net/ipv6: Move && and || to end of previous line
[platform/kernel/linux-arm64.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19 #include "btcoex.h"
20
21 static char *dev_info = "ath9k";
22
23 MODULE_AUTHOR("Atheros Communications");
24 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
25 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
26 MODULE_LICENSE("Dual BSD/GPL");
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
31
32 static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
33 module_param_named(debug, ath9k_debug, uint, 0);
34 MODULE_PARM_DESC(debug, "Debugging mask");
35
36 /* We use the hw_value as an index into our private channel structure */
37
38 #define CHAN2G(_freq, _idx)  { \
39         .center_freq = (_freq), \
40         .hw_value = (_idx), \
41         .max_power = 20, \
42 }
43
44 #define CHAN5G(_freq, _idx) { \
45         .band = IEEE80211_BAND_5GHZ, \
46         .center_freq = (_freq), \
47         .hw_value = (_idx), \
48         .max_power = 20, \
49 }
50
51 /* Some 2 GHz radios are actually tunable on 2312-2732
52  * on 5 MHz steps, we support the channels which we know
53  * we have calibration data for all cards though to make
54  * this static */
55 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
56         CHAN2G(2412, 0), /* Channel 1 */
57         CHAN2G(2417, 1), /* Channel 2 */
58         CHAN2G(2422, 2), /* Channel 3 */
59         CHAN2G(2427, 3), /* Channel 4 */
60         CHAN2G(2432, 4), /* Channel 5 */
61         CHAN2G(2437, 5), /* Channel 6 */
62         CHAN2G(2442, 6), /* Channel 7 */
63         CHAN2G(2447, 7), /* Channel 8 */
64         CHAN2G(2452, 8), /* Channel 9 */
65         CHAN2G(2457, 9), /* Channel 10 */
66         CHAN2G(2462, 10), /* Channel 11 */
67         CHAN2G(2467, 11), /* Channel 12 */
68         CHAN2G(2472, 12), /* Channel 13 */
69         CHAN2G(2484, 13), /* Channel 14 */
70 };
71
72 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
73  * on 5 MHz steps, we support the channels which we know
74  * we have calibration data for all cards though to make
75  * this static */
76 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
77         /* _We_ call this UNII 1 */
78         CHAN5G(5180, 14), /* Channel 36 */
79         CHAN5G(5200, 15), /* Channel 40 */
80         CHAN5G(5220, 16), /* Channel 44 */
81         CHAN5G(5240, 17), /* Channel 48 */
82         /* _We_ call this UNII 2 */
83         CHAN5G(5260, 18), /* Channel 52 */
84         CHAN5G(5280, 19), /* Channel 56 */
85         CHAN5G(5300, 20), /* Channel 60 */
86         CHAN5G(5320, 21), /* Channel 64 */
87         /* _We_ call this "Middle band" */
88         CHAN5G(5500, 22), /* Channel 100 */
89         CHAN5G(5520, 23), /* Channel 104 */
90         CHAN5G(5540, 24), /* Channel 108 */
91         CHAN5G(5560, 25), /* Channel 112 */
92         CHAN5G(5580, 26), /* Channel 116 */
93         CHAN5G(5600, 27), /* Channel 120 */
94         CHAN5G(5620, 28), /* Channel 124 */
95         CHAN5G(5640, 29), /* Channel 128 */
96         CHAN5G(5660, 30), /* Channel 132 */
97         CHAN5G(5680, 31), /* Channel 136 */
98         CHAN5G(5700, 32), /* Channel 140 */
99         /* _We_ call this UNII 3 */
100         CHAN5G(5745, 33), /* Channel 149 */
101         CHAN5G(5765, 34), /* Channel 153 */
102         CHAN5G(5785, 35), /* Channel 157 */
103         CHAN5G(5805, 36), /* Channel 161 */
104         CHAN5G(5825, 37), /* Channel 165 */
105 };
106
107 static void ath_cache_conf_rate(struct ath_softc *sc,
108                                 struct ieee80211_conf *conf)
109 {
110         switch (conf->channel->band) {
111         case IEEE80211_BAND_2GHZ:
112                 if (conf_is_ht20(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
115                 else if (conf_is_ht40_minus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
118                 else if (conf_is_ht40_plus(conf))
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
121                 else
122                         sc->cur_rate_table =
123                           sc->hw_rate_table[ATH9K_MODE_11G];
124                 break;
125         case IEEE80211_BAND_5GHZ:
126                 if (conf_is_ht20(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
129                 else if (conf_is_ht40_minus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
132                 else if (conf_is_ht40_plus(conf))
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
135                 else
136                         sc->cur_rate_table =
137                           sc->hw_rate_table[ATH9K_MODE_11A];
138                 break;
139         default:
140                 BUG_ON(1);
141                 break;
142         }
143 }
144
145 static void ath_update_txpow(struct ath_softc *sc)
146 {
147         struct ath_hw *ah = sc->sc_ah;
148         u32 txpow;
149
150         if (sc->curtxpow != sc->config.txpowlimit) {
151                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
152                 /* read back in case value is clamped */
153                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
154                 sc->curtxpow = txpow;
155         }
156 }
157
158 static u8 parse_mpdudensity(u8 mpdudensity)
159 {
160         /*
161          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
162          *   0 for no restriction
163          *   1 for 1/4 us
164          *   2 for 1/2 us
165          *   3 for 1 us
166          *   4 for 2 us
167          *   5 for 4 us
168          *   6 for 8 us
169          *   7 for 16 us
170          */
171         switch (mpdudensity) {
172         case 0:
173                 return 0;
174         case 1:
175         case 2:
176         case 3:
177                 /* Our lower layer calculations limit our precision to
178                    1 microsecond */
179                 return 1;
180         case 4:
181                 return 2;
182         case 5:
183                 return 4;
184         case 6:
185                 return 8;
186         case 7:
187                 return 16;
188         default:
189                 return 0;
190         }
191 }
192
193 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
194 {
195         const struct ath_rate_table *rate_table = NULL;
196         struct ieee80211_supported_band *sband;
197         struct ieee80211_rate *rate;
198         int i, maxrates;
199
200         switch (band) {
201         case IEEE80211_BAND_2GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
203                 break;
204         case IEEE80211_BAND_5GHZ:
205                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
206                 break;
207         default:
208                 break;
209         }
210
211         if (rate_table == NULL)
212                 return;
213
214         sband = &sc->sbands[band];
215         rate = sc->rates[band];
216
217         if (rate_table->rate_cnt > ATH_RATE_MAX)
218                 maxrates = ATH_RATE_MAX;
219         else
220                 maxrates = rate_table->rate_cnt;
221
222         for (i = 0; i < maxrates; i++) {
223                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
224                 rate[i].hw_value = rate_table->info[i].ratecode;
225                 if (rate_table->info[i].short_preamble) {
226                         rate[i].hw_value_short = rate_table->info[i].ratecode |
227                                 rate_table->info[i].short_preamble;
228                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
229                 }
230                 sband->n_bitrates++;
231
232                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
233                           "Rate: %2dMbps, ratecode: %2d\n",
234                           rate[i].bitrate / 10, rate[i].hw_value);
235         }
236 }
237
238 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
239                                                 struct ieee80211_hw *hw)
240 {
241         struct ieee80211_channel *curchan = hw->conf.channel;
242         struct ath9k_channel *channel;
243         u8 chan_idx;
244
245         chan_idx = curchan->hw_value;
246         channel = &sc->sc_ah->channels[chan_idx];
247         ath9k_update_ichannel(sc, hw, channel);
248         return channel;
249 }
250
251 static bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
252 {
253         unsigned long flags;
254         bool ret;
255
256         spin_lock_irqsave(&sc->sc_pm_lock, flags);
257         ret = ath9k_hw_setpower(sc->sc_ah, mode);
258         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
259
260         return ret;
261 }
262
263 void ath9k_ps_wakeup(struct ath_softc *sc)
264 {
265         unsigned long flags;
266
267         spin_lock_irqsave(&sc->sc_pm_lock, flags);
268         if (++sc->ps_usecount != 1)
269                 goto unlock;
270
271         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
272
273  unlock:
274         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
275 }
276
277 void ath9k_ps_restore(struct ath_softc *sc)
278 {
279         unsigned long flags;
280
281         spin_lock_irqsave(&sc->sc_pm_lock, flags);
282         if (--sc->ps_usecount != 0)
283                 goto unlock;
284
285         if (sc->ps_enabled &&
286             !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
287                               SC_OP_WAIT_FOR_CAB |
288                               SC_OP_WAIT_FOR_PSPOLL_DATA |
289                               SC_OP_WAIT_FOR_TX_ACK)))
290                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
291
292  unlock:
293         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
294 }
295
296 /*
297  * Set/change channels.  If the channel is really being changed, it's done
298  * by reseting the chip.  To accomplish this we must first cleanup any pending
299  * DMA, then restart stuff.
300 */
301 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
302                     struct ath9k_channel *hchan)
303 {
304         struct ath_hw *ah = sc->sc_ah;
305         struct ath_common *common = ath9k_hw_common(ah);
306         struct ieee80211_conf *conf = &common->hw->conf;
307         bool fastcc = true, stopped;
308         struct ieee80211_channel *channel = hw->conf.channel;
309         int r;
310
311         if (sc->sc_flags & SC_OP_INVALID)
312                 return -EIO;
313
314         ath9k_ps_wakeup(sc);
315
316         /*
317          * This is only performed if the channel settings have
318          * actually changed.
319          *
320          * To switch channels clear any pending DMA operations;
321          * wait long enough for the RX fifo to drain, reset the
322          * hardware at the new frequency, and then re-enable
323          * the relevant bits of the h/w.
324          */
325         ath9k_hw_set_interrupts(ah, 0);
326         ath_drain_all_txq(sc, false);
327         stopped = ath_stoprecv(sc);
328
329         /* XXX: do not flush receive queue here. We don't want
330          * to flush data frames already in queue because of
331          * changing channel. */
332
333         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
334                 fastcc = false;
335
336         ath_print(common, ATH_DBG_CONFIG,
337                   "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
338                   sc->sc_ah->curchan->channel,
339                   channel->center_freq, conf_is_ht40(conf));
340
341         spin_lock_bh(&sc->sc_resetlock);
342
343         r = ath9k_hw_reset(ah, hchan, fastcc);
344         if (r) {
345                 ath_print(common, ATH_DBG_FATAL,
346                           "Unable to reset channel (%u Mhz) "
347                           "reset status %d\n",
348                           channel->center_freq, r);
349                 spin_unlock_bh(&sc->sc_resetlock);
350                 goto ps_restore;
351         }
352         spin_unlock_bh(&sc->sc_resetlock);
353
354         sc->sc_flags &= ~SC_OP_FULL_RESET;
355
356         if (ath_startrecv(sc) != 0) {
357                 ath_print(common, ATH_DBG_FATAL,
358                           "Unable to restart recv logic\n");
359                 r = -EIO;
360                 goto ps_restore;
361         }
362
363         ath_cache_conf_rate(sc, &hw->conf);
364         ath_update_txpow(sc);
365         ath9k_hw_set_interrupts(ah, sc->imask);
366
367  ps_restore:
368         ath9k_ps_restore(sc);
369         return r;
370 }
371
372 /*
373  *  This routine performs the periodic noise floor calibration function
374  *  that is used to adjust and optimize the chip performance.  This
375  *  takes environmental changes (location, temperature) into account.
376  *  When the task is complete, it reschedules itself depending on the
377  *  appropriate interval that was calculated.
378  */
379 static void ath_ani_calibrate(unsigned long data)
380 {
381         struct ath_softc *sc = (struct ath_softc *)data;
382         struct ath_hw *ah = sc->sc_ah;
383         struct ath_common *common = ath9k_hw_common(ah);
384         bool longcal = false;
385         bool shortcal = false;
386         bool aniflag = false;
387         unsigned int timestamp = jiffies_to_msecs(jiffies);
388         u32 cal_interval, short_cal_interval;
389
390         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
391                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
392
393         /*
394         * don't calibrate when we're scanning.
395         * we are most likely not on our home channel.
396         */
397         spin_lock(&sc->ani_lock);
398         if (sc->sc_flags & SC_OP_SCANNING)
399                 goto set_timer;
400
401         /* Only calibrate if awake */
402         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
403                 goto set_timer;
404
405         ath9k_ps_wakeup(sc);
406
407         /* Long calibration runs independently of short calibration. */
408         if ((timestamp - common->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
409                 longcal = true;
410                 ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
411                 common->ani.longcal_timer = timestamp;
412         }
413
414         /* Short calibration applies only while caldone is false */
415         if (!common->ani.caldone) {
416                 if ((timestamp - common->ani.shortcal_timer) >= short_cal_interval) {
417                         shortcal = true;
418                         ath_print(common, ATH_DBG_ANI,
419                                   "shortcal @%lu\n", jiffies);
420                         common->ani.shortcal_timer = timestamp;
421                         common->ani.resetcal_timer = timestamp;
422                 }
423         } else {
424                 if ((timestamp - common->ani.resetcal_timer) >=
425                     ATH_RESTART_CALINTERVAL) {
426                         common->ani.caldone = ath9k_hw_reset_calvalid(ah);
427                         if (common->ani.caldone)
428                                 common->ani.resetcal_timer = timestamp;
429                 }
430         }
431
432         /* Verify whether we must check ANI */
433         if ((timestamp - common->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
434                 aniflag = true;
435                 common->ani.checkani_timer = timestamp;
436         }
437
438         /* Skip all processing if there's nothing to do. */
439         if (longcal || shortcal || aniflag) {
440                 /* Call ANI routine if necessary */
441                 if (aniflag)
442                         ath9k_hw_ani_monitor(ah, ah->curchan);
443
444                 /* Perform calibration if necessary */
445                 if (longcal || shortcal) {
446                         common->ani.caldone =
447                                 ath9k_hw_calibrate(ah,
448                                                    ah->curchan,
449                                                    common->rx_chainmask,
450                                                    longcal);
451
452                         if (longcal)
453                                 common->ani.noise_floor = ath9k_hw_getchan_noise(ah,
454                                                                      ah->curchan);
455
456                         ath_print(common, ATH_DBG_ANI,
457                                   " calibrate chan %u/%x nf: %d\n",
458                                   ah->curchan->channel,
459                                   ah->curchan->channelFlags,
460                                   common->ani.noise_floor);
461                 }
462         }
463
464         ath9k_ps_restore(sc);
465
466 set_timer:
467         spin_unlock(&sc->ani_lock);
468         /*
469         * Set timer interval based on previous results.
470         * The interval must be the shortest necessary to satisfy ANI,
471         * short calibration and long calibration.
472         */
473         cal_interval = ATH_LONG_CALINTERVAL;
474         if (sc->sc_ah->config.enable_ani)
475                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
476         if (!common->ani.caldone)
477                 cal_interval = min(cal_interval, (u32)short_cal_interval);
478
479         mod_timer(&common->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
480 }
481
482 static void ath_start_ani(struct ath_common *common)
483 {
484         unsigned long timestamp = jiffies_to_msecs(jiffies);
485
486         common->ani.longcal_timer = timestamp;
487         common->ani.shortcal_timer = timestamp;
488         common->ani.checkani_timer = timestamp;
489
490         mod_timer(&common->ani.timer,
491                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
492 }
493
494 /*
495  * Update tx/rx chainmask. For legacy association,
496  * hard code chainmask to 1x1, for 11n association, use
497  * the chainmask configuration, for bt coexistence, use
498  * the chainmask configuration even in legacy mode.
499  */
500 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
501 {
502         struct ath_hw *ah = sc->sc_ah;
503         struct ath_common *common = ath9k_hw_common(ah);
504
505         if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
506             (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
507                 common->tx_chainmask = ah->caps.tx_chainmask;
508                 common->rx_chainmask = ah->caps.rx_chainmask;
509         } else {
510                 common->tx_chainmask = 1;
511                 common->rx_chainmask = 1;
512         }
513
514         ath_print(common, ATH_DBG_CONFIG,
515                   "tx chmask: %d, rx chmask: %d\n",
516                   common->tx_chainmask,
517                   common->rx_chainmask);
518 }
519
520 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
521 {
522         struct ath_node *an;
523
524         an = (struct ath_node *)sta->drv_priv;
525
526         if (sc->sc_flags & SC_OP_TXAGGR) {
527                 ath_tx_node_init(sc, an);
528                 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
529                                      sta->ht_cap.ampdu_factor);
530                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
531                 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
532         }
533 }
534
535 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
536 {
537         struct ath_node *an = (struct ath_node *)sta->drv_priv;
538
539         if (sc->sc_flags & SC_OP_TXAGGR)
540                 ath_tx_node_cleanup(sc, an);
541 }
542
543 static void ath9k_tasklet(unsigned long data)
544 {
545         struct ath_softc *sc = (struct ath_softc *)data;
546         struct ath_hw *ah = sc->sc_ah;
547         struct ath_common *common = ath9k_hw_common(ah);
548
549         u32 status = sc->intrstatus;
550
551         ath9k_ps_wakeup(sc);
552
553         if (status & ATH9K_INT_FATAL) {
554                 ath_reset(sc, false);
555                 ath9k_ps_restore(sc);
556                 return;
557         }
558
559         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
560                 spin_lock_bh(&sc->rx.rxflushlock);
561                 ath_rx_tasklet(sc, 0);
562                 spin_unlock_bh(&sc->rx.rxflushlock);
563         }
564
565         if (status & ATH9K_INT_TX)
566                 ath_tx_tasklet(sc);
567
568         if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
569                 /*
570                  * TSF sync does not look correct; remain awake to sync with
571                  * the next Beacon.
572                  */
573                 ath_print(common, ATH_DBG_PS,
574                           "TSFOOR - Sync with next Beacon\n");
575                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
576         }
577
578         if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
579                 if (status & ATH9K_INT_GENTIMER)
580                         ath_gen_timer_isr(sc->sc_ah);
581
582         /* re-enable hardware interrupt */
583         ath9k_hw_set_interrupts(ah, sc->imask);
584         ath9k_ps_restore(sc);
585 }
586
587 irqreturn_t ath_isr(int irq, void *dev)
588 {
589 #define SCHED_INTR (                            \
590                 ATH9K_INT_FATAL |               \
591                 ATH9K_INT_RXORN |               \
592                 ATH9K_INT_RXEOL |               \
593                 ATH9K_INT_RX |                  \
594                 ATH9K_INT_TX |                  \
595                 ATH9K_INT_BMISS |               \
596                 ATH9K_INT_CST |                 \
597                 ATH9K_INT_TSFOOR |              \
598                 ATH9K_INT_GENTIMER)
599
600         struct ath_softc *sc = dev;
601         struct ath_hw *ah = sc->sc_ah;
602         enum ath9k_int status;
603         bool sched = false;
604
605         /*
606          * The hardware is not ready/present, don't
607          * touch anything. Note this can happen early
608          * on if the IRQ is shared.
609          */
610         if (sc->sc_flags & SC_OP_INVALID)
611                 return IRQ_NONE;
612
613
614         /* shared irq, not for us */
615
616         if (!ath9k_hw_intrpend(ah))
617                 return IRQ_NONE;
618
619         /*
620          * Figure out the reason(s) for the interrupt.  Note
621          * that the hal returns a pseudo-ISR that may include
622          * bits we haven't explicitly enabled so we mask the
623          * value to insure we only process bits we requested.
624          */
625         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
626         status &= sc->imask;    /* discard unasked-for bits */
627
628         /*
629          * If there are no status bits set, then this interrupt was not
630          * for me (should have been caught above).
631          */
632         if (!status)
633                 return IRQ_NONE;
634
635         /* Cache the status */
636         sc->intrstatus = status;
637
638         if (status & SCHED_INTR)
639                 sched = true;
640
641         /*
642          * If a FATAL or RXORN interrupt is received, we have to reset the
643          * chip immediately.
644          */
645         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
646                 goto chip_reset;
647
648         if (status & ATH9K_INT_SWBA)
649                 tasklet_schedule(&sc->bcon_tasklet);
650
651         if (status & ATH9K_INT_TXURN)
652                 ath9k_hw_updatetxtriglevel(ah, true);
653
654         if (status & ATH9K_INT_MIB) {
655                 /*
656                  * Disable interrupts until we service the MIB
657                  * interrupt; otherwise it will continue to
658                  * fire.
659                  */
660                 ath9k_hw_set_interrupts(ah, 0);
661                 /*
662                  * Let the hal handle the event. We assume
663                  * it will clear whatever condition caused
664                  * the interrupt.
665                  */
666                 ath9k_hw_procmibevent(ah);
667                 ath9k_hw_set_interrupts(ah, sc->imask);
668         }
669
670         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
671                 if (status & ATH9K_INT_TIM_TIMER) {
672                         /* Clear RxAbort bit so that we can
673                          * receive frames */
674                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
675                         ath9k_hw_setrxabort(sc->sc_ah, 0);
676                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
677                 }
678
679 chip_reset:
680
681         ath_debug_stat_interrupt(sc, status);
682
683         if (sched) {
684                 /* turn off every interrupt except SWBA */
685                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
686                 tasklet_schedule(&sc->intr_tq);
687         }
688
689         return IRQ_HANDLED;
690
691 #undef SCHED_INTR
692 }
693
694 static u32 ath_get_extchanmode(struct ath_softc *sc,
695                                struct ieee80211_channel *chan,
696                                enum nl80211_channel_type channel_type)
697 {
698         u32 chanmode = 0;
699
700         switch (chan->band) {
701         case IEEE80211_BAND_2GHZ:
702                 switch(channel_type) {
703                 case NL80211_CHAN_NO_HT:
704                 case NL80211_CHAN_HT20:
705                         chanmode = CHANNEL_G_HT20;
706                         break;
707                 case NL80211_CHAN_HT40PLUS:
708                         chanmode = CHANNEL_G_HT40PLUS;
709                         break;
710                 case NL80211_CHAN_HT40MINUS:
711                         chanmode = CHANNEL_G_HT40MINUS;
712                         break;
713                 }
714                 break;
715         case IEEE80211_BAND_5GHZ:
716                 switch(channel_type) {
717                 case NL80211_CHAN_NO_HT:
718                 case NL80211_CHAN_HT20:
719                         chanmode = CHANNEL_A_HT20;
720                         break;
721                 case NL80211_CHAN_HT40PLUS:
722                         chanmode = CHANNEL_A_HT40PLUS;
723                         break;
724                 case NL80211_CHAN_HT40MINUS:
725                         chanmode = CHANNEL_A_HT40MINUS;
726                         break;
727                 }
728                 break;
729         default:
730                 break;
731         }
732
733         return chanmode;
734 }
735
736 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
737                            struct ath9k_keyval *hk, const u8 *addr,
738                            bool authenticator)
739 {
740         struct ath_hw *ah = common->ah;
741         const u8 *key_rxmic;
742         const u8 *key_txmic;
743
744         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
745         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
746
747         if (addr == NULL) {
748                 /*
749                  * Group key installation - only two key cache entries are used
750                  * regardless of splitmic capability since group key is only
751                  * used either for TX or RX.
752                  */
753                 if (authenticator) {
754                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
755                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
756                 } else {
757                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
758                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
759                 }
760                 return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
761         }
762         if (!common->splitmic) {
763                 /* TX and RX keys share the same key cache entry. */
764                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
765                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
766                 return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
767         }
768
769         /* Separate key cache entries for TX and RX */
770
771         /* TX key goes at first index, RX key at +32. */
772         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
773         if (!ath9k_hw_set_keycache_entry(ah, keyix, hk, NULL)) {
774                 /* TX MIC entry failed. No need to proceed further */
775                 ath_print(common, ATH_DBG_FATAL,
776                           "Setting TX MIC Key Failed\n");
777                 return 0;
778         }
779
780         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
781         /* XXX delete tx key on failure? */
782         return ath9k_hw_set_keycache_entry(ah, keyix + 32, hk, addr);
783 }
784
785 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
786 {
787         int i;
788
789         for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
790                 if (test_bit(i, common->keymap) ||
791                     test_bit(i + 64, common->keymap))
792                         continue; /* At least one part of TKIP key allocated */
793                 if (common->splitmic &&
794                     (test_bit(i + 32, common->keymap) ||
795                      test_bit(i + 64 + 32, common->keymap)))
796                         continue; /* At least one part of TKIP key allocated */
797
798                 /* Found a free slot for a TKIP key */
799                 return i;
800         }
801         return -1;
802 }
803
804 static int ath_reserve_key_cache_slot(struct ath_common *common)
805 {
806         int i;
807
808         /* First, try to find slots that would not be available for TKIP. */
809         if (common->splitmic) {
810                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
811                         if (!test_bit(i, common->keymap) &&
812                             (test_bit(i + 32, common->keymap) ||
813                              test_bit(i + 64, common->keymap) ||
814                              test_bit(i + 64 + 32, common->keymap)))
815                                 return i;
816                         if (!test_bit(i + 32, common->keymap) &&
817                             (test_bit(i, common->keymap) ||
818                              test_bit(i + 64, common->keymap) ||
819                              test_bit(i + 64 + 32, common->keymap)))
820                                 return i + 32;
821                         if (!test_bit(i + 64, common->keymap) &&
822                             (test_bit(i , common->keymap) ||
823                              test_bit(i + 32, common->keymap) ||
824                              test_bit(i + 64 + 32, common->keymap)))
825                                 return i + 64;
826                         if (!test_bit(i + 64 + 32, common->keymap) &&
827                             (test_bit(i, common->keymap) ||
828                              test_bit(i + 32, common->keymap) ||
829                              test_bit(i + 64, common->keymap)))
830                                 return i + 64 + 32;
831                 }
832         } else {
833                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
834                         if (!test_bit(i, common->keymap) &&
835                             test_bit(i + 64, common->keymap))
836                                 return i;
837                         if (test_bit(i, common->keymap) &&
838                             !test_bit(i + 64, common->keymap))
839                                 return i + 64;
840                 }
841         }
842
843         /* No partially used TKIP slots, pick any available slot */
844         for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
845                 /* Do not allow slots that could be needed for TKIP group keys
846                  * to be used. This limitation could be removed if we know that
847                  * TKIP will not be used. */
848                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
849                         continue;
850                 if (common->splitmic) {
851                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
852                                 continue;
853                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
854                                 continue;
855                 }
856
857                 if (!test_bit(i, common->keymap))
858                         return i; /* Found a free slot for a key */
859         }
860
861         /* No free slot found */
862         return -1;
863 }
864
865 static int ath_key_config(struct ath_common *common,
866                           struct ieee80211_vif *vif,
867                           struct ieee80211_sta *sta,
868                           struct ieee80211_key_conf *key)
869 {
870         struct ath_hw *ah = common->ah;
871         struct ath9k_keyval hk;
872         const u8 *mac = NULL;
873         int ret = 0;
874         int idx;
875
876         memset(&hk, 0, sizeof(hk));
877
878         switch (key->alg) {
879         case ALG_WEP:
880                 hk.kv_type = ATH9K_CIPHER_WEP;
881                 break;
882         case ALG_TKIP:
883                 hk.kv_type = ATH9K_CIPHER_TKIP;
884                 break;
885         case ALG_CCMP:
886                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
887                 break;
888         default:
889                 return -EOPNOTSUPP;
890         }
891
892         hk.kv_len = key->keylen;
893         memcpy(hk.kv_val, key->key, key->keylen);
894
895         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
896                 /* For now, use the default keys for broadcast keys. This may
897                  * need to change with virtual interfaces. */
898                 idx = key->keyidx;
899         } else if (key->keyidx) {
900                 if (WARN_ON(!sta))
901                         return -EOPNOTSUPP;
902                 mac = sta->addr;
903
904                 if (vif->type != NL80211_IFTYPE_AP) {
905                         /* Only keyidx 0 should be used with unicast key, but
906                          * allow this for client mode for now. */
907                         idx = key->keyidx;
908                 } else
909                         return -EIO;
910         } else {
911                 if (WARN_ON(!sta))
912                         return -EOPNOTSUPP;
913                 mac = sta->addr;
914
915                 if (key->alg == ALG_TKIP)
916                         idx = ath_reserve_key_cache_slot_tkip(common);
917                 else
918                         idx = ath_reserve_key_cache_slot(common);
919                 if (idx < 0)
920                         return -ENOSPC; /* no free key cache entries */
921         }
922
923         if (key->alg == ALG_TKIP)
924                 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
925                                       vif->type == NL80211_IFTYPE_AP);
926         else
927                 ret = ath9k_hw_set_keycache_entry(ah, idx, &hk, mac);
928
929         if (!ret)
930                 return -EIO;
931
932         set_bit(idx, common->keymap);
933         if (key->alg == ALG_TKIP) {
934                 set_bit(idx + 64, common->keymap);
935                 if (common->splitmic) {
936                         set_bit(idx + 32, common->keymap);
937                         set_bit(idx + 64 + 32, common->keymap);
938                 }
939         }
940
941         return idx;
942 }
943
944 static void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
945 {
946         struct ath_hw *ah = common->ah;
947
948         ath9k_hw_keyreset(ah, key->hw_key_idx);
949         if (key->hw_key_idx < IEEE80211_WEP_NKID)
950                 return;
951
952         clear_bit(key->hw_key_idx, common->keymap);
953         if (key->alg != ALG_TKIP)
954                 return;
955
956         clear_bit(key->hw_key_idx + 64, common->keymap);
957         if (common->splitmic) {
958                 clear_bit(key->hw_key_idx + 32, common->keymap);
959                 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
960         }
961 }
962
963 static void setup_ht_cap(struct ath_softc *sc,
964                          struct ieee80211_sta_ht_cap *ht_info)
965 {
966         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
967         u8 tx_streams, rx_streams;
968
969         ht_info->ht_supported = true;
970         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
971                        IEEE80211_HT_CAP_SM_PS |
972                        IEEE80211_HT_CAP_SGI_40 |
973                        IEEE80211_HT_CAP_DSSSCCK40;
974
975         ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
976         ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
977
978         /* set up supported mcs set */
979         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
980         tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ?
981                      1 : 2;
982         rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ?
983                      1 : 2;
984
985         if (tx_streams != rx_streams) {
986                 ath_print(common, ATH_DBG_CONFIG,
987                           "TX streams %d, RX streams: %d\n",
988                           tx_streams, rx_streams);
989                 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
990                 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
991                                 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
992         }
993
994         ht_info->mcs.rx_mask[0] = 0xff;
995         if (rx_streams >= 2)
996                 ht_info->mcs.rx_mask[1] = 0xff;
997
998         ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
999 }
1000
1001 static void ath9k_bss_assoc_info(struct ath_softc *sc,
1002                                  struct ieee80211_vif *vif,
1003                                  struct ieee80211_bss_conf *bss_conf)
1004 {
1005         struct ath_hw *ah = sc->sc_ah;
1006         struct ath_common *common = ath9k_hw_common(ah);
1007
1008         if (bss_conf->assoc) {
1009                 ath_print(common, ATH_DBG_CONFIG,
1010                           "Bss Info ASSOC %d, bssid: %pM\n",
1011                            bss_conf->aid, common->curbssid);
1012
1013                 /* New association, store aid */
1014                 common->curaid = bss_conf->aid;
1015                 ath9k_hw_write_associd(ah);
1016
1017                 /*
1018                  * Request a re-configuration of Beacon related timers
1019                  * on the receipt of the first Beacon frame (i.e.,
1020                  * after time sync with the AP).
1021                  */
1022                 sc->sc_flags |= SC_OP_BEACON_SYNC;
1023
1024                 /* Configure the beacon */
1025                 ath_beacon_config(sc, vif);
1026
1027                 /* Reset rssi stats */
1028                 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
1029
1030                 ath_start_ani(common);
1031         } else {
1032                 ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
1033                 common->curaid = 0;
1034                 /* Stop ANI */
1035                 del_timer_sync(&common->ani.timer);
1036         }
1037 }
1038
1039 /********************************/
1040 /*       LED functions          */
1041 /********************************/
1042
1043 static void ath_led_blink_work(struct work_struct *work)
1044 {
1045         struct ath_softc *sc = container_of(work, struct ath_softc,
1046                                             ath_led_blink_work.work);
1047
1048         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
1049                 return;
1050
1051         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
1052             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
1053                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1054         else
1055                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1056                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
1057
1058         ieee80211_queue_delayed_work(sc->hw,
1059                                      &sc->ath_led_blink_work,
1060                                      (sc->sc_flags & SC_OP_LED_ON) ?
1061                                         msecs_to_jiffies(sc->led_off_duration) :
1062                                         msecs_to_jiffies(sc->led_on_duration));
1063
1064         sc->led_on_duration = sc->led_on_cnt ?
1065                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
1066                         ATH_LED_ON_DURATION_IDLE;
1067         sc->led_off_duration = sc->led_off_cnt ?
1068                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
1069                         ATH_LED_OFF_DURATION_IDLE;
1070         sc->led_on_cnt = sc->led_off_cnt = 0;
1071         if (sc->sc_flags & SC_OP_LED_ON)
1072                 sc->sc_flags &= ~SC_OP_LED_ON;
1073         else
1074                 sc->sc_flags |= SC_OP_LED_ON;
1075 }
1076
1077 static void ath_led_brightness(struct led_classdev *led_cdev,
1078                                enum led_brightness brightness)
1079 {
1080         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1081         struct ath_softc *sc = led->sc;
1082
1083         switch (brightness) {
1084         case LED_OFF:
1085                 if (led->led_type == ATH_LED_ASSOC ||
1086                     led->led_type == ATH_LED_RADIO) {
1087                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1088                                 (led->led_type == ATH_LED_RADIO));
1089                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1090                         if (led->led_type == ATH_LED_RADIO)
1091                                 sc->sc_flags &= ~SC_OP_LED_ON;
1092                 } else {
1093                         sc->led_off_cnt++;
1094                 }
1095                 break;
1096         case LED_FULL:
1097                 if (led->led_type == ATH_LED_ASSOC) {
1098                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1099                         ieee80211_queue_delayed_work(sc->hw,
1100                                                      &sc->ath_led_blink_work, 0);
1101                 } else if (led->led_type == ATH_LED_RADIO) {
1102                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1103                         sc->sc_flags |= SC_OP_LED_ON;
1104                 } else {
1105                         sc->led_on_cnt++;
1106                 }
1107                 break;
1108         default:
1109                 break;
1110         }
1111 }
1112
1113 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1114                             char *trigger)
1115 {
1116         int ret;
1117
1118         led->sc = sc;
1119         led->led_cdev.name = led->name;
1120         led->led_cdev.default_trigger = trigger;
1121         led->led_cdev.brightness_set = ath_led_brightness;
1122
1123         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1124         if (ret)
1125                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1126                           "Failed to register led:%s", led->name);
1127         else
1128                 led->registered = 1;
1129         return ret;
1130 }
1131
1132 static void ath_unregister_led(struct ath_led *led)
1133 {
1134         if (led->registered) {
1135                 led_classdev_unregister(&led->led_cdev);
1136                 led->registered = 0;
1137         }
1138 }
1139
1140 static void ath_deinit_leds(struct ath_softc *sc)
1141 {
1142         ath_unregister_led(&sc->assoc_led);
1143         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1144         ath_unregister_led(&sc->tx_led);
1145         ath_unregister_led(&sc->rx_led);
1146         ath_unregister_led(&sc->radio_led);
1147         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1148 }
1149
1150 static void ath_init_leds(struct ath_softc *sc)
1151 {
1152         char *trigger;
1153         int ret;
1154
1155         if (AR_SREV_9287(sc->sc_ah))
1156                 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1157         else
1158                 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1159
1160         /* Configure gpio 1 for output */
1161         ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1162                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1163         /* LED off, active low */
1164         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1165
1166         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1167
1168         trigger = ieee80211_get_radio_led_name(sc->hw);
1169         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1170                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1171         ret = ath_register_led(sc, &sc->radio_led, trigger);
1172         sc->radio_led.led_type = ATH_LED_RADIO;
1173         if (ret)
1174                 goto fail;
1175
1176         trigger = ieee80211_get_assoc_led_name(sc->hw);
1177         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1178                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1179         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1180         sc->assoc_led.led_type = ATH_LED_ASSOC;
1181         if (ret)
1182                 goto fail;
1183
1184         trigger = ieee80211_get_tx_led_name(sc->hw);
1185         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1186                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1187         ret = ath_register_led(sc, &sc->tx_led, trigger);
1188         sc->tx_led.led_type = ATH_LED_TX;
1189         if (ret)
1190                 goto fail;
1191
1192         trigger = ieee80211_get_rx_led_name(sc->hw);
1193         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1194                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1195         ret = ath_register_led(sc, &sc->rx_led, trigger);
1196         sc->rx_led.led_type = ATH_LED_RX;
1197         if (ret)
1198                 goto fail;
1199
1200         return;
1201
1202 fail:
1203         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1204         ath_deinit_leds(sc);
1205 }
1206
1207 void ath_radio_enable(struct ath_softc *sc, struct ieee80211_hw *hw)
1208 {
1209         struct ath_hw *ah = sc->sc_ah;
1210         struct ath_common *common = ath9k_hw_common(ah);
1211         struct ieee80211_channel *channel = hw->conf.channel;
1212         int r;
1213
1214         ath9k_ps_wakeup(sc);
1215         ath9k_hw_configpcipowersave(ah, 0, 0);
1216
1217         if (!ah->curchan)
1218                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1219
1220         spin_lock_bh(&sc->sc_resetlock);
1221         r = ath9k_hw_reset(ah, ah->curchan, false);
1222         if (r) {
1223                 ath_print(common, ATH_DBG_FATAL,
1224                           "Unable to reset channel %u (%uMhz) ",
1225                           "reset status %d\n",
1226                           channel->center_freq, r);
1227         }
1228         spin_unlock_bh(&sc->sc_resetlock);
1229
1230         ath_update_txpow(sc);
1231         if (ath_startrecv(sc) != 0) {
1232                 ath_print(common, ATH_DBG_FATAL,
1233                           "Unable to restart recv logic\n");
1234                 return;
1235         }
1236
1237         if (sc->sc_flags & SC_OP_BEACONS)
1238                 ath_beacon_config(sc, NULL);    /* restart beacons */
1239
1240         /* Re-Enable  interrupts */
1241         ath9k_hw_set_interrupts(ah, sc->imask);
1242
1243         /* Enable LED */
1244         ath9k_hw_cfg_output(ah, ah->led_pin,
1245                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1246         ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1247
1248         ieee80211_wake_queues(hw);
1249         ath9k_ps_restore(sc);
1250 }
1251
1252 void ath_radio_disable(struct ath_softc *sc, struct ieee80211_hw *hw)
1253 {
1254         struct ath_hw *ah = sc->sc_ah;
1255         struct ieee80211_channel *channel = hw->conf.channel;
1256         int r;
1257
1258         ath9k_ps_wakeup(sc);
1259         ieee80211_stop_queues(hw);
1260
1261         /* Disable LED */
1262         ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1263         ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1264
1265         /* Disable interrupts */
1266         ath9k_hw_set_interrupts(ah, 0);
1267
1268         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1269         ath_stoprecv(sc);               /* turn off frame recv */
1270         ath_flushrecv(sc);              /* flush recv queue */
1271
1272         if (!ah->curchan)
1273                 ah->curchan = ath_get_curchannel(sc, hw);
1274
1275         spin_lock_bh(&sc->sc_resetlock);
1276         r = ath9k_hw_reset(ah, ah->curchan, false);
1277         if (r) {
1278                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1279                           "Unable to reset channel %u (%uMhz) "
1280                           "reset status %d\n",
1281                           channel->center_freq, r);
1282         }
1283         spin_unlock_bh(&sc->sc_resetlock);
1284
1285         ath9k_hw_phy_disable(ah);
1286         ath9k_hw_configpcipowersave(ah, 1, 1);
1287         ath9k_ps_restore(sc);
1288         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
1289 }
1290
1291 /*******************/
1292 /*      Rfkill     */
1293 /*******************/
1294
1295 static bool ath_is_rfkill_set(struct ath_softc *sc)
1296 {
1297         struct ath_hw *ah = sc->sc_ah;
1298
1299         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1300                                   ah->rfkill_polarity;
1301 }
1302
1303 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1304 {
1305         struct ath_wiphy *aphy = hw->priv;
1306         struct ath_softc *sc = aphy->sc;
1307         bool blocked = !!ath_is_rfkill_set(sc);
1308
1309         wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1310 }
1311
1312 static void ath_start_rfkill_poll(struct ath_softc *sc)
1313 {
1314         struct ath_hw *ah = sc->sc_ah;
1315
1316         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1317                 wiphy_rfkill_start_polling(sc->hw->wiphy);
1318 }
1319
1320 static void ath9k_uninit_hw(struct ath_softc *sc)
1321 {
1322         struct ath_hw *ah = sc->sc_ah;
1323
1324         BUG_ON(!ah);
1325
1326         ath9k_exit_debug(ah);
1327         ath9k_hw_detach(ah);
1328         sc->sc_ah = NULL;
1329 }
1330
1331 static void ath_clean_core(struct ath_softc *sc)
1332 {
1333         struct ieee80211_hw *hw = sc->hw;
1334         struct ath_hw *ah = sc->sc_ah;
1335         int i = 0;
1336
1337         ath9k_ps_wakeup(sc);
1338
1339         dev_dbg(sc->dev, "Detach ATH hw\n");
1340
1341         ath_deinit_leds(sc);
1342         wiphy_rfkill_stop_polling(sc->hw->wiphy);
1343
1344         for (i = 0; i < sc->num_sec_wiphy; i++) {
1345                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1346                 if (aphy == NULL)
1347                         continue;
1348                 sc->sec_wiphy[i] = NULL;
1349                 ieee80211_unregister_hw(aphy->hw);
1350                 ieee80211_free_hw(aphy->hw);
1351         }
1352         ieee80211_unregister_hw(hw);
1353         ath_rx_cleanup(sc);
1354         ath_tx_cleanup(sc);
1355
1356         tasklet_kill(&sc->intr_tq);
1357         tasklet_kill(&sc->bcon_tasklet);
1358
1359         if (!(sc->sc_flags & SC_OP_INVALID))
1360                 ath9k_setpower(sc, ATH9K_PM_AWAKE);
1361
1362         /* cleanup tx queues */
1363         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1364                 if (ATH_TXQ_SETUP(sc, i))
1365                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1366
1367         if ((sc->btcoex.no_stomp_timer) &&
1368             ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1369                 ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer);
1370 }
1371
1372 void ath_detach(struct ath_softc *sc)
1373 {
1374         ath_clean_core(sc);
1375         ath9k_uninit_hw(sc);
1376 }
1377
1378 void ath_cleanup(struct ath_softc *sc)
1379 {
1380         struct ath_hw *ah = sc->sc_ah;
1381         struct ath_common *common = ath9k_hw_common(ah);
1382
1383         ath_clean_core(sc);
1384         free_irq(sc->irq, sc);
1385         ath_bus_cleanup(common);
1386         kfree(sc->sec_wiphy);
1387         ieee80211_free_hw(sc->hw);
1388
1389         ath9k_uninit_hw(sc);
1390 }
1391
1392 static int ath9k_reg_notifier(struct wiphy *wiphy,
1393                               struct regulatory_request *request)
1394 {
1395         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1396         struct ath_wiphy *aphy = hw->priv;
1397         struct ath_softc *sc = aphy->sc;
1398         struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
1399
1400         return ath_reg_notifier_apply(wiphy, request, reg);
1401 }
1402
1403 /*
1404  * Detects if there is any priority bt traffic
1405  */
1406 static void ath_detect_bt_priority(struct ath_softc *sc)
1407 {
1408         struct ath_btcoex *btcoex = &sc->btcoex;
1409         struct ath_hw *ah = sc->sc_ah;
1410
1411         if (ath9k_hw_gpio_get(sc->sc_ah, ah->btcoex_hw.btpriority_gpio))
1412                 btcoex->bt_priority_cnt++;
1413
1414         if (time_after(jiffies, btcoex->bt_priority_time +
1415                         msecs_to_jiffies(ATH_BT_PRIORITY_TIME_THRESHOLD))) {
1416                 if (btcoex->bt_priority_cnt >= ATH_BT_CNT_THRESHOLD) {
1417                         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_BTCOEX,
1418                                   "BT priority traffic detected");
1419                         sc->sc_flags |= SC_OP_BT_PRIORITY_DETECTED;
1420                 } else {
1421                         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
1422                 }
1423
1424                 btcoex->bt_priority_cnt = 0;
1425                 btcoex->bt_priority_time = jiffies;
1426         }
1427 }
1428
1429 /*
1430  * Configures appropriate weight based on stomp type.
1431  */
1432 static void ath9k_btcoex_bt_stomp(struct ath_softc *sc,
1433                                   enum ath_stomp_type stomp_type)
1434 {
1435         struct ath_hw *ah = sc->sc_ah;
1436
1437         switch (stomp_type) {
1438         case ATH_BTCOEX_STOMP_ALL:
1439                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1440                                            AR_STOMP_ALL_WLAN_WGHT);
1441                 break;
1442         case ATH_BTCOEX_STOMP_LOW:
1443                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1444                                            AR_STOMP_LOW_WLAN_WGHT);
1445                 break;
1446         case ATH_BTCOEX_STOMP_NONE:
1447                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1448                                            AR_STOMP_NONE_WLAN_WGHT);
1449                 break;
1450         default:
1451                 ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1452                           "Invalid Stomptype\n");
1453                 break;
1454         }
1455
1456         ath9k_hw_btcoex_enable(ah);
1457 }
1458
1459 static void ath9k_gen_timer_start(struct ath_hw *ah,
1460                                   struct ath_gen_timer *timer,
1461                                   u32 timer_next,
1462                                   u32 timer_period)
1463 {
1464         struct ath_common *common = ath9k_hw_common(ah);
1465         struct ath_softc *sc = (struct ath_softc *) common->priv;
1466
1467         ath9k_hw_gen_timer_start(ah, timer, timer_next, timer_period);
1468
1469         if ((sc->imask & ATH9K_INT_GENTIMER) == 0) {
1470                 ath9k_hw_set_interrupts(ah, 0);
1471                 sc->imask |= ATH9K_INT_GENTIMER;
1472                 ath9k_hw_set_interrupts(ah, sc->imask);
1473         }
1474 }
1475
1476 static void ath9k_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
1477 {
1478         struct ath_common *common = ath9k_hw_common(ah);
1479         struct ath_softc *sc = (struct ath_softc *) common->priv;
1480         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
1481
1482         ath9k_hw_gen_timer_stop(ah, timer);
1483
1484         /* if no timer is enabled, turn off interrupt mask */
1485         if (timer_table->timer_mask.val == 0) {
1486                 ath9k_hw_set_interrupts(ah, 0);
1487                 sc->imask &= ~ATH9K_INT_GENTIMER;
1488                 ath9k_hw_set_interrupts(ah, sc->imask);
1489         }
1490 }
1491
1492 /*
1493  * This is the master bt coex timer which runs for every
1494  * 45ms, bt traffic will be given priority during 55% of this
1495  * period while wlan gets remaining 45%
1496  */
1497 static void ath_btcoex_period_timer(unsigned long data)
1498 {
1499         struct ath_softc *sc = (struct ath_softc *) data;
1500         struct ath_hw *ah = sc->sc_ah;
1501         struct ath_btcoex *btcoex = &sc->btcoex;
1502
1503         ath_detect_bt_priority(sc);
1504
1505         spin_lock_bh(&btcoex->btcoex_lock);
1506
1507         ath9k_btcoex_bt_stomp(sc, btcoex->bt_stomp_type);
1508
1509         spin_unlock_bh(&btcoex->btcoex_lock);
1510
1511         if (btcoex->btcoex_period != btcoex->btcoex_no_stomp) {
1512                 if (btcoex->hw_timer_enabled)
1513                         ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
1514
1515                 ath9k_gen_timer_start(ah,
1516                                       btcoex->no_stomp_timer,
1517                                       (ath9k_hw_gettsf32(ah) +
1518                                        btcoex->btcoex_no_stomp),
1519                                        btcoex->btcoex_no_stomp * 10);
1520                 btcoex->hw_timer_enabled = true;
1521         }
1522
1523         mod_timer(&btcoex->period_timer, jiffies +
1524                                   msecs_to_jiffies(ATH_BTCOEX_DEF_BT_PERIOD));
1525 }
1526
1527 /*
1528  * Generic tsf based hw timer which configures weight
1529  * registers to time slice between wlan and bt traffic
1530  */
1531 static void ath_btcoex_no_stomp_timer(void *arg)
1532 {
1533         struct ath_softc *sc = (struct ath_softc *)arg;
1534         struct ath_hw *ah = sc->sc_ah;
1535         struct ath_btcoex *btcoex = &sc->btcoex;
1536
1537         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1538                   "no stomp timer running \n");
1539
1540         spin_lock_bh(&btcoex->btcoex_lock);
1541
1542         if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_LOW)
1543                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_NONE);
1544          else if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_ALL)
1545                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_LOW);
1546
1547         spin_unlock_bh(&btcoex->btcoex_lock);
1548 }
1549
1550 static int ath_init_btcoex_timer(struct ath_softc *sc)
1551 {
1552         struct ath_btcoex *btcoex = &sc->btcoex;
1553
1554         btcoex->btcoex_period = ATH_BTCOEX_DEF_BT_PERIOD * 1000;
1555         btcoex->btcoex_no_stomp = (100 - ATH_BTCOEX_DEF_DUTY_CYCLE) *
1556                 btcoex->btcoex_period / 100;
1557
1558         setup_timer(&btcoex->period_timer, ath_btcoex_period_timer,
1559                         (unsigned long) sc);
1560
1561         spin_lock_init(&btcoex->btcoex_lock);
1562
1563         btcoex->no_stomp_timer = ath_gen_timer_alloc(sc->sc_ah,
1564                         ath_btcoex_no_stomp_timer,
1565                         ath_btcoex_no_stomp_timer,
1566                         (void *) sc, AR_FIRST_NDP_TIMER);
1567
1568         if (!btcoex->no_stomp_timer)
1569                 return -ENOMEM;
1570
1571         return 0;
1572 }
1573
1574 /*
1575  * Read and write, they both share the same lock. We do this to serialize
1576  * reads and writes on Atheros 802.11n PCI devices only. This is required
1577  * as the FIFO on these devices can only accept sanely 2 requests. After
1578  * that the device goes bananas. Serializing the reads/writes prevents this
1579  * from happening.
1580  */
1581
1582 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
1583 {
1584         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1585         struct ath_common *common = ath9k_hw_common(ah);
1586         struct ath_softc *sc = (struct ath_softc *) common->priv;
1587
1588         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1589                 unsigned long flags;
1590                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1591                 iowrite32(val, sc->mem + reg_offset);
1592                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1593         } else
1594                 iowrite32(val, sc->mem + reg_offset);
1595 }
1596
1597 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
1598 {
1599         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1600         struct ath_common *common = ath9k_hw_common(ah);
1601         struct ath_softc *sc = (struct ath_softc *) common->priv;
1602         u32 val;
1603
1604         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1605                 unsigned long flags;
1606                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1607                 val = ioread32(sc->mem + reg_offset);
1608                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1609         } else
1610                 val = ioread32(sc->mem + reg_offset);
1611         return val;
1612 }
1613
1614 static const struct ath_ops ath9k_common_ops = {
1615         .read = ath9k_ioread32,
1616         .write = ath9k_iowrite32,
1617 };
1618
1619 /*
1620  * Initialize and fill ath_softc, ath_sofct is the
1621  * "Software Carrier" struct. Historically it has existed
1622  * to allow the separation between hardware specific
1623  * variables (now in ath_hw) and driver specific variables.
1624  */
1625 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
1626                           const struct ath_bus_ops *bus_ops)
1627 {
1628         struct ath_hw *ah = NULL;
1629         struct ath_common *common;
1630         int r = 0, i;
1631         int csz = 0;
1632         int qnum;
1633
1634         /* XXX: hardware will not be ready until ath_open() being called */
1635         sc->sc_flags |= SC_OP_INVALID;
1636
1637         spin_lock_init(&sc->wiphy_lock);
1638         spin_lock_init(&sc->sc_resetlock);
1639         spin_lock_init(&sc->sc_serial_rw);
1640         spin_lock_init(&sc->ani_lock);
1641         spin_lock_init(&sc->sc_pm_lock);
1642         mutex_init(&sc->mutex);
1643         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1644         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1645                      (unsigned long)sc);
1646
1647         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1648         if (!ah)
1649                 return -ENOMEM;
1650
1651         ah->hw_version.devid = devid;
1652         ah->hw_version.subsysid = subsysid;
1653         sc->sc_ah = ah;
1654
1655         common = ath9k_hw_common(ah);
1656         common->ops = &ath9k_common_ops;
1657         common->bus_ops = bus_ops;
1658         common->ah = ah;
1659         common->hw = sc->hw;
1660         common->priv = sc;
1661         common->debug_mask = ath9k_debug;
1662
1663         /*
1664          * Cache line size is used to size and align various
1665          * structures used to communicate with the hardware.
1666          */
1667         ath_read_cachesize(common, &csz);
1668         /* XXX assert csz is non-zero */
1669         common->cachelsz = csz << 2;    /* convert to bytes */
1670
1671         r = ath9k_hw_init(ah);
1672         if (r) {
1673                 ath_print(common, ATH_DBG_FATAL,
1674                           "Unable to initialize hardware; "
1675                           "initialization status: %d\n", r);
1676                 goto bad_free_hw;
1677         }
1678
1679         if (ath9k_init_debug(ah) < 0) {
1680                 ath_print(common, ATH_DBG_FATAL,
1681                           "Unable to create debugfs files\n");
1682                 goto bad_free_hw;
1683         }
1684
1685         /* Get the hardware key cache size. */
1686         common->keymax = ah->caps.keycache_size;
1687         if (common->keymax > ATH_KEYMAX) {
1688                 ath_print(common, ATH_DBG_ANY,
1689                           "Warning, using only %u entries in %u key cache\n",
1690                           ATH_KEYMAX, common->keymax);
1691                 common->keymax = ATH_KEYMAX;
1692         }
1693
1694         /*
1695          * Reset the key cache since some parts do not
1696          * reset the contents on initial power up.
1697          */
1698         for (i = 0; i < common->keymax; i++)
1699                 ath9k_hw_keyreset(ah, (u16) i);
1700
1701         /* default to MONITOR mode */
1702         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1703
1704         /* Setup rate tables */
1705
1706         ath_rate_attach(sc);
1707         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1708         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1709
1710         /*
1711          * Allocate hardware transmit queues: one queue for
1712          * beacon frames and one data queue for each QoS
1713          * priority.  Note that the hal handles reseting
1714          * these queues at the needed time.
1715          */
1716         sc->beacon.beaconq = ath9k_hw_beaconq_setup(ah);
1717         if (sc->beacon.beaconq == -1) {
1718                 ath_print(common, ATH_DBG_FATAL,
1719                           "Unable to setup a beacon xmit queue\n");
1720                 r = -EIO;
1721                 goto bad2;
1722         }
1723         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1724         if (sc->beacon.cabq == NULL) {
1725                 ath_print(common, ATH_DBG_FATAL,
1726                           "Unable to setup CAB xmit queue\n");
1727                 r = -EIO;
1728                 goto bad2;
1729         }
1730
1731         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1732         ath_cabq_update(sc);
1733
1734         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1735                 sc->tx.hwq_map[i] = -1;
1736
1737         /* Setup data queues */
1738         /* NB: ensure BK queue is the lowest priority h/w queue */
1739         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1740                 ath_print(common, ATH_DBG_FATAL,
1741                           "Unable to setup xmit queue for BK traffic\n");
1742                 r = -EIO;
1743                 goto bad2;
1744         }
1745
1746         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1747                 ath_print(common, ATH_DBG_FATAL,
1748                           "Unable to setup xmit queue for BE traffic\n");
1749                 r = -EIO;
1750                 goto bad2;
1751         }
1752         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1753                 ath_print(common, ATH_DBG_FATAL,
1754                           "Unable to setup xmit queue for VI traffic\n");
1755                 r = -EIO;
1756                 goto bad2;
1757         }
1758         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1759                 ath_print(common, ATH_DBG_FATAL,
1760                           "Unable to setup xmit queue for VO traffic\n");
1761                 r = -EIO;
1762                 goto bad2;
1763         }
1764
1765         /* Initializes the noise floor to a reasonable default value.
1766          * Later on this will be updated during ANI processing. */
1767
1768         common->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1769         setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1770
1771         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1772                                    ATH9K_CIPHER_TKIP, NULL)) {
1773                 /*
1774                  * Whether we should enable h/w TKIP MIC.
1775                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1776                  * report WMM capable, so it's always safe to turn on
1777                  * TKIP MIC in this case.
1778                  */
1779                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1780                                        0, 1, NULL);
1781         }
1782
1783         /*
1784          * Check whether the separate key cache entries
1785          * are required to handle both tx+rx MIC keys.
1786          * With split mic keys the number of stations is limited
1787          * to 27 otherwise 59.
1788          */
1789         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1790                                    ATH9K_CIPHER_TKIP, NULL)
1791             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1792                                       ATH9K_CIPHER_MIC, NULL)
1793             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1794                                       0, NULL))
1795                 common->splitmic = 1;
1796
1797         /* turn on mcast key search if possible */
1798         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1799                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1800                                              1, NULL);
1801
1802         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1803
1804         /* 11n Capabilities */
1805         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1806                 sc->sc_flags |= SC_OP_TXAGGR;
1807                 sc->sc_flags |= SC_OP_RXAGGR;
1808         }
1809
1810         common->tx_chainmask = ah->caps.tx_chainmask;
1811         common->rx_chainmask = ah->caps.rx_chainmask;
1812
1813         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1814         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1815
1816         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1817                 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
1818
1819         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1820
1821         /* initialize beacon slots */
1822         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1823                 sc->beacon.bslot[i] = NULL;
1824                 sc->beacon.bslot_aphy[i] = NULL;
1825         }
1826
1827         /* setup channels and rates */
1828
1829         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1830         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1831                 sc->rates[IEEE80211_BAND_2GHZ];
1832         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1833         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1834                 ARRAY_SIZE(ath9k_2ghz_chantable);
1835
1836         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1837                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1838                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1839                         sc->rates[IEEE80211_BAND_5GHZ];
1840                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1841                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1842                         ARRAY_SIZE(ath9k_5ghz_chantable);
1843         }
1844
1845         switch (ah->btcoex_hw.scheme) {
1846         case ATH_BTCOEX_CFG_NONE:
1847                 break;
1848         case ATH_BTCOEX_CFG_2WIRE:
1849                 ath9k_hw_btcoex_init_2wire(ah);
1850                 break;
1851         case ATH_BTCOEX_CFG_3WIRE:
1852                 ath9k_hw_btcoex_init_3wire(ah);
1853                 r = ath_init_btcoex_timer(sc);
1854                 if (r)
1855                         goto bad2;
1856                 qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
1857                 ath9k_hw_init_btcoex_hw(ah, qnum);
1858                 sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
1859                 break;
1860         default:
1861                 WARN_ON(1);
1862                 break;
1863         }
1864
1865         return 0;
1866 bad2:
1867         /* cleanup tx queues */
1868         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1869                 if (ATH_TXQ_SETUP(sc, i))
1870                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1871
1872 bad_free_hw:
1873         ath9k_uninit_hw(sc);
1874         return r;
1875 }
1876
1877 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1878 {
1879         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1880                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1881                 IEEE80211_HW_SIGNAL_DBM |
1882                 IEEE80211_HW_AMPDU_AGGREGATION |
1883                 IEEE80211_HW_SUPPORTS_PS |
1884                 IEEE80211_HW_PS_NULLFUNC_STACK |
1885                 IEEE80211_HW_SPECTRUM_MGMT;
1886
1887         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1888                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1889
1890         hw->wiphy->interface_modes =
1891                 BIT(NL80211_IFTYPE_AP) |
1892                 BIT(NL80211_IFTYPE_STATION) |
1893                 BIT(NL80211_IFTYPE_ADHOC) |
1894                 BIT(NL80211_IFTYPE_MESH_POINT);
1895
1896         hw->queues = 4;
1897         hw->max_rates = 4;
1898         hw->channel_change_time = 5000;
1899         hw->max_listen_interval = 10;
1900         /* Hardware supports 10 but we use 4 */
1901         hw->max_rate_tries = 4;
1902         hw->sta_data_size = sizeof(struct ath_node);
1903         hw->vif_data_size = sizeof(struct ath_vif);
1904
1905         hw->rate_control_algorithm = "ath9k_rate_control";
1906
1907         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1908                 &sc->sbands[IEEE80211_BAND_2GHZ];
1909         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1910                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1911                         &sc->sbands[IEEE80211_BAND_5GHZ];
1912 }
1913
1914 /* Device driver core initialization */
1915 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
1916                     const struct ath_bus_ops *bus_ops)
1917 {
1918         struct ieee80211_hw *hw = sc->hw;
1919         struct ath_common *common;
1920         struct ath_hw *ah;
1921         int error = 0, i;
1922         struct ath_regulatory *reg;
1923
1924         dev_dbg(sc->dev, "Attach ATH hw\n");
1925
1926         error = ath_init_softc(devid, sc, subsysid, bus_ops);
1927         if (error != 0)
1928                 return error;
1929
1930         ah = sc->sc_ah;
1931         common = ath9k_hw_common(ah);
1932
1933         /* get mac address from hardware and set in mac80211 */
1934
1935         SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
1936
1937         ath_set_hw_capab(sc, hw);
1938
1939         error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
1940                               ath9k_reg_notifier);
1941         if (error)
1942                 return error;
1943
1944         reg = &common->regulatory;
1945
1946         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1947                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1948                 if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes))
1949                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1950         }
1951
1952         /* initialize tx/rx engine */
1953         error = ath_tx_init(sc, ATH_TXBUF);
1954         if (error != 0)
1955                 goto error_attach;
1956
1957         error = ath_rx_init(sc, ATH_RXBUF);
1958         if (error != 0)
1959                 goto error_attach;
1960
1961         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1962         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1963         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1964
1965         error = ieee80211_register_hw(hw);
1966
1967         if (!ath_is_world_regd(reg)) {
1968                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1969                 if (error)
1970                         goto error_attach;
1971         }
1972
1973         /* Initialize LED control */
1974         ath_init_leds(sc);
1975
1976         ath_start_rfkill_poll(sc);
1977
1978         return 0;
1979
1980 error_attach:
1981         /* cleanup tx queues */
1982         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1983                 if (ATH_TXQ_SETUP(sc, i))
1984                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1985
1986         ath9k_uninit_hw(sc);
1987
1988         return error;
1989 }
1990
1991 int ath_reset(struct ath_softc *sc, bool retry_tx)
1992 {
1993         struct ath_hw *ah = sc->sc_ah;
1994         struct ath_common *common = ath9k_hw_common(ah);
1995         struct ieee80211_hw *hw = sc->hw;
1996         int r;
1997
1998         ath9k_hw_set_interrupts(ah, 0);
1999         ath_drain_all_txq(sc, retry_tx);
2000         ath_stoprecv(sc);
2001         ath_flushrecv(sc);
2002
2003         spin_lock_bh(&sc->sc_resetlock);
2004         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
2005         if (r)
2006                 ath_print(common, ATH_DBG_FATAL,
2007                           "Unable to reset hardware; reset status %d\n", r);
2008         spin_unlock_bh(&sc->sc_resetlock);
2009
2010         if (ath_startrecv(sc) != 0)
2011                 ath_print(common, ATH_DBG_FATAL,
2012                           "Unable to start recv logic\n");
2013
2014         /*
2015          * We may be doing a reset in response to a request
2016          * that changes the channel so update any state that
2017          * might change as a result.
2018          */
2019         ath_cache_conf_rate(sc, &hw->conf);
2020
2021         ath_update_txpow(sc);
2022
2023         if (sc->sc_flags & SC_OP_BEACONS)
2024                 ath_beacon_config(sc, NULL);    /* restart beacons */
2025
2026         ath9k_hw_set_interrupts(ah, sc->imask);
2027
2028         if (retry_tx) {
2029                 int i;
2030                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2031                         if (ATH_TXQ_SETUP(sc, i)) {
2032                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
2033                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
2034                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
2035                         }
2036                 }
2037         }
2038
2039         return r;
2040 }
2041
2042 /*
2043  *  This function will allocate both the DMA descriptor structure, and the
2044  *  buffers it contains.  These are used to contain the descriptors used
2045  *  by the system.
2046 */
2047 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
2048                       struct list_head *head, const char *name,
2049                       int nbuf, int ndesc)
2050 {
2051 #define DS2PHYS(_dd, _ds)                                               \
2052         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2053 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
2054 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
2055         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2056         struct ath_desc *ds;
2057         struct ath_buf *bf;
2058         int i, bsize, error;
2059
2060         ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
2061                   name, nbuf, ndesc);
2062
2063         INIT_LIST_HEAD(head);
2064         /* ath_desc must be a multiple of DWORDs */
2065         if ((sizeof(struct ath_desc) % 4) != 0) {
2066                 ath_print(common, ATH_DBG_FATAL,
2067                           "ath_desc not DWORD aligned\n");
2068                 BUG_ON((sizeof(struct ath_desc) % 4) != 0);
2069                 error = -ENOMEM;
2070                 goto fail;
2071         }
2072
2073         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2074
2075         /*
2076          * Need additional DMA memory because we can't use
2077          * descriptors that cross the 4K page boundary. Assume
2078          * one skipped descriptor per 4K page.
2079          */
2080         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2081                 u32 ndesc_skipped =
2082                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
2083                 u32 dma_len;
2084
2085                 while (ndesc_skipped) {
2086                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
2087                         dd->dd_desc_len += dma_len;
2088
2089                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
2090                 };
2091         }
2092
2093         /* allocate descriptors */
2094         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2095                                          &dd->dd_desc_paddr, GFP_KERNEL);
2096         if (dd->dd_desc == NULL) {
2097                 error = -ENOMEM;
2098                 goto fail;
2099         }
2100         ds = dd->dd_desc;
2101         ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
2102                   name, ds, (u32) dd->dd_desc_len,
2103                   ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
2104
2105         /* allocate buffers */
2106         bsize = sizeof(struct ath_buf) * nbuf;
2107         bf = kzalloc(bsize, GFP_KERNEL);
2108         if (bf == NULL) {
2109                 error = -ENOMEM;
2110                 goto fail2;
2111         }
2112         dd->dd_bufptr = bf;
2113
2114         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2115                 bf->bf_desc = ds;
2116                 bf->bf_daddr = DS2PHYS(dd, ds);
2117
2118                 if (!(sc->sc_ah->caps.hw_caps &
2119                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2120                         /*
2121                          * Skip descriptor addresses which can cause 4KB
2122                          * boundary crossing (addr + length) with a 32 dword
2123                          * descriptor fetch.
2124                          */
2125                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
2126                                 BUG_ON((caddr_t) bf->bf_desc >=
2127                                        ((caddr_t) dd->dd_desc +
2128                                         dd->dd_desc_len));
2129
2130                                 ds += ndesc;
2131                                 bf->bf_desc = ds;
2132                                 bf->bf_daddr = DS2PHYS(dd, ds);
2133                         }
2134                 }
2135                 list_add_tail(&bf->list, head);
2136         }
2137         return 0;
2138 fail2:
2139         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2140                           dd->dd_desc_paddr);
2141 fail:
2142         memset(dd, 0, sizeof(*dd));
2143         return error;
2144 #undef ATH_DESC_4KB_BOUND_CHECK
2145 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
2146 #undef DS2PHYS
2147 }
2148
2149 void ath_descdma_cleanup(struct ath_softc *sc,
2150                          struct ath_descdma *dd,
2151                          struct list_head *head)
2152 {
2153         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2154                           dd->dd_desc_paddr);
2155
2156         INIT_LIST_HEAD(head);
2157         kfree(dd->dd_bufptr);
2158         memset(dd, 0, sizeof(*dd));
2159 }
2160
2161 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
2162 {
2163         int qnum;
2164
2165         switch (queue) {
2166         case 0:
2167                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
2168                 break;
2169         case 1:
2170                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
2171                 break;
2172         case 2:
2173                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2174                 break;
2175         case 3:
2176                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
2177                 break;
2178         default:
2179                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2180                 break;
2181         }
2182
2183         return qnum;
2184 }
2185
2186 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
2187 {
2188         int qnum;
2189
2190         switch (queue) {
2191         case ATH9K_WME_AC_VO:
2192                 qnum = 0;
2193                 break;
2194         case ATH9K_WME_AC_VI:
2195                 qnum = 1;
2196                 break;
2197         case ATH9K_WME_AC_BE:
2198                 qnum = 2;
2199                 break;
2200         case ATH9K_WME_AC_BK:
2201                 qnum = 3;
2202                 break;
2203         default:
2204                 qnum = -1;
2205                 break;
2206         }
2207
2208         return qnum;
2209 }
2210
2211 /* XXX: Remove me once we don't depend on ath9k_channel for all
2212  * this redundant data */
2213 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
2214                            struct ath9k_channel *ichan)
2215 {
2216         struct ieee80211_channel *chan = hw->conf.channel;
2217         struct ieee80211_conf *conf = &hw->conf;
2218
2219         ichan->channel = chan->center_freq;
2220         ichan->chan = chan;
2221
2222         if (chan->band == IEEE80211_BAND_2GHZ) {
2223                 ichan->chanmode = CHANNEL_G;
2224                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
2225         } else {
2226                 ichan->chanmode = CHANNEL_A;
2227                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
2228         }
2229
2230         if (conf_is_ht(conf))
2231                 ichan->chanmode = ath_get_extchanmode(sc, chan,
2232                                             conf->channel_type);
2233 }
2234
2235 /**********************/
2236 /* mac80211 callbacks */
2237 /**********************/
2238
2239 /*
2240  * (Re)start btcoex timers
2241  */
2242 static void ath9k_btcoex_timer_resume(struct ath_softc *sc)
2243 {
2244         struct ath_btcoex *btcoex = &sc->btcoex;
2245         struct ath_hw *ah = sc->sc_ah;
2246
2247         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
2248                   "Starting btcoex timers");
2249
2250         /* make sure duty cycle timer is also stopped when resuming */
2251         if (btcoex->hw_timer_enabled)
2252                 ath9k_gen_timer_stop(sc->sc_ah, btcoex->no_stomp_timer);
2253
2254         btcoex->bt_priority_cnt = 0;
2255         btcoex->bt_priority_time = jiffies;
2256         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
2257
2258         mod_timer(&btcoex->period_timer, jiffies);
2259 }
2260
2261 static int ath9k_start(struct ieee80211_hw *hw)
2262 {
2263         struct ath_wiphy *aphy = hw->priv;
2264         struct ath_softc *sc = aphy->sc;
2265         struct ath_hw *ah = sc->sc_ah;
2266         struct ath_common *common = ath9k_hw_common(ah);
2267         struct ieee80211_channel *curchan = hw->conf.channel;
2268         struct ath9k_channel *init_channel;
2269         int r;
2270
2271         ath_print(common, ATH_DBG_CONFIG,
2272                   "Starting driver with initial channel: %d MHz\n",
2273                   curchan->center_freq);
2274
2275         mutex_lock(&sc->mutex);
2276
2277         if (ath9k_wiphy_started(sc)) {
2278                 if (sc->chan_idx == curchan->hw_value) {
2279                         /*
2280                          * Already on the operational channel, the new wiphy
2281                          * can be marked active.
2282                          */
2283                         aphy->state = ATH_WIPHY_ACTIVE;
2284                         ieee80211_wake_queues(hw);
2285                 } else {
2286                         /*
2287                          * Another wiphy is on another channel, start the new
2288                          * wiphy in paused state.
2289                          */
2290                         aphy->state = ATH_WIPHY_PAUSED;
2291                         ieee80211_stop_queues(hw);
2292                 }
2293                 mutex_unlock(&sc->mutex);
2294                 return 0;
2295         }
2296         aphy->state = ATH_WIPHY_ACTIVE;
2297
2298         /* setup initial channel */
2299
2300         sc->chan_idx = curchan->hw_value;
2301
2302         init_channel = ath_get_curchannel(sc, hw);
2303
2304         /* Reset SERDES registers */
2305         ath9k_hw_configpcipowersave(ah, 0, 0);
2306
2307         /*
2308          * The basic interface to setting the hardware in a good
2309          * state is ``reset''.  On return the hardware is known to
2310          * be powered up and with interrupts disabled.  This must
2311          * be followed by initialization of the appropriate bits
2312          * and then setup of the interrupt mask.
2313          */
2314         spin_lock_bh(&sc->sc_resetlock);
2315         r = ath9k_hw_reset(ah, init_channel, false);
2316         if (r) {
2317                 ath_print(common, ATH_DBG_FATAL,
2318                           "Unable to reset hardware; reset status %d "
2319                           "(freq %u MHz)\n", r,
2320                           curchan->center_freq);
2321                 spin_unlock_bh(&sc->sc_resetlock);
2322                 goto mutex_unlock;
2323         }
2324         spin_unlock_bh(&sc->sc_resetlock);
2325
2326         /*
2327          * This is needed only to setup initial state
2328          * but it's best done after a reset.
2329          */
2330         ath_update_txpow(sc);
2331
2332         /*
2333          * Setup the hardware after reset:
2334          * The receive engine is set going.
2335          * Frame transmit is handled entirely
2336          * in the frame output path; there's nothing to do
2337          * here except setup the interrupt mask.
2338          */
2339         if (ath_startrecv(sc) != 0) {
2340                 ath_print(common, ATH_DBG_FATAL,
2341                           "Unable to start recv logic\n");
2342                 r = -EIO;
2343                 goto mutex_unlock;
2344         }
2345
2346         /* Setup our intr mask. */
2347         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2348                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2349                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2350
2351         if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2352                 sc->imask |= ATH9K_INT_GTT;
2353
2354         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2355                 sc->imask |= ATH9K_INT_CST;
2356
2357         ath_cache_conf_rate(sc, &hw->conf);
2358
2359         sc->sc_flags &= ~SC_OP_INVALID;
2360
2361         /* Disable BMISS interrupt when we're not associated */
2362         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2363         ath9k_hw_set_interrupts(ah, sc->imask);
2364
2365         ieee80211_wake_queues(hw);
2366
2367         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2368
2369         if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
2370             !ah->btcoex_hw.enabled) {
2371                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
2372                                            AR_STOMP_LOW_WLAN_WGHT);
2373                 ath9k_hw_btcoex_enable(ah);
2374
2375                 if (common->bus_ops->bt_coex_prep)
2376                         common->bus_ops->bt_coex_prep(common);
2377                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2378                         ath9k_btcoex_timer_resume(sc);
2379         }
2380
2381 mutex_unlock:
2382         mutex_unlock(&sc->mutex);
2383
2384         return r;
2385 }
2386
2387 static int ath9k_tx(struct ieee80211_hw *hw,
2388                     struct sk_buff *skb)
2389 {
2390         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2391         struct ath_wiphy *aphy = hw->priv;
2392         struct ath_softc *sc = aphy->sc;
2393         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2394         struct ath_tx_control txctl;
2395         int hdrlen, padsize;
2396
2397         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2398                 ath_print(common, ATH_DBG_XMIT,
2399                           "ath9k: %s: TX in unexpected wiphy state "
2400                           "%d\n", wiphy_name(hw->wiphy), aphy->state);
2401                 goto exit;
2402         }
2403
2404         if (sc->ps_enabled) {
2405                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2406                 /*
2407                  * mac80211 does not set PM field for normal data frames, so we
2408                  * need to update that based on the current PS mode.
2409                  */
2410                 if (ieee80211_is_data(hdr->frame_control) &&
2411                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2412                     !ieee80211_has_pm(hdr->frame_control)) {
2413                         ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
2414                                   "while in PS mode\n");
2415                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2416                 }
2417         }
2418
2419         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2420                 /*
2421                  * We are using PS-Poll and mac80211 can request TX while in
2422                  * power save mode. Need to wake up hardware for the TX to be
2423                  * completed and if needed, also for RX of buffered frames.
2424                  */
2425                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2426                 ath9k_ps_wakeup(sc);
2427                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2428                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2429                         ath_print(common, ATH_DBG_PS,
2430                                   "Sending PS-Poll to pick a buffered frame\n");
2431                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2432                 } else {
2433                         ath_print(common, ATH_DBG_PS,
2434                                   "Wake up to complete TX\n");
2435                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2436                 }
2437                 /*
2438                  * The actual restore operation will happen only after
2439                  * the sc_flags bit is cleared. We are just dropping
2440                  * the ps_usecount here.
2441                  */
2442                 ath9k_ps_restore(sc);
2443         }
2444
2445         memset(&txctl, 0, sizeof(struct ath_tx_control));
2446
2447         /*
2448          * As a temporary workaround, assign seq# here; this will likely need
2449          * to be cleaned up to work better with Beacon transmission and virtual
2450          * BSSes.
2451          */
2452         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2453                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2454                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2455                         sc->tx.seq_no += 0x10;
2456                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2457                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2458         }
2459
2460         /* Add the padding after the header if this is not already done */
2461         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2462         if (hdrlen & 3) {
2463                 padsize = hdrlen % 4;
2464                 if (skb_headroom(skb) < padsize)
2465                         return -1;
2466                 skb_push(skb, padsize);
2467                 memmove(skb->data, skb->data + padsize, hdrlen);
2468         }
2469
2470         /* Check if a tx queue is available */
2471
2472         txctl.txq = ath_test_get_txq(sc, skb);
2473         if (!txctl.txq)
2474                 goto exit;
2475
2476         ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2477
2478         if (ath_tx_start(hw, skb, &txctl) != 0) {
2479                 ath_print(common, ATH_DBG_XMIT, "TX failed\n");
2480                 goto exit;
2481         }
2482
2483         return 0;
2484 exit:
2485         dev_kfree_skb_any(skb);
2486         return 0;
2487 }
2488
2489 /*
2490  * Pause btcoex timer and bt duty cycle timer
2491  */
2492 static void ath9k_btcoex_timer_pause(struct ath_softc *sc)
2493 {
2494         struct ath_btcoex *btcoex = &sc->btcoex;
2495         struct ath_hw *ah = sc->sc_ah;
2496
2497         del_timer_sync(&btcoex->period_timer);
2498
2499         if (btcoex->hw_timer_enabled)
2500                 ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
2501
2502         btcoex->hw_timer_enabled = false;
2503 }
2504
2505 static void ath9k_stop(struct ieee80211_hw *hw)
2506 {
2507         struct ath_wiphy *aphy = hw->priv;
2508         struct ath_softc *sc = aphy->sc;
2509         struct ath_hw *ah = sc->sc_ah;
2510         struct ath_common *common = ath9k_hw_common(ah);
2511
2512         mutex_lock(&sc->mutex);
2513
2514         aphy->state = ATH_WIPHY_INACTIVE;
2515
2516         cancel_delayed_work_sync(&sc->ath_led_blink_work);
2517         cancel_delayed_work_sync(&sc->tx_complete_work);
2518
2519         if (!sc->num_sec_wiphy) {
2520                 cancel_delayed_work_sync(&sc->wiphy_work);
2521                 cancel_work_sync(&sc->chan_work);
2522         }
2523
2524         if (sc->sc_flags & SC_OP_INVALID) {
2525                 ath_print(common, ATH_DBG_ANY, "Device not present\n");
2526                 mutex_unlock(&sc->mutex);
2527                 return;
2528         }
2529
2530         if (ath9k_wiphy_started(sc)) {
2531                 mutex_unlock(&sc->mutex);
2532                 return; /* another wiphy still in use */
2533         }
2534
2535         if (ah->btcoex_hw.enabled) {
2536                 ath9k_hw_btcoex_disable(ah);
2537                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2538                         ath9k_btcoex_timer_pause(sc);
2539         }
2540
2541         /* make sure h/w will not generate any interrupt
2542          * before setting the invalid flag. */
2543         ath9k_hw_set_interrupts(ah, 0);
2544
2545         if (!(sc->sc_flags & SC_OP_INVALID)) {
2546                 ath_drain_all_txq(sc, false);
2547                 ath_stoprecv(sc);
2548                 ath9k_hw_phy_disable(ah);
2549         } else
2550                 sc->rx.rxlink = NULL;
2551
2552         /* disable HAL and put h/w to sleep */
2553         ath9k_hw_disable(ah);
2554         ath9k_hw_configpcipowersave(ah, 1, 1);
2555         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
2556
2557         sc->sc_flags |= SC_OP_INVALID;
2558
2559         mutex_unlock(&sc->mutex);
2560
2561         ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
2562 }
2563
2564 static int ath9k_add_interface(struct ieee80211_hw *hw,
2565                                struct ieee80211_if_init_conf *conf)
2566 {
2567         struct ath_wiphy *aphy = hw->priv;
2568         struct ath_softc *sc = aphy->sc;
2569         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2570         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2571         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2572         int ret = 0;
2573
2574         mutex_lock(&sc->mutex);
2575
2576         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2577             sc->nvifs > 0) {
2578                 ret = -ENOBUFS;
2579                 goto out;
2580         }
2581
2582         switch (conf->type) {
2583         case NL80211_IFTYPE_STATION:
2584                 ic_opmode = NL80211_IFTYPE_STATION;
2585                 break;
2586         case NL80211_IFTYPE_ADHOC:
2587         case NL80211_IFTYPE_AP:
2588         case NL80211_IFTYPE_MESH_POINT:
2589                 if (sc->nbcnvifs >= ATH_BCBUF) {
2590                         ret = -ENOBUFS;
2591                         goto out;
2592                 }
2593                 ic_opmode = conf->type;
2594                 break;
2595         default:
2596                 ath_print(common, ATH_DBG_FATAL,
2597                         "Interface type %d not yet supported\n", conf->type);
2598                 ret = -EOPNOTSUPP;
2599                 goto out;
2600         }
2601
2602         ath_print(common, ATH_DBG_CONFIG,
2603                   "Attach a VIF of type: %d\n", ic_opmode);
2604
2605         /* Set the VIF opmode */
2606         avp->av_opmode = ic_opmode;
2607         avp->av_bslot = -1;
2608
2609         sc->nvifs++;
2610
2611         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2612                 ath9k_set_bssid_mask(hw);
2613
2614         if (sc->nvifs > 1)
2615                 goto out; /* skip global settings for secondary vif */
2616
2617         if (ic_opmode == NL80211_IFTYPE_AP) {
2618                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2619                 sc->sc_flags |= SC_OP_TSF_RESET;
2620         }
2621
2622         /* Set the device opmode */
2623         sc->sc_ah->opmode = ic_opmode;
2624
2625         /*
2626          * Enable MIB interrupts when there are hardware phy counters.
2627          * Note we only do this (at the moment) for station mode.
2628          */
2629         if ((conf->type == NL80211_IFTYPE_STATION) ||
2630             (conf->type == NL80211_IFTYPE_ADHOC) ||
2631             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2632                 sc->imask |= ATH9K_INT_MIB;
2633                 sc->imask |= ATH9K_INT_TSFOOR;
2634         }
2635
2636         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2637
2638         if (conf->type == NL80211_IFTYPE_AP    ||
2639             conf->type == NL80211_IFTYPE_ADHOC ||
2640             conf->type == NL80211_IFTYPE_MONITOR)
2641                 ath_start_ani(common);
2642
2643 out:
2644         mutex_unlock(&sc->mutex);
2645         return ret;
2646 }
2647
2648 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2649                                    struct ieee80211_if_init_conf *conf)
2650 {
2651         struct ath_wiphy *aphy = hw->priv;
2652         struct ath_softc *sc = aphy->sc;
2653         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2654         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2655         int i;
2656
2657         ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
2658
2659         mutex_lock(&sc->mutex);
2660
2661         /* Stop ANI */
2662         del_timer_sync(&common->ani.timer);
2663
2664         /* Reclaim beacon resources */
2665         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2666             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2667             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2668                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2669                 ath_beacon_return(sc, avp);
2670         }
2671
2672         sc->sc_flags &= ~SC_OP_BEACONS;
2673
2674         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2675                 if (sc->beacon.bslot[i] == conf->vif) {
2676                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2677                                "slot\n", __func__);
2678                         sc->beacon.bslot[i] = NULL;
2679                         sc->beacon.bslot_aphy[i] = NULL;
2680                 }
2681         }
2682
2683         sc->nvifs--;
2684
2685         mutex_unlock(&sc->mutex);
2686 }
2687
2688 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2689 {
2690         struct ath_wiphy *aphy = hw->priv;
2691         struct ath_softc *sc = aphy->sc;
2692         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2693         struct ieee80211_conf *conf = &hw->conf;
2694         struct ath_hw *ah = sc->sc_ah;
2695         bool disable_radio;
2696
2697         mutex_lock(&sc->mutex);
2698
2699         /*
2700          * Leave this as the first check because we need to turn on the
2701          * radio if it was disabled before prior to processing the rest
2702          * of the changes. Likewise we must only disable the radio towards
2703          * the end.
2704          */
2705         if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2706                 bool enable_radio;
2707                 bool all_wiphys_idle;
2708                 bool idle = !!(conf->flags & IEEE80211_CONF_IDLE);
2709
2710                 spin_lock_bh(&sc->wiphy_lock);
2711                 all_wiphys_idle =  ath9k_all_wiphys_idle(sc);
2712                 ath9k_set_wiphy_idle(aphy, idle);
2713
2714                 if (!idle && all_wiphys_idle)
2715                         enable_radio = true;
2716
2717                 /*
2718                  * After we unlock here its possible another wiphy
2719                  * can be re-renabled so to account for that we will
2720                  * only disable the radio toward the end of this routine
2721                  * if by then all wiphys are still idle.
2722                  */
2723                 spin_unlock_bh(&sc->wiphy_lock);
2724
2725                 if (enable_radio) {
2726                         ath_radio_enable(sc, hw);
2727                         ath_print(common, ATH_DBG_CONFIG,
2728                                   "not-idle: enabling radio\n");
2729                 }
2730         }
2731
2732         if (changed & IEEE80211_CONF_CHANGE_PS) {
2733                 if (conf->flags & IEEE80211_CONF_PS) {
2734                         if (!(ah->caps.hw_caps &
2735                               ATH9K_HW_CAP_AUTOSLEEP)) {
2736                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2737                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2738                                         ath9k_hw_set_interrupts(sc->sc_ah,
2739                                                         sc->imask);
2740                                 }
2741                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2742                         }
2743                         sc->ps_enabled = true;
2744                 } else {
2745                         sc->ps_enabled = false;
2746                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
2747                         if (!(ah->caps.hw_caps &
2748                               ATH9K_HW_CAP_AUTOSLEEP)) {
2749                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2750                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2751                                                   SC_OP_WAIT_FOR_CAB |
2752                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2753                                                   SC_OP_WAIT_FOR_TX_ACK);
2754                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2755                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2756                                         ath9k_hw_set_interrupts(sc->sc_ah,
2757                                                         sc->imask);
2758                                 }
2759                         }
2760                 }
2761         }
2762
2763         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2764                 struct ieee80211_channel *curchan = hw->conf.channel;
2765                 int pos = curchan->hw_value;
2766
2767                 aphy->chan_idx = pos;
2768                 aphy->chan_is_ht = conf_is_ht(conf);
2769
2770                 if (aphy->state == ATH_WIPHY_SCAN ||
2771                     aphy->state == ATH_WIPHY_ACTIVE)
2772                         ath9k_wiphy_pause_all_forced(sc, aphy);
2773                 else {
2774                         /*
2775                          * Do not change operational channel based on a paused
2776                          * wiphy changes.
2777                          */
2778                         goto skip_chan_change;
2779                 }
2780
2781                 ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2782                           curchan->center_freq);
2783
2784                 /* XXX: remove me eventualy */
2785                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2786
2787                 ath_update_chainmask(sc, conf_is_ht(conf));
2788
2789                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2790                         ath_print(common, ATH_DBG_FATAL,
2791                                   "Unable to set channel\n");
2792                         mutex_unlock(&sc->mutex);
2793                         return -EINVAL;
2794                 }
2795         }
2796
2797 skip_chan_change:
2798         if (changed & IEEE80211_CONF_CHANGE_POWER)
2799                 sc->config.txpowlimit = 2 * conf->power_level;
2800
2801         spin_lock_bh(&sc->wiphy_lock);
2802         disable_radio = ath9k_all_wiphys_idle(sc);
2803         spin_unlock_bh(&sc->wiphy_lock);
2804
2805         if (disable_radio) {
2806                 ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
2807                 ath_radio_disable(sc, hw);
2808         }
2809
2810         mutex_unlock(&sc->mutex);
2811
2812         return 0;
2813 }
2814
2815 #define SUPPORTED_FILTERS                       \
2816         (FIF_PROMISC_IN_BSS |                   \
2817         FIF_ALLMULTI |                          \
2818         FIF_CONTROL |                           \
2819         FIF_PSPOLL |                            \
2820         FIF_OTHER_BSS |                         \
2821         FIF_BCN_PRBRESP_PROMISC |               \
2822         FIF_FCSFAIL)
2823
2824 /* FIXME: sc->sc_full_reset ? */
2825 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2826                                    unsigned int changed_flags,
2827                                    unsigned int *total_flags,
2828                                    u64 multicast)
2829 {
2830         struct ath_wiphy *aphy = hw->priv;
2831         struct ath_softc *sc = aphy->sc;
2832         u32 rfilt;
2833
2834         changed_flags &= SUPPORTED_FILTERS;
2835         *total_flags &= SUPPORTED_FILTERS;
2836
2837         sc->rx.rxfilter = *total_flags;
2838         ath9k_ps_wakeup(sc);
2839         rfilt = ath_calcrxfilter(sc);
2840         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2841         ath9k_ps_restore(sc);
2842
2843         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
2844                   "Set HW RX filter: 0x%x\n", rfilt);
2845 }
2846
2847 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2848                              struct ieee80211_vif *vif,
2849                              enum sta_notify_cmd cmd,
2850                              struct ieee80211_sta *sta)
2851 {
2852         struct ath_wiphy *aphy = hw->priv;
2853         struct ath_softc *sc = aphy->sc;
2854
2855         switch (cmd) {
2856         case STA_NOTIFY_ADD:
2857                 ath_node_attach(sc, sta);
2858                 break;
2859         case STA_NOTIFY_REMOVE:
2860                 ath_node_detach(sc, sta);
2861                 break;
2862         default:
2863                 break;
2864         }
2865 }
2866
2867 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2868                          const struct ieee80211_tx_queue_params *params)
2869 {
2870         struct ath_wiphy *aphy = hw->priv;
2871         struct ath_softc *sc = aphy->sc;
2872         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2873         struct ath9k_tx_queue_info qi;
2874         int ret = 0, qnum;
2875
2876         if (queue >= WME_NUM_AC)
2877                 return 0;
2878
2879         mutex_lock(&sc->mutex);
2880
2881         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2882
2883         qi.tqi_aifs = params->aifs;
2884         qi.tqi_cwmin = params->cw_min;
2885         qi.tqi_cwmax = params->cw_max;
2886         qi.tqi_burstTime = params->txop;
2887         qnum = ath_get_hal_qnum(queue, sc);
2888
2889         ath_print(common, ATH_DBG_CONFIG,
2890                   "Configure tx [queue/halq] [%d/%d],  "
2891                   "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2892                   queue, qnum, params->aifs, params->cw_min,
2893                   params->cw_max, params->txop);
2894
2895         ret = ath_txq_update(sc, qnum, &qi);
2896         if (ret)
2897                 ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
2898
2899         mutex_unlock(&sc->mutex);
2900
2901         return ret;
2902 }
2903
2904 static int ath9k_set_key(struct ieee80211_hw *hw,
2905                          enum set_key_cmd cmd,
2906                          struct ieee80211_vif *vif,
2907                          struct ieee80211_sta *sta,
2908                          struct ieee80211_key_conf *key)
2909 {
2910         struct ath_wiphy *aphy = hw->priv;
2911         struct ath_softc *sc = aphy->sc;
2912         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2913         int ret = 0;
2914
2915         if (modparam_nohwcrypt)
2916                 return -ENOSPC;
2917
2918         mutex_lock(&sc->mutex);
2919         ath9k_ps_wakeup(sc);
2920         ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
2921
2922         switch (cmd) {
2923         case SET_KEY:
2924                 ret = ath_key_config(common, vif, sta, key);
2925                 if (ret >= 0) {
2926                         key->hw_key_idx = ret;
2927                         /* push IV and Michael MIC generation to stack */
2928                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2929                         if (key->alg == ALG_TKIP)
2930                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2931                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2932                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2933                         ret = 0;
2934                 }
2935                 break;
2936         case DISABLE_KEY:
2937                 ath_key_delete(common, key);
2938                 break;
2939         default:
2940                 ret = -EINVAL;
2941         }
2942
2943         ath9k_ps_restore(sc);
2944         mutex_unlock(&sc->mutex);
2945
2946         return ret;
2947 }
2948
2949 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2950                                    struct ieee80211_vif *vif,
2951                                    struct ieee80211_bss_conf *bss_conf,
2952                                    u32 changed)
2953 {
2954         struct ath_wiphy *aphy = hw->priv;
2955         struct ath_softc *sc = aphy->sc;
2956         struct ath_hw *ah = sc->sc_ah;
2957         struct ath_common *common = ath9k_hw_common(ah);
2958         struct ath_vif *avp = (void *)vif->drv_priv;
2959         u32 rfilt = 0;
2960         int error, i;
2961
2962         mutex_lock(&sc->mutex);
2963
2964         /*
2965          * TODO: Need to decide which hw opmode to use for
2966          *       multi-interface cases
2967          * XXX: This belongs into add_interface!
2968          */
2969         if (vif->type == NL80211_IFTYPE_AP &&
2970             ah->opmode != NL80211_IFTYPE_AP) {
2971                 ah->opmode = NL80211_IFTYPE_STATION;
2972                 ath9k_hw_setopmode(ah);
2973                 memcpy(common->curbssid, common->macaddr, ETH_ALEN);
2974                 common->curaid = 0;
2975                 ath9k_hw_write_associd(ah);
2976                 /* Request full reset to get hw opmode changed properly */
2977                 sc->sc_flags |= SC_OP_FULL_RESET;
2978         }
2979
2980         if ((changed & BSS_CHANGED_BSSID) &&
2981             !is_zero_ether_addr(bss_conf->bssid)) {
2982                 switch (vif->type) {
2983                 case NL80211_IFTYPE_STATION:
2984                 case NL80211_IFTYPE_ADHOC:
2985                 case NL80211_IFTYPE_MESH_POINT:
2986                         /* Set BSSID */
2987                         memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
2988                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2989                         common->curaid = 0;
2990                         ath9k_hw_write_associd(ah);
2991
2992                         /* Set aggregation protection mode parameters */
2993                         sc->config.ath_aggr_prot = 0;
2994
2995                         ath_print(common, ATH_DBG_CONFIG,
2996                                   "RX filter 0x%x bssid %pM aid 0x%x\n",
2997                                   rfilt, common->curbssid, common->curaid);
2998
2999                         /* need to reconfigure the beacon */
3000                         sc->sc_flags &= ~SC_OP_BEACONS ;
3001
3002                         break;
3003                 default:
3004                         break;
3005                 }
3006         }
3007
3008         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
3009             (vif->type == NL80211_IFTYPE_AP) ||
3010             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
3011                 if ((changed & BSS_CHANGED_BEACON) ||
3012                     (changed & BSS_CHANGED_BEACON_ENABLED &&
3013                      bss_conf->enable_beacon)) {
3014                         /*
3015                          * Allocate and setup the beacon frame.
3016                          *
3017                          * Stop any previous beacon DMA.  This may be
3018                          * necessary, for example, when an ibss merge
3019                          * causes reconfiguration; we may be called
3020                          * with beacon transmission active.
3021                          */
3022                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
3023
3024                         error = ath_beacon_alloc(aphy, vif);
3025                         if (!error)
3026                                 ath_beacon_config(sc, vif);
3027                 }
3028         }
3029
3030         /* Check for WLAN_CAPABILITY_PRIVACY ? */
3031         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
3032                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3033                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
3034                                 ath9k_hw_keysetmac(sc->sc_ah,
3035                                                    (u16)i,
3036                                                    common->curbssid);
3037         }
3038
3039         /* Only legacy IBSS for now */
3040         if (vif->type == NL80211_IFTYPE_ADHOC)
3041                 ath_update_chainmask(sc, 0);
3042
3043         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3044                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
3045                           bss_conf->use_short_preamble);
3046                 if (bss_conf->use_short_preamble)
3047                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
3048                 else
3049                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
3050         }
3051
3052         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
3053                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
3054                           bss_conf->use_cts_prot);
3055                 if (bss_conf->use_cts_prot &&
3056                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
3057                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
3058                 else
3059                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
3060         }
3061
3062         if (changed & BSS_CHANGED_ASSOC) {
3063                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
3064                         bss_conf->assoc);
3065                 ath9k_bss_assoc_info(sc, vif, bss_conf);
3066         }
3067
3068         /*
3069          * The HW TSF has to be reset when the beacon interval changes.
3070          * We set the flag here, and ath_beacon_config_ap() would take this
3071          * into account when it gets called through the subsequent
3072          * config_interface() call - with IFCC_BEACON in the changed field.
3073          */
3074
3075         if (changed & BSS_CHANGED_BEACON_INT) {
3076                 sc->sc_flags |= SC_OP_TSF_RESET;
3077                 sc->beacon_interval = bss_conf->beacon_int;
3078         }
3079
3080         mutex_unlock(&sc->mutex);
3081 }
3082
3083 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
3084 {
3085         u64 tsf;
3086         struct ath_wiphy *aphy = hw->priv;
3087         struct ath_softc *sc = aphy->sc;
3088
3089         mutex_lock(&sc->mutex);
3090         tsf = ath9k_hw_gettsf64(sc->sc_ah);
3091         mutex_unlock(&sc->mutex);
3092
3093         return tsf;
3094 }
3095
3096 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3097 {
3098         struct ath_wiphy *aphy = hw->priv;
3099         struct ath_softc *sc = aphy->sc;
3100
3101         mutex_lock(&sc->mutex);
3102         ath9k_hw_settsf64(sc->sc_ah, tsf);
3103         mutex_unlock(&sc->mutex);
3104 }
3105
3106 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
3107 {
3108         struct ath_wiphy *aphy = hw->priv;
3109         struct ath_softc *sc = aphy->sc;
3110
3111         mutex_lock(&sc->mutex);
3112
3113         ath9k_ps_wakeup(sc);
3114         ath9k_hw_reset_tsf(sc->sc_ah);
3115         ath9k_ps_restore(sc);
3116
3117         mutex_unlock(&sc->mutex);
3118 }
3119
3120 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
3121                               enum ieee80211_ampdu_mlme_action action,
3122                               struct ieee80211_sta *sta,
3123                               u16 tid, u16 *ssn)
3124 {
3125         struct ath_wiphy *aphy = hw->priv;
3126         struct ath_softc *sc = aphy->sc;
3127         int ret = 0;
3128
3129         switch (action) {
3130         case IEEE80211_AMPDU_RX_START:
3131                 if (!(sc->sc_flags & SC_OP_RXAGGR))
3132                         ret = -ENOTSUPP;
3133                 break;
3134         case IEEE80211_AMPDU_RX_STOP:
3135                 break;
3136         case IEEE80211_AMPDU_TX_START:
3137                 ath_tx_aggr_start(sc, sta, tid, ssn);
3138                 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3139                 break;
3140         case IEEE80211_AMPDU_TX_STOP:
3141                 ath_tx_aggr_stop(sc, sta, tid);
3142                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3143                 break;
3144         case IEEE80211_AMPDU_TX_OPERATIONAL:
3145                 ath_tx_aggr_resume(sc, sta, tid);
3146                 break;
3147         default:
3148                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
3149                           "Unknown AMPDU action\n");
3150         }
3151
3152         return ret;
3153 }
3154
3155 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
3156 {
3157         struct ath_wiphy *aphy = hw->priv;
3158         struct ath_softc *sc = aphy->sc;
3159
3160         mutex_lock(&sc->mutex);
3161         if (ath9k_wiphy_scanning(sc)) {
3162                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
3163                        "same time\n");
3164                 /*
3165                  * Do not allow the concurrent scanning state for now. This
3166                  * could be improved with scanning control moved into ath9k.
3167                  */
3168                 mutex_unlock(&sc->mutex);
3169                 return;
3170         }
3171
3172         aphy->state = ATH_WIPHY_SCAN;
3173         ath9k_wiphy_pause_all_forced(sc, aphy);
3174
3175         spin_lock_bh(&sc->ani_lock);
3176         sc->sc_flags |= SC_OP_SCANNING;
3177         spin_unlock_bh(&sc->ani_lock);
3178         mutex_unlock(&sc->mutex);
3179 }
3180
3181 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
3182 {
3183         struct ath_wiphy *aphy = hw->priv;
3184         struct ath_softc *sc = aphy->sc;
3185
3186         mutex_lock(&sc->mutex);
3187         spin_lock_bh(&sc->ani_lock);
3188         aphy->state = ATH_WIPHY_ACTIVE;
3189         sc->sc_flags &= ~SC_OP_SCANNING;
3190         sc->sc_flags |= SC_OP_FULL_RESET;
3191         spin_unlock_bh(&sc->ani_lock);
3192         ath_beacon_config(sc, NULL);
3193         mutex_unlock(&sc->mutex);
3194 }
3195
3196 struct ieee80211_ops ath9k_ops = {
3197         .tx                 = ath9k_tx,
3198         .start              = ath9k_start,
3199         .stop               = ath9k_stop,
3200         .add_interface      = ath9k_add_interface,
3201         .remove_interface   = ath9k_remove_interface,
3202         .config             = ath9k_config,
3203         .configure_filter   = ath9k_configure_filter,
3204         .sta_notify         = ath9k_sta_notify,
3205         .conf_tx            = ath9k_conf_tx,
3206         .bss_info_changed   = ath9k_bss_info_changed,
3207         .set_key            = ath9k_set_key,
3208         .get_tsf            = ath9k_get_tsf,
3209         .set_tsf            = ath9k_set_tsf,
3210         .reset_tsf          = ath9k_reset_tsf,
3211         .ampdu_action       = ath9k_ampdu_action,
3212         .sw_scan_start      = ath9k_sw_scan_start,
3213         .sw_scan_complete   = ath9k_sw_scan_complete,
3214         .rfkill_poll        = ath9k_rfkill_poll_state,
3215 };
3216
3217 static int __init ath9k_init(void)
3218 {
3219         int error;
3220
3221         /* Register rate control algorithm */
3222         error = ath_rate_control_register();
3223         if (error != 0) {
3224                 printk(KERN_ERR
3225                         "ath9k: Unable to register rate control "
3226                         "algorithm: %d\n",
3227                         error);
3228                 goto err_out;
3229         }
3230
3231         error = ath9k_debug_create_root();
3232         if (error) {
3233                 printk(KERN_ERR
3234                         "ath9k: Unable to create debugfs root: %d\n",
3235                         error);
3236                 goto err_rate_unregister;
3237         }
3238
3239         error = ath_pci_init();
3240         if (error < 0) {
3241                 printk(KERN_ERR
3242                         "ath9k: No PCI devices found, driver not installed.\n");
3243                 error = -ENODEV;
3244                 goto err_remove_root;
3245         }
3246
3247         error = ath_ahb_init();
3248         if (error < 0) {
3249                 error = -ENODEV;
3250                 goto err_pci_exit;
3251         }
3252
3253         return 0;
3254
3255  err_pci_exit:
3256         ath_pci_exit();
3257
3258  err_remove_root:
3259         ath9k_debug_remove_root();
3260  err_rate_unregister:
3261         ath_rate_control_unregister();
3262  err_out:
3263         return error;
3264 }
3265 module_init(ath9k_init);
3266
3267 static void __exit ath9k_exit(void)
3268 {
3269         ath_ahb_exit();
3270         ath_pci_exit();
3271         ath9k_debug_remove_root();
3272         ath_rate_control_unregister();
3273         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
3274 }
3275 module_exit(ath9k_exit);