;
1864 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1866 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1867 ATH_CABQ_READY_TIME) / 100;
1868 ath_txq_update(sc, qnum, &qi);
1873 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1874 struct list_head *list)
1876 struct ath_buf *bf, *lastbf;
1877 struct list_head bf_head;
1878 struct ath_tx_status ts;
1880 memset(&ts, 0, sizeof(ts));
1881 ts.ts_status = ATH9K_TX_FLUSH;
1882 INIT_LIST_HEAD(&bf_head);
1884 while (!list_empty(list)) {
1885 bf = list_first_entry(list, struct ath_buf, list);
1887 if (bf->bf_state.stale) {
1888 list_del(&bf->list);
1890 ath_tx_return_buffer(sc, bf);
1894 lastbf = bf->bf_lastbf;
1895 list_cut_position(&bf_head, list, &lastbf->list);
1896 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1901 * Drain a given TX queue (could be Beacon or Data)
1903 * This assumes output has been stopped and
1904 * we do not need to block ath_tx_tasklet.
1906 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1909 ath_txq_lock(sc, txq);
1911 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1912 int idx = txq->txq_tailidx;
1914 while (!list_empty(&txq->txq_fifo[idx])) {
1915 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1917 INCR(idx, ATH_TXFIFO_DEPTH);
1919 txq->txq_tailidx = idx;
1922 txq->axq_link = NULL;
1923 txq->axq_tx_inprogress = false;
1924 ath_drain_txq_list(sc, txq, &txq->axq_q);
1926 ath_txq_unlock_complete(sc, txq);
1930 bool ath_drain_all_txq(struct ath_softc *sc)
1932 struct ath_hw *ah = sc->sc_ah;
1933 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1934 struct ath_txq *txq;
1938 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1941 ath9k_hw_abort_tx_dma(ah);
1943 /* Check if any queue remains active */
1944 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1945 if (!ATH_TXQ_SETUP(sc, i))
1948 if (!sc->tx.txq[i].axq_depth)
1951 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1956 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1957 ath_dbg(common, RESET,
1958 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1961 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1962 if (!ATH_TXQ_SETUP(sc, i))
1965 txq = &sc->tx.txq[i];
1966 ath_draintxq(sc, txq);
1972 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1974 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1975 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1978 /* For each acq entry, for each tid, try to schedule packets
1979 * for transmit until ampdu_depth has reached min Q depth.
1981 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1983 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1984 struct ath_atx_tid *tid;
1985 struct list_head *tid_list;
1986 struct ath_acq *acq;
1987 bool active = AIRTIME_ACTIVE(sc->airtime_flags);
1989 if (txq->mac80211_qnum < 0)
1992 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1995 spin_lock_bh(&sc->chan_lock);
1997 acq = &sc->cur_chan->acq[txq->mac80211_qnum];
1999 if (sc->cur_chan->stopped)
2003 tid_list = &acq->acq_new;
2004 if (list_empty(tid_list)) {
2005 tid_list = &acq->acq_old;
2006 if (list_empty(tid_list))
2009 tid = list_first_entry(tid_list, struct ath_atx_tid, list);
2011 if (active && tid->an->airtime_deficit[txq->mac80211_qnum] <= 0) {
2012 spin_lock_bh(&acq->lock);
2013 tid->an->airtime_deficit[txq->mac80211_qnum] += ATH_AIRTIME_QUANTUM;
2014 list_move_tail(&tid->list, &acq->acq_old);
2015 spin_unlock_bh(&acq->lock);
2019 if (!ath_tid_has_buffered(tid)) {
2020 spin_lock_bh(&acq->lock);
2021 if ((tid_list == &acq->acq_new) && !list_empty(&acq->acq_old))
2022 list_move_tail(&tid->list, &acq->acq_old);
2024 list_del_init(&tid->list);
2026 spin_unlock_bh(&acq->lock);
2032 * If we succeed in scheduling something, immediately restart to make
2033 * sure we keep the HW busy.
2035 if(ath_tx_sched_aggr(sc, txq, tid)) {
2037 spin_lock_bh(&acq->lock);
2038 list_move_tail(&tid->list, &acq->acq_old);
2039 spin_unlock_bh(&acq->lock);
2046 spin_unlock_bh(&sc->chan_lock);
2049 void ath_txq_schedule_all(struct ath_softc *sc)
2051 struct ath_txq *txq;
2054 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2055 txq = sc->tx.txq_map[i];
2057 spin_lock_bh(&txq->axq_lock);
2058 ath_txq_schedule(sc, txq);
2059 spin_unlock_bh(&txq->axq_lock);
2068 * Insert a chain of ath_buf (descriptors) on a txq and
2069 * assume the descriptors are already chained together by caller.
2071 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2072 struct list_head *head, bool internal)
2074 struct ath_hw *ah = sc->sc_ah;
2075 struct ath_common *common = ath9k_hw_common(ah);
2076 struct ath_buf *bf, *bf_last;
2077 bool puttxbuf = false;
2081 * Insert the frame on the outbound list and
2082 * pass it on to the hardware.
2085 if (list_empty(head))
2088 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2089 bf = list_first_entry(head, struct ath_buf, list);
2090 bf_last = list_entry(head->prev, struct ath_buf, list);
2092 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2093 txq->axq_qnum, txq->axq_depth);
2095 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2096 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2097 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2100 list_splice_tail_init(head, &txq->axq_q);
2102 if (txq->axq_link) {
2103 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2104 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2105 txq->axq_qnum, txq->axq_link,
2106 ito64(bf->bf_daddr), bf->bf_desc);
2110 txq->axq_link = bf_last->bf_desc;
2114 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2115 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2116 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2117 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2120 if (!edma || sc->tx99_state) {
2121 TX_STAT_INC(sc, txq->axq_qnum, txstart);
2122 ath9k_hw_txstart(ah, txq->axq_qnum);
2128 if (bf_is_ampdu_not_probing(bf))
2129 txq->axq_ampdu_depth++;
2131 bf_last = bf->bf_lastbf;
2132 bf = bf_last->bf_next;
2133 bf_last->bf_next = NULL;
2138 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2139 struct ath_atx_tid *tid, struct sk_buff *skb)
2141 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2142 struct ath_frame_info *fi = get_frame_info(skb);
2143 struct list_head bf_head;
2144 struct ath_buf *bf = fi->bf;
2146 INIT_LIST_HEAD(&bf_head);
2147 list_add_tail(&bf->list, &bf_head);
2148 bf->bf_state.bf_type = 0;
2149 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2150 bf->bf_state.bf_type = BUF_AMPDU;
2151 ath_tx_addto_baw(sc, tid, bf);
2156 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2157 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2158 TX_STAT_INC(sc, txq->axq_qnum, queued);
2161 static void setup_frame_info(struct ieee80211_hw *hw,
2162 struct ieee80211_sta *sta,
2163 struct sk_buff *skb,
2166 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2167 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2168 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2169 const struct ieee80211_rate *rate;
2170 struct ath_frame_info *fi = get_frame_info(skb);
2171 struct ath_node *an = NULL;
2172 enum ath9k_key_type keytype;
2173 bool short_preamble = false;
2177 * We check if Short Preamble is needed for the CTS rate by
2178 * checking the BSS's global flag.
2179 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2181 if (tx_info->control.vif &&
2182 tx_info->control.vif->bss_conf.use_short_preamble)
2183 short_preamble = true;
2185 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2186 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2189 an = (struct ath_node *) sta->drv_priv;
2191 if (tx_info->control.vif) {
2192 struct ieee80211_vif *vif = tx_info->control.vif;
2194 txpower = 2 * vif->bss_conf.txpower;
2196 struct ath_softc *sc = hw->priv;
2198 txpower = sc->cur_chan->cur_txpower;
2201 memset(fi, 0, sizeof(*fi));
2204 fi->keyix = hw_key->hw_key_idx;
2205 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2206 fi->keyix = an->ps_key;
2208 fi->keyix = ATH9K_TXKEYIX_INVALID;
2209 fi->keytype = keytype;
2210 fi->framelen = framelen;
2211 fi->tx_power = txpower;
2215 fi->rtscts_rate = rate->hw_value;
2217 fi->rtscts_rate |= rate->hw_value_short;
2220 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2222 struct ath_hw *ah = sc->sc_ah;
2223 struct ath9k_channel *curchan = ah->curchan;
2225 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2226 (chainmask == 0x7) && (rate < 0x90))
2228 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2236 * Assign a descriptor (and sequence number if necessary,
2237 * and map buffer for DMA. Frees skb on error
2239 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2240 struct ath_txq *txq,
2241 struct ath_atx_tid *tid,
2242 struct sk_buff *skb)
2244 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2245 struct ath_frame_info *fi = get_frame_info(skb);
2246 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2251 bf = ath_tx_get_buffer(sc);
2253 ath_dbg(common, XMIT, "TX buffers are full\n");
2257 ATH_TXBUF_RESET(bf);
2259 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2260 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2261 seqno = tid->seq_next;
2262 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2265 hdr->seq_ctrl |= cpu_to_le16(fragno);
2267 if (!ieee80211_has_morefrags(hdr->frame_control))
2268 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2270 bf->bf_state.seqno = seqno;
2275 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2276 skb->len, DMA_TO_DEVICE);
2277 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2279 bf->bf_buf_addr = 0;
2280 ath_err(ath9k_hw_common(sc->sc_ah),
2281 "dma_mapping_error() on TX\n");
2282 ath_tx_return_buffer(sc, bf);
2291 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2293 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2294 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2295 struct ieee80211_vif *vif = info->control.vif;
2296 struct ath_vif *avp;
2298 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2304 avp = (struct ath_vif *)vif->drv_priv;
2306 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2307 avp->seq_no += 0x10;
2309 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2310 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2313 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2314 struct ath_tx_control *txctl)
2316 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2317 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2318 struct ieee80211_sta *sta = txctl->sta;
2319 struct ieee80211_vif *vif = info->control.vif;
2320 struct ath_vif *avp;
2321 struct ath_softc *sc = hw->priv;
2322 int frmlen = skb->len + FCS_LEN;
2323 int padpos, padsize;
2325 /* NOTE: sta can be NULL according to net/mac80211.h */
2327 txctl->an = (struct ath_node *)sta->drv_priv;
2328 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2329 avp = (void *)vif->drv_priv;
2330 txctl->an = &avp->mcast_node;
2333 if (info->control.hw_key)
2334 frmlen += info->control.hw_key->icv_len;
2336 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2338 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2339 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2340 !ieee80211_is_data(hdr->frame_control))
2341 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2343 /* Add the padding after the header if this is not already done */
2344 padpos = ieee80211_hdrlen(hdr->frame_control);
2345 padsize = padpos & 3;
2346 if (padsize && skb->len > padpos) {
2347 if (skb_headroom(skb) < padsize)
2350 skb_push(skb, padsize);
2351 memmove(skb->data, skb->data + padsize, padpos);
2354 setup_frame_info(hw, sta, skb, frmlen);
2359 /* Upon failure caller should free skb */
2360 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2361 struct ath_tx_control *txctl)
2363 struct ieee80211_hdr *hdr;
2364 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2365 struct ieee80211_sta *sta = txctl->sta;
2366 struct ieee80211_vif *vif = info->control.vif;
2367 struct ath_frame_info *fi = get_frame_info(skb);
2368 struct ath_vif *avp = NULL;
2369 struct ath_softc *sc = hw->priv;
2370 struct ath_txq *txq = txctl->txq;
2371 struct ath_atx_tid *tid = NULL;
2372 struct ath_node *an = NULL;
2378 avp = (void *)vif->drv_priv;
2380 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2382 ret = ath_tx_prepare(hw, skb, txctl);
2386 hdr = (struct ieee80211_hdr *) skb->data;
2388 * At this point, the vif, hw_key and sta pointers in the tx control
2389 * info are no longer valid (overwritten by the ath_frame_info data.
2392 q = skb_get_queue_mapping(skb);
2395 txq = sc->tx.uapsdq;
2398 an = (struct ath_node *) sta->drv_priv;
2399 tid = ath_get_skb_tid(sc, an, skb);
2402 ath_txq_lock(sc, txq);
2403 if (txq == sc->tx.txq_map[q]) {
2405 ++txq->pending_frames;
2408 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2410 ath_txq_skb_done(sc, txq, skb);
2412 dev_kfree_skb_any(skb);
2414 ieee80211_free_txskb(sc->hw, skb);
2418 bf->bf_state.bfs_paprd = txctl->paprd;
2421 bf->bf_state.bfs_paprd_timestamp = jiffies;
2423 ath_set_rates(vif, sta, bf);
2424 ath_tx_send_normal(sc, txq, tid, skb);
2427 ath_txq_unlock(sc, txq);
2432 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2433 struct sk_buff *skb)
2435 struct ath_softc *sc = hw->priv;
2436 struct ath_tx_control txctl = {
2437 .txq = sc->beacon.cabq
2439 struct ath_tx_info info = {};
2440 struct ath_buf *bf_tail = NULL;
2447 sc->cur_chan->beacon.beacon_interval * 1000 *
2448 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2451 struct ath_frame_info *fi = get_frame_info(skb);
2453 if (ath_tx_prepare(hw, skb, &txctl))
2456 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2461 ath_set_rates(vif, NULL, bf);
2462 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2463 duration += info.rates[0].PktDuration;
2465 bf_tail->bf_next = bf;
2467 list_add_tail(&bf->list, &bf_q);
2471 if (duration > max_duration)
2474 skb = ieee80211_get_buffered_bc(hw, vif);
2478 ieee80211_free_txskb(hw, skb);
2480 if (list_empty(&bf_q))
2483 bf = list_last_entry(&bf_q, struct ath_buf, list);
2484 ath9k_set_moredata(sc, bf, false);
2486 bf = list_first_entry(&bf_q, struct ath_buf, list);
2487 ath_txq_lock(sc, txctl.txq);
2488 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2489 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2490 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2491 ath_txq_unlock(sc, txctl.txq);
2498 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2499 int tx_flags, struct ath_txq *txq,
2500 struct ieee80211_sta *sta)
2502 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2503 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2504 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2505 int padpos, padsize;
2506 unsigned long flags;
2508 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2510 if (sc->sc_ah->caldata)
2511 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2513 if (!(tx_flags & ATH_TX_ERROR)) {
2514 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2515 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2517 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2520 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2521 padpos = ieee80211_hdrlen(hdr->frame_control);
2522 padsize = padpos & 3;
2523 if (padsize && skb->len>padpos+padsize) {
2525 * Remove MAC header padding before giving the frame back to
2528 memmove(skb->data + padsize, skb->data, padpos);
2529 skb_pull(skb, padsize);
2533 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2534 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2535 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2537 "Going back to sleep after having received TX status (0x%lx)\n",
2538 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2540 PS_WAIT_FOR_PSPOLL_DATA |
2541 PS_WAIT_FOR_TX_ACK));
2543 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2545 ath_txq_skb_done(sc, txq, skb);
2546 tx_info->status.status_driver_data[0] = sta;
2547 __skb_queue_tail(&txq->complete_q, skb);
2550 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2551 struct ath_txq *txq, struct list_head *bf_q,
2552 struct ieee80211_sta *sta,
2553 struct ath_tx_status *ts, int txok)
2555 struct sk_buff *skb = bf->bf_mpdu;
2556 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2557 unsigned long flags;
2561 tx_flags |= ATH_TX_ERROR;
2563 if (ts->ts_status & ATH9K_TXERR_FILT)
2564 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2566 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2567 bf->bf_buf_addr = 0;
2569 goto skip_tx_complete;
2571 if (bf->bf_state.bfs_paprd) {
2572 if (time_after(jiffies,
2573 bf->bf_state.bfs_paprd_timestamp +
2574 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2575 dev_kfree_skb_any(skb);
2577 complete(&sc->paprd_complete);
2579 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2580 ath_tx_complete(sc, skb, tx_flags, txq, sta);
2583 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2584 * accidentally reference it later.
2589 * Return the list of ath_buf of this mpdu to free queue
2591 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2592 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2593 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2596 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2597 struct ath_tx_status *ts, int nframes, int nbad,
2600 struct sk_buff *skb = bf->bf_mpdu;
2601 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2602 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2603 struct ieee80211_hw *hw = sc->hw;
2604 struct ath_hw *ah = sc->sc_ah;
2608 tx_info->status.ack_signal = ts->ts_rssi;
2610 tx_rateindex = ts->ts_rateindex;
2611 WARN_ON(tx_rateindex >= hw->max_rates);
2613 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2614 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2616 BUG_ON(nbad > nframes);
2618 tx_info->status.ampdu_len = nframes;
2619 tx_info->status.ampdu_ack_len = nframes - nbad;
2621 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2622 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2624 * If an underrun error is seen assume it as an excessive
2625 * retry only if max frame trigger level has been reached
2626 * (2 KB for single stream, and 4 KB for dual stream).
2627 * Adjust the long retry as if the frame was tried
2628 * hw->max_rate_tries times to affect how rate control updates
2629 * PER for the failed rate.
2630 * In case of congestion on the bus penalizing this type of
2631 * underruns should help hardware actually transmit new frames
2632 * successfully by eventually preferring slower rates.
2633 * This itself should also alleviate congestion on the bus.
2635 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2636 ATH9K_TX_DELIM_UNDERRUN)) &&
2637 ieee80211_is_data(hdr->frame_control) &&
2638 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2639 tx_info->status.rates[tx_rateindex].count =
2643 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2644 tx_info->status.rates[i].count = 0;
2645 tx_info->status.rates[i].idx = -1;
2648 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2651 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2653 struct ath_hw *ah = sc->sc_ah;
2654 struct ath_common *common = ath9k_hw_common(ah);
2655 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2656 struct list_head bf_head;
2657 struct ath_desc *ds;
2658 struct ath_tx_status ts;
2661 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2662 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2665 ath_txq_lock(sc, txq);
2667 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2670 if (list_empty(&txq->axq_q)) {
2671 txq->axq_link = NULL;
2672 ath_txq_schedule(sc, txq);
2675 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2678 * There is a race condition that a BH gets scheduled
2679 * after sw writes TxE and before hw re-load the last
2680 * descriptor to get the newly chained one.
2681 * Software must keep the last DONE descriptor as a
2682 * holding descriptor - software does so by marking
2683 * it with the STALE flag.
2686 if (bf->bf_state.stale) {
2688 if (list_is_last(&bf_held->list, &txq->axq_q))
2691 bf = list_entry(bf_held->list.next, struct ath_buf,
2695 lastbf = bf->bf_lastbf;
2696 ds = lastbf->bf_desc;
2698 memset(&ts, 0, sizeof(ts));
2699 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2700 if (status == -EINPROGRESS)
2703 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2706 * Remove ath_buf's of the same transmit unit from txq,
2707 * however leave the last descriptor back as the holding
2708 * descriptor for hw.
2710 lastbf->bf_state.stale = true;
2711 INIT_LIST_HEAD(&bf_head);
2712 if (!list_is_singular(&lastbf->list))
2713 list_cut_position(&bf_head,
2714 &txq->axq_q, lastbf->list.prev);
2717 list_del(&bf_held->list);
2718 ath_tx_return_buffer(sc, bf_held);
2721 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2723 ath_txq_unlock_complete(sc, txq);
2726 void ath_tx_tasklet(struct ath_softc *sc)
2728 struct ath_hw *ah = sc->sc_ah;
2729 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2733 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2734 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2735 ath_tx_processq(sc, &sc->tx.txq[i]);
2740 void ath_tx_edma_tasklet(struct ath_softc *sc)
2742 struct ath_tx_status ts;
2743 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2744 struct ath_hw *ah = sc->sc_ah;
2745 struct ath_txq *txq;
2746 struct ath_buf *bf, *lastbf;
2747 struct list_head bf_head;
2748 struct list_head *fifo_list;
2753 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2756 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2757 if (status == -EINPROGRESS)
2759 if (status == -EIO) {
2760 ath_dbg(common, XMIT, "Error processing tx status\n");
2764 /* Process beacon completions separately */
2765 if (ts.qid == sc->beacon.beaconq) {
2766 sc->beacon.tx_processed = true;
2767 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2769 if (ath9k_is_chanctx_enabled()) {
2770 ath_chanctx_event(sc, NULL,
2771 ATH_CHANCTX_EVENT_BEACON_SENT);
2774 ath9k_csa_update(sc);
2778 txq = &sc->tx.txq[ts.qid];
2780 ath_txq_lock(sc, txq);
2782 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2784 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2785 if (list_empty(fifo_list)) {
2786 ath_txq_unlock(sc, txq);
2790 bf = list_first_entry(fifo_list, struct ath_buf, list);
2791 if (bf->bf_state.stale) {
2792 list_del(&bf->list);
2793 ath_tx_return_buffer(sc, bf);
2794 bf = list_first_entry(fifo_list, struct ath_buf, list);
2797 lastbf = bf->bf_lastbf;
2799 INIT_LIST_HEAD(&bf_head);
2800 if (list_is_last(&lastbf->list, fifo_list)) {
2801 list_splice_tail_init(fifo_list, &bf_head);
2802 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2804 if (!list_empty(&txq->axq_q)) {
2805 struct list_head bf_q;
2807 INIT_LIST_HEAD(&bf_q);
2808 txq->axq_link = NULL;
2809 list_splice_tail_init(&txq->axq_q, &bf_q);
2810 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2813 lastbf->bf_state.stale = true;
2815 list_cut_position(&bf_head, fifo_list,
2819 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2820 ath_txq_unlock_complete(sc, txq);
2829 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2831 struct ath_descdma *dd = &sc->txsdma;
2832 u8 txs_len = sc->sc_ah->caps.txs_len;
2834 dd->dd_desc_len = size * txs_len;
2835 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2836 &dd->dd_desc_paddr, GFP_KERNEL);
2843 static int ath_tx_edma_init(struct ath_softc *sc)
2847 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2849 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2850 sc->txsdma.dd_desc_paddr,
2851 ATH_TXSTATUS_RING_SIZE);
2856 int ath_tx_init(struct ath_softc *sc, int nbufs)
2858 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2861 spin_lock_init(&sc->tx.txbuflock);
2863 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2867 "Failed to allocate tx descriptors: %d\n", error);
2871 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2872 "beacon", ATH_BCBUF, 1, 1);
2875 "Failed to allocate beacon descriptors: %d\n", error);
2879 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2880 error = ath_tx_edma_init(sc);
2885 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2887 struct ath_atx_tid *tid;
2890 for (acno = 0; acno < IEEE80211_NUM_ACS; acno++)
2891 an->airtime_deficit[acno] = ATH_AIRTIME_QUANTUM;
2893 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2894 tid = ath_node_to_tid(an, tidno);
2897 tid->seq_start = tid->seq_next = 0;
2898 tid->baw_size = WME_MAX_BA;
2899 tid->baw_head = tid->baw_tail = 0;
2900 tid->active = false;
2901 tid->clear_ps_filter = true;
2902 tid->has_queued = false;
2903 __skb_queue_head_init(&tid->retry_q);
2904 INIT_LIST_HEAD(&tid->list);
2905 acno = TID_TO_WME_AC(tidno);
2906 tid->txq = sc->tx.txq_map[acno];
2909 break; /* just one multicast ath_atx_tid */
2913 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2915 struct ath_atx_tid *tid;
2916 struct ath_txq *txq;
2921 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2922 tid = ath_node_to_tid(an, tidno);
2925 ath_txq_lock(sc, txq);
2927 if (!list_empty(&tid->list))
2928 list_del_init(&tid->list);
2930 ath_tid_drain(sc, txq, tid);
2931 tid->active = false;
2933 ath_txq_unlock(sc, txq);
2936 break; /* just one multicast ath_atx_tid */
2942 #ifdef CONFIG_ATH9K_TX99
2944 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2945 struct ath_tx_control *txctl)
2947 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2948 struct ath_frame_info *fi = get_frame_info(skb);
2949 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2951 int padpos, padsize;
2953 padpos = ieee80211_hdrlen(hdr->frame_control);
2954 padsize = padpos & 3;
2956 if (padsize && skb->len > padpos) {
2957 if (skb_headroom(skb) < padsize) {
2958 ath_dbg(common, XMIT,
2959 "tx99 padding failed\n");
2963 skb_push(skb, padsize);
2964 memmove(skb->data, skb->data + padsize, padpos);
2967 fi->keyix = ATH9K_TXKEYIX_INVALID;
2968 fi->framelen = skb->len + FCS_LEN;
2969 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2971 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2973 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2977 ath_set_rates(sc->tx99_vif, NULL, bf);
2979 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2980 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2982 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2987 #endif /* CONFIG_ATH9K_TX99 */