1 // SPDX-License-Identifier: ISC
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/spinlock.h>
11 #include <linux/bitops.h>
17 #include "targaddrs.h"
26 enum ath10k_pci_reset_mode {
27 ATH10K_PCI_RESET_AUTO = 0,
28 ATH10K_PCI_RESET_WARM_ONLY = 1,
31 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
32 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
34 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
35 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
37 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
38 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
40 /* how long wait to wait for target to initialise, in ms */
41 #define ATH10K_PCI_TARGET_WAIT 3000
42 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
44 /* Maximum number of bytes that can be handled atomically by
45 * diag read and write.
47 #define ATH10K_DIAG_TRANSFER_LIMIT 0x5000
49 #define QCA99X0_PCIE_BAR0_START_REG 0x81030
50 #define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c
51 #define QCA99X0_CPU_MEM_DATA_REG 0x4d010
53 static const struct pci_device_id ath10k_pci_id_table[] = {
54 /* PCI-E QCA988X V2 (Ubiquiti branded) */
55 { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
57 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
58 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
59 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
60 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
61 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
62 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
63 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
64 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
68 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
69 /* QCA988X pre 2.0 chips are not supported because they need some nasty
70 * hacks. ath10k doesn't have them and these devices crash horribly
73 { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
74 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
88 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
90 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
92 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
94 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
95 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
97 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
100 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
101 static int ath10k_pci_cold_reset(struct ath10k *ar);
102 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
103 static int ath10k_pci_init_irq(struct ath10k *ar);
104 static int ath10k_pci_deinit_irq(struct ath10k *ar);
105 static int ath10k_pci_request_irq(struct ath10k *ar);
106 static void ath10k_pci_free_irq(struct ath10k *ar);
107 static int ath10k_pci_bmi_wait(struct ath10k *ar,
108 struct ath10k_ce_pipe *tx_pipe,
109 struct ath10k_ce_pipe *rx_pipe,
110 struct bmi_xfer *xfer);
111 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
112 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
115 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
119 static const struct ce_attr pci_host_ce_config_wlan[] = {
120 /* CE0: host->target HTC control and raw streams */
122 .flags = CE_ATTR_FLAGS,
126 .send_cb = ath10k_pci_htc_tx_cb,
129 /* CE1: target->host HTT + HTC control */
131 .flags = CE_ATTR_FLAGS,
134 .dest_nentries = 512,
135 .recv_cb = ath10k_pci_htt_htc_rx_cb,
138 /* CE2: target->host WMI */
140 .flags = CE_ATTR_FLAGS,
143 .dest_nentries = 128,
144 .recv_cb = ath10k_pci_htc_rx_cb,
147 /* CE3: host->target WMI */
149 .flags = CE_ATTR_FLAGS,
153 .send_cb = ath10k_pci_htc_tx_cb,
156 /* CE4: host->target HTT */
158 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
159 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
162 .send_cb = ath10k_pci_htt_tx_cb,
165 /* CE5: target->host HTT (HIF->HTT) */
167 .flags = CE_ATTR_FLAGS,
170 .dest_nentries = 512,
171 .recv_cb = ath10k_pci_htt_rx_cb,
174 /* CE6: target autonomous hif_memcpy */
176 .flags = CE_ATTR_FLAGS,
182 /* CE7: ce_diag, the Diagnostic Window */
184 .flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
186 .src_sz_max = DIAG_TRANSFER_LIMIT,
190 /* CE8: target->host pktlog */
192 .flags = CE_ATTR_FLAGS,
195 .dest_nentries = 128,
196 .recv_cb = ath10k_pci_pktlog_rx_cb,
199 /* CE9 target autonomous qcache memcpy */
201 .flags = CE_ATTR_FLAGS,
207 /* CE10: target autonomous hif memcpy */
209 .flags = CE_ATTR_FLAGS,
215 /* CE11: target autonomous hif memcpy */
217 .flags = CE_ATTR_FLAGS,
224 /* Target firmware's Copy Engine configuration. */
225 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
226 /* CE0: host->target HTC control and raw streams */
228 .pipenum = __cpu_to_le32(0),
229 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
230 .nentries = __cpu_to_le32(32),
231 .nbytes_max = __cpu_to_le32(256),
232 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
233 .reserved = __cpu_to_le32(0),
236 /* CE1: target->host HTT + HTC control */
238 .pipenum = __cpu_to_le32(1),
239 .pipedir = __cpu_to_le32(PIPEDIR_IN),
240 .nentries = __cpu_to_le32(32),
241 .nbytes_max = __cpu_to_le32(2048),
242 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
243 .reserved = __cpu_to_le32(0),
246 /* CE2: target->host WMI */
248 .pipenum = __cpu_to_le32(2),
249 .pipedir = __cpu_to_le32(PIPEDIR_IN),
250 .nentries = __cpu_to_le32(64),
251 .nbytes_max = __cpu_to_le32(2048),
252 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
253 .reserved = __cpu_to_le32(0),
256 /* CE3: host->target WMI */
258 .pipenum = __cpu_to_le32(3),
259 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
260 .nentries = __cpu_to_le32(32),
261 .nbytes_max = __cpu_to_le32(2048),
262 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
263 .reserved = __cpu_to_le32(0),
266 /* CE4: host->target HTT */
268 .pipenum = __cpu_to_le32(4),
269 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
270 .nentries = __cpu_to_le32(256),
271 .nbytes_max = __cpu_to_le32(256),
272 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
273 .reserved = __cpu_to_le32(0),
276 /* NB: 50% of src nentries, since tx has 2 frags */
278 /* CE5: target->host HTT (HIF->HTT) */
280 .pipenum = __cpu_to_le32(5),
281 .pipedir = __cpu_to_le32(PIPEDIR_IN),
282 .nentries = __cpu_to_le32(32),
283 .nbytes_max = __cpu_to_le32(512),
284 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
285 .reserved = __cpu_to_le32(0),
288 /* CE6: Reserved for target autonomous hif_memcpy */
290 .pipenum = __cpu_to_le32(6),
291 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
292 .nentries = __cpu_to_le32(32),
293 .nbytes_max = __cpu_to_le32(4096),
294 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
295 .reserved = __cpu_to_le32(0),
298 /* CE7 used only by Host */
300 .pipenum = __cpu_to_le32(7),
301 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
302 .nentries = __cpu_to_le32(0),
303 .nbytes_max = __cpu_to_le32(0),
304 .flags = __cpu_to_le32(0),
305 .reserved = __cpu_to_le32(0),
308 /* CE8 target->host packtlog */
310 .pipenum = __cpu_to_le32(8),
311 .pipedir = __cpu_to_le32(PIPEDIR_IN),
312 .nentries = __cpu_to_le32(64),
313 .nbytes_max = __cpu_to_le32(2048),
314 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
315 .reserved = __cpu_to_le32(0),
318 /* CE9 target autonomous qcache memcpy */
320 .pipenum = __cpu_to_le32(9),
321 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
322 .nentries = __cpu_to_le32(32),
323 .nbytes_max = __cpu_to_le32(2048),
324 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
325 .reserved = __cpu_to_le32(0),
328 /* It not necessary to send target wlan configuration for CE10 & CE11
329 * as these CEs are not actively used in target.
334 * Map from service/endpoint to Copy Engine.
335 * This table is derived from the CE_PCI TABLE, above.
336 * It is passed to the Target at startup for use by firmware.
338 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
340 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
341 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
345 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
346 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
350 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
351 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
355 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
356 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
360 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
361 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
365 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
366 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
370 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
371 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
375 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
376 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
380 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
381 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
385 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
386 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
390 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
391 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
395 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
396 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
400 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
401 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
405 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
406 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
410 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
411 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
415 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
416 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
420 /* (Additions here) */
429 static bool ath10k_pci_is_awake(struct ath10k *ar)
431 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
435 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
438 static void __ath10k_pci_wake(struct ath10k *ar)
440 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
442 lockdep_assert_held(&ar_pci->ps_lock);
444 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
445 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
447 iowrite32(PCIE_SOC_WAKE_V_MASK,
448 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
449 PCIE_SOC_WAKE_ADDRESS);
452 static void __ath10k_pci_sleep(struct ath10k *ar)
454 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
456 lockdep_assert_held(&ar_pci->ps_lock);
458 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
459 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
461 iowrite32(PCIE_SOC_WAKE_RESET,
462 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463 PCIE_SOC_WAKE_ADDRESS);
464 ar_pci->ps_awake = false;
467 static int ath10k_pci_wake_wait(struct ath10k *ar)
472 while (tot_delay < PCIE_WAKE_TIMEOUT) {
473 if (ath10k_pci_is_awake(ar)) {
474 if (tot_delay > PCIE_WAKE_LATE_US)
475 ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
481 tot_delay += curr_delay;
490 static int ath10k_pci_force_wake(struct ath10k *ar)
492 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
499 spin_lock_irqsave(&ar_pci->ps_lock, flags);
501 if (!ar_pci->ps_awake) {
502 iowrite32(PCIE_SOC_WAKE_V_MASK,
503 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
504 PCIE_SOC_WAKE_ADDRESS);
506 ret = ath10k_pci_wake_wait(ar);
508 ar_pci->ps_awake = true;
511 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
516 static void ath10k_pci_force_sleep(struct ath10k *ar)
518 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
521 spin_lock_irqsave(&ar_pci->ps_lock, flags);
523 iowrite32(PCIE_SOC_WAKE_RESET,
524 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
525 PCIE_SOC_WAKE_ADDRESS);
526 ar_pci->ps_awake = false;
528 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
531 static int ath10k_pci_wake(struct ath10k *ar)
533 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
537 if (ar_pci->pci_ps == 0)
540 spin_lock_irqsave(&ar_pci->ps_lock, flags);
542 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
543 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
545 /* This function can be called very frequently. To avoid excessive
546 * CPU stalls for MMIO reads use a cache var to hold the device state.
548 if (!ar_pci->ps_awake) {
549 __ath10k_pci_wake(ar);
551 ret = ath10k_pci_wake_wait(ar);
553 ar_pci->ps_awake = true;
557 ar_pci->ps_wake_refcount++;
558 WARN_ON(ar_pci->ps_wake_refcount == 0);
561 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
566 static void ath10k_pci_sleep(struct ath10k *ar)
568 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
571 if (ar_pci->pci_ps == 0)
574 spin_lock_irqsave(&ar_pci->ps_lock, flags);
576 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
577 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
579 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
582 ar_pci->ps_wake_refcount--;
584 mod_timer(&ar_pci->ps_timer, jiffies +
585 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
588 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
591 static void ath10k_pci_ps_timer(struct timer_list *t)
593 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
594 struct ath10k *ar = ar_pci->ar;
597 spin_lock_irqsave(&ar_pci->ps_lock, flags);
599 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
600 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
602 if (ar_pci->ps_wake_refcount > 0)
605 __ath10k_pci_sleep(ar);
608 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
611 static void ath10k_pci_sleep_sync(struct ath10k *ar)
613 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
616 if (ar_pci->pci_ps == 0) {
617 ath10k_pci_force_sleep(ar);
621 del_timer_sync(&ar_pci->ps_timer);
623 spin_lock_irqsave(&ar_pci->ps_lock, flags);
624 WARN_ON(ar_pci->ps_wake_refcount > 0);
625 __ath10k_pci_sleep(ar);
626 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
629 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
631 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
634 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
635 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
636 offset, offset + sizeof(value), ar_pci->mem_len);
640 ret = ath10k_pci_wake(ar);
642 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
647 iowrite32(value, ar_pci->mem + offset);
648 ath10k_pci_sleep(ar);
651 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
653 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
657 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
658 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
659 offset, offset + sizeof(val), ar_pci->mem_len);
663 ret = ath10k_pci_wake(ar);
665 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
670 val = ioread32(ar_pci->mem + offset);
671 ath10k_pci_sleep(ar);
676 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
678 struct ath10k_ce *ce = ath10k_ce_priv(ar);
680 ce->bus_ops->write32(ar, offset, value);
683 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
685 struct ath10k_ce *ce = ath10k_ce_priv(ar);
687 return ce->bus_ops->read32(ar, offset);
690 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
692 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
695 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
697 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
700 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
702 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
705 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
707 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
710 bool ath10k_pci_irq_pending(struct ath10k *ar)
714 /* Check if the shared legacy irq is for us */
715 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
716 PCIE_INTR_CAUSE_ADDRESS);
717 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
723 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
725 /* IMPORTANT: INTR_CLR register has to be set after
726 * INTR_ENABLE is set to 0, otherwise interrupt can not be
729 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
731 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
732 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
734 /* IMPORTANT: this extra read transaction is required to
735 * flush the posted write buffer.
737 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
738 PCIE_INTR_ENABLE_ADDRESS);
741 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
743 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
744 PCIE_INTR_ENABLE_ADDRESS,
745 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
747 /* IMPORTANT: this extra read transaction is required to
748 * flush the posted write buffer.
750 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
751 PCIE_INTR_ENABLE_ADDRESS);
754 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
756 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
758 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
764 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
766 struct ath10k *ar = pipe->hif_ce_state;
767 struct ath10k_ce *ce = ath10k_ce_priv(ar);
768 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
773 skb = dev_alloc_skb(pipe->buf_sz);
777 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
779 paddr = dma_map_single(ar->dev, skb->data,
780 skb->len + skb_tailroom(skb),
782 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
783 ath10k_warn(ar, "failed to dma map pci rx buf\n");
784 dev_kfree_skb_any(skb);
788 ATH10K_SKB_RXCB(skb)->paddr = paddr;
790 spin_lock_bh(&ce->ce_lock);
791 ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
792 spin_unlock_bh(&ce->ce_lock);
794 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
796 dev_kfree_skb_any(skb);
803 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
805 struct ath10k *ar = pipe->hif_ce_state;
806 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
807 struct ath10k_ce *ce = ath10k_ce_priv(ar);
808 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
811 if (pipe->buf_sz == 0)
814 if (!ce_pipe->dest_ring)
817 spin_lock_bh(&ce->ce_lock);
818 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
819 spin_unlock_bh(&ce->ce_lock);
822 ret = __ath10k_pci_rx_post_buf(pipe);
826 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
827 mod_timer(&ar_pci->rx_post_retry, jiffies +
828 ATH10K_PCI_RX_POST_RETRY_MS);
835 void ath10k_pci_rx_post(struct ath10k *ar)
837 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
840 for (i = 0; i < CE_COUNT; i++)
841 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
844 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
846 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
847 struct ath10k *ar = ar_pci->ar;
849 ath10k_pci_rx_post(ar);
852 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
854 u32 val = 0, region = addr & 0xfffff;
856 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
858 val |= 0x100000 | region;
862 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
863 * Support to access target space below 1M for qca6174 and qca9377.
864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
865 * Otherwise bit[20] of converted CE addr is 1.
867 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
869 u32 val = 0, region = addr & 0xfffff;
871 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
873 val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
877 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
879 u32 val = 0, region = addr & 0xfffff;
881 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
882 val |= 0x100000 | region;
886 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
888 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
890 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
893 return ar_pci->targ_cpu_to_ce_addr(ar, addr);
897 * Diagnostic read/write access is provided for startup/config/debug usage.
898 * Caller must guarantee proper alignment, when applicable, and single user
901 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
904 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
907 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
908 struct ath10k_ce_pipe *ce_diag;
909 /* Host buffer address in CE space */
911 dma_addr_t ce_data_base = 0;
915 mutex_lock(&ar_pci->ce_diag_mutex);
916 ce_diag = ar_pci->ce_diag;
919 * Allocate a temporary bounce buffer to hold caller's data
920 * to be DMA'ed from Target. This guarantees
921 * 1) 4-byte alignment
922 * 2) Buffer in DMA-able space
924 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
926 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
933 /* The address supplied by the caller is in the
934 * Target CPU virtual address space.
936 * In order to use this address with the diagnostic CE,
937 * convert it from Target CPU virtual address space
938 * to CE address space
940 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
942 remaining_bytes = nbytes;
943 ce_data = ce_data_base;
944 while (remaining_bytes) {
945 nbytes = min_t(unsigned int, remaining_bytes,
946 DIAG_TRANSFER_LIMIT);
948 ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
952 /* Request CE to send from Target(!) address to Host buffer */
953 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
958 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
959 udelay(DIAG_ACCESS_CE_WAIT_US);
960 i += DIAG_ACCESS_CE_WAIT_US;
962 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
969 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
970 &completed_nbytes) != 0) {
971 udelay(DIAG_ACCESS_CE_WAIT_US);
972 i += DIAG_ACCESS_CE_WAIT_US;
974 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
980 if (nbytes != completed_nbytes) {
985 if (*buf != ce_data) {
990 remaining_bytes -= nbytes;
991 memcpy(data, data_buf, nbytes);
1000 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1003 mutex_unlock(&ar_pci->ce_diag_mutex);
1008 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1013 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014 *value = __le32_to_cpu(val);
1019 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1022 u32 host_addr, addr;
1025 host_addr = host_interest_item_address(src);
1027 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1029 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1034 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1036 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1044 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1045 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1047 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048 const void *data, int nbytes)
1050 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1053 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054 struct ath10k_ce_pipe *ce_diag;
1056 dma_addr_t ce_data_base = 0;
1059 mutex_lock(&ar_pci->ce_diag_mutex);
1060 ce_diag = ar_pci->ce_diag;
1063 * Allocate a temporary bounce buffer to hold caller's data
1064 * to be DMA'ed to Target. This guarantees
1065 * 1) 4-byte alignment
1066 * 2) Buffer in DMA-able space
1068 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1070 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1078 * The address supplied by the caller is in the
1079 * Target CPU virtual address space.
1081 * In order to use this address with the diagnostic CE,
1083 * Target CPU virtual address space
1087 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1089 remaining_bytes = nbytes;
1090 while (remaining_bytes) {
1091 /* FIXME: check cast */
1092 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1094 /* Copy caller's data to allocated DMA buf */
1095 memcpy(data_buf, data, nbytes);
1097 /* Set up to receive directly into Target(!) address */
1098 ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1103 * Request CE to send caller-supplied data that
1104 * was copied to bounce buffer to Target(!) address.
1106 ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1111 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112 udelay(DIAG_ACCESS_CE_WAIT_US);
1113 i += DIAG_ACCESS_CE_WAIT_US;
1115 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1122 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123 &completed_nbytes) != 0) {
1124 udelay(DIAG_ACCESS_CE_WAIT_US);
1125 i += DIAG_ACCESS_CE_WAIT_US;
1127 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1133 if (nbytes != completed_nbytes) {
1138 if (*buf != address) {
1143 remaining_bytes -= nbytes;
1150 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1155 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1158 mutex_unlock(&ar_pci->ce_diag_mutex);
1163 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1165 __le32 val = __cpu_to_le32(value);
1167 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1170 /* Called by lower (CE) layer when a send to Target completes. */
1171 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1173 struct ath10k *ar = ce_state->ar;
1174 struct sk_buff_head list;
1175 struct sk_buff *skb;
1177 __skb_queue_head_init(&list);
1178 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179 /* no need to call tx completion for NULL pointers */
1183 __skb_queue_tail(&list, skb);
1186 while ((skb = __skb_dequeue(&list)))
1187 ath10k_htc_tx_completion_handler(ar, skb);
1190 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191 void (*callback)(struct ath10k *ar,
1192 struct sk_buff *skb))
1194 struct ath10k *ar = ce_state->ar;
1195 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1197 struct sk_buff *skb;
1198 struct sk_buff_head list;
1199 void *transfer_context;
1200 unsigned int nbytes, max_nbytes;
1202 __skb_queue_head_init(&list);
1203 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1205 skb = transfer_context;
1206 max_nbytes = skb->len + skb_tailroom(skb);
1207 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208 max_nbytes, DMA_FROM_DEVICE);
1210 if (unlikely(max_nbytes < nbytes)) {
1211 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212 nbytes, max_nbytes);
1213 dev_kfree_skb_any(skb);
1217 skb_put(skb, nbytes);
1218 __skb_queue_tail(&list, skb);
1221 while ((skb = __skb_dequeue(&list))) {
1222 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223 ce_state->id, skb->len);
1224 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225 skb->data, skb->len);
1230 ath10k_pci_rx_post_pipe(pipe_info);
1233 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234 void (*callback)(struct ath10k *ar,
1235 struct sk_buff *skb))
1237 struct ath10k *ar = ce_state->ar;
1238 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1240 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241 struct sk_buff *skb;
1242 struct sk_buff_head list;
1243 void *transfer_context;
1244 unsigned int nbytes, max_nbytes, nentries;
1247 /* No need to acquire ce_lock for CE5, since this is the only place CE5
1248 * is processed other than init and deinit. Before releasing CE5
1249 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1251 __skb_queue_head_init(&list);
1252 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1254 skb = transfer_context;
1255 max_nbytes = skb->len + skb_tailroom(skb);
1257 if (unlikely(max_nbytes < nbytes)) {
1258 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259 nbytes, max_nbytes);
1263 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264 max_nbytes, DMA_FROM_DEVICE);
1265 skb_put(skb, nbytes);
1266 __skb_queue_tail(&list, skb);
1269 nentries = skb_queue_len(&list);
1270 while ((skb = __skb_dequeue(&list))) {
1271 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272 ce_state->id, skb->len);
1273 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274 skb->data, skb->len);
1276 orig_len = skb->len;
1278 skb_push(skb, orig_len - skb->len);
1279 skb_reset_tail_pointer(skb);
1282 /*let device gain the buffer again*/
1283 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284 skb->len + skb_tailroom(skb),
1287 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1290 /* Called by lower (CE) layer when data is received from the Target. */
1291 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1293 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1296 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1298 /* CE4 polling needs to be done whenever CE pipe which transports
1299 * HTT Rx (target->host) is processed.
1301 ath10k_ce_per_engine_service(ce_state->ar, 4);
1303 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1306 /* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1309 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1311 ath10k_pci_process_rx_cb(ce_state,
1312 ath10k_htt_rx_pktlog_completion_handler);
1315 /* Called by lower (CE) layer when a send to HTT Target completes. */
1316 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1318 struct ath10k *ar = ce_state->ar;
1319 struct sk_buff *skb;
1321 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322 /* no need to call tx completion for NULL pointers */
1326 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327 skb->len, DMA_TO_DEVICE);
1328 ath10k_htt_hif_tx_complete(ar, skb);
1332 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1334 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335 ath10k_htt_t2h_msg_handler(ar, skb);
1338 /* Called by lower (CE) layer when HTT data is received from the Target. */
1339 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1341 /* CE4 polling needs to be done whenever CE pipe which transports
1342 * HTT Rx (target->host) is processed.
1344 ath10k_ce_per_engine_service(ce_state->ar, 4);
1346 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1349 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350 struct ath10k_hif_sg_item *items, int n_items)
1352 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357 unsigned int nentries_mask;
1358 unsigned int sw_index;
1359 unsigned int write_index;
1362 spin_lock_bh(&ce->ce_lock);
1364 nentries_mask = src_ring->nentries_mask;
1365 sw_index = src_ring->sw_index;
1366 write_index = src_ring->write_index;
1368 if (unlikely(CE_RING_DELTA(nentries_mask,
1369 write_index, sw_index - 1) < n_items)) {
1374 for (i = 0; i < n_items - 1; i++) {
1375 ath10k_dbg(ar, ATH10K_DBG_PCI,
1376 "pci tx item %d paddr %pad len %d n_items %d\n",
1377 i, &items[i].paddr, items[i].len, n_items);
1378 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379 items[i].vaddr, items[i].len);
1381 err = ath10k_ce_send_nolock(ce_pipe,
1382 items[i].transfer_context,
1385 items[i].transfer_id,
1386 CE_SEND_FLAG_GATHER);
1391 /* `i` is equal to `n_items -1` after for() */
1393 ath10k_dbg(ar, ATH10K_DBG_PCI,
1394 "pci tx item %d paddr %pad len %d n_items %d\n",
1395 i, &items[i].paddr, items[i].len, n_items);
1396 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397 items[i].vaddr, items[i].len);
1399 err = ath10k_ce_send_nolock(ce_pipe,
1400 items[i].transfer_context,
1403 items[i].transfer_id,
1408 spin_unlock_bh(&ce->ce_lock);
1413 __ath10k_ce_send_revert(ce_pipe);
1415 spin_unlock_bh(&ce->ce_lock);
1419 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1422 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1425 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1429 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1431 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1434 static void ath10k_pci_dump_registers(struct ath10k *ar,
1435 struct ath10k_fw_crash_data *crash_data)
1437 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1440 lockdep_assert_held(&ar->dump_mutex);
1442 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0],
1444 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1446 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1450 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1452 ath10k_err(ar, "firmware register dump:\n");
1453 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1456 __le32_to_cpu(reg_dump_values[i]),
1457 __le32_to_cpu(reg_dump_values[i + 1]),
1458 __le32_to_cpu(reg_dump_values[i + 2]),
1459 __le32_to_cpu(reg_dump_values[i + 3]));
1464 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465 crash_data->registers[i] = reg_dump_values[i];
1468 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469 const struct ath10k_mem_region *mem_region,
1470 u8 *buf, size_t buf_len)
1472 const struct ath10k_mem_section *cur_section, *next_section;
1473 unsigned int count, section_size, skip_size;
1476 if (!mem_region || !buf)
1479 cur_section = &mem_region->section_table.sections[0];
1481 if (mem_region->start > cur_section->start) {
1482 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483 mem_region->start, cur_section->start);
1487 skip_size = cur_section->start - mem_region->start;
1489 /* fill the gap between the first register section and register
1492 for (i = 0; i < skip_size; i++) {
1493 *buf = ATH10K_MAGIC_NOT_COPIED;
1499 for (i = 0; cur_section != NULL; i++) {
1500 section_size = cur_section->end - cur_section->start;
1502 if (section_size <= 0) {
1503 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1509 if ((i + 1) == mem_region->section_table.size) {
1511 next_section = NULL;
1514 next_section = cur_section + 1;
1516 if (cur_section->end > next_section->start) {
1517 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518 next_section->start,
1523 skip_size = next_section->start - cur_section->end;
1526 if (buf_len < (skip_size + section_size)) {
1527 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1531 buf_len -= skip_size + section_size;
1533 /* read section to dest memory */
1534 ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1537 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538 cur_section->start, ret);
1542 buf += section_size;
1543 count += section_size;
1545 /* fill in the gap between this section and the next */
1546 for (j = 0; j < skip_size; j++) {
1547 *buf = ATH10K_MAGIC_NOT_COPIED;
1554 /* this was the last section */
1557 cur_section = next_section;
1563 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1567 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568 FW_RAM_CONFIG_ADDRESS, config);
1570 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571 FW_RAM_CONFIG_ADDRESS);
1572 if (val != config) {
1573 ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1581 /* Always returns the length */
1582 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583 const struct ath10k_mem_region *region,
1586 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1589 base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590 base_addr += region->start;
1592 for (i = 0; i < region->len; i += 4) {
1593 iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594 *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1600 /* if an error happened returns < 0, otherwise the length */
1601 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602 const struct ath10k_mem_region *region,
1605 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1609 mutex_lock(&ar->conf_mutex);
1610 if (ar->state != ATH10K_STATE_ON) {
1611 ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1616 for (i = 0; i < region->len; i += 4)
1617 *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1621 mutex_unlock(&ar->conf_mutex);
1625 /* if an error happened returns < 0, otherwise the length */
1626 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627 const struct ath10k_mem_region *current_region,
1632 if (current_region->section_table.size > 0)
1633 /* Copy each section individually. */
1634 return ath10k_pci_dump_memory_section(ar,
1637 current_region->len);
1639 /* No individual memory sections defined so we can
1640 * copy the entire memory region.
1642 ret = ath10k_pci_diag_read_mem(ar,
1643 current_region->start,
1645 current_region->len);
1647 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648 current_region->name, ret);
1652 return current_region->len;
1655 static void ath10k_pci_dump_memory(struct ath10k *ar,
1656 struct ath10k_fw_crash_data *crash_data)
1658 const struct ath10k_hw_mem_layout *mem_layout;
1659 const struct ath10k_mem_region *current_region;
1660 struct ath10k_dump_ram_data_hdr *hdr;
1666 lockdep_assert_held(&ar->dump_mutex);
1671 mem_layout = ath10k_coredump_get_mem_layout(ar);
1675 current_region = &mem_layout->region_table.regions[0];
1677 buf = crash_data->ramdump_buf;
1678 buf_len = crash_data->ramdump_buf_len;
1680 memset(buf, 0, buf_len);
1682 for (i = 0; i < mem_layout->region_table.size; i++) {
1685 if (current_region->len > buf_len) {
1686 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687 current_region->name,
1688 current_region->len,
1693 /* To get IRAM dump, the host driver needs to switch target
1694 * ram config from DRAM to IRAM.
1696 if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697 current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698 shift = current_region->start >> 20;
1700 ret = ath10k_pci_set_ram_config(ar, shift);
1702 ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703 current_region->name, ret);
1708 /* Reserve space for the header. */
1710 buf += sizeof(*hdr);
1711 buf_len -= sizeof(*hdr);
1713 switch (current_region->type) {
1714 case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715 count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1717 case ATH10K_MEM_REGION_TYPE_IOREG:
1718 ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1725 ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1733 hdr->region_type = cpu_to_le32(current_region->type);
1734 hdr->start = cpu_to_le32(current_region->start);
1735 hdr->length = cpu_to_le32(count);
1738 /* Note: the header remains, just with zero length. */
1748 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1750 struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1752 struct ath10k_fw_crash_data *crash_data;
1753 struct ath10k *ar = ar_pci->ar;
1754 char guid[UUID_STRING_LEN + 1];
1756 mutex_lock(&ar->dump_mutex);
1758 spin_lock_bh(&ar->data_lock);
1759 ar->stats.fw_crash_counter++;
1760 spin_unlock_bh(&ar->data_lock);
1762 crash_data = ath10k_coredump_new(ar);
1765 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1767 scnprintf(guid, sizeof(guid), "n/a");
1769 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770 ath10k_print_driver_info(ar);
1771 ath10k_pci_dump_registers(ar, crash_data);
1772 ath10k_ce_dump_registers(ar, crash_data);
1773 ath10k_pci_dump_memory(ar, crash_data);
1775 mutex_unlock(&ar->dump_mutex);
1777 ath10k_core_start_recovery(ar);
1780 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1782 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1784 queue_work(ar->workqueue, &ar_pci->dump_work);
1787 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1790 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1797 * Decide whether to actually poll for completions, or just
1798 * wait for a later chance.
1799 * If there seem to be plenty of resources left, then just wait
1800 * since checking involves reading a CE register, which is a
1801 * relatively expensive operation.
1803 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1806 * If at least 50% of the total resources are still available,
1807 * don't bother checking again yet.
1809 if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1812 ath10k_ce_per_engine_service(ar, pipe);
1815 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1817 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1819 del_timer_sync(&ar_pci->rx_post_retry);
1822 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823 u8 *ul_pipe, u8 *dl_pipe)
1825 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1826 const struct ce_service_to_pipe *entry;
1827 bool ul_set = false, dl_set = false;
1830 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1832 for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1833 entry = &ar_pci->serv_to_pipe[i];
1835 if (__le32_to_cpu(entry->service_id) != service_id)
1838 switch (__le32_to_cpu(entry->pipedir)) {
1843 *dl_pipe = __le32_to_cpu(entry->pipenum);
1848 *ul_pipe = __le32_to_cpu(entry->pipenum);
1854 *dl_pipe = __le32_to_cpu(entry->pipenum);
1855 *ul_pipe = __le32_to_cpu(entry->pipenum);
1862 if (!ul_set || !dl_set)
1868 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1869 u8 *ul_pipe, u8 *dl_pipe)
1871 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1873 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1874 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1878 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1882 switch (ar->hw_rev) {
1883 case ATH10K_HW_QCA988X:
1884 case ATH10K_HW_QCA9887:
1885 case ATH10K_HW_QCA6174:
1886 case ATH10K_HW_QCA9377:
1887 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1889 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1890 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1891 CORE_CTRL_ADDRESS, val);
1893 case ATH10K_HW_QCA99X0:
1894 case ATH10K_HW_QCA9984:
1895 case ATH10K_HW_QCA9888:
1896 case ATH10K_HW_QCA4019:
1897 /* TODO: Find appropriate register configuration for QCA99X0
1901 case ATH10K_HW_WCN3990:
1906 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1910 switch (ar->hw_rev) {
1911 case ATH10K_HW_QCA988X:
1912 case ATH10K_HW_QCA9887:
1913 case ATH10K_HW_QCA6174:
1914 case ATH10K_HW_QCA9377:
1915 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1917 val |= CORE_CTRL_PCIE_REG_31_MASK;
1918 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1919 CORE_CTRL_ADDRESS, val);
1921 case ATH10K_HW_QCA99X0:
1922 case ATH10K_HW_QCA9984:
1923 case ATH10K_HW_QCA9888:
1924 case ATH10K_HW_QCA4019:
1925 /* TODO: Find appropriate register configuration for QCA99X0
1926 * to unmask irq/MSI.
1929 case ATH10K_HW_WCN3990:
1934 static void ath10k_pci_irq_disable(struct ath10k *ar)
1936 ath10k_ce_disable_interrupts(ar);
1937 ath10k_pci_disable_and_clear_legacy_irq(ar);
1938 ath10k_pci_irq_msi_fw_mask(ar);
1941 static void ath10k_pci_irq_sync(struct ath10k *ar)
1943 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1945 synchronize_irq(ar_pci->pdev->irq);
1948 static void ath10k_pci_irq_enable(struct ath10k *ar)
1950 ath10k_ce_enable_interrupts(ar);
1951 ath10k_pci_enable_legacy_irq(ar);
1952 ath10k_pci_irq_msi_fw_unmask(ar);
1955 static int ath10k_pci_hif_start(struct ath10k *ar)
1957 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1959 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1961 ath10k_core_napi_enable(ar);
1963 ath10k_pci_irq_enable(ar);
1964 ath10k_pci_rx_post(ar);
1966 pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1967 PCI_EXP_LNKCTL_ASPMC,
1968 ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1973 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1976 struct ath10k_ce_pipe *ce_pipe;
1977 struct ath10k_ce_ring *ce_ring;
1978 struct sk_buff *skb;
1981 ar = pci_pipe->hif_ce_state;
1982 ce_pipe = pci_pipe->ce_hdl;
1983 ce_ring = ce_pipe->dest_ring;
1988 if (!pci_pipe->buf_sz)
1991 for (i = 0; i < ce_ring->nentries; i++) {
1992 skb = ce_ring->per_transfer_context[i];
1996 ce_ring->per_transfer_context[i] = NULL;
1998 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1999 skb->len + skb_tailroom(skb),
2001 dev_kfree_skb_any(skb);
2005 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2008 struct ath10k_ce_pipe *ce_pipe;
2009 struct ath10k_ce_ring *ce_ring;
2010 struct sk_buff *skb;
2013 ar = pci_pipe->hif_ce_state;
2014 ce_pipe = pci_pipe->ce_hdl;
2015 ce_ring = ce_pipe->src_ring;
2020 if (!pci_pipe->buf_sz)
2023 for (i = 0; i < ce_ring->nentries; i++) {
2024 skb = ce_ring->per_transfer_context[i];
2028 ce_ring->per_transfer_context[i] = NULL;
2030 ath10k_htc_tx_completion_handler(ar, skb);
2035 * Cleanup residual buffers for device shutdown:
2036 * buffers that were enqueued for receive
2037 * buffers that were to be sent
2038 * Note: Buffers that had completed but which were
2039 * not yet processed are on a completion queue. They
2040 * are handled when the completion thread shuts down.
2042 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2044 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2047 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2048 struct ath10k_pci_pipe *pipe_info;
2050 pipe_info = &ar_pci->pipe_info[pipe_num];
2051 ath10k_pci_rx_pipe_cleanup(pipe_info);
2052 ath10k_pci_tx_pipe_cleanup(pipe_info);
2056 void ath10k_pci_ce_deinit(struct ath10k *ar)
2060 for (i = 0; i < CE_COUNT; i++)
2061 ath10k_ce_deinit_pipe(ar, i);
2064 void ath10k_pci_flush(struct ath10k *ar)
2066 ath10k_pci_rx_retry_sync(ar);
2067 ath10k_pci_buffer_cleanup(ar);
2070 static void ath10k_pci_hif_stop(struct ath10k *ar)
2072 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2073 unsigned long flags;
2075 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2077 ath10k_pci_irq_disable(ar);
2078 ath10k_pci_irq_sync(ar);
2080 ath10k_core_napi_sync_disable(ar);
2082 cancel_work_sync(&ar_pci->dump_work);
2084 /* Most likely the device has HTT Rx ring configured. The only way to
2085 * prevent the device from accessing (and possible corrupting) host
2086 * memory is to reset the chip now.
2088 * There's also no known way of masking MSI interrupts on the device.
2089 * For ranged MSI the CE-related interrupts can be masked. However
2090 * regardless how many MSI interrupts are assigned the first one
2091 * is always used for firmware indications (crashes) and cannot be
2092 * masked. To prevent the device from asserting the interrupt reset it
2093 * before proceeding with cleanup.
2095 ath10k_pci_safe_chip_reset(ar);
2097 ath10k_pci_flush(ar);
2099 spin_lock_irqsave(&ar_pci->ps_lock, flags);
2100 WARN_ON(ar_pci->ps_wake_refcount > 0);
2101 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2104 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2105 void *req, u32 req_len,
2106 void *resp, u32 *resp_len)
2108 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2109 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2110 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2111 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2112 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2113 dma_addr_t req_paddr = 0;
2114 dma_addr_t resp_paddr = 0;
2115 struct bmi_xfer xfer = {};
2116 void *treq, *tresp = NULL;
2121 if (resp && !resp_len)
2124 if (resp && resp_len && *resp_len == 0)
2127 treq = kmemdup(req, req_len, GFP_KERNEL);
2131 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2132 ret = dma_mapping_error(ar->dev, req_paddr);
2138 if (resp && resp_len) {
2139 tresp = kzalloc(*resp_len, GFP_KERNEL);
2145 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2147 ret = dma_mapping_error(ar->dev, resp_paddr);
2153 xfer.wait_for_resp = true;
2156 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2159 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2163 ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2165 dma_addr_t unused_buffer;
2166 unsigned int unused_nbytes;
2167 unsigned int unused_id;
2169 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2170 &unused_nbytes, &unused_id);
2172 /* non-zero means we did not time out */
2178 dma_addr_t unused_buffer;
2180 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2181 dma_unmap_single(ar->dev, resp_paddr,
2182 *resp_len, DMA_FROM_DEVICE);
2185 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2187 if (ret == 0 && resp_len) {
2188 *resp_len = min(*resp_len, xfer.resp_len);
2189 memcpy(resp, tresp, *resp_len);
2198 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2200 struct bmi_xfer *xfer;
2202 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2205 xfer->tx_done = true;
2208 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2210 struct ath10k *ar = ce_state->ar;
2211 struct bmi_xfer *xfer;
2212 unsigned int nbytes;
2214 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2218 if (WARN_ON_ONCE(!xfer))
2221 if (!xfer->wait_for_resp) {
2222 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2226 xfer->resp_len = nbytes;
2227 xfer->rx_done = true;
2230 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2231 struct ath10k_ce_pipe *tx_pipe,
2232 struct ath10k_ce_pipe *rx_pipe,
2233 struct bmi_xfer *xfer)
2235 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2236 unsigned long started = jiffies;
2240 while (time_before_eq(jiffies, timeout)) {
2241 ath10k_pci_bmi_send_done(tx_pipe);
2242 ath10k_pci_bmi_recv_data(rx_pipe);
2244 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2255 dur = jiffies - started;
2257 ath10k_dbg(ar, ATH10K_DBG_BMI,
2258 "bmi cmd took %lu jiffies hz %d ret %d\n",
2264 * Send an interrupt to the device to wake up the Target CPU
2265 * so it has an opportunity to notice any changed state.
2267 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2271 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2272 val = ath10k_pci_read32(ar, addr);
2273 val |= CORE_CTRL_CPU_INTR_MASK;
2274 ath10k_pci_write32(ar, addr, val);
2279 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2281 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2283 switch (ar_pci->pdev->device) {
2284 case QCA988X_2_0_DEVICE_ID_UBNT:
2285 case QCA988X_2_0_DEVICE_ID:
2286 case QCA99X0_2_0_DEVICE_ID:
2287 case QCA9888_2_0_DEVICE_ID:
2288 case QCA9984_1_0_DEVICE_ID:
2289 case QCA9887_1_0_DEVICE_ID:
2291 case QCA6164_2_1_DEVICE_ID:
2292 case QCA6174_2_1_DEVICE_ID:
2293 switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2294 case QCA6174_HW_1_0_CHIP_ID_REV:
2295 case QCA6174_HW_1_1_CHIP_ID_REV:
2296 case QCA6174_HW_2_1_CHIP_ID_REV:
2297 case QCA6174_HW_2_2_CHIP_ID_REV:
2299 case QCA6174_HW_1_3_CHIP_ID_REV:
2301 case QCA6174_HW_3_0_CHIP_ID_REV:
2302 case QCA6174_HW_3_1_CHIP_ID_REV:
2303 case QCA6174_HW_3_2_CHIP_ID_REV:
2307 case QCA9377_1_0_DEVICE_ID:
2311 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2315 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2317 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2319 return ce->bus_ops->get_num_banks(ar);
2322 int ath10k_pci_init_config(struct ath10k *ar)
2324 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2325 u32 interconnect_targ_addr;
2326 u32 pcie_state_targ_addr = 0;
2327 u32 pipe_cfg_targ_addr = 0;
2328 u32 svc_to_pipe_map = 0;
2329 u32 pcie_config_flags = 0;
2331 u32 ealloc_targ_addr;
2333 u32 flag2_targ_addr;
2336 /* Download to Target the CE Config and the service-to-CE map */
2337 interconnect_targ_addr =
2338 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2340 /* Supply Target-side CE configuration */
2341 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2342 &pcie_state_targ_addr);
2344 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2348 if (pcie_state_targ_addr == 0) {
2350 ath10k_err(ar, "Invalid pcie state addr\n");
2354 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2355 offsetof(struct pcie_state,
2357 &pipe_cfg_targ_addr);
2359 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2363 if (pipe_cfg_targ_addr == 0) {
2365 ath10k_err(ar, "Invalid pipe cfg addr\n");
2369 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2370 ar_pci->pipe_config,
2371 sizeof(struct ce_pipe_config) *
2372 NUM_TARGET_CE_CONFIG_WLAN);
2375 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2379 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2380 offsetof(struct pcie_state,
2384 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2388 if (svc_to_pipe_map == 0) {
2390 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2394 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2395 ar_pci->serv_to_pipe,
2396 sizeof(pci_target_service_to_ce_map_wlan));
2398 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2402 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2403 offsetof(struct pcie_state,
2405 &pcie_config_flags);
2407 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2411 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2413 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2414 offsetof(struct pcie_state,
2418 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2422 /* configure early allocation */
2423 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2425 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2427 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2431 /* first bank is switched to IRAM */
2432 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2433 HI_EARLY_ALLOC_MAGIC_MASK);
2434 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2435 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2436 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2438 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2440 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2444 /* Tell Target to proceed with initialization */
2445 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2447 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2449 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2453 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2455 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2457 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2464 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2466 struct ce_attr *attr;
2467 struct ce_pipe_config *config;
2468 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2470 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2471 * since it is currently used for other feature.
2474 /* Override Host's Copy Engine 5 configuration */
2475 attr = &ar_pci->attr[5];
2476 attr->src_sz_max = 0;
2477 attr->dest_nentries = 0;
2479 /* Override Target firmware's Copy Engine configuration */
2480 config = &ar_pci->pipe_config[5];
2481 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2482 config->nbytes_max = __cpu_to_le32(2048);
2484 /* Map from service/endpoint to Copy Engine */
2485 ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2488 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2490 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2491 struct ath10k_pci_pipe *pipe;
2492 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2495 for (i = 0; i < CE_COUNT; i++) {
2496 pipe = &ar_pci->pipe_info[i];
2497 pipe->ce_hdl = &ce->ce_states[i];
2499 pipe->hif_ce_state = ar;
2501 ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2503 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2508 /* Last CE is Diagnostic Window */
2509 if (i == CE_DIAG_PIPE) {
2510 ar_pci->ce_diag = pipe->ce_hdl;
2514 pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2520 void ath10k_pci_free_pipes(struct ath10k *ar)
2524 for (i = 0; i < CE_COUNT; i++)
2525 ath10k_ce_free_pipe(ar, i);
2528 int ath10k_pci_init_pipes(struct ath10k *ar)
2530 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2533 for (i = 0; i < CE_COUNT; i++) {
2534 ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2536 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2545 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2547 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2548 FW_IND_EVENT_PENDING;
2551 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2555 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2556 val &= ~FW_IND_EVENT_PENDING;
2557 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2560 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2564 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2565 return (val == 0xffffffff);
2568 /* this function effectively clears target memory controller assert line */
2569 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2573 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2574 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2575 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2576 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2580 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2581 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2582 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2583 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2588 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2592 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2594 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2595 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2596 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2599 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2603 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2605 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2606 val | SOC_RESET_CONTROL_CE_RST_MASK);
2608 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2609 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2612 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2616 val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2617 ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2618 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2621 static int ath10k_pci_warm_reset(struct ath10k *ar)
2625 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2627 spin_lock_bh(&ar->data_lock);
2628 ar->stats.fw_warm_reset_counter++;
2629 spin_unlock_bh(&ar->data_lock);
2631 ath10k_pci_irq_disable(ar);
2633 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2634 * were to access copy engine while host performs copy engine reset
2635 * then it is possible for the device to confuse pci-e controller to
2636 * the point of bringing host system to a complete stop (i.e. hang).
2638 ath10k_pci_warm_reset_si0(ar);
2639 ath10k_pci_warm_reset_cpu(ar);
2640 ath10k_pci_init_pipes(ar);
2641 ath10k_pci_wait_for_target_init(ar);
2643 ath10k_pci_warm_reset_clear_lf(ar);
2644 ath10k_pci_warm_reset_ce(ar);
2645 ath10k_pci_warm_reset_cpu(ar);
2646 ath10k_pci_init_pipes(ar);
2648 ret = ath10k_pci_wait_for_target_init(ar);
2650 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2654 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2659 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2661 ath10k_pci_irq_disable(ar);
2662 return ath10k_pci_qca99x0_chip_reset(ar);
2665 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2667 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2669 if (!ar_pci->pci_soft_reset)
2672 return ar_pci->pci_soft_reset(ar);
2675 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2680 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2682 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2683 * It is thus preferred to use warm reset which is safer but may not be
2684 * able to recover the device from all possible fail scenarios.
2686 * Warm reset doesn't always work on first try so attempt it a few
2687 * times before giving up.
2689 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2690 ret = ath10k_pci_warm_reset(ar);
2692 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2693 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2698 /* FIXME: Sometimes copy engine doesn't recover after warm
2699 * reset. In most cases this needs cold reset. In some of these
2700 * cases the device is in such a state that a cold reset may
2703 * Reading any host interest register via copy engine is
2704 * sufficient to verify if device is capable of booting
2707 ret = ath10k_pci_init_pipes(ar);
2709 ath10k_warn(ar, "failed to init copy engine: %d\n",
2714 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2717 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2722 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2726 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2727 ath10k_warn(ar, "refusing cold reset as requested\n");
2731 ret = ath10k_pci_cold_reset(ar);
2733 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2737 ret = ath10k_pci_wait_for_target_init(ar);
2739 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2744 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2749 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2753 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2755 /* FIXME: QCA6174 requires cold + warm reset to work. */
2757 ret = ath10k_pci_cold_reset(ar);
2759 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2763 ret = ath10k_pci_wait_for_target_init(ar);
2765 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2770 ret = ath10k_pci_warm_reset(ar);
2772 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2776 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2781 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2785 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2787 ret = ath10k_pci_cold_reset(ar);
2789 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2793 ret = ath10k_pci_wait_for_target_init(ar);
2795 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2800 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2805 static int ath10k_pci_chip_reset(struct ath10k *ar)
2807 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2809 if (WARN_ON(!ar_pci->pci_hard_reset))
2812 return ar_pci->pci_hard_reset(ar);
2815 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2816 enum ath10k_firmware_mode fw_mode)
2818 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2821 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2823 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2825 pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2826 PCI_EXP_LNKCTL_ASPMC);
2829 * Bring the target up cleanly.
2831 * The target may be in an undefined state with an AUX-powered Target
2832 * and a Host in WoW mode. If the Host crashes, loses power, or is
2833 * restarted (without unloading the driver) then the Target is left
2834 * (aux) powered and running. On a subsequent driver load, the Target
2835 * is in an unexpected state. We try to catch that here in order to
2836 * reset the Target and retry the probe.
2838 ret = ath10k_pci_chip_reset(ar);
2840 if (ath10k_pci_has_fw_crashed(ar)) {
2841 ath10k_warn(ar, "firmware crashed during chip reset\n");
2842 ath10k_pci_fw_crashed_clear(ar);
2843 ath10k_pci_fw_crashed_dump(ar);
2846 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2850 ret = ath10k_pci_init_pipes(ar);
2852 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2856 ret = ath10k_pci_init_config(ar);
2858 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2862 ret = ath10k_pci_wake_target_cpu(ar);
2864 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2871 ath10k_pci_ce_deinit(ar);
2877 void ath10k_pci_hif_power_down(struct ath10k *ar)
2879 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2881 /* Currently hif_power_up performs effectively a reset and hif_stop
2882 * resets the chip as well so there's no point in resetting here.
2886 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2888 /* Nothing to do; the important stuff is in the driver suspend. */
2892 static int ath10k_pci_suspend(struct ath10k *ar)
2894 /* The grace timer can still be counting down and ar->ps_awake be true.
2895 * It is known that the device may be asleep after resuming regardless
2896 * of the SoC powersave state before suspending. Hence make sure the
2897 * device is asleep before proceeding.
2899 ath10k_pci_sleep_sync(ar);
2904 static int ath10k_pci_hif_resume(struct ath10k *ar)
2906 /* Nothing to do; the important stuff is in the driver resume. */
2910 static int ath10k_pci_resume(struct ath10k *ar)
2912 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2913 struct pci_dev *pdev = ar_pci->pdev;
2917 ret = ath10k_pci_force_wake(ar);
2919 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2923 /* Suspend/Resume resets the PCI configuration space, so we have to
2924 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2925 * from interfering with C3 CPU state. pci_restore_state won't help
2926 * here since it only restores the first 64 bytes pci config header.
2928 pci_read_config_dword(pdev, 0x40, &val);
2929 if ((val & 0x0000ff00) != 0)
2930 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2935 static bool ath10k_pci_validate_cal(void *data, size_t size)
2937 __le16 *cal_words = data;
2944 for (i = 0; i < size / 2; i++)
2945 checksum ^= le16_to_cpu(cal_words[i]);
2947 return checksum == 0xffff;
2950 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2952 /* Enable SI clock */
2953 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2955 /* Configure GPIOs for I2C operation */
2956 ath10k_pci_write32(ar,
2957 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2958 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2959 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2961 SM(1, GPIO_PIN0_PAD_PULL));
2963 ath10k_pci_write32(ar,
2964 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2965 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2966 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2967 SM(1, GPIO_PIN0_PAD_PULL));
2969 ath10k_pci_write32(ar,
2971 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2972 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2974 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2975 ath10k_pci_write32(ar,
2976 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2977 SM(1, SI_CONFIG_ERR_INT) |
2978 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2979 SM(1, SI_CONFIG_I2C) |
2980 SM(1, SI_CONFIG_POS_SAMPLE) |
2981 SM(1, SI_CONFIG_INACTIVE_DATA) |
2982 SM(1, SI_CONFIG_INACTIVE_CLK) |
2983 SM(8, SI_CONFIG_DIVIDER));
2986 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2991 /* set device select byte and for the read operation */
2992 reg = QCA9887_EEPROM_SELECT_READ |
2993 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2994 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2995 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2997 /* write transmit data, transfer length, and START bit */
2998 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2999 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3000 SM(4, SI_CS_TX_CNT));
3002 /* wait max 1 sec */
3003 wait_limit = 100000;
3005 /* wait for SI_CS_DONE_INT */
3007 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3008 if (MS(reg, SI_CS_DONE_INT))
3013 } while (wait_limit > 0);
3015 if (!MS(reg, SI_CS_DONE_INT)) {
3016 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3021 /* clear SI_CS_DONE_INT */
3022 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3024 if (MS(reg, SI_CS_DONE_ERR)) {
3025 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3029 /* extract receive data */
3030 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3036 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3043 if (!QCA_REV_9887(ar))
3046 calsize = ar->hw_params.cal_data_len;
3047 caldata = kmalloc(calsize, GFP_KERNEL);
3051 ath10k_pci_enable_eeprom(ar);
3053 for (i = 0; i < calsize; i++) {
3054 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3059 if (!ath10k_pci_validate_cal(caldata, calsize))
3063 *data_len = calsize;
3073 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3074 .tx_sg = ath10k_pci_hif_tx_sg,
3075 .diag_read = ath10k_pci_hif_diag_read,
3076 .diag_write = ath10k_pci_diag_write_mem,
3077 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
3078 .start = ath10k_pci_hif_start,
3079 .stop = ath10k_pci_hif_stop,
3080 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
3081 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
3082 .send_complete_check = ath10k_pci_hif_send_complete_check,
3083 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
3084 .power_up = ath10k_pci_hif_power_up,
3085 .power_down = ath10k_pci_hif_power_down,
3086 .read32 = ath10k_pci_read32,
3087 .write32 = ath10k_pci_write32,
3088 .suspend = ath10k_pci_hif_suspend,
3089 .resume = ath10k_pci_hif_resume,
3090 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
3094 * Top-level interrupt handler for all PCI interrupts from a Target.
3095 * When a block of MSI interrupts is allocated, this top-level handler
3096 * is not used; instead, we directly call the correct sub-handler.
3098 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3100 struct ath10k *ar = arg;
3101 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3104 if (ath10k_pci_has_device_gone(ar))
3107 ret = ath10k_pci_force_wake(ar);
3109 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3113 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3114 !ath10k_pci_irq_pending(ar))
3117 ath10k_pci_disable_and_clear_legacy_irq(ar);
3118 ath10k_pci_irq_msi_fw_mask(ar);
3119 napi_schedule(&ar->napi);
3124 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3126 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3129 if (ath10k_pci_has_fw_crashed(ar)) {
3130 ath10k_pci_fw_crashed_clear(ar);
3131 ath10k_pci_fw_crashed_dump(ar);
3136 ath10k_ce_per_engine_service_any(ar);
3138 done = ath10k_htt_txrx_compl_task(ar, budget);
3140 if (done < budget) {
3141 napi_complete_done(ctx, done);
3142 /* In case of MSI, it is possible that interrupts are received
3143 * while NAPI poll is inprogress. So pending interrupts that are
3144 * received after processing all copy engine pipes by NAPI poll
3145 * will not be handled again. This is causing failure to
3146 * complete boot sequence in x86 platform. So before enabling
3147 * interrupts safer to check for pending interrupts for
3148 * immediate servicing.
3150 if (ath10k_ce_interrupt_summary(ar)) {
3151 napi_reschedule(ctx);
3154 ath10k_pci_enable_legacy_irq(ar);
3155 ath10k_pci_irq_msi_fw_unmask(ar);
3162 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3164 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3167 ret = request_irq(ar_pci->pdev->irq,
3168 ath10k_pci_interrupt_handler,
3169 IRQF_SHARED, "ath10k_pci", ar);
3171 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3172 ar_pci->pdev->irq, ret);
3179 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3181 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3184 ret = request_irq(ar_pci->pdev->irq,
3185 ath10k_pci_interrupt_handler,
3186 IRQF_SHARED, "ath10k_pci", ar);
3188 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3189 ar_pci->pdev->irq, ret);
3196 static int ath10k_pci_request_irq(struct ath10k *ar)
3198 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3200 switch (ar_pci->oper_irq_mode) {
3201 case ATH10K_PCI_IRQ_LEGACY:
3202 return ath10k_pci_request_irq_legacy(ar);
3203 case ATH10K_PCI_IRQ_MSI:
3204 return ath10k_pci_request_irq_msi(ar);
3210 static void ath10k_pci_free_irq(struct ath10k *ar)
3212 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3214 free_irq(ar_pci->pdev->irq, ar);
3217 void ath10k_pci_init_napi(struct ath10k *ar)
3219 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3222 static int ath10k_pci_init_irq(struct ath10k *ar)
3224 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3227 ath10k_pci_init_napi(ar);
3229 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3230 ath10k_info(ar, "limiting irq mode to: %d\n",
3231 ath10k_pci_irq_mode);
3234 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3235 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3236 ret = pci_enable_msi(ar_pci->pdev);
3240 /* MHI failed, try legacy irq next */
3245 * A potential race occurs here: The CORE_BASE write
3246 * depends on target correctly decoding AXI address but
3247 * host won't know when target writes BAR to CORE_CTRL.
3248 * This write might get lost if target has NOT written BAR.
3249 * For now, fix the race by repeating the write in below
3250 * synchronization checking.
3252 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3254 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3255 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3260 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3262 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3266 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3268 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3270 switch (ar_pci->oper_irq_mode) {
3271 case ATH10K_PCI_IRQ_LEGACY:
3272 ath10k_pci_deinit_irq_legacy(ar);
3275 pci_disable_msi(ar_pci->pdev);
3282 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3284 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3285 unsigned long timeout;
3288 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3290 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3293 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3295 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3298 /* target should never return this */
3299 if (val == 0xffffffff)
3302 /* the device has crashed so don't bother trying anymore */
3303 if (val & FW_IND_EVENT_PENDING)
3306 if (val & FW_IND_INITIALIZED)
3309 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3310 /* Fix potential race by repeating CORE_BASE writes */
3311 ath10k_pci_enable_legacy_irq(ar);
3314 } while (time_before(jiffies, timeout));
3316 ath10k_pci_disable_and_clear_legacy_irq(ar);
3317 ath10k_pci_irq_msi_fw_mask(ar);
3319 if (val == 0xffffffff) {
3320 ath10k_err(ar, "failed to read device register, device is gone\n");
3324 if (val & FW_IND_EVENT_PENDING) {
3325 ath10k_warn(ar, "device has crashed during init\n");
3329 if (!(val & FW_IND_INITIALIZED)) {
3330 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3335 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3339 static int ath10k_pci_cold_reset(struct ath10k *ar)
3343 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3345 spin_lock_bh(&ar->data_lock);
3347 ar->stats.fw_cold_reset_counter++;
3349 spin_unlock_bh(&ar->data_lock);
3351 /* Put Target, including PCIe, into RESET. */
3352 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3354 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3356 /* After writing into SOC_GLOBAL_RESET to put device into
3357 * reset and pulling out of reset pcie may not be stable
3358 * for any immediate pcie register access and cause bus error,
3359 * add delay before any pcie access request to fix this issue.
3363 /* Pull Target, including PCIe, out of RESET. */
3365 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3369 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3374 static int ath10k_pci_claim(struct ath10k *ar)
3376 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3377 struct pci_dev *pdev = ar_pci->pdev;
3380 pci_set_drvdata(pdev, ar);
3382 ret = pci_enable_device(pdev);
3384 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3388 ret = pci_request_region(pdev, BAR_NUM, "ath");
3390 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3395 /* Target expects 32 bit DMA. Enforce it. */
3396 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3398 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3402 pci_set_master(pdev);
3404 /* Arrange for access to Target SoC registers. */
3405 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3406 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3408 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3413 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3417 pci_release_region(pdev, BAR_NUM);
3420 pci_disable_device(pdev);
3425 static void ath10k_pci_release(struct ath10k *ar)
3427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3428 struct pci_dev *pdev = ar_pci->pdev;
3430 pci_iounmap(pdev, ar_pci->mem);
3431 pci_release_region(pdev, BAR_NUM);
3432 pci_disable_device(pdev);
3435 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3437 const struct ath10k_pci_supp_chip *supp_chip;
3439 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3441 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3442 supp_chip = &ath10k_pci_supp_chips[i];
3444 if (supp_chip->dev_id == dev_id &&
3445 supp_chip->rev_id == rev_id)
3452 int ath10k_pci_setup_resource(struct ath10k *ar)
3454 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3455 struct ath10k_ce *ce = ath10k_ce_priv(ar);
3458 spin_lock_init(&ce->ce_lock);
3459 spin_lock_init(&ar_pci->ps_lock);
3460 mutex_init(&ar_pci->ce_diag_mutex);
3462 INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3464 timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3466 ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3467 sizeof(pci_host_ce_config_wlan),
3472 ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3473 sizeof(pci_target_ce_config_wlan),
3475 if (!ar_pci->pipe_config) {
3480 ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3481 sizeof(pci_target_service_to_ce_map_wlan),
3483 if (!ar_pci->serv_to_pipe) {
3485 goto err_free_pipe_config;
3488 if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3489 ath10k_pci_override_ce_config(ar);
3491 ret = ath10k_pci_alloc_pipes(ar);
3493 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3495 goto err_free_serv_to_pipe;
3500 err_free_serv_to_pipe:
3501 kfree(ar_pci->serv_to_pipe);
3502 err_free_pipe_config:
3503 kfree(ar_pci->pipe_config);
3505 kfree(ar_pci->attr);
3509 void ath10k_pci_release_resource(struct ath10k *ar)
3511 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3513 ath10k_pci_rx_retry_sync(ar);
3514 netif_napi_del(&ar->napi);
3515 ath10k_pci_ce_deinit(ar);
3516 ath10k_pci_free_pipes(ar);
3517 kfree(ar_pci->attr);
3518 kfree(ar_pci->pipe_config);
3519 kfree(ar_pci->serv_to_pipe);
3522 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3523 .read32 = ath10k_bus_pci_read32,
3524 .write32 = ath10k_bus_pci_write32,
3525 .get_num_banks = ath10k_pci_get_num_banks,
3528 static int ath10k_pci_probe(struct pci_dev *pdev,
3529 const struct pci_device_id *pci_dev)
3533 struct ath10k_pci *ar_pci;
3534 enum ath10k_hw_rev hw_rev;
3535 struct ath10k_bus_params bus_params = {};
3536 bool pci_ps, is_qca988x = false;
3537 int (*pci_soft_reset)(struct ath10k *ar);
3538 int (*pci_hard_reset)(struct ath10k *ar);
3539 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3541 switch (pci_dev->device) {
3542 case QCA988X_2_0_DEVICE_ID_UBNT:
3543 case QCA988X_2_0_DEVICE_ID:
3544 hw_rev = ATH10K_HW_QCA988X;
3547 pci_soft_reset = ath10k_pci_warm_reset;
3548 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3549 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3551 case QCA9887_1_0_DEVICE_ID:
3552 hw_rev = ATH10K_HW_QCA9887;
3554 pci_soft_reset = ath10k_pci_warm_reset;
3555 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3556 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3558 case QCA6164_2_1_DEVICE_ID:
3559 case QCA6174_2_1_DEVICE_ID:
3560 hw_rev = ATH10K_HW_QCA6174;
3562 pci_soft_reset = ath10k_pci_warm_reset;
3563 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3564 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3566 case QCA99X0_2_0_DEVICE_ID:
3567 hw_rev = ATH10K_HW_QCA99X0;
3569 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3570 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3571 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3573 case QCA9984_1_0_DEVICE_ID:
3574 hw_rev = ATH10K_HW_QCA9984;
3576 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3577 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3578 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3580 case QCA9888_2_0_DEVICE_ID:
3581 hw_rev = ATH10K_HW_QCA9888;
3583 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3584 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3585 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3587 case QCA9377_1_0_DEVICE_ID:
3588 hw_rev = ATH10K_HW_QCA9377;
3590 pci_soft_reset = ath10k_pci_warm_reset;
3591 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3592 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3599 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3600 hw_rev, &ath10k_pci_hif_ops);
3602 dev_err(&pdev->dev, "failed to allocate core\n");
3606 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3607 pdev->vendor, pdev->device,
3608 pdev->subsystem_vendor, pdev->subsystem_device);
3610 ar_pci = ath10k_pci_priv(ar);
3611 ar_pci->pdev = pdev;
3612 ar_pci->dev = &pdev->dev;
3614 ar->dev_id = pci_dev->device;
3615 ar_pci->pci_ps = pci_ps;
3616 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3617 ar_pci->pci_soft_reset = pci_soft_reset;
3618 ar_pci->pci_hard_reset = pci_hard_reset;
3619 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3620 ar->ce_priv = &ar_pci->ce;
3622 ar->id.vendor = pdev->vendor;
3623 ar->id.device = pdev->device;
3624 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3625 ar->id.subsystem_device = pdev->subsystem_device;
3627 timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3629 ret = ath10k_pci_setup_resource(ar);
3631 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3632 goto err_core_destroy;
3635 ret = ath10k_pci_claim(ar);
3637 ath10k_err(ar, "failed to claim device: %d\n", ret);
3638 goto err_free_pipes;
3641 ret = ath10k_pci_force_wake(ar);
3643 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3647 ath10k_pci_ce_deinit(ar);
3648 ath10k_pci_irq_disable(ar);
3650 ret = ath10k_pci_init_irq(ar);
3652 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3656 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3657 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3658 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3660 ret = ath10k_pci_request_irq(ar);
3662 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3663 goto err_deinit_irq;
3666 bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3667 bus_params.link_can_suspend = true;
3668 /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3669 * fall off the bus during chip_reset. These chips have the same pci
3670 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3673 bus_params.chip_id =
3674 ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3675 if (bus_params.chip_id != 0xffffffff) {
3676 if (!ath10k_pci_chip_is_supported(pdev->device,
3677 bus_params.chip_id)) {
3679 goto err_unsupported;
3684 ret = ath10k_pci_chip_reset(ar);
3686 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3690 bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3691 if (bus_params.chip_id == 0xffffffff) {
3693 goto err_unsupported;
3696 if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3698 goto err_unsupported;
3701 ret = ath10k_core_register(ar, &bus_params);
3703 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3710 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3711 pdev->device, bus_params.chip_id);
3714 ath10k_pci_free_irq(ar);
3717 ath10k_pci_release_resource(ar);
3720 ath10k_pci_sleep_sync(ar);
3721 ath10k_pci_release(ar);
3724 ath10k_pci_free_pipes(ar);
3727 ath10k_core_destroy(ar);
3732 static void ath10k_pci_remove(struct pci_dev *pdev)
3734 struct ath10k *ar = pci_get_drvdata(pdev);
3736 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3741 ath10k_core_unregister(ar);
3742 ath10k_pci_free_irq(ar);
3743 ath10k_pci_deinit_irq(ar);
3744 ath10k_pci_release_resource(ar);
3745 ath10k_pci_sleep_sync(ar);
3746 ath10k_pci_release(ar);
3747 ath10k_core_destroy(ar);
3750 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3752 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3754 struct ath10k *ar = dev_get_drvdata(dev);
3757 ret = ath10k_pci_suspend(ar);
3759 ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3764 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3766 struct ath10k *ar = dev_get_drvdata(dev);
3769 ret = ath10k_pci_resume(ar);
3771 ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3776 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3777 ath10k_pci_pm_suspend,
3778 ath10k_pci_pm_resume);
3780 static struct pci_driver ath10k_pci_driver = {
3781 .name = "ath10k_pci",
3782 .id_table = ath10k_pci_id_table,
3783 .probe = ath10k_pci_probe,
3784 .remove = ath10k_pci_remove,
3786 .driver.pm = &ath10k_pci_pm_ops,
3790 static int __init ath10k_pci_init(void)
3794 ret1 = pci_register_driver(&ath10k_pci_driver);
3796 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3799 ret2 = ath10k_ahb_init();
3801 printk(KERN_ERR "ahb init failed: %d\n", ret2);
3806 /* registered to at least one bus */
3809 module_init(ath10k_pci_init);
3811 static void __exit ath10k_pci_exit(void)
3813 pci_unregister_driver(&ath10k_pci_driver);
3817 module_exit(ath10k_pci_exit);
3819 MODULE_AUTHOR("Qualcomm Atheros");
3820 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3821 MODULE_LICENSE("Dual BSD/GPL");
3823 /* QCA988x 2.0 firmware files */
3824 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3825 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3826 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3827 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3828 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3829 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3831 /* QCA9887 1.0 firmware files */
3832 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3833 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3834 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3836 /* QCA6174 2.1 firmware files */
3837 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3838 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3839 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3840 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3842 /* QCA6174 3.1 firmware files */
3843 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3844 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3845 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3846 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3847 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3849 /* QCA9377 1.0 firmware files */
3850 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3851 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3852 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);