2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26 #include <linux/log2.h>
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
34 #define HTT_RX_RING_REFILL_RESCHED_MS 5
36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
39 static struct sk_buff *
40 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
42 struct ath10k_skb_rxcb *rxcb;
44 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
45 if (rxcb->paddr == paddr)
46 return ATH10K_RXCB_SKB(rxcb);
52 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
55 struct ath10k_skb_rxcb *rxcb;
59 if (htt->rx_ring.in_ord_rx) {
60 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
61 skb = ATH10K_RXCB_SKB(rxcb);
62 dma_unmap_single(htt->ar->dev, rxcb->paddr,
63 skb->len + skb_tailroom(skb),
65 hash_del(&rxcb->hlist);
66 dev_kfree_skb_any(skb);
69 for (i = 0; i < htt->rx_ring.size; i++) {
70 skb = htt->rx_ring.netbufs_ring[i];
74 rxcb = ATH10K_SKB_RXCB(skb);
75 dma_unmap_single(htt->ar->dev, rxcb->paddr,
76 skb->len + skb_tailroom(skb),
78 dev_kfree_skb_any(skb);
82 htt->rx_ring.fill_cnt = 0;
83 hash_init(htt->rx_ring.skb_table);
84 memset(htt->rx_ring.netbufs_ring, 0,
85 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
88 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
90 struct htt_rx_desc *rx_desc;
91 struct ath10k_skb_rxcb *rxcb;
96 /* The Full Rx Reorder firmware has no way of telling the host
97 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
98 * To keep things simple make sure ring is always half empty. This
99 * guarantees there'll be no replenishment overruns possible.
101 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
103 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
105 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
111 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
113 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
116 /* Clear rx_desc attention word before posting to Rx ring */
117 rx_desc = (struct htt_rx_desc *)skb->data;
118 rx_desc->attention.flags = __cpu_to_le32(0);
120 paddr = dma_map_single(htt->ar->dev, skb->data,
121 skb->len + skb_tailroom(skb),
124 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
125 dev_kfree_skb_any(skb);
130 rxcb = ATH10K_SKB_RXCB(skb);
132 htt->rx_ring.netbufs_ring[idx] = skb;
133 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
134 htt->rx_ring.fill_cnt++;
136 if (htt->rx_ring.in_ord_rx) {
137 hash_add(htt->rx_ring.skb_table,
138 &ATH10K_SKB_RXCB(skb)->hlist,
144 idx &= htt->rx_ring.size_mask;
149 * Make sure the rx buffer is updated before available buffer
150 * index to avoid any potential rx ring corruption.
153 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
157 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
159 lockdep_assert_held(&htt->rx_ring.lock);
160 return __ath10k_htt_rx_ring_fill_n(htt, num);
163 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
165 int ret, num_deficit, num_to_fill;
167 /* Refilling the whole RX ring buffer proves to be a bad idea. The
168 * reason is RX may take up significant amount of CPU cycles and starve
169 * other tasks, e.g. TX on an ethernet device while acting as a bridge
170 * with ath10k wlan interface. This ended up with very poor performance
171 * once CPU the host system was overwhelmed with RX on ath10k.
173 * By limiting the number of refills the replenishing occurs
174 * progressively. This in turns makes use of the fact tasklets are
175 * processed in FIFO order. This means actual RX processing can starve
176 * out refilling. If there's not enough buffers on RX ring FW will not
177 * report RX until it is refilled with enough buffers. This
178 * automatically balances load wrt to CPU power.
180 * This probably comes at a cost of lower maximum throughput but
181 * improves the average and stability. */
182 spin_lock_bh(&htt->rx_ring.lock);
183 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
184 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
185 num_deficit -= num_to_fill;
186 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
187 if (ret == -ENOMEM) {
189 * Failed to fill it to the desired level -
190 * we'll start a timer and try again next time.
191 * As long as enough buffers are left in the ring for
192 * another A-MPDU rx, no special recovery is needed.
194 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
195 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
196 } else if (num_deficit > 0) {
197 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
198 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
200 spin_unlock_bh(&htt->rx_ring.lock);
203 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
205 struct ath10k_htt *htt = (struct ath10k_htt *)arg;
207 ath10k_htt_rx_msdu_buff_replenish(htt);
210 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
212 struct ath10k_htt *htt = &ar->htt;
215 spin_lock_bh(&htt->rx_ring.lock);
216 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
217 htt->rx_ring.fill_cnt));
218 spin_unlock_bh(&htt->rx_ring.lock);
221 ath10k_htt_rx_ring_free(htt);
226 void ath10k_htt_rx_free(struct ath10k_htt *htt)
228 del_timer_sync(&htt->rx_ring.refill_retry_timer);
229 tasklet_kill(&htt->txrx_compl_task);
231 skb_queue_purge(&htt->rx_compl_q);
232 skb_queue_purge(&htt->rx_in_ord_compl_q);
233 skb_queue_purge(&htt->tx_fetch_ind_q);
235 ath10k_htt_rx_ring_free(htt);
237 dma_free_coherent(htt->ar->dev,
239 sizeof(htt->rx_ring.paddrs_ring)),
240 htt->rx_ring.paddrs_ring,
241 htt->rx_ring.base_paddr);
243 dma_free_coherent(htt->ar->dev,
244 sizeof(*htt->rx_ring.alloc_idx.vaddr),
245 htt->rx_ring.alloc_idx.vaddr,
246 htt->rx_ring.alloc_idx.paddr);
248 kfree(htt->rx_ring.netbufs_ring);
251 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
253 struct ath10k *ar = htt->ar;
255 struct sk_buff *msdu;
257 lockdep_assert_held(&htt->rx_ring.lock);
259 if (htt->rx_ring.fill_cnt == 0) {
260 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
264 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
265 msdu = htt->rx_ring.netbufs_ring[idx];
266 htt->rx_ring.netbufs_ring[idx] = NULL;
267 htt->rx_ring.paddrs_ring[idx] = 0;
270 idx &= htt->rx_ring.size_mask;
271 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
272 htt->rx_ring.fill_cnt--;
274 dma_unmap_single(htt->ar->dev,
275 ATH10K_SKB_RXCB(msdu)->paddr,
276 msdu->len + skb_tailroom(msdu),
278 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
279 msdu->data, msdu->len + skb_tailroom(msdu));
284 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
285 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
286 struct sk_buff_head *amsdu)
288 struct ath10k *ar = htt->ar;
289 int msdu_len, msdu_chaining = 0;
290 struct sk_buff *msdu;
291 struct htt_rx_desc *rx_desc;
293 lockdep_assert_held(&htt->rx_ring.lock);
296 int last_msdu, msdu_len_invalid, msdu_chained;
298 msdu = ath10k_htt_rx_netbuf_pop(htt);
300 __skb_queue_purge(amsdu);
304 __skb_queue_tail(amsdu, msdu);
306 rx_desc = (struct htt_rx_desc *)msdu->data;
308 /* FIXME: we must report msdu payload since this is what caller
310 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
314 * Sanity check - confirm the HW is finished filling in the
316 * If the HW and SW are working correctly, then it's guaranteed
317 * that the HW's MAC DMA is done before this point in the SW.
318 * To prevent the case that we handle a stale Rx descriptor,
319 * just assert for now until we have a way to recover.
321 if (!(__le32_to_cpu(rx_desc->attention.flags)
322 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
323 __skb_queue_purge(amsdu);
327 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
328 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
329 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
330 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
331 RX_MSDU_START_INFO0_MSDU_LENGTH);
332 msdu_chained = rx_desc->frag_info.ring2_more_count;
334 if (msdu_len_invalid)
338 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
339 msdu_len -= msdu->len;
341 /* Note: Chained buffers do not contain rx descriptor */
342 while (msdu_chained--) {
343 msdu = ath10k_htt_rx_netbuf_pop(htt);
345 __skb_queue_purge(amsdu);
349 __skb_queue_tail(amsdu, msdu);
351 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
352 msdu_len -= msdu->len;
356 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
357 RX_MSDU_END_INFO0_LAST_MSDU;
359 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
360 sizeof(*rx_desc) - sizeof(u32));
366 if (skb_queue_empty(amsdu))
370 * Don't refill the ring yet.
372 * First, the elements popped here are still in use - it is not
373 * safe to overwrite them until the matching call to
374 * mpdu_desc_list_next. Second, for efficiency it is preferable to
375 * refill the rx ring with 1 PPDU's worth of rx buffers (something
376 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
377 * (something like 3 buffers). Consequently, we'll rely on the txrx
378 * SW to tell us when it is done pulling all the PPDU's rx buffers
379 * out of the rx ring, and then refill it just once.
382 return msdu_chaining;
385 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
388 struct ath10k *ar = htt->ar;
389 struct ath10k_skb_rxcb *rxcb;
390 struct sk_buff *msdu;
392 lockdep_assert_held(&htt->rx_ring.lock);
394 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
398 rxcb = ATH10K_SKB_RXCB(msdu);
399 hash_del(&rxcb->hlist);
400 htt->rx_ring.fill_cnt--;
402 dma_unmap_single(htt->ar->dev, rxcb->paddr,
403 msdu->len + skb_tailroom(msdu),
405 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
406 msdu->data, msdu->len + skb_tailroom(msdu));
411 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
412 struct htt_rx_in_ord_ind *ev,
413 struct sk_buff_head *list)
415 struct ath10k *ar = htt->ar;
416 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
417 struct htt_rx_desc *rxd;
418 struct sk_buff *msdu;
423 lockdep_assert_held(&htt->rx_ring.lock);
425 msdu_count = __le16_to_cpu(ev->msdu_count);
426 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
428 while (msdu_count--) {
429 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
431 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
433 __skb_queue_purge(list);
437 __skb_queue_tail(list, msdu);
440 rxd = (void *)msdu->data;
442 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
444 skb_put(msdu, sizeof(*rxd));
445 skb_pull(msdu, sizeof(*rxd));
446 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
448 if (!(__le32_to_cpu(rxd->attention.flags) &
449 RX_ATTENTION_FLAGS_MSDU_DONE)) {
450 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
461 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
463 struct ath10k *ar = htt->ar;
467 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
469 htt->rx_confused = false;
471 /* XXX: The fill level could be changed during runtime in response to
472 * the host processing latency. Is this really worth it?
474 htt->rx_ring.size = HTT_RX_RING_SIZE;
475 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
476 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
478 if (!is_power_of_2(htt->rx_ring.size)) {
479 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
483 htt->rx_ring.netbufs_ring =
484 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
486 if (!htt->rx_ring.netbufs_ring)
489 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
491 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
495 htt->rx_ring.paddrs_ring = vaddr;
496 htt->rx_ring.base_paddr = paddr;
498 vaddr = dma_alloc_coherent(htt->ar->dev,
499 sizeof(*htt->rx_ring.alloc_idx.vaddr),
504 htt->rx_ring.alloc_idx.vaddr = vaddr;
505 htt->rx_ring.alloc_idx.paddr = paddr;
506 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
507 *htt->rx_ring.alloc_idx.vaddr = 0;
509 /* Initialize the Rx refill retry timer */
510 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
512 spin_lock_init(&htt->rx_ring.lock);
514 htt->rx_ring.fill_cnt = 0;
515 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
516 hash_init(htt->rx_ring.skb_table);
518 skb_queue_head_init(&htt->rx_compl_q);
519 skb_queue_head_init(&htt->rx_in_ord_compl_q);
520 skb_queue_head_init(&htt->tx_fetch_ind_q);
521 atomic_set(&htt->num_mpdus_ready, 0);
523 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
526 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
527 htt->rx_ring.size, htt->rx_ring.fill_level);
531 dma_free_coherent(htt->ar->dev,
533 sizeof(htt->rx_ring.paddrs_ring)),
534 htt->rx_ring.paddrs_ring,
535 htt->rx_ring.base_paddr);
537 kfree(htt->rx_ring.netbufs_ring);
542 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
543 enum htt_rx_mpdu_encrypt_type type)
546 case HTT_RX_MPDU_ENCRYPT_NONE:
548 case HTT_RX_MPDU_ENCRYPT_WEP40:
549 case HTT_RX_MPDU_ENCRYPT_WEP104:
550 return IEEE80211_WEP_IV_LEN;
551 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
552 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
553 return IEEE80211_TKIP_IV_LEN;
554 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
555 return IEEE80211_CCMP_HDR_LEN;
556 case HTT_RX_MPDU_ENCRYPT_WEP128:
557 case HTT_RX_MPDU_ENCRYPT_WAPI:
561 ath10k_warn(ar, "unsupported encryption type %d\n", type);
565 #define MICHAEL_MIC_LEN 8
567 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
568 enum htt_rx_mpdu_encrypt_type type)
571 case HTT_RX_MPDU_ENCRYPT_NONE:
573 case HTT_RX_MPDU_ENCRYPT_WEP40:
574 case HTT_RX_MPDU_ENCRYPT_WEP104:
575 return IEEE80211_WEP_ICV_LEN;
576 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
577 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
578 return IEEE80211_TKIP_ICV_LEN;
579 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
580 return IEEE80211_CCMP_MIC_LEN;
581 case HTT_RX_MPDU_ENCRYPT_WEP128:
582 case HTT_RX_MPDU_ENCRYPT_WAPI:
586 ath10k_warn(ar, "unsupported encryption type %d\n", type);
590 struct amsdu_subframe_hdr {
596 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
598 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
599 struct ieee80211_rx_status *status,
600 struct htt_rx_desc *rxd)
602 struct ieee80211_supported_band *sband;
603 u8 cck, rate, bw, sgi, mcs, nss;
606 u32 info1, info2, info3;
608 info1 = __le32_to_cpu(rxd->ppdu_start.info1);
609 info2 = __le32_to_cpu(rxd->ppdu_start.info2);
610 info3 = __le32_to_cpu(rxd->ppdu_start.info3);
612 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
616 /* To get legacy rate index band is required. Since band can't
617 * be undefined check if freq is non-zero.
622 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
623 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
624 rate &= ~RX_PPDU_START_RATE_FLAG;
626 sband = &ar->mac.sbands[status->band];
627 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
630 case HTT_RX_HT_WITH_TXBF:
631 /* HT-SIG - Table 20-11 in info2 and info3 */
634 bw = (info2 >> 7) & 1;
635 sgi = (info3 >> 7) & 1;
637 status->rate_idx = mcs;
638 status->flag |= RX_FLAG_HT;
640 status->flag |= RX_FLAG_SHORT_GI;
642 status->flag |= RX_FLAG_40MHZ;
645 case HTT_RX_VHT_WITH_TXBF:
646 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
650 group_id = (info2 >> 4) & 0x3F;
652 if (GROUP_ID_IS_SU_MIMO(group_id)) {
653 mcs = (info3 >> 4) & 0x0F;
654 nss = ((info2 >> 10) & 0x07) + 1;
656 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
657 * so it's impossible to decode MCS. Also since
658 * firmware consumes Group Id Management frames host
659 * has no knowledge regarding group/user position
660 * mapping so it's impossible to pick the correct Nsts
663 * Bandwidth and SGI are valid so report the rateinfo
664 * on best-effort basis.
671 ath10k_warn(ar, "invalid MCS received %u\n", mcs);
672 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
673 __le32_to_cpu(rxd->attention.flags),
674 __le32_to_cpu(rxd->mpdu_start.info0),
675 __le32_to_cpu(rxd->mpdu_start.info1),
676 __le32_to_cpu(rxd->msdu_start.common.info0),
677 __le32_to_cpu(rxd->msdu_start.common.info1),
678 rxd->ppdu_start.info0,
679 __le32_to_cpu(rxd->ppdu_start.info1),
680 __le32_to_cpu(rxd->ppdu_start.info2),
681 __le32_to_cpu(rxd->ppdu_start.info3),
682 __le32_to_cpu(rxd->ppdu_start.info4));
684 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
685 __le32_to_cpu(rxd->msdu_end.common.info0),
686 __le32_to_cpu(rxd->mpdu_end.info0));
688 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
689 "rx desc msdu payload: ",
690 rxd->msdu_payload, 50);
693 status->rate_idx = mcs;
694 status->vht_nss = nss;
697 status->flag |= RX_FLAG_SHORT_GI;
705 status->flag |= RX_FLAG_40MHZ;
709 status->vht_flag |= RX_VHT_FLAG_80MHZ;
712 status->flag |= RX_FLAG_VHT;
719 static struct ieee80211_channel *
720 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
722 struct ath10k_peer *peer;
723 struct ath10k_vif *arvif;
724 struct cfg80211_chan_def def;
727 lockdep_assert_held(&ar->data_lock);
732 if (rxd->attention.flags &
733 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
736 if (!(rxd->msdu_end.common.info0 &
737 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
740 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
741 RX_MPDU_START_INFO0_PEER_IDX);
743 peer = ath10k_peer_find_by_id(ar, peer_id);
747 arvif = ath10k_get_arvif(ar, peer->vdev_id);
748 if (WARN_ON_ONCE(!arvif))
751 if (ath10k_mac_vif_chan(arvif->vif, &def))
757 static struct ieee80211_channel *
758 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
760 struct ath10k_vif *arvif;
761 struct cfg80211_chan_def def;
763 lockdep_assert_held(&ar->data_lock);
765 list_for_each_entry(arvif, &ar->arvifs, list) {
766 if (arvif->vdev_id == vdev_id &&
767 ath10k_mac_vif_chan(arvif->vif, &def) == 0)
775 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
776 struct ieee80211_chanctx_conf *conf,
779 struct cfg80211_chan_def *def = data;
784 static struct ieee80211_channel *
785 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
787 struct cfg80211_chan_def def = {};
789 ieee80211_iter_chan_contexts_atomic(ar->hw,
790 ath10k_htt_rx_h_any_chan_iter,
796 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
797 struct ieee80211_rx_status *status,
798 struct htt_rx_desc *rxd,
801 struct ieee80211_channel *ch;
803 spin_lock_bh(&ar->data_lock);
804 ch = ar->scan_channel;
808 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
810 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
812 ch = ath10k_htt_rx_h_any_channel(ar);
814 ch = ar->tgt_oper_chan;
815 spin_unlock_bh(&ar->data_lock);
820 status->band = ch->band;
821 status->freq = ch->center_freq;
826 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
827 struct ieee80211_rx_status *status,
828 struct htt_rx_desc *rxd)
830 /* FIXME: Get real NF */
831 status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
832 rxd->ppdu_start.rssi_comb;
833 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
836 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
837 struct ieee80211_rx_status *status,
838 struct htt_rx_desc *rxd)
840 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
841 * means all prior MSDUs in a PPDU are reported to mac80211 without the
842 * TSF. Is it worth holding frames until end of PPDU is known?
844 * FIXME: Can we get/compute 64bit TSF?
846 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
847 status->flag |= RX_FLAG_MACTIME_END;
850 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
851 struct sk_buff_head *amsdu,
852 struct ieee80211_rx_status *status,
855 struct sk_buff *first;
856 struct htt_rx_desc *rxd;
860 if (skb_queue_empty(amsdu))
863 first = skb_peek(amsdu);
864 rxd = (void *)first->data - sizeof(*rxd);
866 is_first_ppdu = !!(rxd->attention.flags &
867 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
868 is_last_ppdu = !!(rxd->attention.flags &
869 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
872 /* New PPDU starts so clear out the old per-PPDU status. */
874 status->rate_idx = 0;
876 status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
877 status->flag &= ~(RX_FLAG_HT |
881 RX_FLAG_MACTIME_END);
882 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
884 ath10k_htt_rx_h_signal(ar, status, rxd);
885 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
886 ath10k_htt_rx_h_rates(ar, status, rxd);
890 ath10k_htt_rx_h_mactime(ar, status, rxd);
893 static const char * const tid_to_ac[] = {
904 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
909 if (!ieee80211_is_data_qos(hdr->frame_control))
912 qc = ieee80211_get_qos_ctl(hdr);
913 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
915 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
917 snprintf(out, size, "tid %d", tid);
922 static void ath10k_process_rx(struct ath10k *ar,
923 struct ieee80211_rx_status *rx_status,
926 struct ieee80211_rx_status *status;
927 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
930 status = IEEE80211_SKB_RXCB(skb);
931 *status = *rx_status;
933 ath10k_dbg(ar, ATH10K_DBG_DATA,
934 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%llx fcs-err %i mic-err %i amsdu-more %i\n",
937 ieee80211_get_SA(hdr),
938 ath10k_get_tid(hdr, tid, sizeof(tid)),
939 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
941 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
942 (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) == 0 ?
944 status->flag & RX_FLAG_HT ? "ht" : "",
945 status->flag & RX_FLAG_VHT ? "vht" : "",
946 status->flag & RX_FLAG_40MHZ ? "40" : "",
947 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
948 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
952 status->band, status->flag,
953 !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
954 !!(status->flag & RX_FLAG_MMIC_ERROR),
955 !!(status->flag & RX_FLAG_AMSDU_MORE));
956 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
957 skb->data, skb->len);
958 trace_ath10k_rx_hdr(ar, skb->data, skb->len);
959 trace_ath10k_rx_payload(ar, skb->data, skb->len);
961 ieee80211_rx(ar->hw, skb);
964 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
965 struct ieee80211_hdr *hdr)
967 int len = ieee80211_hdrlen(hdr->frame_control);
969 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
970 ar->running_fw->fw_file.fw_features))
971 len = round_up(len, 4);
976 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
977 struct sk_buff *msdu,
978 struct ieee80211_rx_status *status,
979 enum htt_rx_mpdu_encrypt_type enctype,
982 struct ieee80211_hdr *hdr;
983 struct htt_rx_desc *rxd;
989 rxd = (void *)msdu->data - sizeof(*rxd);
990 is_first = !!(rxd->msdu_end.common.info0 &
991 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
992 is_last = !!(rxd->msdu_end.common.info0 &
993 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
995 /* Delivered decapped frame:
997 * [crypto param] <-- can be trimmed if !fcs_err &&
998 * !decrypt_err && !peer_idx_invalid
999 * [amsdu header] <-- only if A-MSDU
1002 * [FCS] <-- at end, needs to be trimmed
1005 /* This probably shouldn't happen but warn just in case */
1006 if (unlikely(WARN_ON_ONCE(!is_first)))
1009 /* This probably shouldn't happen but warn just in case */
1010 if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1013 skb_trim(msdu, msdu->len - FCS_LEN);
1015 /* In most cases this will be true for sniffed frames. It makes sense
1016 * to deliver them as-is without stripping the crypto param. This is
1017 * necessary for software based decryption.
1019 * If there's no error then the frame is decrypted. At least that is
1020 * the case for frames that come in via fragmented rx indication.
1025 /* The payload is decrypted so strip crypto params. Start from tail
1026 * since hdr is used to compute some stuff.
1029 hdr = (void *)msdu->data;
1032 if (status->flag & RX_FLAG_IV_STRIPPED)
1033 skb_trim(msdu, msdu->len -
1034 ath10k_htt_rx_crypto_tail_len(ar, enctype));
1037 if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1038 !ieee80211_has_morefrags(hdr->frame_control) &&
1039 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1040 skb_trim(msdu, msdu->len - 8);
1043 if (status->flag & RX_FLAG_IV_STRIPPED) {
1044 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1045 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1047 memmove((void *)msdu->data + crypto_len,
1048 (void *)msdu->data, hdr_len);
1049 skb_pull(msdu, crypto_len);
1053 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1054 struct sk_buff *msdu,
1055 struct ieee80211_rx_status *status,
1056 const u8 first_hdr[64])
1058 struct ieee80211_hdr *hdr;
1063 /* Delivered decapped frame:
1064 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1067 * Note: The nwifi header doesn't have QoS Control and is
1068 * (always?) a 3addr frame.
1070 * Note2: There's no A-MSDU subframe header. Even if it's part
1074 /* pull decapped header and copy SA & DA */
1075 if ((ar->hw_params.hw_4addr_pad == ATH10K_HW_4ADDR_PAD_BEFORE) &&
1076 ieee80211_has_a4(((struct ieee80211_hdr *)first_hdr)->frame_control)) {
1077 /* The QCA99X0 4 address mode pad 2 bytes at the
1080 hdr = (struct ieee80211_hdr *)(msdu->data + 2);
1081 /* The skb length need be extended 2 as the 2 bytes at the tail
1082 * be excluded due to the padding
1086 hdr = (struct ieee80211_hdr *)(msdu->data);
1089 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1090 ether_addr_copy(da, ieee80211_get_DA(hdr));
1091 ether_addr_copy(sa, ieee80211_get_SA(hdr));
1092 skb_pull(msdu, hdr_len);
1094 /* push original 802.11 header */
1095 hdr = (struct ieee80211_hdr *)first_hdr;
1096 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1097 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1099 /* original 802.11 header has a different DA and in
1100 * case of 4addr it may also have different SA
1102 hdr = (struct ieee80211_hdr *)msdu->data;
1103 ether_addr_copy(ieee80211_get_DA(hdr), da);
1104 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1107 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1108 struct sk_buff *msdu,
1109 enum htt_rx_mpdu_encrypt_type enctype)
1111 struct ieee80211_hdr *hdr;
1112 struct htt_rx_desc *rxd;
1113 size_t hdr_len, crypto_len;
1115 bool is_first, is_last, is_amsdu;
1117 rxd = (void *)msdu->data - sizeof(*rxd);
1118 hdr = (void *)rxd->rx_hdr_status;
1120 is_first = !!(rxd->msdu_end.common.info0 &
1121 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1122 is_last = !!(rxd->msdu_end.common.info0 &
1123 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1124 is_amsdu = !(is_first && is_last);
1129 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1130 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1132 rfc1042 += round_up(hdr_len, 4) +
1133 round_up(crypto_len, 4);
1137 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1142 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1143 struct sk_buff *msdu,
1144 struct ieee80211_rx_status *status,
1145 const u8 first_hdr[64],
1146 enum htt_rx_mpdu_encrypt_type enctype)
1148 struct ieee80211_hdr *hdr;
1155 /* Delivered decapped frame:
1156 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1160 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1161 if (WARN_ON_ONCE(!rfc1042))
1164 /* pull decapped header and copy SA & DA */
1165 eth = (struct ethhdr *)msdu->data;
1166 ether_addr_copy(da, eth->h_dest);
1167 ether_addr_copy(sa, eth->h_source);
1168 skb_pull(msdu, sizeof(struct ethhdr));
1170 /* push rfc1042/llc/snap */
1171 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1172 sizeof(struct rfc1042_hdr));
1174 /* push original 802.11 header */
1175 hdr = (struct ieee80211_hdr *)first_hdr;
1176 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1177 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1179 /* original 802.11 header has a different DA and in
1180 * case of 4addr it may also have different SA
1182 hdr = (struct ieee80211_hdr *)msdu->data;
1183 ether_addr_copy(ieee80211_get_DA(hdr), da);
1184 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1187 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1188 struct sk_buff *msdu,
1189 struct ieee80211_rx_status *status,
1190 const u8 first_hdr[64])
1192 struct ieee80211_hdr *hdr;
1195 /* Delivered decapped frame:
1196 * [amsdu header] <-- replaced with 802.11 hdr
1201 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1203 hdr = (struct ieee80211_hdr *)first_hdr;
1204 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1205 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1208 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1209 struct sk_buff *msdu,
1210 struct ieee80211_rx_status *status,
1212 enum htt_rx_mpdu_encrypt_type enctype,
1215 struct htt_rx_desc *rxd;
1216 enum rx_msdu_decap_format decap;
1218 /* First msdu's decapped header:
1219 * [802.11 header] <-- padded to 4 bytes long
1220 * [crypto param] <-- padded to 4 bytes long
1221 * [amsdu header] <-- only if A-MSDU
1224 * Other (2nd, 3rd, ..) msdu's decapped header:
1225 * [amsdu header] <-- only if A-MSDU
1229 rxd = (void *)msdu->data - sizeof(*rxd);
1230 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1231 RX_MSDU_START_INFO1_DECAP_FORMAT);
1234 case RX_MSDU_DECAP_RAW:
1235 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1238 case RX_MSDU_DECAP_NATIVE_WIFI:
1239 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1241 case RX_MSDU_DECAP_ETHERNET2_DIX:
1242 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1244 case RX_MSDU_DECAP_8023_SNAP_LLC:
1245 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1250 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1252 struct htt_rx_desc *rxd;
1254 bool is_ip4, is_ip6;
1255 bool is_tcp, is_udp;
1256 bool ip_csum_ok, tcpudp_csum_ok;
1258 rxd = (void *)skb->data - sizeof(*rxd);
1259 flags = __le32_to_cpu(rxd->attention.flags);
1260 info = __le32_to_cpu(rxd->msdu_start.common.info1);
1262 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1263 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1264 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1265 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1266 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1267 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1269 if (!is_ip4 && !is_ip6)
1270 return CHECKSUM_NONE;
1271 if (!is_tcp && !is_udp)
1272 return CHECKSUM_NONE;
1274 return CHECKSUM_NONE;
1275 if (!tcpudp_csum_ok)
1276 return CHECKSUM_NONE;
1278 return CHECKSUM_UNNECESSARY;
1281 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1283 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1286 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1287 struct sk_buff_head *amsdu,
1288 struct ieee80211_rx_status *status)
1290 struct sk_buff *first;
1291 struct sk_buff *last;
1292 struct sk_buff *msdu;
1293 struct htt_rx_desc *rxd;
1294 struct ieee80211_hdr *hdr;
1295 enum htt_rx_mpdu_encrypt_type enctype;
1300 bool has_crypto_err;
1302 bool has_peer_idx_invalid;
1307 if (skb_queue_empty(amsdu))
1310 first = skb_peek(amsdu);
1311 rxd = (void *)first->data - sizeof(*rxd);
1313 is_mgmt = !!(rxd->attention.flags &
1314 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1316 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1317 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1319 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1320 * decapped header. It'll be used for undecapping of each MSDU.
1322 hdr = (void *)rxd->rx_hdr_status;
1323 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1324 memcpy(first_hdr, hdr, hdr_len);
1326 /* Each A-MSDU subframe will use the original header as the base and be
1327 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1329 hdr = (void *)first_hdr;
1330 qos = ieee80211_get_qos_ctl(hdr);
1331 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1333 /* Some attention flags are valid only in the last MSDU. */
1334 last = skb_peek_tail(amsdu);
1335 rxd = (void *)last->data - sizeof(*rxd);
1336 attention = __le32_to_cpu(rxd->attention.flags);
1338 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1339 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1340 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1341 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1343 /* Note: If hardware captures an encrypted frame that it can't decrypt,
1344 * e.g. due to fcs error, missing peer or invalid key data it will
1345 * report the frame as raw.
1347 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1350 !has_peer_idx_invalid);
1352 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1353 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1354 RX_FLAG_MMIC_ERROR |
1356 RX_FLAG_IV_STRIPPED |
1357 RX_FLAG_ONLY_MONITOR |
1358 RX_FLAG_MMIC_STRIPPED);
1361 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1364 status->flag |= RX_FLAG_MMIC_ERROR;
1366 /* Firmware reports all necessary management frames via WMI already.
1367 * They are not reported to monitor interfaces at all so pass the ones
1368 * coming via HTT to monitor interfaces instead. This simplifies
1372 status->flag |= RX_FLAG_ONLY_MONITOR;
1375 status->flag |= RX_FLAG_DECRYPTED;
1377 if (likely(!is_mgmt))
1378 status->flag |= RX_FLAG_IV_STRIPPED |
1379 RX_FLAG_MMIC_STRIPPED;
1382 skb_queue_walk(amsdu, msdu) {
1383 ath10k_htt_rx_h_csum_offload(msdu);
1384 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1387 /* Undecapping involves copying the original 802.11 header back
1388 * to sk_buff. If frame is protected and hardware has decrypted
1389 * it then remove the protected bit.
1396 hdr = (void *)msdu->data;
1397 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1401 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1402 struct sk_buff_head *amsdu,
1403 struct ieee80211_rx_status *status)
1405 struct sk_buff *msdu;
1407 while ((msdu = __skb_dequeue(amsdu))) {
1408 /* Setup per-MSDU flags */
1409 if (skb_queue_empty(amsdu))
1410 status->flag &= ~RX_FLAG_AMSDU_MORE;
1412 status->flag |= RX_FLAG_AMSDU_MORE;
1414 ath10k_process_rx(ar, status, msdu);
1418 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1420 struct sk_buff *skb, *first;
1424 /* TODO: Might could optimize this by using
1425 * skb_try_coalesce or similar method to
1426 * decrease copying, or maybe get mac80211 to
1427 * provide a way to just receive a list of
1431 first = __skb_dequeue(amsdu);
1433 /* Allocate total length all at once. */
1434 skb_queue_walk(amsdu, skb)
1435 total_len += skb->len;
1437 space = total_len - skb_tailroom(first);
1439 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1440 /* TODO: bump some rx-oom error stat */
1441 /* put it back together so we can free the
1442 * whole list at once.
1444 __skb_queue_head(amsdu, first);
1448 /* Walk list again, copying contents into
1451 while ((skb = __skb_dequeue(amsdu))) {
1452 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1454 dev_kfree_skb_any(skb);
1457 __skb_queue_head(amsdu, first);
1461 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1462 struct sk_buff_head *amsdu,
1465 struct sk_buff *first;
1466 struct htt_rx_desc *rxd;
1467 enum rx_msdu_decap_format decap;
1469 first = skb_peek(amsdu);
1470 rxd = (void *)first->data - sizeof(*rxd);
1471 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1472 RX_MSDU_START_INFO1_DECAP_FORMAT);
1477 /* FIXME: Current unchaining logic can only handle simple case of raw
1478 * msdu chaining. If decapping is other than raw the chaining may be
1479 * more complex and this isn't handled by the current code. Don't even
1480 * try re-constructing such frames - it'll be pretty much garbage.
1482 if (decap != RX_MSDU_DECAP_RAW ||
1483 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1484 __skb_queue_purge(amsdu);
1488 ath10k_unchain_msdu(amsdu);
1491 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1492 struct sk_buff_head *amsdu,
1493 struct ieee80211_rx_status *rx_status)
1495 /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1496 * invalid/dangerous frames.
1499 if (!rx_status->freq) {
1500 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1504 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1505 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1512 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1513 struct sk_buff_head *amsdu,
1514 struct ieee80211_rx_status *rx_status)
1516 if (skb_queue_empty(amsdu))
1519 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1522 __skb_queue_purge(amsdu);
1525 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1527 struct ath10k *ar = htt->ar;
1528 static struct ieee80211_rx_status rx_status;
1529 struct sk_buff_head amsdu;
1532 __skb_queue_head_init(&amsdu);
1534 spin_lock_bh(&htt->rx_ring.lock);
1535 if (htt->rx_confused) {
1536 spin_unlock_bh(&htt->rx_ring.lock);
1539 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1540 spin_unlock_bh(&htt->rx_ring.lock);
1543 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1544 __skb_queue_purge(&amsdu);
1545 /* FIXME: It's probably a good idea to reboot the
1546 * device instead of leaving it inoperable.
1548 htt->rx_confused = true;
1552 ath10k_htt_rx_h_ppdu(ar, &amsdu, &rx_status, 0xffff);
1553 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1554 ath10k_htt_rx_h_filter(ar, &amsdu, &rx_status);
1555 ath10k_htt_rx_h_mpdu(ar, &amsdu, &rx_status);
1556 ath10k_htt_rx_h_deliver(ar, &amsdu, &rx_status);
1561 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1562 struct htt_rx_indication *rx)
1564 struct ath10k *ar = htt->ar;
1565 struct htt_rx_indication_mpdu_range *mpdu_ranges;
1566 int num_mpdu_ranges;
1567 int i, mpdu_count = 0;
1569 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1570 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1571 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1573 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1575 (sizeof(struct htt_rx_indication_mpdu_range) *
1578 for (i = 0; i < num_mpdu_ranges; i++)
1579 mpdu_count += mpdu_ranges[i].mpdu_count;
1581 atomic_add(mpdu_count, &htt->num_mpdus_ready);
1583 tasklet_schedule(&htt->txrx_compl_task);
1586 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt)
1588 atomic_inc(&htt->num_mpdus_ready);
1590 tasklet_schedule(&htt->txrx_compl_task);
1593 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1594 struct sk_buff *skb)
1596 struct ath10k_htt *htt = &ar->htt;
1597 struct htt_resp *resp = (struct htt_resp *)skb->data;
1598 struct htt_tx_done tx_done = {};
1599 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1604 case HTT_DATA_TX_STATUS_NO_ACK:
1605 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1607 case HTT_DATA_TX_STATUS_OK:
1608 tx_done.status = HTT_TX_COMPL_STATE_ACK;
1610 case HTT_DATA_TX_STATUS_DISCARD:
1611 case HTT_DATA_TX_STATUS_POSTPONE:
1612 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1613 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1616 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1617 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1621 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1622 resp->data_tx_completion.num_msdus);
1624 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1625 msdu_id = resp->data_tx_completion.msdus[i];
1626 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1628 /* kfifo_put: In practice firmware shouldn't fire off per-CE
1629 * interrupt and main interrupt (MSI/-X range case) for the same
1630 * HTC service so it should be safe to use kfifo_put w/o lock.
1632 * From kfifo_put() documentation:
1633 * Note that with only one concurrent reader and one concurrent
1634 * writer, you don't need extra locking to use these macro.
1636 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1637 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1638 tx_done.msdu_id, tx_done.status);
1639 ath10k_txrx_tx_unref(htt, &tx_done);
1644 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1646 struct htt_rx_addba *ev = &resp->rx_addba;
1647 struct ath10k_peer *peer;
1648 struct ath10k_vif *arvif;
1649 u16 info0, tid, peer_id;
1651 info0 = __le16_to_cpu(ev->info0);
1652 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1653 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1655 ath10k_dbg(ar, ATH10K_DBG_HTT,
1656 "htt rx addba tid %hu peer_id %hu size %hhu\n",
1657 tid, peer_id, ev->window_size);
1659 spin_lock_bh(&ar->data_lock);
1660 peer = ath10k_peer_find_by_id(ar, peer_id);
1662 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1664 spin_unlock_bh(&ar->data_lock);
1668 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1670 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1672 spin_unlock_bh(&ar->data_lock);
1676 ath10k_dbg(ar, ATH10K_DBG_HTT,
1677 "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1678 peer->addr, tid, ev->window_size);
1680 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1681 spin_unlock_bh(&ar->data_lock);
1684 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1686 struct htt_rx_delba *ev = &resp->rx_delba;
1687 struct ath10k_peer *peer;
1688 struct ath10k_vif *arvif;
1689 u16 info0, tid, peer_id;
1691 info0 = __le16_to_cpu(ev->info0);
1692 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1693 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1695 ath10k_dbg(ar, ATH10K_DBG_HTT,
1696 "htt rx delba tid %hu peer_id %hu\n",
1699 spin_lock_bh(&ar->data_lock);
1700 peer = ath10k_peer_find_by_id(ar, peer_id);
1702 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1704 spin_unlock_bh(&ar->data_lock);
1708 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1710 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1712 spin_unlock_bh(&ar->data_lock);
1716 ath10k_dbg(ar, ATH10K_DBG_HTT,
1717 "htt rx stop rx ba session sta %pM tid %hu\n",
1720 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1721 spin_unlock_bh(&ar->data_lock);
1724 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1725 struct sk_buff_head *amsdu)
1727 struct sk_buff *msdu;
1728 struct htt_rx_desc *rxd;
1730 if (skb_queue_empty(list))
1733 if (WARN_ON(!skb_queue_empty(amsdu)))
1736 while ((msdu = __skb_dequeue(list))) {
1737 __skb_queue_tail(amsdu, msdu);
1739 rxd = (void *)msdu->data - sizeof(*rxd);
1740 if (rxd->msdu_end.common.info0 &
1741 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1745 msdu = skb_peek_tail(amsdu);
1746 rxd = (void *)msdu->data - sizeof(*rxd);
1747 if (!(rxd->msdu_end.common.info0 &
1748 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1749 skb_queue_splice_init(amsdu, list);
1756 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1757 struct sk_buff *skb)
1759 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1761 if (!ieee80211_has_protected(hdr->frame_control))
1764 /* Offloaded frames are already decrypted but firmware insists they are
1765 * protected in the 802.11 header. Strip the flag. Otherwise mac80211
1766 * will drop the frame.
1769 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1770 status->flag |= RX_FLAG_DECRYPTED |
1771 RX_FLAG_IV_STRIPPED |
1772 RX_FLAG_MMIC_STRIPPED;
1775 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1776 struct sk_buff_head *list)
1778 struct ath10k_htt *htt = &ar->htt;
1779 struct ieee80211_rx_status *status = &htt->rx_status;
1780 struct htt_rx_offload_msdu *rx;
1781 struct sk_buff *msdu;
1784 while ((msdu = __skb_dequeue(list))) {
1785 /* Offloaded frames don't have Rx descriptor. Instead they have
1786 * a short meta information header.
1789 rx = (void *)msdu->data;
1791 skb_put(msdu, sizeof(*rx));
1792 skb_pull(msdu, sizeof(*rx));
1794 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1795 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1796 dev_kfree_skb_any(msdu);
1800 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1802 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1803 * actual payload is unaligned. Align the frame. Otherwise
1804 * mac80211 complains. This shouldn't reduce performance much
1805 * because these offloaded frames are rare.
1807 offset = 4 - ((unsigned long)msdu->data & 3);
1808 skb_put(msdu, offset);
1809 memmove(msdu->data + offset, msdu->data, msdu->len);
1810 skb_pull(msdu, offset);
1812 /* FIXME: The frame is NWifi. Re-construct QoS Control
1813 * if possible later.
1816 memset(status, 0, sizeof(*status));
1817 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1819 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1820 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1821 ath10k_process_rx(ar, status, msdu);
1825 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1827 struct ath10k_htt *htt = &ar->htt;
1828 struct htt_resp *resp = (void *)skb->data;
1829 struct ieee80211_rx_status *status = &htt->rx_status;
1830 struct sk_buff_head list;
1831 struct sk_buff_head amsdu;
1840 lockdep_assert_held(&htt->rx_ring.lock);
1842 if (htt->rx_confused)
1845 skb_pull(skb, sizeof(resp->hdr));
1846 skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1848 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1849 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1850 vdev_id = resp->rx_in_ord_ind.vdev_id;
1851 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1852 offload = !!(resp->rx_in_ord_ind.info &
1853 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1854 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1856 ath10k_dbg(ar, ATH10K_DBG_HTT,
1857 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1858 vdev_id, peer_id, tid, offload, frag, msdu_count);
1860 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1861 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1865 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1866 * extracted and processed.
1868 __skb_queue_head_init(&list);
1869 ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1871 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1872 htt->rx_confused = true;
1876 /* Offloaded frames are very different and need to be handled
1880 ath10k_htt_rx_h_rx_offload(ar, &list);
1882 while (!skb_queue_empty(&list)) {
1883 __skb_queue_head_init(&amsdu);
1884 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1887 /* Note: The in-order indication may report interleaved
1888 * frames from different PPDUs meaning reported rx rate
1889 * to mac80211 isn't accurate/reliable. It's still
1890 * better to report something than nothing though. This
1891 * should still give an idea about rx rate to the user.
1893 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1894 ath10k_htt_rx_h_filter(ar, &amsdu, status);
1895 ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1896 ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1901 /* Should not happen. */
1902 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1903 htt->rx_confused = true;
1904 __skb_queue_purge(&list);
1910 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
1911 const __le32 *resp_ids,
1917 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
1920 for (i = 0; i < num_resp_ids; i++) {
1921 resp_id = le32_to_cpu(resp_ids[i]);
1923 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
1926 /* TODO: free resp_id */
1930 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
1932 struct ieee80211_hw *hw = ar->hw;
1933 struct ieee80211_txq *txq;
1934 struct htt_resp *resp = (struct htt_resp *)skb->data;
1935 struct htt_tx_fetch_record *record;
1937 size_t max_num_bytes;
1938 size_t max_num_msdus;
1941 const __le32 *resp_ids;
1949 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
1951 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
1952 if (unlikely(skb->len < len)) {
1953 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
1957 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
1958 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
1960 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
1961 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
1963 if (unlikely(skb->len < len)) {
1964 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
1968 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
1969 num_records, num_resp_ids,
1970 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
1972 if (!ar->htt.tx_q_state.enabled) {
1973 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
1977 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
1978 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
1984 for (i = 0; i < num_records; i++) {
1985 record = &resp->tx_fetch_ind.records[i];
1986 peer_id = MS(le16_to_cpu(record->info),
1987 HTT_TX_FETCH_RECORD_INFO_PEER_ID);
1988 tid = MS(le16_to_cpu(record->info),
1989 HTT_TX_FETCH_RECORD_INFO_TID);
1990 max_num_msdus = le16_to_cpu(record->num_msdus);
1991 max_num_bytes = le32_to_cpu(record->num_bytes);
1993 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
1994 i, peer_id, tid, max_num_msdus, max_num_bytes);
1996 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
1997 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
1998 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2003 spin_lock_bh(&ar->data_lock);
2004 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2005 spin_unlock_bh(&ar->data_lock);
2007 /* It is okay to release the lock and use txq because RCU read
2011 if (unlikely(!txq)) {
2012 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2020 while (num_msdus < max_num_msdus &&
2021 num_bytes < max_num_bytes) {
2022 ret = ath10k_mac_tx_push_txq(hw, txq);
2030 record->num_msdus = cpu_to_le16(num_msdus);
2031 record->num_bytes = cpu_to_le32(num_bytes);
2033 ath10k_htt_tx_txq_recalc(hw, txq);
2038 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2039 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2041 ret = ath10k_htt_tx_fetch_resp(ar,
2042 resp->tx_fetch_ind.token,
2043 resp->tx_fetch_ind.fetch_seq_num,
2044 resp->tx_fetch_ind.records,
2046 if (unlikely(ret)) {
2047 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2048 le32_to_cpu(resp->tx_fetch_ind.token), ret);
2049 /* FIXME: request fw restart */
2052 ath10k_htt_tx_txq_sync(ar);
2055 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2056 struct sk_buff *skb)
2058 const struct htt_resp *resp = (void *)skb->data;
2062 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2064 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2065 if (unlikely(skb->len < len)) {
2066 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2070 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2071 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2073 if (unlikely(skb->len < len)) {
2074 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2078 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2079 resp->tx_fetch_confirm.resp_ids,
2083 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2084 struct sk_buff *skb)
2086 const struct htt_resp *resp = (void *)skb->data;
2087 const struct htt_tx_mode_switch_record *record;
2088 struct ieee80211_txq *txq;
2089 struct ath10k_txq *artxq;
2092 enum htt_tx_mode_switch_mode mode;
2101 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2103 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2104 if (unlikely(skb->len < len)) {
2105 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2109 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2110 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2112 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2113 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2114 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2115 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2117 ath10k_dbg(ar, ATH10K_DBG_HTT,
2118 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2119 info0, info1, enable, num_records, mode, threshold);
2121 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2123 if (unlikely(skb->len < len)) {
2124 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2129 case HTT_TX_MODE_SWITCH_PUSH:
2130 case HTT_TX_MODE_SWITCH_PUSH_PULL:
2133 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2141 ar->htt.tx_q_state.enabled = enable;
2142 ar->htt.tx_q_state.mode = mode;
2143 ar->htt.tx_q_state.num_push_allowed = threshold;
2147 for (i = 0; i < num_records; i++) {
2148 record = &resp->tx_mode_switch_ind.records[i];
2149 info0 = le16_to_cpu(record->info0);
2150 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2151 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2153 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2154 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2155 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2160 spin_lock_bh(&ar->data_lock);
2161 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2162 spin_unlock_bh(&ar->data_lock);
2164 /* It is okay to release the lock and use txq because RCU read
2168 if (unlikely(!txq)) {
2169 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2174 spin_lock_bh(&ar->htt.tx_lock);
2175 artxq = (void *)txq->drv_priv;
2176 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2177 spin_unlock_bh(&ar->htt.tx_lock);
2182 ath10k_mac_tx_push_pending(ar);
2185 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2189 release = ath10k_htt_t2h_msg_handler(ar, skb);
2191 /* Free the indication buffer */
2193 dev_kfree_skb_any(skb);
2196 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2198 struct ath10k_htt *htt = &ar->htt;
2199 struct htt_resp *resp = (struct htt_resp *)skb->data;
2200 enum htt_t2h_msg_type type;
2202 /* confirm alignment */
2203 if (!IS_ALIGNED((unsigned long)skb->data, 4))
2204 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2206 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2207 resp->hdr.msg_type);
2209 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2210 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2211 resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2214 type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2217 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2218 htt->target_version_major = resp->ver_resp.major;
2219 htt->target_version_minor = resp->ver_resp.minor;
2220 complete(&htt->target_version_received);
2223 case HTT_T2H_MSG_TYPE_RX_IND:
2224 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2226 case HTT_T2H_MSG_TYPE_PEER_MAP: {
2227 struct htt_peer_map_event ev = {
2228 .vdev_id = resp->peer_map.vdev_id,
2229 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2231 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2232 ath10k_peer_map_event(htt, &ev);
2235 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2236 struct htt_peer_unmap_event ev = {
2237 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2239 ath10k_peer_unmap_event(htt, &ev);
2242 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2243 struct htt_tx_done tx_done = {};
2244 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2246 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2249 case HTT_MGMT_TX_STATUS_OK:
2250 tx_done.status = HTT_TX_COMPL_STATE_ACK;
2252 case HTT_MGMT_TX_STATUS_RETRY:
2253 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2255 case HTT_MGMT_TX_STATUS_DROP:
2256 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2260 status = ath10k_txrx_tx_unref(htt, &tx_done);
2262 spin_lock_bh(&htt->tx_lock);
2263 ath10k_htt_tx_mgmt_dec_pending(htt);
2264 spin_unlock_bh(&htt->tx_lock);
2268 case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2269 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2270 tasklet_schedule(&htt->txrx_compl_task);
2272 case HTT_T2H_MSG_TYPE_SEC_IND: {
2273 struct ath10k *ar = htt->ar;
2274 struct htt_security_indication *ev = &resp->security_indication;
2276 ath10k_dbg(ar, ATH10K_DBG_HTT,
2277 "sec ind peer_id %d unicast %d type %d\n",
2278 __le16_to_cpu(ev->peer_id),
2279 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2280 MS(ev->flags, HTT_SECURITY_TYPE));
2281 complete(&ar->install_key_done);
2284 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2285 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2286 skb->data, skb->len);
2287 ath10k_htt_rx_frag_handler(htt);
2290 case HTT_T2H_MSG_TYPE_TEST:
2292 case HTT_T2H_MSG_TYPE_STATS_CONF:
2293 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2295 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2296 /* Firmware can return tx frames if it's unable to fully
2297 * process them and suspects host may be able to fix it. ath10k
2298 * sends all tx frames as already inspected so this shouldn't
2299 * happen unless fw has a bug.
2301 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2303 case HTT_T2H_MSG_TYPE_RX_ADDBA:
2304 ath10k_htt_rx_addba(ar, resp);
2306 case HTT_T2H_MSG_TYPE_RX_DELBA:
2307 ath10k_htt_rx_delba(ar, resp);
2309 case HTT_T2H_MSG_TYPE_PKTLOG: {
2310 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2312 offsetof(struct htt_resp,
2313 pktlog_msg.payload));
2316 case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2317 /* Ignore this event because mac80211 takes care of Rx
2318 * aggregation reordering.
2322 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2323 skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2324 tasklet_schedule(&htt->txrx_compl_task);
2327 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2329 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2330 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2331 u32 freq = __le32_to_cpu(resp->chan_change.freq);
2334 __ieee80211_get_channel(ar->hw->wiphy, freq);
2335 ath10k_dbg(ar, ATH10K_DBG_HTT,
2336 "htt chan change freq %u phymode %s\n",
2337 freq, ath10k_wmi_phymode_str(phymode));
2340 case HTT_T2H_MSG_TYPE_AGGR_CONF:
2342 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2343 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2345 if (!tx_fetch_ind) {
2346 ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2349 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2350 tasklet_schedule(&htt->txrx_compl_task);
2353 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2354 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2356 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2357 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2359 case HTT_T2H_MSG_TYPE_EN_STATS:
2361 ath10k_warn(ar, "htt event (%d) not handled\n",
2362 resp->hdr.msg_type);
2363 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2364 skb->data, skb->len);
2369 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2371 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2372 struct sk_buff *skb)
2374 trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2375 dev_kfree_skb_any(skb);
2377 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2379 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2381 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
2382 struct ath10k *ar = htt->ar;
2383 struct htt_tx_done tx_done = {};
2384 struct sk_buff_head rx_ind_q;
2385 struct sk_buff_head tx_ind_q;
2386 struct sk_buff *skb;
2387 unsigned long flags;
2390 __skb_queue_head_init(&rx_ind_q);
2391 __skb_queue_head_init(&tx_ind_q);
2393 spin_lock_irqsave(&htt->rx_in_ord_compl_q.lock, flags);
2394 skb_queue_splice_init(&htt->rx_in_ord_compl_q, &rx_ind_q);
2395 spin_unlock_irqrestore(&htt->rx_in_ord_compl_q.lock, flags);
2397 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2398 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2399 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2401 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2402 * From kfifo_get() documentation:
2403 * Note that with only one concurrent reader and one concurrent writer,
2404 * you don't need extra locking to use these macro.
2406 while (kfifo_get(&htt->txdone_fifo, &tx_done))
2407 ath10k_txrx_tx_unref(htt, &tx_done);
2409 while ((skb = __skb_dequeue(&tx_ind_q))) {
2410 ath10k_htt_rx_tx_fetch_ind(ar, skb);
2411 dev_kfree_skb_any(skb);
2414 num_mpdus = atomic_read(&htt->num_mpdus_ready);
2417 if (ath10k_htt_rx_handle_amsdu(htt))
2421 atomic_dec(&htt->num_mpdus_ready);
2424 while ((skb = __skb_dequeue(&rx_ind_q))) {
2425 spin_lock_bh(&htt->rx_ring.lock);
2426 ath10k_htt_rx_in_ord_ind(ar, skb);
2427 spin_unlock_bh(&htt->rx_ring.lock);
2428 dev_kfree_skb_any(skb);
2431 ath10k_htt_rx_msdu_buff_replenish(htt);