2 * Copyright (c) 2008-2010 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init ath9k_init(void)
37 module_init(ath9k_init);
39 static void __exit ath9k_exit(void)
43 module_exit(ath9k_exit);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
59 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
61 return priv_ops->macversion_supported(ah->hw_version.macVersion);
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65 struct ath9k_channel *chan)
67 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
72 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
75 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
80 /* You will not have this callback if using the old ANI */
81 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
84 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
87 /********************/
88 /* Helper Functions */
89 /********************/
91 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
93 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94 struct ath_common *common = ath9k_hw_common(ah);
95 unsigned int clockrate;
97 if (!ah->curchan) /* should really check for CCK instead */
98 clockrate = ATH9K_CLOCK_RATE_CCK;
99 else if (conf->channel->band == IEEE80211_BAND_2GHZ)
100 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
101 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
102 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
104 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
106 if (conf_is_ht40(conf))
109 common->clockrate = clockrate;
112 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
114 struct ath_common *common = ath9k_hw_common(ah);
116 return usecs * common->clockrate;
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
123 BUG_ON(timeout < AH_TIME_QUANTUM);
125 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126 if ((REG_READ(ah, reg) & mask) == val)
129 udelay(AH_TIME_QUANTUM);
132 ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
133 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134 timeout, reg, REG_READ(ah, reg), mask, val);
138 EXPORT_SYMBOL(ath9k_hw_wait);
140 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
145 for (i = 0, retval = 0; i < n; i++) {
146 retval = (retval << 1) | (val & 1);
152 bool ath9k_get_channel_edges(struct ath_hw *ah,
156 struct ath9k_hw_capabilities *pCap = &ah->caps;
158 if (flags & CHANNEL_5GHZ) {
159 *low = pCap->low_5ghz_chan;
160 *high = pCap->high_5ghz_chan;
163 if ((flags & CHANNEL_2GHZ)) {
164 *low = pCap->low_2ghz_chan;
165 *high = pCap->high_2ghz_chan;
171 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
173 u32 frameLen, u16 rateix,
176 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
182 case WLAN_RC_PHY_CCK:
183 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186 numBits = frameLen << 3;
187 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
189 case WLAN_RC_PHY_OFDM:
190 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
191 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
192 numBits = OFDM_PLCP_BITS + (frameLen << 3);
193 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
194 txTime = OFDM_SIFS_TIME_QUARTER
195 + OFDM_PREAMBLE_TIME_QUARTER
196 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
197 } else if (ah->curchan &&
198 IS_CHAN_HALF_RATE(ah->curchan)) {
199 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
200 numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 txTime = OFDM_SIFS_TIME_HALF +
203 OFDM_PREAMBLE_TIME_HALF
204 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
206 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
207 numBits = OFDM_PLCP_BITS + (frameLen << 3);
208 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
209 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
210 + (numSymbols * OFDM_SYMBOL_TIME);
214 ath_err(ath9k_hw_common(ah),
215 "Unknown phy %u (rate ix %u)\n", phy, rateix);
222 EXPORT_SYMBOL(ath9k_hw_computetxtime);
224 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
225 struct ath9k_channel *chan,
226 struct chan_centers *centers)
230 if (!IS_CHAN_HT40(chan)) {
231 centers->ctl_center = centers->ext_center =
232 centers->synth_center = chan->channel;
236 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
237 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
238 centers->synth_center =
239 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242 centers->synth_center =
243 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
247 centers->ctl_center =
248 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 /* 25 MHz spacing is supported by hw but not on upper layers */
250 centers->ext_center =
251 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
258 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
265 val = REG_READ(ah, AR_SREV);
266 ah->hw_version.macVersion =
267 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
268 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
271 if (!AR_SREV_9100(ah))
272 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
274 ah->hw_version.macRev = val & AR_SREV_REVISION;
276 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
277 ah->is_pciexpress = true;
281 /************************************/
282 /* HW Attach, Detach, Init Routines */
283 /************************************/
285 static void ath9k_hw_disablepcie(struct ath_hw *ah)
287 if (!AR_SREV_5416(ah))
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
295 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
296 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
297 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
298 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
300 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
303 /* This should work for all families including legacy */
304 static bool ath9k_hw_chip_test(struct ath_hw *ah)
306 struct ath_common *common = ath9k_hw_common(ah);
307 u32 regAddr[2] = { AR_STA_ID0 };
309 static const u32 patternData[4] = {
310 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
314 if (!AR_SREV_9300_20_OR_LATER(ah)) {
316 regAddr[1] = AR_PHY_BASE + (8 << 2);
320 for (i = 0; i < loop_max; i++) {
321 u32 addr = regAddr[i];
324 regHold[i] = REG_READ(ah, addr);
325 for (j = 0; j < 0x100; j++) {
326 wrData = (j << 16) | j;
327 REG_WRITE(ah, addr, wrData);
328 rdData = REG_READ(ah, addr);
329 if (rdData != wrData) {
331 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
332 addr, wrData, rdData);
336 for (j = 0; j < 4; j++) {
337 wrData = patternData[j];
338 REG_WRITE(ah, addr, wrData);
339 rdData = REG_READ(ah, addr);
340 if (wrData != rdData) {
342 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
343 addr, wrData, rdData);
347 REG_WRITE(ah, regAddr[i], regHold[i]);
354 static void ath9k_hw_init_config(struct ath_hw *ah)
358 ah->config.dma_beacon_response_time = 2;
359 ah->config.sw_beacon_response_time = 10;
360 ah->config.additional_swba_backoff = 0;
361 ah->config.ack_6mb = 0x0;
362 ah->config.cwm_ignore_extcca = 0;
363 ah->config.pcie_powersave_enable = 0;
364 ah->config.pcie_clock_req = 0;
365 ah->config.pcie_waen = 0;
366 ah->config.analog_shiftreg = 1;
367 ah->config.enable_ani = true;
369 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
370 ah->config.spurchans[i][0] = AR_NO_SPUR;
371 ah->config.spurchans[i][1] = AR_NO_SPUR;
374 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
375 ah->config.ht_enable = 1;
377 ah->config.ht_enable = 0;
379 ah->config.rx_intr_mitigation = true;
380 ah->config.pcieSerDesWrite = true;
383 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
384 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
385 * This means we use it for all AR5416 devices, and the few
386 * minor PCI AR9280 devices out there.
388 * Serialization is required because these devices do not handle
389 * well the case of two concurrent reads/writes due to the latency
390 * involved. During one read/write another read/write can be issued
391 * on another CPU while the previous read/write may still be working
392 * on our hardware, if we hit this case the hardware poops in a loop.
393 * We prevent this by serializing reads and writes.
395 * This issue is not present on PCI-Express devices or pre-AR5416
396 * devices (legacy, 802.11abg).
398 if (num_possible_cpus() > 1)
399 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
402 static void ath9k_hw_init_defaults(struct ath_hw *ah)
404 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
406 regulatory->country_code = CTRY_DEFAULT;
407 regulatory->power_limit = MAX_RATE_POWER;
408 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
410 ah->hw_version.magic = AR5416_MAGIC;
411 ah->hw_version.subvendorid = 0;
414 ah->sta_id1_defaults =
415 AR_STA_ID1_CRPT_MIC_ENABLE |
416 AR_STA_ID1_MCAST_KSRCH;
417 ah->beacon_interval = 100;
418 ah->enable_32kHz_clock = DONT_USE_32KHZ;
419 ah->slottime = (u32) -1;
420 ah->globaltxtimeout = (u32) -1;
421 ah->power_mode = ATH9K_PM_UNDEFINED;
424 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
426 struct ath_common *common = ath9k_hw_common(ah);
430 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
433 for (i = 0; i < 3; i++) {
434 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
436 common->macaddr[2 * i] = eeval >> 8;
437 common->macaddr[2 * i + 1] = eeval & 0xff;
439 if (sum == 0 || sum == 0xffff * 3)
440 return -EADDRNOTAVAIL;
445 static int ath9k_hw_post_init(struct ath_hw *ah)
449 if (!AR_SREV_9271(ah)) {
450 if (!ath9k_hw_chip_test(ah))
454 if (!AR_SREV_9300_20_OR_LATER(ah)) {
455 ecode = ar9002_hw_rf_claim(ah);
460 ecode = ath9k_hw_eeprom_init(ah);
464 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
465 "Eeprom VER: %d, REV: %d\n",
466 ah->eep_ops->get_eeprom_ver(ah),
467 ah->eep_ops->get_eeprom_rev(ah));
469 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
471 ath_err(ath9k_hw_common(ah),
472 "Failed allocating banks for external radio\n");
473 ath9k_hw_rf_free_ext_banks(ah);
477 if (!AR_SREV_9100(ah)) {
478 ath9k_hw_ani_setup(ah);
479 ath9k_hw_ani_init(ah);
485 static void ath9k_hw_attach_ops(struct ath_hw *ah)
487 if (AR_SREV_9300_20_OR_LATER(ah))
488 ar9003_hw_attach_ops(ah);
490 ar9002_hw_attach_ops(ah);
493 /* Called for all hardware families */
494 static int __ath9k_hw_init(struct ath_hw *ah)
496 struct ath_common *common = ath9k_hw_common(ah);
499 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
500 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
502 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
503 ath_err(common, "Couldn't reset chip\n");
507 ath9k_hw_init_defaults(ah);
508 ath9k_hw_init_config(ah);
510 ath9k_hw_attach_ops(ah);
512 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
513 ath_err(common, "Couldn't wakeup chip\n");
517 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
518 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
519 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
520 !ah->is_pciexpress)) {
521 ah->config.serialize_regmode =
524 ah->config.serialize_regmode =
529 ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
530 ah->config.serialize_regmode);
532 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
533 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
535 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
537 if (!ath9k_hw_macversion_supported(ah)) {
539 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
540 ah->hw_version.macVersion, ah->hw_version.macRev);
544 if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
545 ah->is_pciexpress = false;
547 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
548 ath9k_hw_init_cal_settings(ah);
550 ah->ani_function = ATH9K_ANI_ALL;
551 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
552 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
553 if (!AR_SREV_9300_20_OR_LATER(ah))
554 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
556 ath9k_hw_init_mode_regs(ah);
559 * Read back AR_WA into a permanent copy and set bits 14 and 17.
560 * We need to do this to avoid RMW of this register. We cannot
561 * read the reg when chip is asleep.
563 ah->WARegVal = REG_READ(ah, AR_WA);
564 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
565 AR_WA_ASPM_TIMER_BASED_DISABLE);
567 if (ah->is_pciexpress)
568 ath9k_hw_configpcipowersave(ah, 0, 0);
570 ath9k_hw_disablepcie(ah);
572 if (!AR_SREV_9300_20_OR_LATER(ah))
573 ar9002_hw_cck_chan14_spread(ah);
575 r = ath9k_hw_post_init(ah);
579 ath9k_hw_init_mode_gain_regs(ah);
580 r = ath9k_hw_fill_cap_info(ah);
584 r = ath9k_hw_init_macaddr(ah);
586 ath_err(common, "Failed to initialize MAC address\n");
590 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
591 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
593 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
595 ah->bb_watchdog_timeout_ms = 25;
597 common->state = ATH_HW_INITIALIZED;
602 int ath9k_hw_init(struct ath_hw *ah)
605 struct ath_common *common = ath9k_hw_common(ah);
607 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
608 switch (ah->hw_version.devid) {
609 case AR5416_DEVID_PCI:
610 case AR5416_DEVID_PCIE:
611 case AR5416_AR9100_DEVID:
612 case AR9160_DEVID_PCI:
613 case AR9280_DEVID_PCI:
614 case AR9280_DEVID_PCIE:
615 case AR9285_DEVID_PCIE:
616 case AR9287_DEVID_PCI:
617 case AR9287_DEVID_PCIE:
618 case AR2427_DEVID_PCIE:
619 case AR9300_DEVID_PCIE:
620 case AR9300_DEVID_AR9485_PCIE:
623 if (common->bus_ops->ath_bus_type == ATH_USB)
625 ath_err(common, "Hardware device ID 0x%04x not supported\n",
626 ah->hw_version.devid);
630 ret = __ath9k_hw_init(ah);
633 "Unable to initialize hardware; initialization status: %d\n",
640 EXPORT_SYMBOL(ath9k_hw_init);
642 static void ath9k_hw_init_qos(struct ath_hw *ah)
644 ENABLE_REGWRITE_BUFFER(ah);
646 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
647 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
649 REG_WRITE(ah, AR_QOS_NO_ACK,
650 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
651 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
652 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
654 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
655 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
656 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
657 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
658 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
660 REGWRITE_BUFFER_FLUSH(ah);
663 static void ath9k_hw_init_pll(struct ath_hw *ah,
664 struct ath9k_channel *chan)
668 if (AR_SREV_9485(ah))
669 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
671 pll = ath9k_hw_compute_pll_control(ah, chan);
673 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
675 /* Switch the core clock for ar9271 to 117Mhz */
676 if (AR_SREV_9271(ah)) {
678 REG_WRITE(ah, 0x50040, 0x304);
681 udelay(RTC_PLL_SETTLE_DELAY);
683 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
686 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
687 enum nl80211_iftype opmode)
689 u32 imr_reg = AR_IMR_TXERR |
695 if (AR_SREV_9300_20_OR_LATER(ah)) {
696 imr_reg |= AR_IMR_RXOK_HP;
697 if (ah->config.rx_intr_mitigation)
698 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
700 imr_reg |= AR_IMR_RXOK_LP;
703 if (ah->config.rx_intr_mitigation)
704 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
706 imr_reg |= AR_IMR_RXOK;
709 if (ah->config.tx_intr_mitigation)
710 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
712 imr_reg |= AR_IMR_TXOK;
714 if (opmode == NL80211_IFTYPE_AP)
715 imr_reg |= AR_IMR_MIB;
717 ENABLE_REGWRITE_BUFFER(ah);
719 REG_WRITE(ah, AR_IMR, imr_reg);
720 ah->imrs2_reg |= AR_IMR_S2_GTT;
721 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
723 if (!AR_SREV_9100(ah)) {
724 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
725 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
726 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
729 REGWRITE_BUFFER_FLUSH(ah);
731 if (AR_SREV_9300_20_OR_LATER(ah)) {
732 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
733 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
734 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
735 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
739 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
741 u32 val = ath9k_hw_mac_to_clks(ah, us);
742 val = min(val, (u32) 0xFFFF);
743 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
746 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
748 u32 val = ath9k_hw_mac_to_clks(ah, us);
749 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
750 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
753 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
755 u32 val = ath9k_hw_mac_to_clks(ah, us);
756 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
757 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
760 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
763 ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
764 "bad global tx timeout %u\n", tu);
765 ah->globaltxtimeout = (u32) -1;
768 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
769 ah->globaltxtimeout = tu;
774 void ath9k_hw_init_global_settings(struct ath_hw *ah)
776 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
781 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
784 if (ah->misc_mode != 0)
785 REG_WRITE(ah, AR_PCU_MISC,
786 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
788 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
793 /* As defined by IEEE 802.11-2007 17.3.8.6 */
794 slottime = ah->slottime + 3 * ah->coverage_class;
795 acktimeout = slottime + sifstime;
798 * Workaround for early ACK timeouts, add an offset to match the
799 * initval's 64us ack timeout value.
800 * This was initially only meant to work around an issue with delayed
801 * BA frames in some implementations, but it has been found to fix ACK
802 * timeout issues in other cases as well.
804 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
805 acktimeout += 64 - sifstime - ah->slottime;
807 ath9k_hw_setslottime(ah, slottime);
808 ath9k_hw_set_ack_timeout(ah, acktimeout);
809 ath9k_hw_set_cts_timeout(ah, acktimeout);
810 if (ah->globaltxtimeout != (u32) -1)
811 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
813 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
815 void ath9k_hw_deinit(struct ath_hw *ah)
817 struct ath_common *common = ath9k_hw_common(ah);
819 if (common->state < ATH_HW_INITIALIZED)
822 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
825 ath9k_hw_rf_free_ext_banks(ah);
827 EXPORT_SYMBOL(ath9k_hw_deinit);
833 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
835 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
839 else if (IS_CHAN_G(chan))
847 /****************************************/
848 /* Reset and Channel Switching Routines */
849 /****************************************/
851 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
853 struct ath_common *common = ath9k_hw_common(ah);
856 ENABLE_REGWRITE_BUFFER(ah);
859 * set AHB_MODE not to do cacheline prefetches
861 if (!AR_SREV_9300_20_OR_LATER(ah)) {
862 regval = REG_READ(ah, AR_AHB_MODE);
863 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
867 * let mac dma reads be in 128 byte chunks
869 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
870 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
872 REGWRITE_BUFFER_FLUSH(ah);
875 * Restore TX Trigger Level to its pre-reset value.
876 * The initial value depends on whether aggregation is enabled, and is
877 * adjusted whenever underruns are detected.
879 if (!AR_SREV_9300_20_OR_LATER(ah))
880 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
882 ENABLE_REGWRITE_BUFFER(ah);
885 * let mac dma writes be in 128 byte chunks
887 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
888 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
891 * Setup receive FIFO threshold to hold off TX activities
893 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
895 if (AR_SREV_9300_20_OR_LATER(ah)) {
896 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
897 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
899 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
900 ah->caps.rx_status_len);
904 * reduce the number of usable entries in PCU TXBUF to avoid
905 * wrap around issues.
907 if (AR_SREV_9285(ah)) {
908 /* For AR9285 the number of Fifos are reduced to half.
909 * So set the usable tx buf size also to half to
910 * avoid data/delimiter underruns
912 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
913 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
914 } else if (!AR_SREV_9271(ah)) {
915 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
916 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
919 REGWRITE_BUFFER_FLUSH(ah);
921 if (AR_SREV_9300_20_OR_LATER(ah))
922 ath9k_hw_reset_txstatus_ring(ah);
925 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
929 val = REG_READ(ah, AR_STA_ID1);
930 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
932 case NL80211_IFTYPE_AP:
933 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
934 | AR_STA_ID1_KSRCH_MODE);
935 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
937 case NL80211_IFTYPE_ADHOC:
938 case NL80211_IFTYPE_MESH_POINT:
939 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
940 | AR_STA_ID1_KSRCH_MODE);
941 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
943 case NL80211_IFTYPE_STATION:
944 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
947 if (ah->is_monitoring)
948 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
953 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
954 u32 *coef_mantissa, u32 *coef_exponent)
956 u32 coef_exp, coef_man;
958 for (coef_exp = 31; coef_exp > 0; coef_exp--)
959 if ((coef_scaled >> coef_exp) & 0x1)
962 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
964 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
966 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
967 *coef_exponent = coef_exp - 16;
970 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
975 if (AR_SREV_9100(ah)) {
976 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
977 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
978 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
979 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
980 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
983 ENABLE_REGWRITE_BUFFER(ah);
985 if (AR_SREV_9300_20_OR_LATER(ah)) {
986 REG_WRITE(ah, AR_WA, ah->WARegVal);
990 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
991 AR_RTC_FORCE_WAKE_ON_INT);
993 if (AR_SREV_9100(ah)) {
994 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
995 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
997 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
999 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1000 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1002 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1005 if (!AR_SREV_9300_20_OR_LATER(ah))
1007 REG_WRITE(ah, AR_RC, val);
1009 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1010 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1012 rst_flags = AR_RTC_RC_MAC_WARM;
1013 if (type == ATH9K_RESET_COLD)
1014 rst_flags |= AR_RTC_RC_MAC_COLD;
1017 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1019 REGWRITE_BUFFER_FLUSH(ah);
1023 REG_WRITE(ah, AR_RTC_RC, 0);
1024 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1025 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1026 "RTC stuck in MAC reset\n");
1030 if (!AR_SREV_9100(ah))
1031 REG_WRITE(ah, AR_RC, 0);
1033 if (AR_SREV_9100(ah))
1039 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1041 ENABLE_REGWRITE_BUFFER(ah);
1043 if (AR_SREV_9300_20_OR_LATER(ah)) {
1044 REG_WRITE(ah, AR_WA, ah->WARegVal);
1048 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1049 AR_RTC_FORCE_WAKE_ON_INT);
1051 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1052 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1054 REG_WRITE(ah, AR_RTC_RESET, 0);
1057 REGWRITE_BUFFER_FLUSH(ah);
1059 if (!AR_SREV_9300_20_OR_LATER(ah))
1062 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1063 REG_WRITE(ah, AR_RC, 0);
1065 REG_WRITE(ah, AR_RTC_RESET, 1);
1067 if (!ath9k_hw_wait(ah,
1072 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1073 "RTC not waking up\n");
1077 ath9k_hw_read_revisions(ah);
1079 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1082 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1084 if (AR_SREV_9300_20_OR_LATER(ah)) {
1085 REG_WRITE(ah, AR_WA, ah->WARegVal);
1089 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1090 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1093 case ATH9K_RESET_POWER_ON:
1094 return ath9k_hw_set_reset_power_on(ah);
1095 case ATH9K_RESET_WARM:
1096 case ATH9K_RESET_COLD:
1097 return ath9k_hw_set_reset(ah, type);
1103 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1104 struct ath9k_channel *chan)
1106 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1107 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1109 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1112 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1115 ah->chip_fullsleep = false;
1116 ath9k_hw_init_pll(ah, chan);
1117 ath9k_hw_set_rfmode(ah, chan);
1122 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1123 struct ath9k_channel *chan)
1125 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1126 struct ath_common *common = ath9k_hw_common(ah);
1127 struct ieee80211_channel *channel = chan->chan;
1131 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1132 if (ath9k_hw_numtxpending(ah, qnum)) {
1133 ath_dbg(common, ATH_DBG_QUEUE,
1134 "Transmit frames pending on queue %d\n", qnum);
1139 if (!ath9k_hw_rfbus_req(ah)) {
1140 ath_err(common, "Could not kill baseband RX\n");
1144 ath9k_hw_set_channel_regs(ah, chan);
1146 r = ath9k_hw_rf_set_freq(ah, chan);
1148 ath_err(common, "Failed to set channel\n");
1151 ath9k_hw_set_clockrate(ah);
1153 ah->eep_ops->set_txpower(ah, chan,
1154 ath9k_regd_get_ctl(regulatory, chan),
1155 channel->max_antenna_gain * 2,
1156 channel->max_power * 2,
1157 min((u32) MAX_RATE_POWER,
1158 (u32) regulatory->power_limit), false);
1160 ath9k_hw_rfbus_done(ah);
1162 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1163 ath9k_hw_set_delta_slope(ah, chan);
1165 ath9k_hw_spur_mitigate_freq(ah, chan);
1170 bool ath9k_hw_check_alive(struct ath_hw *ah)
1175 if (AR_SREV_9285_12_OR_LATER(ah))
1179 reg = REG_READ(ah, AR_OBS_BUS_1);
1181 if ((reg & 0x7E7FFFEF) == 0x00702400)
1184 switch (reg & 0x7E000B00) {
1192 } while (count-- > 0);
1196 EXPORT_SYMBOL(ath9k_hw_check_alive);
1198 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1199 struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1201 struct ath_common *common = ath9k_hw_common(ah);
1203 struct ath9k_channel *curchan = ah->curchan;
1209 ah->txchainmask = common->tx_chainmask;
1210 ah->rxchainmask = common->rx_chainmask;
1212 if (!ah->chip_fullsleep) {
1213 ath9k_hw_abortpcurecv(ah);
1214 if (!ath9k_hw_stopdmarecv(ah)) {
1215 ath_dbg(common, ATH_DBG_XMIT,
1216 "Failed to stop receive dma\n");
1217 bChannelChange = false;
1221 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1224 if (curchan && !ah->chip_fullsleep)
1225 ath9k_hw_getnf(ah, curchan);
1227 ah->caldata = caldata;
1229 (chan->channel != caldata->channel ||
1230 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1231 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1232 /* Operating channel changed, reset channel calibration data */
1233 memset(caldata, 0, sizeof(*caldata));
1234 ath9k_init_nfcal_hist_buffer(ah, chan);
1237 if (bChannelChange &&
1238 (ah->chip_fullsleep != true) &&
1239 (ah->curchan != NULL) &&
1240 (chan->channel != ah->curchan->channel) &&
1241 ((chan->channelFlags & CHANNEL_ALL) ==
1242 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1243 (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1245 if (ath9k_hw_channel_change(ah, chan)) {
1246 ath9k_hw_loadnf(ah, ah->curchan);
1247 ath9k_hw_start_nfcal(ah, true);
1248 if (AR_SREV_9271(ah))
1249 ar9002_hw_load_ani_reg(ah, chan);
1254 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1255 if (saveDefAntenna == 0)
1258 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1260 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1261 if (AR_SREV_9100(ah) ||
1262 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1263 tsf = ath9k_hw_gettsf64(ah);
1265 saveLedState = REG_READ(ah, AR_CFG_LED) &
1266 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1267 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1269 ath9k_hw_mark_phy_inactive(ah);
1271 /* Only required on the first reset */
1272 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1274 AR9271_RESET_POWER_DOWN_CONTROL,
1275 AR9271_RADIO_RF_RST);
1279 if (!ath9k_hw_chip_reset(ah, chan)) {
1280 ath_err(common, "Chip reset failed\n");
1284 /* Only required on the first reset */
1285 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1286 ah->htc_reset_init = false;
1288 AR9271_RESET_POWER_DOWN_CONTROL,
1289 AR9271_GATE_MAC_CTL);
1295 ath9k_hw_settsf64(ah, tsf);
1297 if (AR_SREV_9280_20_OR_LATER(ah))
1298 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1300 if (!AR_SREV_9300_20_OR_LATER(ah))
1301 ar9002_hw_enable_async_fifo(ah);
1303 r = ath9k_hw_process_ini(ah, chan);
1308 * Some AR91xx SoC devices frequently fail to accept TSF writes
1309 * right after the chip reset. When that happens, write a new
1310 * value after the initvals have been applied, with an offset
1311 * based on measured time difference
1313 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1315 ath9k_hw_settsf64(ah, tsf);
1318 /* Setup MFP options for CCMP */
1319 if (AR_SREV_9280_20_OR_LATER(ah)) {
1320 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1321 * frames when constructing CCMP AAD. */
1322 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1324 ah->sw_mgmt_crypto = false;
1325 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1326 /* Disable hardware crypto for management frames */
1327 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1328 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1329 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1330 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1331 ah->sw_mgmt_crypto = true;
1333 ah->sw_mgmt_crypto = true;
1335 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1336 ath9k_hw_set_delta_slope(ah, chan);
1338 ath9k_hw_spur_mitigate_freq(ah, chan);
1339 ah->eep_ops->set_board_values(ah, chan);
1341 ath9k_hw_set_operating_mode(ah, ah->opmode);
1343 ENABLE_REGWRITE_BUFFER(ah);
1345 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1346 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1348 | AR_STA_ID1_RTS_USE_DEF
1350 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1351 | ah->sta_id1_defaults);
1352 ath_hw_setbssidmask(common);
1353 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1354 ath9k_hw_write_associd(ah);
1355 REG_WRITE(ah, AR_ISR, ~0);
1356 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1358 REGWRITE_BUFFER_FLUSH(ah);
1360 r = ath9k_hw_rf_set_freq(ah, chan);
1364 ath9k_hw_set_clockrate(ah);
1366 ENABLE_REGWRITE_BUFFER(ah);
1368 for (i = 0; i < AR_NUM_DCU; i++)
1369 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1371 REGWRITE_BUFFER_FLUSH(ah);
1374 for (i = 0; i < ah->caps.total_queues; i++)
1375 ath9k_hw_resettxqueue(ah, i);
1377 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1378 ath9k_hw_ani_cache_ini_regs(ah);
1379 ath9k_hw_init_qos(ah);
1381 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1382 ath9k_enable_rfkill(ah);
1384 ath9k_hw_init_global_settings(ah);
1386 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1387 ar9002_hw_update_async_fifo(ah);
1388 ar9002_hw_enable_wep_aggregation(ah);
1391 REG_WRITE(ah, AR_STA_ID1,
1392 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1394 ath9k_hw_set_dma(ah);
1396 REG_WRITE(ah, AR_OBS, 8);
1398 if (ah->config.rx_intr_mitigation) {
1399 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1400 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1403 if (ah->config.tx_intr_mitigation) {
1404 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1405 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1408 ath9k_hw_init_bb(ah, chan);
1410 if (!ath9k_hw_init_cal(ah, chan))
1413 ENABLE_REGWRITE_BUFFER(ah);
1415 ath9k_hw_restore_chainmask(ah);
1416 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1418 REGWRITE_BUFFER_FLUSH(ah);
1421 * For big endian systems turn on swapping for descriptors
1423 if (AR_SREV_9100(ah)) {
1425 mask = REG_READ(ah, AR_CFG);
1426 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1427 ath_dbg(common, ATH_DBG_RESET,
1428 "CFG Byte Swap Set 0x%x\n", mask);
1431 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1432 REG_WRITE(ah, AR_CFG, mask);
1433 ath_dbg(common, ATH_DBG_RESET,
1434 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1437 if (common->bus_ops->ath_bus_type == ATH_USB) {
1438 /* Configure AR9271 target WLAN */
1439 if (AR_SREV_9271(ah))
1440 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1442 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1446 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1450 if (ah->btcoex_hw.enabled)
1451 ath9k_hw_btcoex_enable(ah);
1453 if (AR_SREV_9300_20_OR_LATER(ah))
1454 ar9003_hw_bb_watchdog_config(ah);
1458 EXPORT_SYMBOL(ath9k_hw_reset);
1460 /******************************/
1461 /* Power Management (Chipset) */
1462 /******************************/
1465 * Notify Power Mgt is disabled in self-generated frames.
1466 * If requested, force chip to sleep.
1468 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1470 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1473 * Clear the RTC force wake bit to allow the
1474 * mac to go to sleep.
1476 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1477 AR_RTC_FORCE_WAKE_EN);
1478 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1479 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1481 /* Shutdown chip. Active low */
1482 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1483 REG_CLR_BIT(ah, (AR_RTC_RESET),
1487 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1488 if (AR_SREV_9300_20_OR_LATER(ah))
1489 REG_WRITE(ah, AR_WA,
1490 ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1494 * Notify Power Management is enabled in self-generating
1495 * frames. If request, set power mode of chip to
1496 * auto/normal. Duration in units of 128us (1/8 TU).
1498 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1500 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1502 struct ath9k_hw_capabilities *pCap = &ah->caps;
1504 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1505 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1506 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1507 AR_RTC_FORCE_WAKE_ON_INT);
1510 * Clear the RTC force wake bit to allow the
1511 * mac to go to sleep.
1513 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1514 AR_RTC_FORCE_WAKE_EN);
1518 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1519 if (AR_SREV_9300_20_OR_LATER(ah))
1520 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1523 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1528 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1529 if (AR_SREV_9300_20_OR_LATER(ah)) {
1530 REG_WRITE(ah, AR_WA, ah->WARegVal);
1535 if ((REG_READ(ah, AR_RTC_STATUS) &
1536 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1537 if (ath9k_hw_set_reset_reg(ah,
1538 ATH9K_RESET_POWER_ON) != true) {
1541 if (!AR_SREV_9300_20_OR_LATER(ah))
1542 ath9k_hw_init_pll(ah, NULL);
1544 if (AR_SREV_9100(ah))
1545 REG_SET_BIT(ah, AR_RTC_RESET,
1548 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1549 AR_RTC_FORCE_WAKE_EN);
1552 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1553 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1554 if (val == AR_RTC_STATUS_ON)
1557 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1558 AR_RTC_FORCE_WAKE_EN);
1561 ath_err(ath9k_hw_common(ah),
1562 "Failed to wakeup in %uus\n",
1563 POWER_UP_TIME / 20);
1568 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1573 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1575 struct ath_common *common = ath9k_hw_common(ah);
1576 int status = true, setChip = true;
1577 static const char *modes[] = {
1584 if (ah->power_mode == mode)
1587 ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1588 modes[ah->power_mode], modes[mode]);
1591 case ATH9K_PM_AWAKE:
1592 status = ath9k_hw_set_power_awake(ah, setChip);
1594 case ATH9K_PM_FULL_SLEEP:
1595 ath9k_set_power_sleep(ah, setChip);
1596 ah->chip_fullsleep = true;
1598 case ATH9K_PM_NETWORK_SLEEP:
1599 ath9k_set_power_network_sleep(ah, setChip);
1602 ath_err(common, "Unknown power mode %u\n", mode);
1605 ah->power_mode = mode;
1608 * XXX: If this warning never comes up after a while then
1609 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1610 * ath9k_hw_setpower() return type void.
1612 ATH_DBG_WARN_ON_ONCE(!status);
1616 EXPORT_SYMBOL(ath9k_hw_setpower);
1618 /*******************/
1619 /* Beacon Handling */
1620 /*******************/
1622 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1626 ah->beacon_interval = beacon_period;
1628 ENABLE_REGWRITE_BUFFER(ah);
1630 switch (ah->opmode) {
1631 case NL80211_IFTYPE_ADHOC:
1632 case NL80211_IFTYPE_MESH_POINT:
1633 REG_SET_BIT(ah, AR_TXCFG,
1634 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1635 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1636 TU_TO_USEC(next_beacon +
1637 (ah->atim_window ? ah->
1639 flags |= AR_NDP_TIMER_EN;
1640 case NL80211_IFTYPE_AP:
1641 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1642 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1643 TU_TO_USEC(next_beacon -
1645 dma_beacon_response_time));
1646 REG_WRITE(ah, AR_NEXT_SWBA,
1647 TU_TO_USEC(next_beacon -
1649 sw_beacon_response_time));
1651 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1654 ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1655 "%s: unsupported opmode: %d\n",
1656 __func__, ah->opmode);
1661 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1662 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1663 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1664 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1666 REGWRITE_BUFFER_FLUSH(ah);
1668 beacon_period &= ~ATH9K_BEACON_ENA;
1669 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1670 ath9k_hw_reset_tsf(ah);
1673 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1675 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1677 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1678 const struct ath9k_beacon_state *bs)
1680 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1681 struct ath9k_hw_capabilities *pCap = &ah->caps;
1682 struct ath_common *common = ath9k_hw_common(ah);
1684 ENABLE_REGWRITE_BUFFER(ah);
1686 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1688 REG_WRITE(ah, AR_BEACON_PERIOD,
1689 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1690 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1691 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1693 REGWRITE_BUFFER_FLUSH(ah);
1695 REG_RMW_FIELD(ah, AR_RSSI_THR,
1696 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1698 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1700 if (bs->bs_sleepduration > beaconintval)
1701 beaconintval = bs->bs_sleepduration;
1703 dtimperiod = bs->bs_dtimperiod;
1704 if (bs->bs_sleepduration > dtimperiod)
1705 dtimperiod = bs->bs_sleepduration;
1707 if (beaconintval == dtimperiod)
1708 nextTbtt = bs->bs_nextdtim;
1710 nextTbtt = bs->bs_nexttbtt;
1712 ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1713 ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1714 ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1715 ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1717 ENABLE_REGWRITE_BUFFER(ah);
1719 REG_WRITE(ah, AR_NEXT_DTIM,
1720 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1721 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1723 REG_WRITE(ah, AR_SLEEP1,
1724 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1725 | AR_SLEEP1_ASSUME_DTIM);
1727 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1728 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1730 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1732 REG_WRITE(ah, AR_SLEEP2,
1733 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1735 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1736 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1738 REGWRITE_BUFFER_FLUSH(ah);
1740 REG_SET_BIT(ah, AR_TIMER_MODE,
1741 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1744 /* TSF Out of Range Threshold */
1745 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1747 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1749 /*******************/
1750 /* HW Capabilities */
1751 /*******************/
1753 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1755 struct ath9k_hw_capabilities *pCap = &ah->caps;
1756 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1757 struct ath_common *common = ath9k_hw_common(ah);
1758 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1760 u16 capField = 0, eeval;
1761 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1763 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1764 regulatory->current_rd = eeval;
1766 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1767 if (AR_SREV_9285_12_OR_LATER(ah))
1768 eeval |= AR9285_RDEXT_DEFAULT;
1769 regulatory->current_rd_ext = eeval;
1771 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1773 if (ah->opmode != NL80211_IFTYPE_AP &&
1774 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1775 if (regulatory->current_rd == 0x64 ||
1776 regulatory->current_rd == 0x65)
1777 regulatory->current_rd += 5;
1778 else if (regulatory->current_rd == 0x41)
1779 regulatory->current_rd = 0x43;
1780 ath_dbg(common, ATH_DBG_REGULATORY,
1781 "regdomain mapped to 0x%x\n", regulatory->current_rd);
1784 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1785 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1787 "no band has been marked as supported in EEPROM\n");
1791 if (eeval & AR5416_OPFLAGS_11A)
1792 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1794 if (eeval & AR5416_OPFLAGS_11G)
1795 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1797 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1799 * For AR9271 we will temporarilly uses the rx chainmax as read from
1802 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1803 !(eeval & AR5416_OPFLAGS_11A) &&
1804 !(AR_SREV_9271(ah)))
1805 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1806 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1808 /* Use rx_chainmask from EEPROM. */
1809 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1811 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1813 /* enable key search for every frame in an aggregate */
1814 if (AR_SREV_9300_20_OR_LATER(ah))
1815 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1817 pCap->low_2ghz_chan = 2312;
1818 pCap->high_2ghz_chan = 2732;
1820 pCap->low_5ghz_chan = 4920;
1821 pCap->high_5ghz_chan = 6100;
1823 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1825 if (ah->config.ht_enable)
1826 pCap->hw_caps |= ATH9K_HW_CAP_HT;
1828 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1830 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1831 pCap->total_queues =
1832 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1834 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1836 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1837 pCap->keycache_size =
1838 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1840 pCap->keycache_size = AR_KEYTABLE_SIZE;
1842 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1843 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1845 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1847 if (AR_SREV_9271(ah))
1848 pCap->num_gpio_pins = AR9271_NUM_GPIO;
1849 else if (AR_DEVID_7010(ah))
1850 pCap->num_gpio_pins = AR7010_NUM_GPIO;
1851 else if (AR_SREV_9285_12_OR_LATER(ah))
1852 pCap->num_gpio_pins = AR9285_NUM_GPIO;
1853 else if (AR_SREV_9280_20_OR_LATER(ah))
1854 pCap->num_gpio_pins = AR928X_NUM_GPIO;
1856 pCap->num_gpio_pins = AR_NUM_GPIO;
1858 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1859 pCap->hw_caps |= ATH9K_HW_CAP_CST;
1860 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1862 pCap->rts_aggr_limit = (8 * 1024);
1865 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1867 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1868 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1869 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1871 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1872 ah->rfkill_polarity =
1873 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1875 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1878 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1879 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1881 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1883 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1884 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1886 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1888 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1890 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1891 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1892 AR_EEPROM_EEREGCAP_EN_KK_U2 |
1893 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1896 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1897 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1900 /* Advertise midband for AR5416 with FCC midband set in eeprom */
1901 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1903 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1905 pCap->num_antcfg_5ghz =
1906 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
1907 pCap->num_antcfg_2ghz =
1908 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
1910 if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1911 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1912 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1914 if (AR_SREV_9285(ah)) {
1915 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1916 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1918 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1921 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1924 if (AR_SREV_9300_20_OR_LATER(ah)) {
1925 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1926 if (!AR_SREV_9485(ah))
1927 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1929 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1930 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1931 pCap->rx_status_len = sizeof(struct ar9003_rxs);
1932 pCap->tx_desc_len = sizeof(struct ar9003_txc);
1933 pCap->txs_len = sizeof(struct ar9003_txs);
1934 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1935 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1937 pCap->tx_desc_len = sizeof(struct ath_desc);
1938 if (AR_SREV_9280_20(ah) &&
1939 ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1940 AR5416_EEP_MINOR_VER_16) ||
1941 ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1942 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1945 if (AR_SREV_9300_20_OR_LATER(ah))
1946 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1948 if (AR_SREV_9300_20_OR_LATER(ah))
1949 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1951 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1952 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1954 if (AR_SREV_9285(ah))
1955 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1957 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1958 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1959 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1961 if (AR_SREV_9300_20_OR_LATER(ah)) {
1962 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1963 pCap->hw_caps |= ATH9K_HW_CAP_APM;
1968 if (AR_SREV_9485_10(ah)) {
1969 pCap->pcie_lcr_extsync_en = true;
1970 pCap->pcie_lcr_offset = 0x80;
1973 tx_chainmask = pCap->tx_chainmask;
1974 rx_chainmask = pCap->rx_chainmask;
1975 while (tx_chainmask || rx_chainmask) {
1976 if (tx_chainmask & BIT(0))
1977 pCap->max_txchains++;
1978 if (rx_chainmask & BIT(0))
1979 pCap->max_rxchains++;
1988 /****************************/
1989 /* GPIO / RFKILL / Antennae */
1990 /****************************/
1992 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1996 u32 gpio_shift, tmp;
1999 addr = AR_GPIO_OUTPUT_MUX3;
2001 addr = AR_GPIO_OUTPUT_MUX2;
2003 addr = AR_GPIO_OUTPUT_MUX1;
2005 gpio_shift = (gpio % 6) * 5;
2007 if (AR_SREV_9280_20_OR_LATER(ah)
2008 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2009 REG_RMW(ah, addr, (type << gpio_shift),
2010 (0x1f << gpio_shift));
2012 tmp = REG_READ(ah, addr);
2013 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2014 tmp &= ~(0x1f << gpio_shift);
2015 tmp |= (type << gpio_shift);
2016 REG_WRITE(ah, addr, tmp);
2020 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2024 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2026 if (AR_DEVID_7010(ah)) {
2028 REG_RMW(ah, AR7010_GPIO_OE,
2029 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2030 (AR7010_GPIO_OE_MASK << gpio_shift));
2034 gpio_shift = gpio << 1;
2037 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2038 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2040 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2042 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2044 #define MS_REG_READ(x, y) \
2045 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2047 if (gpio >= ah->caps.num_gpio_pins)
2050 if (AR_DEVID_7010(ah)) {
2052 val = REG_READ(ah, AR7010_GPIO_IN);
2053 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2054 } else if (AR_SREV_9300_20_OR_LATER(ah))
2055 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2056 AR_GPIO_BIT(gpio)) != 0;
2057 else if (AR_SREV_9271(ah))
2058 return MS_REG_READ(AR9271, gpio) != 0;
2059 else if (AR_SREV_9287_11_OR_LATER(ah))
2060 return MS_REG_READ(AR9287, gpio) != 0;
2061 else if (AR_SREV_9285_12_OR_LATER(ah))
2062 return MS_REG_READ(AR9285, gpio) != 0;
2063 else if (AR_SREV_9280_20_OR_LATER(ah))
2064 return MS_REG_READ(AR928X, gpio) != 0;
2066 return MS_REG_READ(AR, gpio) != 0;
2068 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2070 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2075 if (AR_DEVID_7010(ah)) {
2077 REG_RMW(ah, AR7010_GPIO_OE,
2078 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2079 (AR7010_GPIO_OE_MASK << gpio_shift));
2083 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2084 gpio_shift = 2 * gpio;
2087 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2088 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2090 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2092 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2094 if (AR_DEVID_7010(ah)) {
2096 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2101 if (AR_SREV_9271(ah))
2104 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2107 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2109 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2111 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2113 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2115 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2117 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2119 EXPORT_SYMBOL(ath9k_hw_setantenna);
2121 /*********************/
2122 /* General Operation */
2123 /*********************/
2125 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2127 u32 bits = REG_READ(ah, AR_RX_FILTER);
2128 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2130 if (phybits & AR_PHY_ERR_RADAR)
2131 bits |= ATH9K_RX_FILTER_PHYRADAR;
2132 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2133 bits |= ATH9K_RX_FILTER_PHYERR;
2137 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2139 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2143 ENABLE_REGWRITE_BUFFER(ah);
2145 REG_WRITE(ah, AR_RX_FILTER, bits);
2148 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2149 phybits |= AR_PHY_ERR_RADAR;
2150 if (bits & ATH9K_RX_FILTER_PHYERR)
2151 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2152 REG_WRITE(ah, AR_PHY_ERR, phybits);
2155 REG_WRITE(ah, AR_RXCFG,
2156 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2158 REG_WRITE(ah, AR_RXCFG,
2159 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2161 REGWRITE_BUFFER_FLUSH(ah);
2163 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2165 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2167 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2170 ath9k_hw_init_pll(ah, NULL);
2173 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2175 bool ath9k_hw_disable(struct ath_hw *ah)
2177 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2180 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2183 ath9k_hw_init_pll(ah, NULL);
2186 EXPORT_SYMBOL(ath9k_hw_disable);
2188 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2190 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2191 struct ath9k_channel *chan = ah->curchan;
2192 struct ieee80211_channel *channel = chan->chan;
2194 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2196 ah->eep_ops->set_txpower(ah, chan,
2197 ath9k_regd_get_ctl(regulatory, chan),
2198 channel->max_antenna_gain * 2,
2199 channel->max_power * 2,
2200 min((u32) MAX_RATE_POWER,
2201 (u32) regulatory->power_limit), test);
2203 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2205 void ath9k_hw_setopmode(struct ath_hw *ah)
2207 ath9k_hw_set_operating_mode(ah, ah->opmode);
2209 EXPORT_SYMBOL(ath9k_hw_setopmode);
2211 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2213 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2214 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2216 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2218 void ath9k_hw_write_associd(struct ath_hw *ah)
2220 struct ath_common *common = ath9k_hw_common(ah);
2222 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2223 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2224 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2226 EXPORT_SYMBOL(ath9k_hw_write_associd);
2228 #define ATH9K_MAX_TSF_READ 10
2230 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2232 u32 tsf_lower, tsf_upper1, tsf_upper2;
2235 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2236 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2237 tsf_lower = REG_READ(ah, AR_TSF_L32);
2238 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2239 if (tsf_upper2 == tsf_upper1)
2241 tsf_upper1 = tsf_upper2;
2244 WARN_ON( i == ATH9K_MAX_TSF_READ );
2246 return (((u64)tsf_upper1 << 32) | tsf_lower);
2248 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2250 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2252 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2253 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2255 EXPORT_SYMBOL(ath9k_hw_settsf64);
2257 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2259 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2260 AH_TSF_WRITE_TIMEOUT))
2261 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2262 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2264 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2266 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2268 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2271 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2273 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2275 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2277 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2279 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2282 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2283 macmode = AR_2040_JOINED_RX_CLEAR;
2287 REG_WRITE(ah, AR_2040_MODE, macmode);
2290 /* HW Generic timers configuration */
2292 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2294 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2295 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2296 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2297 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2298 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2299 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2300 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2303 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2304 AR_NDP2_TIMER_MODE, 0x0002},
2305 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2306 AR_NDP2_TIMER_MODE, 0x0004},
2307 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2308 AR_NDP2_TIMER_MODE, 0x0008},
2309 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2310 AR_NDP2_TIMER_MODE, 0x0010},
2311 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2312 AR_NDP2_TIMER_MODE, 0x0020},
2313 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2314 AR_NDP2_TIMER_MODE, 0x0040},
2315 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2316 AR_NDP2_TIMER_MODE, 0x0080}
2319 /* HW generic timer primitives */
2321 /* compute and clear index of rightmost 1 */
2322 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2332 return timer_table->gen_timer_index[b];
2335 static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2337 return REG_READ(ah, AR_TSF_L32);
2340 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2341 void (*trigger)(void *),
2342 void (*overflow)(void *),
2346 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2347 struct ath_gen_timer *timer;
2349 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2351 if (timer == NULL) {
2352 ath_err(ath9k_hw_common(ah),
2353 "Failed to allocate memory for hw timer[%d]\n",
2358 /* allocate a hardware generic timer slot */
2359 timer_table->timers[timer_index] = timer;
2360 timer->index = timer_index;
2361 timer->trigger = trigger;
2362 timer->overflow = overflow;
2367 EXPORT_SYMBOL(ath_gen_timer_alloc);
2369 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2370 struct ath_gen_timer *timer,
2374 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2377 BUG_ON(!timer_period);
2379 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2381 tsf = ath9k_hw_gettsf32(ah);
2383 ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2384 "current tsf %x period %x timer_next %x\n",
2385 tsf, timer_period, timer_next);
2388 * Pull timer_next forward if the current TSF already passed it
2389 * because of software latency
2391 if (timer_next < tsf)
2392 timer_next = tsf + timer_period;
2395 * Program generic timer registers
2397 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2399 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2401 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2402 gen_tmr_configuration[timer->index].mode_mask);
2404 /* Enable both trigger and thresh interrupt masks */
2405 REG_SET_BIT(ah, AR_IMR_S5,
2406 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2407 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2409 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2411 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2413 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2415 if ((timer->index < AR_FIRST_NDP_TIMER) ||
2416 (timer->index >= ATH_MAX_GEN_TIMER)) {
2420 /* Clear generic timer enable bits. */
2421 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2422 gen_tmr_configuration[timer->index].mode_mask);
2424 /* Disable both trigger and thresh interrupt masks */
2425 REG_CLR_BIT(ah, AR_IMR_S5,
2426 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2427 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2429 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2431 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2433 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2435 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2437 /* free the hardware generic timer slot */
2438 timer_table->timers[timer->index] = NULL;
2441 EXPORT_SYMBOL(ath_gen_timer_free);
2444 * Generic Timer Interrupts handling
2446 void ath_gen_timer_isr(struct ath_hw *ah)
2448 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2449 struct ath_gen_timer *timer;
2450 struct ath_common *common = ath9k_hw_common(ah);
2451 u32 trigger_mask, thresh_mask, index;
2453 /* get hardware generic timer interrupt status */
2454 trigger_mask = ah->intr_gen_timer_trigger;
2455 thresh_mask = ah->intr_gen_timer_thresh;
2456 trigger_mask &= timer_table->timer_mask.val;
2457 thresh_mask &= timer_table->timer_mask.val;
2459 trigger_mask &= ~thresh_mask;
2461 while (thresh_mask) {
2462 index = rightmost_index(timer_table, &thresh_mask);
2463 timer = timer_table->timers[index];
2465 ath_dbg(common, ATH_DBG_HWTIMER,
2466 "TSF overflow for Gen timer %d\n", index);
2467 timer->overflow(timer->arg);
2470 while (trigger_mask) {
2471 index = rightmost_index(timer_table, &trigger_mask);
2472 timer = timer_table->timers[index];
2474 ath_dbg(common, ATH_DBG_HWTIMER,
2475 "Gen timer[%d] trigger\n", index);
2476 timer->trigger(timer->arg);
2479 EXPORT_SYMBOL(ath_gen_timer_isr);
2485 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2487 ah->htc_reset_init = true;
2489 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2494 } ath_mac_bb_names[] = {
2495 /* Devices with external radios */
2496 { AR_SREV_VERSION_5416_PCI, "5416" },
2497 { AR_SREV_VERSION_5416_PCIE, "5418" },
2498 { AR_SREV_VERSION_9100, "9100" },
2499 { AR_SREV_VERSION_9160, "9160" },
2500 /* Single-chip solutions */
2501 { AR_SREV_VERSION_9280, "9280" },
2502 { AR_SREV_VERSION_9285, "9285" },
2503 { AR_SREV_VERSION_9287, "9287" },
2504 { AR_SREV_VERSION_9271, "9271" },
2505 { AR_SREV_VERSION_9300, "9300" },
2508 /* For devices with external radios */
2512 } ath_rf_names[] = {
2514 { AR_RAD5133_SREV_MAJOR, "5133" },
2515 { AR_RAD5122_SREV_MAJOR, "5122" },
2516 { AR_RAD2133_SREV_MAJOR, "2133" },
2517 { AR_RAD2122_SREV_MAJOR, "2122" }
2521 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2523 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2527 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2528 if (ath_mac_bb_names[i].version == mac_bb_version) {
2529 return ath_mac_bb_names[i].name;
2537 * Return the RF name. "????" is returned if the RF is unknown.
2538 * Used for devices with external radios.
2540 static const char *ath9k_hw_rf_name(u16 rf_version)
2544 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2545 if (ath_rf_names[i].version == rf_version) {
2546 return ath_rf_names[i].name;
2553 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2557 /* chipsets >= AR9280 are single-chip */
2558 if (AR_SREV_9280_20_OR_LATER(ah)) {
2559 used = snprintf(hw_name, len,
2560 "Atheros AR%s Rev:%x",
2561 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2562 ah->hw_version.macRev);
2565 used = snprintf(hw_name, len,
2566 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2567 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2568 ah->hw_version.macRev,
2569 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2570 AR_RADIO_SREV_MAJOR)),
2571 ah->hw_version.phyRev);
2574 hw_name[used] = '\0';
2576 EXPORT_SYMBOL(ath9k_hw_name);