ath10k: switch to use SPDX license identifiers
[platform/kernel/linux-rpi.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
6  */
7
8 #include "core.h"
9 #include "htc.h"
10 #include "htt.h"
11 #include "txrx.h"
12 #include "debug.h"
13 #include "trace.h"
14 #include "mac.h"
15
16 #include <linux/log2.h>
17 #include <linux/bitfield.h>
18
19 /* when under memory pressure rx ring refill may fail and needs a retry */
20 #define HTT_RX_RING_REFILL_RETRY_MS 50
21
22 #define HTT_RX_RING_REFILL_RESCHED_MS 5
23
24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
25
26 static struct sk_buff *
27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
28 {
29         struct ath10k_skb_rxcb *rxcb;
30
31         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
32                 if (rxcb->paddr == paddr)
33                         return ATH10K_RXCB_SKB(rxcb);
34
35         WARN_ON_ONCE(1);
36         return NULL;
37 }
38
39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
40 {
41         struct sk_buff *skb;
42         struct ath10k_skb_rxcb *rxcb;
43         struct hlist_node *n;
44         int i;
45
46         if (htt->rx_ring.in_ord_rx) {
47                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
48                         skb = ATH10K_RXCB_SKB(rxcb);
49                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
50                                          skb->len + skb_tailroom(skb),
51                                          DMA_FROM_DEVICE);
52                         hash_del(&rxcb->hlist);
53                         dev_kfree_skb_any(skb);
54                 }
55         } else {
56                 for (i = 0; i < htt->rx_ring.size; i++) {
57                         skb = htt->rx_ring.netbufs_ring[i];
58                         if (!skb)
59                                 continue;
60
61                         rxcb = ATH10K_SKB_RXCB(skb);
62                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
63                                          skb->len + skb_tailroom(skb),
64                                          DMA_FROM_DEVICE);
65                         dev_kfree_skb_any(skb);
66                 }
67         }
68
69         htt->rx_ring.fill_cnt = 0;
70         hash_init(htt->rx_ring.skb_table);
71         memset(htt->rx_ring.netbufs_ring, 0,
72                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
73 }
74
75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
76 {
77         return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
78 }
79
80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
81 {
82         return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
83 }
84
85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
86                                              void *vaddr)
87 {
88         htt->rx_ring.paddrs_ring_32 = vaddr;
89 }
90
91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
92                                              void *vaddr)
93 {
94         htt->rx_ring.paddrs_ring_64 = vaddr;
95 }
96
97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
98                                           dma_addr_t paddr, int idx)
99 {
100         htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
101 }
102
103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
104                                           dma_addr_t paddr, int idx)
105 {
106         htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
107 }
108
109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
110 {
111         htt->rx_ring.paddrs_ring_32[idx] = 0;
112 }
113
114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
115 {
116         htt->rx_ring.paddrs_ring_64[idx] = 0;
117 }
118
119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
120 {
121         return (void *)htt->rx_ring.paddrs_ring_32;
122 }
123
124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
125 {
126         return (void *)htt->rx_ring.paddrs_ring_64;
127 }
128
129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
130 {
131         struct htt_rx_desc *rx_desc;
132         struct ath10k_skb_rxcb *rxcb;
133         struct sk_buff *skb;
134         dma_addr_t paddr;
135         int ret = 0, idx;
136
137         /* The Full Rx Reorder firmware has no way of telling the host
138          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
139          * To keep things simple make sure ring is always half empty. This
140          * guarantees there'll be no replenishment overruns possible.
141          */
142         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
143
144         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
145         while (num > 0) {
146                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
147                 if (!skb) {
148                         ret = -ENOMEM;
149                         goto fail;
150                 }
151
152                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
153                         skb_pull(skb,
154                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
155                                  skb->data);
156
157                 /* Clear rx_desc attention word before posting to Rx ring */
158                 rx_desc = (struct htt_rx_desc *)skb->data;
159                 rx_desc->attention.flags = __cpu_to_le32(0);
160
161                 paddr = dma_map_single(htt->ar->dev, skb->data,
162                                        skb->len + skb_tailroom(skb),
163                                        DMA_FROM_DEVICE);
164
165                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
166                         dev_kfree_skb_any(skb);
167                         ret = -ENOMEM;
168                         goto fail;
169                 }
170
171                 rxcb = ATH10K_SKB_RXCB(skb);
172                 rxcb->paddr = paddr;
173                 htt->rx_ring.netbufs_ring[idx] = skb;
174                 ath10k_htt_set_paddrs_ring(htt, paddr, idx);
175                 htt->rx_ring.fill_cnt++;
176
177                 if (htt->rx_ring.in_ord_rx) {
178                         hash_add(htt->rx_ring.skb_table,
179                                  &ATH10K_SKB_RXCB(skb)->hlist,
180                                  paddr);
181                 }
182
183                 num--;
184                 idx++;
185                 idx &= htt->rx_ring.size_mask;
186         }
187
188 fail:
189         /*
190          * Make sure the rx buffer is updated before available buffer
191          * index to avoid any potential rx ring corruption.
192          */
193         mb();
194         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
195         return ret;
196 }
197
198 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
199 {
200         lockdep_assert_held(&htt->rx_ring.lock);
201         return __ath10k_htt_rx_ring_fill_n(htt, num);
202 }
203
204 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
205 {
206         int ret, num_deficit, num_to_fill;
207
208         /* Refilling the whole RX ring buffer proves to be a bad idea. The
209          * reason is RX may take up significant amount of CPU cycles and starve
210          * other tasks, e.g. TX on an ethernet device while acting as a bridge
211          * with ath10k wlan interface. This ended up with very poor performance
212          * once CPU the host system was overwhelmed with RX on ath10k.
213          *
214          * By limiting the number of refills the replenishing occurs
215          * progressively. This in turns makes use of the fact tasklets are
216          * processed in FIFO order. This means actual RX processing can starve
217          * out refilling. If there's not enough buffers on RX ring FW will not
218          * report RX until it is refilled with enough buffers. This
219          * automatically balances load wrt to CPU power.
220          *
221          * This probably comes at a cost of lower maximum throughput but
222          * improves the average and stability.
223          */
224         spin_lock_bh(&htt->rx_ring.lock);
225         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
226         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
227         num_deficit -= num_to_fill;
228         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
229         if (ret == -ENOMEM) {
230                 /*
231                  * Failed to fill it to the desired level -
232                  * we'll start a timer and try again next time.
233                  * As long as enough buffers are left in the ring for
234                  * another A-MPDU rx, no special recovery is needed.
235                  */
236                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
237                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
238         } else if (num_deficit > 0) {
239                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
240                           msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
241         }
242         spin_unlock_bh(&htt->rx_ring.lock);
243 }
244
245 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
246 {
247         struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
248
249         ath10k_htt_rx_msdu_buff_replenish(htt);
250 }
251
252 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
253 {
254         struct ath10k_htt *htt = &ar->htt;
255         int ret;
256
257         if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
258                 return 0;
259
260         spin_lock_bh(&htt->rx_ring.lock);
261         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
262                                               htt->rx_ring.fill_cnt));
263
264         if (ret)
265                 ath10k_htt_rx_ring_free(htt);
266
267         spin_unlock_bh(&htt->rx_ring.lock);
268
269         return ret;
270 }
271
272 void ath10k_htt_rx_free(struct ath10k_htt *htt)
273 {
274         if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
275                 return;
276
277         del_timer_sync(&htt->rx_ring.refill_retry_timer);
278
279         skb_queue_purge(&htt->rx_msdus_q);
280         skb_queue_purge(&htt->rx_in_ord_compl_q);
281         skb_queue_purge(&htt->tx_fetch_ind_q);
282
283         spin_lock_bh(&htt->rx_ring.lock);
284         ath10k_htt_rx_ring_free(htt);
285         spin_unlock_bh(&htt->rx_ring.lock);
286
287         dma_free_coherent(htt->ar->dev,
288                           ath10k_htt_get_rx_ring_size(htt),
289                           ath10k_htt_get_vaddr_ring(htt),
290                           htt->rx_ring.base_paddr);
291
292         dma_free_coherent(htt->ar->dev,
293                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
294                           htt->rx_ring.alloc_idx.vaddr,
295                           htt->rx_ring.alloc_idx.paddr);
296
297         kfree(htt->rx_ring.netbufs_ring);
298 }
299
300 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
301 {
302         struct ath10k *ar = htt->ar;
303         int idx;
304         struct sk_buff *msdu;
305
306         lockdep_assert_held(&htt->rx_ring.lock);
307
308         if (htt->rx_ring.fill_cnt == 0) {
309                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
310                 return NULL;
311         }
312
313         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
314         msdu = htt->rx_ring.netbufs_ring[idx];
315         htt->rx_ring.netbufs_ring[idx] = NULL;
316         ath10k_htt_reset_paddrs_ring(htt, idx);
317
318         idx++;
319         idx &= htt->rx_ring.size_mask;
320         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
321         htt->rx_ring.fill_cnt--;
322
323         dma_unmap_single(htt->ar->dev,
324                          ATH10K_SKB_RXCB(msdu)->paddr,
325                          msdu->len + skb_tailroom(msdu),
326                          DMA_FROM_DEVICE);
327         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
328                         msdu->data, msdu->len + skb_tailroom(msdu));
329
330         return msdu;
331 }
332
333 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
334 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
335                                    struct sk_buff_head *amsdu)
336 {
337         struct ath10k *ar = htt->ar;
338         int msdu_len, msdu_chaining = 0;
339         struct sk_buff *msdu;
340         struct htt_rx_desc *rx_desc;
341
342         lockdep_assert_held(&htt->rx_ring.lock);
343
344         for (;;) {
345                 int last_msdu, msdu_len_invalid, msdu_chained;
346
347                 msdu = ath10k_htt_rx_netbuf_pop(htt);
348                 if (!msdu) {
349                         __skb_queue_purge(amsdu);
350                         return -ENOENT;
351                 }
352
353                 __skb_queue_tail(amsdu, msdu);
354
355                 rx_desc = (struct htt_rx_desc *)msdu->data;
356
357                 /* FIXME: we must report msdu payload since this is what caller
358                  * expects now
359                  */
360                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
361                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
362
363                 /*
364                  * Sanity check - confirm the HW is finished filling in the
365                  * rx data.
366                  * If the HW and SW are working correctly, then it's guaranteed
367                  * that the HW's MAC DMA is done before this point in the SW.
368                  * To prevent the case that we handle a stale Rx descriptor,
369                  * just assert for now until we have a way to recover.
370                  */
371                 if (!(__le32_to_cpu(rx_desc->attention.flags)
372                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
373                         __skb_queue_purge(amsdu);
374                         return -EIO;
375                 }
376
377                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
378                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
379                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
380                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
381                               RX_MSDU_START_INFO0_MSDU_LENGTH);
382                 msdu_chained = rx_desc->frag_info.ring2_more_count;
383
384                 if (msdu_len_invalid)
385                         msdu_len = 0;
386
387                 skb_trim(msdu, 0);
388                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
389                 msdu_len -= msdu->len;
390
391                 /* Note: Chained buffers do not contain rx descriptor */
392                 while (msdu_chained--) {
393                         msdu = ath10k_htt_rx_netbuf_pop(htt);
394                         if (!msdu) {
395                                 __skb_queue_purge(amsdu);
396                                 return -ENOENT;
397                         }
398
399                         __skb_queue_tail(amsdu, msdu);
400                         skb_trim(msdu, 0);
401                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
402                         msdu_len -= msdu->len;
403                         msdu_chaining = 1;
404                 }
405
406                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
407                                 RX_MSDU_END_INFO0_LAST_MSDU;
408
409                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
410                                          sizeof(*rx_desc) - sizeof(u32));
411
412                 if (last_msdu)
413                         break;
414         }
415
416         if (skb_queue_empty(amsdu))
417                 msdu_chaining = -1;
418
419         /*
420          * Don't refill the ring yet.
421          *
422          * First, the elements popped here are still in use - it is not
423          * safe to overwrite them until the matching call to
424          * mpdu_desc_list_next. Second, for efficiency it is preferable to
425          * refill the rx ring with 1 PPDU's worth of rx buffers (something
426          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
427          * (something like 3 buffers). Consequently, we'll rely on the txrx
428          * SW to tell us when it is done pulling all the PPDU's rx buffers
429          * out of the rx ring, and then refill it just once.
430          */
431
432         return msdu_chaining;
433 }
434
435 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
436                                                u64 paddr)
437 {
438         struct ath10k *ar = htt->ar;
439         struct ath10k_skb_rxcb *rxcb;
440         struct sk_buff *msdu;
441
442         lockdep_assert_held(&htt->rx_ring.lock);
443
444         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
445         if (!msdu)
446                 return NULL;
447
448         rxcb = ATH10K_SKB_RXCB(msdu);
449         hash_del(&rxcb->hlist);
450         htt->rx_ring.fill_cnt--;
451
452         dma_unmap_single(htt->ar->dev, rxcb->paddr,
453                          msdu->len + skb_tailroom(msdu),
454                          DMA_FROM_DEVICE);
455         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
456                         msdu->data, msdu->len + skb_tailroom(msdu));
457
458         return msdu;
459 }
460
461 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head,
462                                                struct sk_buff *frag_list,
463                                                unsigned int frag_len)
464 {
465         skb_shinfo(skb_head)->frag_list = frag_list;
466         skb_head->data_len = frag_len;
467         skb_head->len += skb_head->data_len;
468 }
469
470 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt,
471                                              struct sk_buff *msdu,
472                                              struct htt_rx_in_ord_msdu_desc **msdu_desc)
473 {
474         struct ath10k *ar = htt->ar;
475         u32 paddr;
476         struct sk_buff *frag_buf;
477         struct sk_buff *prev_frag_buf;
478         u8 last_frag;
479         struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc;
480         struct htt_rx_desc *rxd;
481         int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
482
483         rxd = (void *)msdu->data;
484         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
485
486         skb_put(msdu, sizeof(struct htt_rx_desc));
487         skb_pull(msdu, sizeof(struct htt_rx_desc));
488         skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
489         amsdu_len -= msdu->len;
490
491         last_frag = ind_desc->reserved;
492         if (last_frag) {
493                 if (amsdu_len) {
494                         ath10k_warn(ar, "invalid amsdu len %u, left %d",
495                                     __le16_to_cpu(ind_desc->msdu_len),
496                                     amsdu_len);
497                 }
498                 return 0;
499         }
500
501         ind_desc++;
502         paddr = __le32_to_cpu(ind_desc->msdu_paddr);
503         frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
504         if (!frag_buf) {
505                 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr);
506                 return -ENOENT;
507         }
508
509         skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
510         ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
511
512         amsdu_len -= frag_buf->len;
513         prev_frag_buf = frag_buf;
514         last_frag = ind_desc->reserved;
515         while (!last_frag) {
516                 ind_desc++;
517                 paddr = __le32_to_cpu(ind_desc->msdu_paddr);
518                 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
519                 if (!frag_buf) {
520                         ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x",
521                                     paddr);
522                         prev_frag_buf->next = NULL;
523                         return -ENOENT;
524                 }
525
526                 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
527                 last_frag = ind_desc->reserved;
528                 amsdu_len -= frag_buf->len;
529
530                 prev_frag_buf->next = frag_buf;
531                 prev_frag_buf = frag_buf;
532         }
533
534         if (amsdu_len) {
535                 ath10k_warn(ar, "invalid amsdu len %u, left %d",
536                             __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
537         }
538
539         *msdu_desc = ind_desc;
540
541         prev_frag_buf->next = NULL;
542         return 0;
543 }
544
545 static int
546 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt,
547                                   struct sk_buff *msdu,
548                                   struct htt_rx_in_ord_msdu_desc_ext **msdu_desc)
549 {
550         struct ath10k *ar = htt->ar;
551         u64 paddr;
552         struct sk_buff *frag_buf;
553         struct sk_buff *prev_frag_buf;
554         u8 last_frag;
555         struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc;
556         struct htt_rx_desc *rxd;
557         int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
558
559         rxd = (void *)msdu->data;
560         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
561
562         skb_put(msdu, sizeof(struct htt_rx_desc));
563         skb_pull(msdu, sizeof(struct htt_rx_desc));
564         skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
565         amsdu_len -= msdu->len;
566
567         last_frag = ind_desc->reserved;
568         if (last_frag) {
569                 if (amsdu_len) {
570                         ath10k_warn(ar, "invalid amsdu len %u, left %d",
571                                     __le16_to_cpu(ind_desc->msdu_len),
572                                     amsdu_len);
573                 }
574                 return 0;
575         }
576
577         ind_desc++;
578         paddr = __le64_to_cpu(ind_desc->msdu_paddr);
579         frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
580         if (!frag_buf) {
581                 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr);
582                 return -ENOENT;
583         }
584
585         skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
586         ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
587
588         amsdu_len -= frag_buf->len;
589         prev_frag_buf = frag_buf;
590         last_frag = ind_desc->reserved;
591         while (!last_frag) {
592                 ind_desc++;
593                 paddr = __le64_to_cpu(ind_desc->msdu_paddr);
594                 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
595                 if (!frag_buf) {
596                         ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx",
597                                     paddr);
598                         prev_frag_buf->next = NULL;
599                         return -ENOENT;
600                 }
601
602                 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
603                 last_frag = ind_desc->reserved;
604                 amsdu_len -= frag_buf->len;
605
606                 prev_frag_buf->next = frag_buf;
607                 prev_frag_buf = frag_buf;
608         }
609
610         if (amsdu_len) {
611                 ath10k_warn(ar, "invalid amsdu len %u, left %d",
612                             __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
613         }
614
615         *msdu_desc = ind_desc;
616
617         prev_frag_buf->next = NULL;
618         return 0;
619 }
620
621 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
622                                           struct htt_rx_in_ord_ind *ev,
623                                           struct sk_buff_head *list)
624 {
625         struct ath10k *ar = htt->ar;
626         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
627         struct htt_rx_desc *rxd;
628         struct sk_buff *msdu;
629         int msdu_count, ret;
630         bool is_offload;
631         u32 paddr;
632
633         lockdep_assert_held(&htt->rx_ring.lock);
634
635         msdu_count = __le16_to_cpu(ev->msdu_count);
636         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
637
638         while (msdu_count--) {
639                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
640
641                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
642                 if (!msdu) {
643                         __skb_queue_purge(list);
644                         return -ENOENT;
645                 }
646
647                 if (!is_offload && ar->monitor_arvif) {
648                         ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu,
649                                                                 &msdu_desc);
650                         if (ret) {
651                                 __skb_queue_purge(list);
652                                 return ret;
653                         }
654                         __skb_queue_tail(list, msdu);
655                         msdu_desc++;
656                         continue;
657                 }
658
659                 __skb_queue_tail(list, msdu);
660
661                 if (!is_offload) {
662                         rxd = (void *)msdu->data;
663
664                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
665
666                         skb_put(msdu, sizeof(*rxd));
667                         skb_pull(msdu, sizeof(*rxd));
668                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
669
670                         if (!(__le32_to_cpu(rxd->attention.flags) &
671                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
672                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
673                                 return -EIO;
674                         }
675                 }
676
677                 msdu_desc++;
678         }
679
680         return 0;
681 }
682
683 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
684                                           struct htt_rx_in_ord_ind *ev,
685                                           struct sk_buff_head *list)
686 {
687         struct ath10k *ar = htt->ar;
688         struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
689         struct htt_rx_desc *rxd;
690         struct sk_buff *msdu;
691         int msdu_count, ret;
692         bool is_offload;
693         u64 paddr;
694
695         lockdep_assert_held(&htt->rx_ring.lock);
696
697         msdu_count = __le16_to_cpu(ev->msdu_count);
698         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
699
700         while (msdu_count--) {
701                 paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
702                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
703                 if (!msdu) {
704                         __skb_queue_purge(list);
705                         return -ENOENT;
706                 }
707
708                 if (!is_offload && ar->monitor_arvif) {
709                         ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu,
710                                                                 &msdu_desc);
711                         if (ret) {
712                                 __skb_queue_purge(list);
713                                 return ret;
714                         }
715                         __skb_queue_tail(list, msdu);
716                         msdu_desc++;
717                         continue;
718                 }
719
720                 __skb_queue_tail(list, msdu);
721
722                 if (!is_offload) {
723                         rxd = (void *)msdu->data;
724
725                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
726
727                         skb_put(msdu, sizeof(*rxd));
728                         skb_pull(msdu, sizeof(*rxd));
729                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
730
731                         if (!(__le32_to_cpu(rxd->attention.flags) &
732                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
733                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
734                                 return -EIO;
735                         }
736                 }
737
738                 msdu_desc++;
739         }
740
741         return 0;
742 }
743
744 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
745 {
746         struct ath10k *ar = htt->ar;
747         dma_addr_t paddr;
748         void *vaddr, *vaddr_ring;
749         size_t size;
750         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
751
752         if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
753                 return 0;
754
755         htt->rx_confused = false;
756
757         /* XXX: The fill level could be changed during runtime in response to
758          * the host processing latency. Is this really worth it?
759          */
760         htt->rx_ring.size = HTT_RX_RING_SIZE;
761         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
762         htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
763
764         if (!is_power_of_2(htt->rx_ring.size)) {
765                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
766                 return -EINVAL;
767         }
768
769         htt->rx_ring.netbufs_ring =
770                 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
771                         GFP_KERNEL);
772         if (!htt->rx_ring.netbufs_ring)
773                 goto err_netbuf;
774
775         size = ath10k_htt_get_rx_ring_size(htt);
776
777         vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
778         if (!vaddr_ring)
779                 goto err_dma_ring;
780
781         ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
782         htt->rx_ring.base_paddr = paddr;
783
784         vaddr = dma_alloc_coherent(htt->ar->dev,
785                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
786                                    &paddr, GFP_KERNEL);
787         if (!vaddr)
788                 goto err_dma_idx;
789
790         htt->rx_ring.alloc_idx.vaddr = vaddr;
791         htt->rx_ring.alloc_idx.paddr = paddr;
792         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
793         *htt->rx_ring.alloc_idx.vaddr = 0;
794
795         /* Initialize the Rx refill retry timer */
796         timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
797
798         spin_lock_init(&htt->rx_ring.lock);
799
800         htt->rx_ring.fill_cnt = 0;
801         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
802         hash_init(htt->rx_ring.skb_table);
803
804         skb_queue_head_init(&htt->rx_msdus_q);
805         skb_queue_head_init(&htt->rx_in_ord_compl_q);
806         skb_queue_head_init(&htt->tx_fetch_ind_q);
807         atomic_set(&htt->num_mpdus_ready, 0);
808
809         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
810                    htt->rx_ring.size, htt->rx_ring.fill_level);
811         return 0;
812
813 err_dma_idx:
814         dma_free_coherent(htt->ar->dev,
815                           ath10k_htt_get_rx_ring_size(htt),
816                           vaddr_ring,
817                           htt->rx_ring.base_paddr);
818 err_dma_ring:
819         kfree(htt->rx_ring.netbufs_ring);
820 err_netbuf:
821         return -ENOMEM;
822 }
823
824 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
825                                           enum htt_rx_mpdu_encrypt_type type)
826 {
827         switch (type) {
828         case HTT_RX_MPDU_ENCRYPT_NONE:
829                 return 0;
830         case HTT_RX_MPDU_ENCRYPT_WEP40:
831         case HTT_RX_MPDU_ENCRYPT_WEP104:
832                 return IEEE80211_WEP_IV_LEN;
833         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
834         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
835                 return IEEE80211_TKIP_IV_LEN;
836         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
837                 return IEEE80211_CCMP_HDR_LEN;
838         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
839                 return IEEE80211_CCMP_256_HDR_LEN;
840         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
841         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
842                 return IEEE80211_GCMP_HDR_LEN;
843         case HTT_RX_MPDU_ENCRYPT_WEP128:
844         case HTT_RX_MPDU_ENCRYPT_WAPI:
845                 break;
846         }
847
848         ath10k_warn(ar, "unsupported encryption type %d\n", type);
849         return 0;
850 }
851
852 #define MICHAEL_MIC_LEN 8
853
854 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
855                                         enum htt_rx_mpdu_encrypt_type type)
856 {
857         switch (type) {
858         case HTT_RX_MPDU_ENCRYPT_NONE:
859         case HTT_RX_MPDU_ENCRYPT_WEP40:
860         case HTT_RX_MPDU_ENCRYPT_WEP104:
861         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
862         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
863                 return 0;
864         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
865                 return IEEE80211_CCMP_MIC_LEN;
866         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
867                 return IEEE80211_CCMP_256_MIC_LEN;
868         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
869         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
870                 return IEEE80211_GCMP_MIC_LEN;
871         case HTT_RX_MPDU_ENCRYPT_WEP128:
872         case HTT_RX_MPDU_ENCRYPT_WAPI:
873                 break;
874         }
875
876         ath10k_warn(ar, "unsupported encryption type %d\n", type);
877         return 0;
878 }
879
880 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
881                                         enum htt_rx_mpdu_encrypt_type type)
882 {
883         switch (type) {
884         case HTT_RX_MPDU_ENCRYPT_NONE:
885         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
886         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
887         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
888         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
889                 return 0;
890         case HTT_RX_MPDU_ENCRYPT_WEP40:
891         case HTT_RX_MPDU_ENCRYPT_WEP104:
892                 return IEEE80211_WEP_ICV_LEN;
893         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
894         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
895                 return IEEE80211_TKIP_ICV_LEN;
896         case HTT_RX_MPDU_ENCRYPT_WEP128:
897         case HTT_RX_MPDU_ENCRYPT_WAPI:
898                 break;
899         }
900
901         ath10k_warn(ar, "unsupported encryption type %d\n", type);
902         return 0;
903 }
904
905 struct amsdu_subframe_hdr {
906         u8 dst[ETH_ALEN];
907         u8 src[ETH_ALEN];
908         __be16 len;
909 } __packed;
910
911 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
912
913 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
914 {
915         u8 ret = 0;
916
917         switch (bw) {
918         case 0:
919                 ret = RATE_INFO_BW_20;
920                 break;
921         case 1:
922                 ret = RATE_INFO_BW_40;
923                 break;
924         case 2:
925                 ret = RATE_INFO_BW_80;
926                 break;
927         case 3:
928                 ret = RATE_INFO_BW_160;
929                 break;
930         }
931
932         return ret;
933 }
934
935 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
936                                   struct ieee80211_rx_status *status,
937                                   struct htt_rx_desc *rxd)
938 {
939         struct ieee80211_supported_band *sband;
940         u8 cck, rate, bw, sgi, mcs, nss;
941         u8 preamble = 0;
942         u8 group_id;
943         u32 info1, info2, info3;
944
945         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
946         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
947         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
948
949         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
950
951         switch (preamble) {
952         case HTT_RX_LEGACY:
953                 /* To get legacy rate index band is required. Since band can't
954                  * be undefined check if freq is non-zero.
955                  */
956                 if (!status->freq)
957                         return;
958
959                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
960                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
961                 rate &= ~RX_PPDU_START_RATE_FLAG;
962
963                 sband = &ar->mac.sbands[status->band];
964                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
965                 break;
966         case HTT_RX_HT:
967         case HTT_RX_HT_WITH_TXBF:
968                 /* HT-SIG - Table 20-11 in info2 and info3 */
969                 mcs = info2 & 0x1F;
970                 nss = mcs >> 3;
971                 bw = (info2 >> 7) & 1;
972                 sgi = (info3 >> 7) & 1;
973
974                 status->rate_idx = mcs;
975                 status->encoding = RX_ENC_HT;
976                 if (sgi)
977                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
978                 if (bw)
979                         status->bw = RATE_INFO_BW_40;
980                 break;
981         case HTT_RX_VHT:
982         case HTT_RX_VHT_WITH_TXBF:
983                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
984                  * TODO check this
985                  */
986                 bw = info2 & 3;
987                 sgi = info3 & 1;
988                 group_id = (info2 >> 4) & 0x3F;
989
990                 if (GROUP_ID_IS_SU_MIMO(group_id)) {
991                         mcs = (info3 >> 4) & 0x0F;
992                         nss = ((info2 >> 10) & 0x07) + 1;
993                 } else {
994                         /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
995                          * so it's impossible to decode MCS. Also since
996                          * firmware consumes Group Id Management frames host
997                          * has no knowledge regarding group/user position
998                          * mapping so it's impossible to pick the correct Nsts
999                          * from VHT-SIG-A1.
1000                          *
1001                          * Bandwidth and SGI are valid so report the rateinfo
1002                          * on best-effort basis.
1003                          */
1004                         mcs = 0;
1005                         nss = 1;
1006                 }
1007
1008                 if (mcs > 0x09) {
1009                         ath10k_warn(ar, "invalid MCS received %u\n", mcs);
1010                         ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
1011                                     __le32_to_cpu(rxd->attention.flags),
1012                                     __le32_to_cpu(rxd->mpdu_start.info0),
1013                                     __le32_to_cpu(rxd->mpdu_start.info1),
1014                                     __le32_to_cpu(rxd->msdu_start.common.info0),
1015                                     __le32_to_cpu(rxd->msdu_start.common.info1),
1016                                     rxd->ppdu_start.info0,
1017                                     __le32_to_cpu(rxd->ppdu_start.info1),
1018                                     __le32_to_cpu(rxd->ppdu_start.info2),
1019                                     __le32_to_cpu(rxd->ppdu_start.info3),
1020                                     __le32_to_cpu(rxd->ppdu_start.info4));
1021
1022                         ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
1023                                     __le32_to_cpu(rxd->msdu_end.common.info0),
1024                                     __le32_to_cpu(rxd->mpdu_end.info0));
1025
1026                         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
1027                                         "rx desc msdu payload: ",
1028                                         rxd->msdu_payload, 50);
1029                 }
1030
1031                 status->rate_idx = mcs;
1032                 status->nss = nss;
1033
1034                 if (sgi)
1035                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1036
1037                 status->bw = ath10k_bw_to_mac80211_bw(bw);
1038                 status->encoding = RX_ENC_VHT;
1039                 break;
1040         default:
1041                 break;
1042         }
1043 }
1044
1045 static struct ieee80211_channel *
1046 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
1047 {
1048         struct ath10k_peer *peer;
1049         struct ath10k_vif *arvif;
1050         struct cfg80211_chan_def def;
1051         u16 peer_id;
1052
1053         lockdep_assert_held(&ar->data_lock);
1054
1055         if (!rxd)
1056                 return NULL;
1057
1058         if (rxd->attention.flags &
1059             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
1060                 return NULL;
1061
1062         if (!(rxd->msdu_end.common.info0 &
1063               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
1064                 return NULL;
1065
1066         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1067                      RX_MPDU_START_INFO0_PEER_IDX);
1068
1069         peer = ath10k_peer_find_by_id(ar, peer_id);
1070         if (!peer)
1071                 return NULL;
1072
1073         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1074         if (WARN_ON_ONCE(!arvif))
1075                 return NULL;
1076
1077         if (ath10k_mac_vif_chan(arvif->vif, &def))
1078                 return NULL;
1079
1080         return def.chan;
1081 }
1082
1083 static struct ieee80211_channel *
1084 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
1085 {
1086         struct ath10k_vif *arvif;
1087         struct cfg80211_chan_def def;
1088
1089         lockdep_assert_held(&ar->data_lock);
1090
1091         list_for_each_entry(arvif, &ar->arvifs, list) {
1092                 if (arvif->vdev_id == vdev_id &&
1093                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
1094                         return def.chan;
1095         }
1096
1097         return NULL;
1098 }
1099
1100 static void
1101 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
1102                               struct ieee80211_chanctx_conf *conf,
1103                               void *data)
1104 {
1105         struct cfg80211_chan_def *def = data;
1106
1107         *def = conf->def;
1108 }
1109
1110 static struct ieee80211_channel *
1111 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
1112 {
1113         struct cfg80211_chan_def def = {};
1114
1115         ieee80211_iter_chan_contexts_atomic(ar->hw,
1116                                             ath10k_htt_rx_h_any_chan_iter,
1117                                             &def);
1118
1119         return def.chan;
1120 }
1121
1122 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
1123                                     struct ieee80211_rx_status *status,
1124                                     struct htt_rx_desc *rxd,
1125                                     u32 vdev_id)
1126 {
1127         struct ieee80211_channel *ch;
1128
1129         spin_lock_bh(&ar->data_lock);
1130         ch = ar->scan_channel;
1131         if (!ch)
1132                 ch = ar->rx_channel;
1133         if (!ch)
1134                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
1135         if (!ch)
1136                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
1137         if (!ch)
1138                 ch = ath10k_htt_rx_h_any_channel(ar);
1139         if (!ch)
1140                 ch = ar->tgt_oper_chan;
1141         spin_unlock_bh(&ar->data_lock);
1142
1143         if (!ch)
1144                 return false;
1145
1146         status->band = ch->band;
1147         status->freq = ch->center_freq;
1148
1149         return true;
1150 }
1151
1152 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
1153                                    struct ieee80211_rx_status *status,
1154                                    struct htt_rx_desc *rxd)
1155 {
1156         int i;
1157
1158         for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
1159                 status->chains &= ~BIT(i);
1160
1161                 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
1162                         status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
1163                                 rxd->ppdu_start.rssi_chains[i].pri20_mhz;
1164
1165                         status->chains |= BIT(i);
1166                 }
1167         }
1168
1169         /* FIXME: Get real NF */
1170         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1171                          rxd->ppdu_start.rssi_comb;
1172         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1173 }
1174
1175 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1176                                     struct ieee80211_rx_status *status,
1177                                     struct htt_rx_desc *rxd)
1178 {
1179         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1180          * means all prior MSDUs in a PPDU are reported to mac80211 without the
1181          * TSF. Is it worth holding frames until end of PPDU is known?
1182          *
1183          * FIXME: Can we get/compute 64bit TSF?
1184          */
1185         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1186         status->flag |= RX_FLAG_MACTIME_END;
1187 }
1188
1189 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1190                                  struct sk_buff_head *amsdu,
1191                                  struct ieee80211_rx_status *status,
1192                                  u32 vdev_id)
1193 {
1194         struct sk_buff *first;
1195         struct htt_rx_desc *rxd;
1196         bool is_first_ppdu;
1197         bool is_last_ppdu;
1198
1199         if (skb_queue_empty(amsdu))
1200                 return;
1201
1202         first = skb_peek(amsdu);
1203         rxd = (void *)first->data - sizeof(*rxd);
1204
1205         is_first_ppdu = !!(rxd->attention.flags &
1206                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1207         is_last_ppdu = !!(rxd->attention.flags &
1208                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1209
1210         if (is_first_ppdu) {
1211                 /* New PPDU starts so clear out the old per-PPDU status. */
1212                 status->freq = 0;
1213                 status->rate_idx = 0;
1214                 status->nss = 0;
1215                 status->encoding = RX_ENC_LEGACY;
1216                 status->bw = RATE_INFO_BW_20;
1217
1218                 status->flag &= ~RX_FLAG_MACTIME_END;
1219                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1220
1221                 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1222                 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1223                 status->ampdu_reference = ar->ampdu_reference;
1224
1225                 ath10k_htt_rx_h_signal(ar, status, rxd);
1226                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1227                 ath10k_htt_rx_h_rates(ar, status, rxd);
1228         }
1229
1230         if (is_last_ppdu) {
1231                 ath10k_htt_rx_h_mactime(ar, status, rxd);
1232
1233                 /* set ampdu last segment flag */
1234                 status->flag |= RX_FLAG_AMPDU_IS_LAST;
1235                 ar->ampdu_reference++;
1236         }
1237 }
1238
1239 static const char * const tid_to_ac[] = {
1240         "BE",
1241         "BK",
1242         "BK",
1243         "BE",
1244         "VI",
1245         "VI",
1246         "VO",
1247         "VO",
1248 };
1249
1250 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1251 {
1252         u8 *qc;
1253         int tid;
1254
1255         if (!ieee80211_is_data_qos(hdr->frame_control))
1256                 return "";
1257
1258         qc = ieee80211_get_qos_ctl(hdr);
1259         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1260         if (tid < 8)
1261                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1262         else
1263                 snprintf(out, size, "tid %d", tid);
1264
1265         return out;
1266 }
1267
1268 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1269                                        struct ieee80211_rx_status *rx_status,
1270                                        struct sk_buff *skb)
1271 {
1272         struct ieee80211_rx_status *status;
1273
1274         status = IEEE80211_SKB_RXCB(skb);
1275         *status = *rx_status;
1276
1277         skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1278 }
1279
1280 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1281 {
1282         struct ieee80211_rx_status *status;
1283         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1284         char tid[32];
1285
1286         status = IEEE80211_SKB_RXCB(skb);
1287
1288         ath10k_dbg(ar, ATH10K_DBG_DATA,
1289                    "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1290                    skb,
1291                    skb->len,
1292                    ieee80211_get_SA(hdr),
1293                    ath10k_get_tid(hdr, tid, sizeof(tid)),
1294                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1295                                                         "mcast" : "ucast",
1296                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1297                    (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1298                    (status->encoding == RX_ENC_HT) ? "ht" : "",
1299                    (status->encoding == RX_ENC_VHT) ? "vht" : "",
1300                    (status->bw == RATE_INFO_BW_40) ? "40" : "",
1301                    (status->bw == RATE_INFO_BW_80) ? "80" : "",
1302                    (status->bw == RATE_INFO_BW_160) ? "160" : "",
1303                    status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1304                    status->rate_idx,
1305                    status->nss,
1306                    status->freq,
1307                    status->band, status->flag,
1308                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1309                    !!(status->flag & RX_FLAG_MMIC_ERROR),
1310                    !!(status->flag & RX_FLAG_AMSDU_MORE));
1311         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1312                         skb->data, skb->len);
1313         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1314         trace_ath10k_rx_payload(ar, skb->data, skb->len);
1315
1316         ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1317 }
1318
1319 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1320                                       struct ieee80211_hdr *hdr)
1321 {
1322         int len = ieee80211_hdrlen(hdr->frame_control);
1323
1324         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1325                       ar->running_fw->fw_file.fw_features))
1326                 len = round_up(len, 4);
1327
1328         return len;
1329 }
1330
1331 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1332                                         struct sk_buff *msdu,
1333                                         struct ieee80211_rx_status *status,
1334                                         enum htt_rx_mpdu_encrypt_type enctype,
1335                                         bool is_decrypted,
1336                                         const u8 first_hdr[64])
1337 {
1338         struct ieee80211_hdr *hdr;
1339         struct htt_rx_desc *rxd;
1340         size_t hdr_len;
1341         size_t crypto_len;
1342         bool is_first;
1343         bool is_last;
1344         bool msdu_limit_err;
1345         int bytes_aligned = ar->hw_params.decap_align_bytes;
1346         u8 *qos;
1347
1348         rxd = (void *)msdu->data - sizeof(*rxd);
1349         is_first = !!(rxd->msdu_end.common.info0 &
1350                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1351         is_last = !!(rxd->msdu_end.common.info0 &
1352                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1353
1354         /* Delivered decapped frame:
1355          * [802.11 header]
1356          * [crypto param] <-- can be trimmed if !fcs_err &&
1357          *                    !decrypt_err && !peer_idx_invalid
1358          * [amsdu header] <-- only if A-MSDU
1359          * [rfc1042/llc]
1360          * [payload]
1361          * [FCS] <-- at end, needs to be trimmed
1362          */
1363
1364         /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when
1365          * deaggregate, so that unwanted MSDU-deaggregation is avoided for
1366          * error packets. If limit exceeds, hw sends all remaining MSDUs as
1367          * a single last MSDU with this msdu limit error set.
1368          */
1369         msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd);
1370
1371         /* If MSDU limit error happens, then don't warn on, the partial raw MSDU
1372          * without first MSDU is expected in that case, and handled later here.
1373          */
1374         /* This probably shouldn't happen but warn just in case */
1375         if (WARN_ON_ONCE(!is_first && !msdu_limit_err))
1376                 return;
1377
1378         /* This probably shouldn't happen but warn just in case */
1379         if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err))
1380                 return;
1381
1382         skb_trim(msdu, msdu->len - FCS_LEN);
1383
1384         /* Push original 80211 header */
1385         if (unlikely(msdu_limit_err)) {
1386                 hdr = (struct ieee80211_hdr *)first_hdr;
1387                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1388                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1389
1390                 if (ieee80211_is_data_qos(hdr->frame_control)) {
1391                         qos = ieee80211_get_qos_ctl(hdr);
1392                         qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1393                 }
1394
1395                 if (crypto_len)
1396                         memcpy(skb_push(msdu, crypto_len),
1397                                (void *)hdr + round_up(hdr_len, bytes_aligned),
1398                                crypto_len);
1399
1400                 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1401         }
1402
1403         /* In most cases this will be true for sniffed frames. It makes sense
1404          * to deliver them as-is without stripping the crypto param. This is
1405          * necessary for software based decryption.
1406          *
1407          * If there's no error then the frame is decrypted. At least that is
1408          * the case for frames that come in via fragmented rx indication.
1409          */
1410         if (!is_decrypted)
1411                 return;
1412
1413         /* The payload is decrypted so strip crypto params. Start from tail
1414          * since hdr is used to compute some stuff.
1415          */
1416
1417         hdr = (void *)msdu->data;
1418
1419         /* Tail */
1420         if (status->flag & RX_FLAG_IV_STRIPPED) {
1421                 skb_trim(msdu, msdu->len -
1422                          ath10k_htt_rx_crypto_mic_len(ar, enctype));
1423
1424                 skb_trim(msdu, msdu->len -
1425                          ath10k_htt_rx_crypto_icv_len(ar, enctype));
1426         } else {
1427                 /* MIC */
1428                 if (status->flag & RX_FLAG_MIC_STRIPPED)
1429                         skb_trim(msdu, msdu->len -
1430                                  ath10k_htt_rx_crypto_mic_len(ar, enctype));
1431
1432                 /* ICV */
1433                 if (status->flag & RX_FLAG_ICV_STRIPPED)
1434                         skb_trim(msdu, msdu->len -
1435                                  ath10k_htt_rx_crypto_icv_len(ar, enctype));
1436         }
1437
1438         /* MMIC */
1439         if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1440             !ieee80211_has_morefrags(hdr->frame_control) &&
1441             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1442                 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1443
1444         /* Head */
1445         if (status->flag & RX_FLAG_IV_STRIPPED) {
1446                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1447                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1448
1449                 memmove((void *)msdu->data + crypto_len,
1450                         (void *)msdu->data, hdr_len);
1451                 skb_pull(msdu, crypto_len);
1452         }
1453 }
1454
1455 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1456                                           struct sk_buff *msdu,
1457                                           struct ieee80211_rx_status *status,
1458                                           const u8 first_hdr[64],
1459                                           enum htt_rx_mpdu_encrypt_type enctype)
1460 {
1461         struct ieee80211_hdr *hdr;
1462         struct htt_rx_desc *rxd;
1463         size_t hdr_len;
1464         u8 da[ETH_ALEN];
1465         u8 sa[ETH_ALEN];
1466         int l3_pad_bytes;
1467         int bytes_aligned = ar->hw_params.decap_align_bytes;
1468
1469         /* Delivered decapped frame:
1470          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1471          * [rfc1042/llc]
1472          *
1473          * Note: The nwifi header doesn't have QoS Control and is
1474          * (always?) a 3addr frame.
1475          *
1476          * Note2: There's no A-MSDU subframe header. Even if it's part
1477          * of an A-MSDU.
1478          */
1479
1480         /* pull decapped header and copy SA & DA */
1481         rxd = (void *)msdu->data - sizeof(*rxd);
1482
1483         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1484         skb_put(msdu, l3_pad_bytes);
1485
1486         hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1487
1488         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1489         ether_addr_copy(da, ieee80211_get_DA(hdr));
1490         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1491         skb_pull(msdu, hdr_len);
1492
1493         /* push original 802.11 header */
1494         hdr = (struct ieee80211_hdr *)first_hdr;
1495         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1496
1497         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1498                 memcpy(skb_push(msdu,
1499                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1500                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1501                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1502         }
1503
1504         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1505
1506         /* original 802.11 header has a different DA and in
1507          * case of 4addr it may also have different SA
1508          */
1509         hdr = (struct ieee80211_hdr *)msdu->data;
1510         ether_addr_copy(ieee80211_get_DA(hdr), da);
1511         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1512 }
1513
1514 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1515                                           struct sk_buff *msdu,
1516                                           enum htt_rx_mpdu_encrypt_type enctype)
1517 {
1518         struct ieee80211_hdr *hdr;
1519         struct htt_rx_desc *rxd;
1520         size_t hdr_len, crypto_len;
1521         void *rfc1042;
1522         bool is_first, is_last, is_amsdu;
1523         int bytes_aligned = ar->hw_params.decap_align_bytes;
1524
1525         rxd = (void *)msdu->data - sizeof(*rxd);
1526         hdr = (void *)rxd->rx_hdr_status;
1527
1528         is_first = !!(rxd->msdu_end.common.info0 &
1529                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1530         is_last = !!(rxd->msdu_end.common.info0 &
1531                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1532         is_amsdu = !(is_first && is_last);
1533
1534         rfc1042 = hdr;
1535
1536         if (is_first) {
1537                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1538                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1539
1540                 rfc1042 += round_up(hdr_len, bytes_aligned) +
1541                            round_up(crypto_len, bytes_aligned);
1542         }
1543
1544         if (is_amsdu)
1545                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1546
1547         return rfc1042;
1548 }
1549
1550 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1551                                         struct sk_buff *msdu,
1552                                         struct ieee80211_rx_status *status,
1553                                         const u8 first_hdr[64],
1554                                         enum htt_rx_mpdu_encrypt_type enctype)
1555 {
1556         struct ieee80211_hdr *hdr;
1557         struct ethhdr *eth;
1558         size_t hdr_len;
1559         void *rfc1042;
1560         u8 da[ETH_ALEN];
1561         u8 sa[ETH_ALEN];
1562         int l3_pad_bytes;
1563         struct htt_rx_desc *rxd;
1564         int bytes_aligned = ar->hw_params.decap_align_bytes;
1565
1566         /* Delivered decapped frame:
1567          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1568          * [payload]
1569          */
1570
1571         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1572         if (WARN_ON_ONCE(!rfc1042))
1573                 return;
1574
1575         rxd = (void *)msdu->data - sizeof(*rxd);
1576         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1577         skb_put(msdu, l3_pad_bytes);
1578         skb_pull(msdu, l3_pad_bytes);
1579
1580         /* pull decapped header and copy SA & DA */
1581         eth = (struct ethhdr *)msdu->data;
1582         ether_addr_copy(da, eth->h_dest);
1583         ether_addr_copy(sa, eth->h_source);
1584         skb_pull(msdu, sizeof(struct ethhdr));
1585
1586         /* push rfc1042/llc/snap */
1587         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1588                sizeof(struct rfc1042_hdr));
1589
1590         /* push original 802.11 header */
1591         hdr = (struct ieee80211_hdr *)first_hdr;
1592         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1593
1594         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1595                 memcpy(skb_push(msdu,
1596                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1597                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1598                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1599         }
1600
1601         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1602
1603         /* original 802.11 header has a different DA and in
1604          * case of 4addr it may also have different SA
1605          */
1606         hdr = (struct ieee80211_hdr *)msdu->data;
1607         ether_addr_copy(ieee80211_get_DA(hdr), da);
1608         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1609 }
1610
1611 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1612                                          struct sk_buff *msdu,
1613                                          struct ieee80211_rx_status *status,
1614                                          const u8 first_hdr[64],
1615                                          enum htt_rx_mpdu_encrypt_type enctype)
1616 {
1617         struct ieee80211_hdr *hdr;
1618         size_t hdr_len;
1619         int l3_pad_bytes;
1620         struct htt_rx_desc *rxd;
1621         int bytes_aligned = ar->hw_params.decap_align_bytes;
1622
1623         /* Delivered decapped frame:
1624          * [amsdu header] <-- replaced with 802.11 hdr
1625          * [rfc1042/llc]
1626          * [payload]
1627          */
1628
1629         rxd = (void *)msdu->data - sizeof(*rxd);
1630         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1631
1632         skb_put(msdu, l3_pad_bytes);
1633         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1634
1635         hdr = (struct ieee80211_hdr *)first_hdr;
1636         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1637
1638         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1639                 memcpy(skb_push(msdu,
1640                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1641                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1642                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1643         }
1644
1645         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1646 }
1647
1648 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1649                                     struct sk_buff *msdu,
1650                                     struct ieee80211_rx_status *status,
1651                                     u8 first_hdr[64],
1652                                     enum htt_rx_mpdu_encrypt_type enctype,
1653                                     bool is_decrypted)
1654 {
1655         struct htt_rx_desc *rxd;
1656         enum rx_msdu_decap_format decap;
1657
1658         /* First msdu's decapped header:
1659          * [802.11 header] <-- padded to 4 bytes long
1660          * [crypto param] <-- padded to 4 bytes long
1661          * [amsdu header] <-- only if A-MSDU
1662          * [rfc1042/llc]
1663          *
1664          * Other (2nd, 3rd, ..) msdu's decapped header:
1665          * [amsdu header] <-- only if A-MSDU
1666          * [rfc1042/llc]
1667          */
1668
1669         rxd = (void *)msdu->data - sizeof(*rxd);
1670         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1671                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1672
1673         switch (decap) {
1674         case RX_MSDU_DECAP_RAW:
1675                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1676                                             is_decrypted, first_hdr);
1677                 break;
1678         case RX_MSDU_DECAP_NATIVE_WIFI:
1679                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1680                                               enctype);
1681                 break;
1682         case RX_MSDU_DECAP_ETHERNET2_DIX:
1683                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1684                 break;
1685         case RX_MSDU_DECAP_8023_SNAP_LLC:
1686                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1687                                              enctype);
1688                 break;
1689         }
1690 }
1691
1692 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1693 {
1694         struct htt_rx_desc *rxd;
1695         u32 flags, info;
1696         bool is_ip4, is_ip6;
1697         bool is_tcp, is_udp;
1698         bool ip_csum_ok, tcpudp_csum_ok;
1699
1700         rxd = (void *)skb->data - sizeof(*rxd);
1701         flags = __le32_to_cpu(rxd->attention.flags);
1702         info = __le32_to_cpu(rxd->msdu_start.common.info1);
1703
1704         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1705         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1706         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1707         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1708         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1709         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1710
1711         if (!is_ip4 && !is_ip6)
1712                 return CHECKSUM_NONE;
1713         if (!is_tcp && !is_udp)
1714                 return CHECKSUM_NONE;
1715         if (!ip_csum_ok)
1716                 return CHECKSUM_NONE;
1717         if (!tcpudp_csum_ok)
1718                 return CHECKSUM_NONE;
1719
1720         return CHECKSUM_UNNECESSARY;
1721 }
1722
1723 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1724 {
1725         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1726 }
1727
1728 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1729                                  struct sk_buff_head *amsdu,
1730                                  struct ieee80211_rx_status *status,
1731                                  bool fill_crypt_header,
1732                                  u8 *rx_hdr,
1733                                  enum ath10k_pkt_rx_err *err)
1734 {
1735         struct sk_buff *first;
1736         struct sk_buff *last;
1737         struct sk_buff *msdu;
1738         struct htt_rx_desc *rxd;
1739         struct ieee80211_hdr *hdr;
1740         enum htt_rx_mpdu_encrypt_type enctype;
1741         u8 first_hdr[64];
1742         u8 *qos;
1743         bool has_fcs_err;
1744         bool has_crypto_err;
1745         bool has_tkip_err;
1746         bool has_peer_idx_invalid;
1747         bool is_decrypted;
1748         bool is_mgmt;
1749         u32 attention;
1750
1751         if (skb_queue_empty(amsdu))
1752                 return;
1753
1754         first = skb_peek(amsdu);
1755         rxd = (void *)first->data - sizeof(*rxd);
1756
1757         is_mgmt = !!(rxd->attention.flags &
1758                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1759
1760         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1761                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1762
1763         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1764          * decapped header. It'll be used for undecapping of each MSDU.
1765          */
1766         hdr = (void *)rxd->rx_hdr_status;
1767         memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1768
1769         if (rx_hdr)
1770                 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1771
1772         /* Each A-MSDU subframe will use the original header as the base and be
1773          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1774          */
1775         hdr = (void *)first_hdr;
1776
1777         if (ieee80211_is_data_qos(hdr->frame_control)) {
1778                 qos = ieee80211_get_qos_ctl(hdr);
1779                 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1780         }
1781
1782         /* Some attention flags are valid only in the last MSDU. */
1783         last = skb_peek_tail(amsdu);
1784         rxd = (void *)last->data - sizeof(*rxd);
1785         attention = __le32_to_cpu(rxd->attention.flags);
1786
1787         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1788         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1789         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1790         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1791
1792         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1793          * e.g. due to fcs error, missing peer or invalid key data it will
1794          * report the frame as raw.
1795          */
1796         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1797                         !has_fcs_err &&
1798                         !has_crypto_err &&
1799                         !has_peer_idx_invalid);
1800
1801         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1802         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1803                           RX_FLAG_MMIC_ERROR |
1804                           RX_FLAG_DECRYPTED |
1805                           RX_FLAG_IV_STRIPPED |
1806                           RX_FLAG_ONLY_MONITOR |
1807                           RX_FLAG_MMIC_STRIPPED);
1808
1809         if (has_fcs_err)
1810                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1811
1812         if (has_tkip_err)
1813                 status->flag |= RX_FLAG_MMIC_ERROR;
1814
1815         if (err) {
1816                 if (has_fcs_err)
1817                         *err = ATH10K_PKT_RX_ERR_FCS;
1818                 else if (has_tkip_err)
1819                         *err = ATH10K_PKT_RX_ERR_TKIP;
1820                 else if (has_crypto_err)
1821                         *err = ATH10K_PKT_RX_ERR_CRYPT;
1822                 else if (has_peer_idx_invalid)
1823                         *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1824         }
1825
1826         /* Firmware reports all necessary management frames via WMI already.
1827          * They are not reported to monitor interfaces at all so pass the ones
1828          * coming via HTT to monitor interfaces instead. This simplifies
1829          * matters a lot.
1830          */
1831         if (is_mgmt)
1832                 status->flag |= RX_FLAG_ONLY_MONITOR;
1833
1834         if (is_decrypted) {
1835                 status->flag |= RX_FLAG_DECRYPTED;
1836
1837                 if (likely(!is_mgmt))
1838                         status->flag |= RX_FLAG_MMIC_STRIPPED;
1839
1840                 if (fill_crypt_header)
1841                         status->flag |= RX_FLAG_MIC_STRIPPED |
1842                                         RX_FLAG_ICV_STRIPPED;
1843                 else
1844                         status->flag |= RX_FLAG_IV_STRIPPED;
1845         }
1846
1847         skb_queue_walk(amsdu, msdu) {
1848                 ath10k_htt_rx_h_csum_offload(msdu);
1849                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1850                                         is_decrypted);
1851
1852                 /* Undecapping involves copying the original 802.11 header back
1853                  * to sk_buff. If frame is protected and hardware has decrypted
1854                  * it then remove the protected bit.
1855                  */
1856                 if (!is_decrypted)
1857                         continue;
1858                 if (is_mgmt)
1859                         continue;
1860
1861                 if (fill_crypt_header)
1862                         continue;
1863
1864                 hdr = (void *)msdu->data;
1865                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1866         }
1867 }
1868
1869 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1870                                     struct sk_buff_head *amsdu,
1871                                     struct ieee80211_rx_status *status)
1872 {
1873         struct sk_buff *msdu;
1874         struct sk_buff *first_subframe;
1875
1876         first_subframe = skb_peek(amsdu);
1877
1878         while ((msdu = __skb_dequeue(amsdu))) {
1879                 /* Setup per-MSDU flags */
1880                 if (skb_queue_empty(amsdu))
1881                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1882                 else
1883                         status->flag |= RX_FLAG_AMSDU_MORE;
1884
1885                 if (msdu == first_subframe) {
1886                         first_subframe = NULL;
1887                         status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1888                 } else {
1889                         status->flag |= RX_FLAG_ALLOW_SAME_PN;
1890                 }
1891
1892                 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1893         }
1894 }
1895
1896 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1897                                unsigned long *unchain_cnt)
1898 {
1899         struct sk_buff *skb, *first;
1900         int space;
1901         int total_len = 0;
1902         int amsdu_len = skb_queue_len(amsdu);
1903
1904         /* TODO:  Might could optimize this by using
1905          * skb_try_coalesce or similar method to
1906          * decrease copying, or maybe get mac80211 to
1907          * provide a way to just receive a list of
1908          * skb?
1909          */
1910
1911         first = __skb_dequeue(amsdu);
1912
1913         /* Allocate total length all at once. */
1914         skb_queue_walk(amsdu, skb)
1915                 total_len += skb->len;
1916
1917         space = total_len - skb_tailroom(first);
1918         if ((space > 0) &&
1919             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1920                 /* TODO:  bump some rx-oom error stat */
1921                 /* put it back together so we can free the
1922                  * whole list at once.
1923                  */
1924                 __skb_queue_head(amsdu, first);
1925                 return -1;
1926         }
1927
1928         /* Walk list again, copying contents into
1929          * msdu_head
1930          */
1931         while ((skb = __skb_dequeue(amsdu))) {
1932                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1933                                           skb->len);
1934                 dev_kfree_skb_any(skb);
1935         }
1936
1937         __skb_queue_head(amsdu, first);
1938
1939         *unchain_cnt += amsdu_len - 1;
1940
1941         return 0;
1942 }
1943
1944 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1945                                     struct sk_buff_head *amsdu,
1946                                     unsigned long *drop_cnt,
1947                                     unsigned long *unchain_cnt)
1948 {
1949         struct sk_buff *first;
1950         struct htt_rx_desc *rxd;
1951         enum rx_msdu_decap_format decap;
1952
1953         first = skb_peek(amsdu);
1954         rxd = (void *)first->data - sizeof(*rxd);
1955         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1956                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1957
1958         /* FIXME: Current unchaining logic can only handle simple case of raw
1959          * msdu chaining. If decapping is other than raw the chaining may be
1960          * more complex and this isn't handled by the current code. Don't even
1961          * try re-constructing such frames - it'll be pretty much garbage.
1962          */
1963         if (decap != RX_MSDU_DECAP_RAW ||
1964             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1965                 *drop_cnt += skb_queue_len(amsdu);
1966                 __skb_queue_purge(amsdu);
1967                 return;
1968         }
1969
1970         ath10k_unchain_msdu(amsdu, unchain_cnt);
1971 }
1972
1973 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1974                                         struct sk_buff_head *amsdu,
1975                                         struct ieee80211_rx_status *rx_status)
1976 {
1977         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1978          * invalid/dangerous frames.
1979          */
1980
1981         if (!rx_status->freq) {
1982                 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1983                 return false;
1984         }
1985
1986         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1987                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1988                 return false;
1989         }
1990
1991         return true;
1992 }
1993
1994 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1995                                    struct sk_buff_head *amsdu,
1996                                    struct ieee80211_rx_status *rx_status,
1997                                    unsigned long *drop_cnt)
1998 {
1999         if (skb_queue_empty(amsdu))
2000                 return;
2001
2002         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
2003                 return;
2004
2005         if (drop_cnt)
2006                 *drop_cnt += skb_queue_len(amsdu);
2007
2008         __skb_queue_purge(amsdu);
2009 }
2010
2011 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
2012 {
2013         struct ath10k *ar = htt->ar;
2014         struct ieee80211_rx_status *rx_status = &htt->rx_status;
2015         struct sk_buff_head amsdu;
2016         int ret;
2017         unsigned long drop_cnt = 0;
2018         unsigned long unchain_cnt = 0;
2019         unsigned long drop_cnt_filter = 0;
2020         unsigned long msdus_to_queue, num_msdus;
2021         enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
2022         u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
2023
2024         __skb_queue_head_init(&amsdu);
2025
2026         spin_lock_bh(&htt->rx_ring.lock);
2027         if (htt->rx_confused) {
2028                 spin_unlock_bh(&htt->rx_ring.lock);
2029                 return -EIO;
2030         }
2031         ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
2032         spin_unlock_bh(&htt->rx_ring.lock);
2033
2034         if (ret < 0) {
2035                 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
2036                 __skb_queue_purge(&amsdu);
2037                 /* FIXME: It's probably a good idea to reboot the
2038                  * device instead of leaving it inoperable.
2039                  */
2040                 htt->rx_confused = true;
2041                 return ret;
2042         }
2043
2044         num_msdus = skb_queue_len(&amsdu);
2045
2046         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
2047
2048         /* only for ret = 1 indicates chained msdus */
2049         if (ret > 0)
2050                 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
2051
2052         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
2053         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
2054         msdus_to_queue = skb_queue_len(&amsdu);
2055         ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
2056
2057         ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
2058                                        unchain_cnt, drop_cnt, drop_cnt_filter,
2059                                        msdus_to_queue);
2060
2061         return 0;
2062 }
2063
2064 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
2065                                          struct htt_rx_indication_hl *rx,
2066                                          struct sk_buff *skb)
2067 {
2068         struct ath10k *ar = htt->ar;
2069         struct ath10k_peer *peer;
2070         struct htt_rx_indication_mpdu_range *mpdu_ranges;
2071         struct fw_rx_desc_hl *fw_desc;
2072         struct ieee80211_hdr *hdr;
2073         struct ieee80211_rx_status *rx_status;
2074         u16 peer_id;
2075         u8 rx_desc_len;
2076         int num_mpdu_ranges;
2077         size_t tot_hdr_len;
2078         struct ieee80211_channel *ch;
2079
2080         peer_id = __le16_to_cpu(rx->hdr.peer_id);
2081
2082         spin_lock_bh(&ar->data_lock);
2083         peer = ath10k_peer_find_by_id(ar, peer_id);
2084         spin_unlock_bh(&ar->data_lock);
2085         if (!peer)
2086                 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
2087
2088         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2089                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2090         mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
2091         fw_desc = &rx->fw_desc;
2092         rx_desc_len = fw_desc->len;
2093
2094         /* I have not yet seen any case where num_mpdu_ranges > 1.
2095          * qcacld does not seem handle that case either, so we introduce the
2096          * same limitiation here as well.
2097          */
2098         if (num_mpdu_ranges > 1)
2099                 ath10k_warn(ar,
2100                             "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
2101                             num_mpdu_ranges);
2102
2103         if (mpdu_ranges->mpdu_range_status !=
2104             HTT_RX_IND_MPDU_STATUS_OK) {
2105                 ath10k_warn(ar, "MPDU range status: %d\n",
2106                             mpdu_ranges->mpdu_range_status);
2107                 goto err;
2108         }
2109
2110         /* Strip off all headers before the MAC header before delivery to
2111          * mac80211
2112          */
2113         tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
2114                       sizeof(rx->ppdu) + sizeof(rx->prefix) +
2115                       sizeof(rx->fw_desc) +
2116                       sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
2117         skb_pull(skb, tot_hdr_len);
2118
2119         hdr = (struct ieee80211_hdr *)skb->data;
2120         rx_status = IEEE80211_SKB_RXCB(skb);
2121         rx_status->chains |= BIT(0);
2122         rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
2123                             rx->ppdu.combined_rssi;
2124         rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
2125
2126         spin_lock_bh(&ar->data_lock);
2127         ch = ar->scan_channel;
2128         if (!ch)
2129                 ch = ar->rx_channel;
2130         if (!ch)
2131                 ch = ath10k_htt_rx_h_any_channel(ar);
2132         if (!ch)
2133                 ch = ar->tgt_oper_chan;
2134         spin_unlock_bh(&ar->data_lock);
2135
2136         if (ch) {
2137                 rx_status->band = ch->band;
2138                 rx_status->freq = ch->center_freq;
2139         }
2140         if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
2141                 rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
2142         else
2143                 rx_status->flag |= RX_FLAG_AMSDU_MORE;
2144
2145         /* Not entirely sure about this, but all frames from the chipset has
2146          * the protected flag set even though they have already been decrypted.
2147          * Unmasking this flag is necessary in order for mac80211 not to drop
2148          * the frame.
2149          * TODO: Verify this is always the case or find out a way to check
2150          * if there has been hw decryption.
2151          */
2152         if (ieee80211_has_protected(hdr->frame_control)) {
2153                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2154                 rx_status->flag |= RX_FLAG_DECRYPTED |
2155                                    RX_FLAG_IV_STRIPPED |
2156                                    RX_FLAG_MMIC_STRIPPED;
2157         }
2158
2159         ieee80211_rx_ni(ar->hw, skb);
2160
2161         /* We have delivered the skb to the upper layers (mac80211) so we
2162          * must not free it.
2163          */
2164         return false;
2165 err:
2166         /* Tell the caller that it must free the skb since we have not
2167          * consumed it
2168          */
2169         return true;
2170 }
2171
2172 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
2173                                          struct htt_rx_indication *rx)
2174 {
2175         struct ath10k *ar = htt->ar;
2176         struct htt_rx_indication_mpdu_range *mpdu_ranges;
2177         int num_mpdu_ranges;
2178         int i, mpdu_count = 0;
2179         u16 peer_id;
2180         u8 tid;
2181
2182         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2183                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2184         peer_id = __le16_to_cpu(rx->hdr.peer_id);
2185         tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2186
2187         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
2188
2189         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
2190                         rx, sizeof(*rx) +
2191                         (sizeof(struct htt_rx_indication_mpdu_range) *
2192                                 num_mpdu_ranges));
2193
2194         for (i = 0; i < num_mpdu_ranges; i++)
2195                 mpdu_count += mpdu_ranges[i].mpdu_count;
2196
2197         atomic_add(mpdu_count, &htt->num_mpdus_ready);
2198
2199         ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
2200                                              num_mpdu_ranges);
2201 }
2202
2203 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
2204                                        struct sk_buff *skb)
2205 {
2206         struct ath10k_htt *htt = &ar->htt;
2207         struct htt_resp *resp = (struct htt_resp *)skb->data;
2208         struct htt_tx_done tx_done = {};
2209         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2210         __le16 msdu_id, *msdus;
2211         bool rssi_enabled = false;
2212         u8 msdu_count = 0, num_airtime_records, tid;
2213         int i;
2214         struct htt_data_tx_compl_ppdu_dur *ppdu_info;
2215         struct ath10k_peer *peer;
2216         u16 ppdu_info_offset = 0, peer_id;
2217         u32 tx_duration;
2218
2219         switch (status) {
2220         case HTT_DATA_TX_STATUS_NO_ACK:
2221                 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2222                 break;
2223         case HTT_DATA_TX_STATUS_OK:
2224                 tx_done.status = HTT_TX_COMPL_STATE_ACK;
2225                 break;
2226         case HTT_DATA_TX_STATUS_DISCARD:
2227         case HTT_DATA_TX_STATUS_POSTPONE:
2228         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2229                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2230                 break;
2231         default:
2232                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2233                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2234                 break;
2235         }
2236
2237         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2238                    resp->data_tx_completion.num_msdus);
2239
2240         msdu_count = resp->data_tx_completion.num_msdus;
2241         msdus = resp->data_tx_completion.msdus;
2242
2243         if (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI)
2244                 rssi_enabled = true;
2245
2246         for (i = 0; i < msdu_count; i++) {
2247                 msdu_id = msdus[i];
2248                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
2249
2250                 if (rssi_enabled) {
2251                         /* Total no of MSDUs should be even,
2252                          * if odd MSDUs are sent firmware fills
2253                          * last msdu id with 0xffff
2254                          */
2255                         if (msdu_count & 0x01) {
2256                                 msdu_id = msdus[msdu_count +  i + 1];
2257                                 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2258                         } else {
2259                                 msdu_id = msdus[msdu_count +  i];
2260                                 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2261                         }
2262                 }
2263
2264                 /* kfifo_put: In practice firmware shouldn't fire off per-CE
2265                  * interrupt and main interrupt (MSI/-X range case) for the same
2266                  * HTC service so it should be safe to use kfifo_put w/o lock.
2267                  *
2268                  * From kfifo_put() documentation:
2269                  *  Note that with only one concurrent reader and one concurrent
2270                  *  writer, you don't need extra locking to use these macro.
2271                  */
2272                 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
2273                         ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
2274                                     tx_done.msdu_id, tx_done.status);
2275                         ath10k_txrx_tx_unref(htt, &tx_done);
2276                 }
2277         }
2278
2279         if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT))
2280                 return;
2281
2282         ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count;
2283
2284         if (rssi_enabled)
2285                 ppdu_info_offset += ppdu_info_offset;
2286
2287         if (resp->data_tx_completion.flags2 &
2288             (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT))
2289                 ppdu_info_offset += 2;
2290
2291         ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset];
2292         num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK,
2293                                         __le32_to_cpu(ppdu_info->info0));
2294
2295         for (i = 0; i < num_airtime_records; i++) {
2296                 struct htt_data_tx_ppdu_dur *ppdu_dur;
2297                 u32 info0;
2298
2299                 ppdu_dur = &ppdu_info->ppdu_dur[i];
2300                 info0 = __le32_to_cpu(ppdu_dur->info0);
2301
2302                 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK,
2303                                     info0);
2304                 rcu_read_lock();
2305                 spin_lock_bh(&ar->data_lock);
2306
2307                 peer = ath10k_peer_find_by_id(ar, peer_id);
2308                 if (!peer) {
2309                         spin_unlock_bh(&ar->data_lock);
2310                         rcu_read_unlock();
2311                         continue;
2312                 }
2313
2314                 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0);
2315                 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration);
2316
2317                 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0);
2318
2319                 spin_unlock_bh(&ar->data_lock);
2320                 rcu_read_unlock();
2321         }
2322 }
2323
2324 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
2325 {
2326         struct htt_rx_addba *ev = &resp->rx_addba;
2327         struct ath10k_peer *peer;
2328         struct ath10k_vif *arvif;
2329         u16 info0, tid, peer_id;
2330
2331         info0 = __le16_to_cpu(ev->info0);
2332         tid = MS(info0, HTT_RX_BA_INFO0_TID);
2333         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2334
2335         ath10k_dbg(ar, ATH10K_DBG_HTT,
2336                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
2337                    tid, peer_id, ev->window_size);
2338
2339         spin_lock_bh(&ar->data_lock);
2340         peer = ath10k_peer_find_by_id(ar, peer_id);
2341         if (!peer) {
2342                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2343                             peer_id);
2344                 spin_unlock_bh(&ar->data_lock);
2345                 return;
2346         }
2347
2348         arvif = ath10k_get_arvif(ar, peer->vdev_id);
2349         if (!arvif) {
2350                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2351                             peer->vdev_id);
2352                 spin_unlock_bh(&ar->data_lock);
2353                 return;
2354         }
2355
2356         ath10k_dbg(ar, ATH10K_DBG_HTT,
2357                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
2358                    peer->addr, tid, ev->window_size);
2359
2360         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2361         spin_unlock_bh(&ar->data_lock);
2362 }
2363
2364 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
2365 {
2366         struct htt_rx_delba *ev = &resp->rx_delba;
2367         struct ath10k_peer *peer;
2368         struct ath10k_vif *arvif;
2369         u16 info0, tid, peer_id;
2370
2371         info0 = __le16_to_cpu(ev->info0);
2372         tid = MS(info0, HTT_RX_BA_INFO0_TID);
2373         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2374
2375         ath10k_dbg(ar, ATH10K_DBG_HTT,
2376                    "htt rx delba tid %hu peer_id %hu\n",
2377                    tid, peer_id);
2378
2379         spin_lock_bh(&ar->data_lock);
2380         peer = ath10k_peer_find_by_id(ar, peer_id);
2381         if (!peer) {
2382                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2383                             peer_id);
2384                 spin_unlock_bh(&ar->data_lock);
2385                 return;
2386         }
2387
2388         arvif = ath10k_get_arvif(ar, peer->vdev_id);
2389         if (!arvif) {
2390                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2391                             peer->vdev_id);
2392                 spin_unlock_bh(&ar->data_lock);
2393                 return;
2394         }
2395
2396         ath10k_dbg(ar, ATH10K_DBG_HTT,
2397                    "htt rx stop rx ba session sta %pM tid %hu\n",
2398                    peer->addr, tid);
2399
2400         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2401         spin_unlock_bh(&ar->data_lock);
2402 }
2403
2404 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2405                                        struct sk_buff_head *amsdu)
2406 {
2407         struct sk_buff *msdu;
2408         struct htt_rx_desc *rxd;
2409
2410         if (skb_queue_empty(list))
2411                 return -ENOBUFS;
2412
2413         if (WARN_ON(!skb_queue_empty(amsdu)))
2414                 return -EINVAL;
2415
2416         while ((msdu = __skb_dequeue(list))) {
2417                 __skb_queue_tail(amsdu, msdu);
2418
2419                 rxd = (void *)msdu->data - sizeof(*rxd);
2420                 if (rxd->msdu_end.common.info0 &
2421                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2422                         break;
2423         }
2424
2425         msdu = skb_peek_tail(amsdu);
2426         rxd = (void *)msdu->data - sizeof(*rxd);
2427         if (!(rxd->msdu_end.common.info0 &
2428               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2429                 skb_queue_splice_init(amsdu, list);
2430                 return -EAGAIN;
2431         }
2432
2433         return 0;
2434 }
2435
2436 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2437                                             struct sk_buff *skb)
2438 {
2439         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2440
2441         if (!ieee80211_has_protected(hdr->frame_control))
2442                 return;
2443
2444         /* Offloaded frames are already decrypted but firmware insists they are
2445          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2446          * will drop the frame.
2447          */
2448
2449         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2450         status->flag |= RX_FLAG_DECRYPTED |
2451                         RX_FLAG_IV_STRIPPED |
2452                         RX_FLAG_MMIC_STRIPPED;
2453 }
2454
2455 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2456                                        struct sk_buff_head *list)
2457 {
2458         struct ath10k_htt *htt = &ar->htt;
2459         struct ieee80211_rx_status *status = &htt->rx_status;
2460         struct htt_rx_offload_msdu *rx;
2461         struct sk_buff *msdu;
2462         size_t offset;
2463
2464         while ((msdu = __skb_dequeue(list))) {
2465                 /* Offloaded frames don't have Rx descriptor. Instead they have
2466                  * a short meta information header.
2467                  */
2468
2469                 rx = (void *)msdu->data;
2470
2471                 skb_put(msdu, sizeof(*rx));
2472                 skb_pull(msdu, sizeof(*rx));
2473
2474                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2475                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2476                         dev_kfree_skb_any(msdu);
2477                         continue;
2478                 }
2479
2480                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2481
2482                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
2483                  * actual payload is unaligned. Align the frame.  Otherwise
2484                  * mac80211 complains.  This shouldn't reduce performance much
2485                  * because these offloaded frames are rare.
2486                  */
2487                 offset = 4 - ((unsigned long)msdu->data & 3);
2488                 skb_put(msdu, offset);
2489                 memmove(msdu->data + offset, msdu->data, msdu->len);
2490                 skb_pull(msdu, offset);
2491
2492                 /* FIXME: The frame is NWifi. Re-construct QoS Control
2493                  * if possible later.
2494                  */
2495
2496                 memset(status, 0, sizeof(*status));
2497                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2498
2499                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2500                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2501                 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2502         }
2503 }
2504
2505 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2506 {
2507         struct ath10k_htt *htt = &ar->htt;
2508         struct htt_resp *resp = (void *)skb->data;
2509         struct ieee80211_rx_status *status = &htt->rx_status;
2510         struct sk_buff_head list;
2511         struct sk_buff_head amsdu;
2512         u16 peer_id;
2513         u16 msdu_count;
2514         u8 vdev_id;
2515         u8 tid;
2516         bool offload;
2517         bool frag;
2518         int ret;
2519
2520         lockdep_assert_held(&htt->rx_ring.lock);
2521
2522         if (htt->rx_confused)
2523                 return -EIO;
2524
2525         skb_pull(skb, sizeof(resp->hdr));
2526         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2527
2528         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2529         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2530         vdev_id = resp->rx_in_ord_ind.vdev_id;
2531         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2532         offload = !!(resp->rx_in_ord_ind.info &
2533                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2534         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2535
2536         ath10k_dbg(ar, ATH10K_DBG_HTT,
2537                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2538                    vdev_id, peer_id, tid, offload, frag, msdu_count);
2539
2540         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2541                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
2542                 return -EINVAL;
2543         }
2544
2545         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2546          * extracted and processed.
2547          */
2548         __skb_queue_head_init(&list);
2549         if (ar->hw_params.target_64bit)
2550                 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2551                                                      &list);
2552         else
2553                 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2554                                                      &list);
2555
2556         if (ret < 0) {
2557                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2558                 htt->rx_confused = true;
2559                 return -EIO;
2560         }
2561
2562         /* Offloaded frames are very different and need to be handled
2563          * separately.
2564          */
2565         if (offload)
2566                 ath10k_htt_rx_h_rx_offload(ar, &list);
2567
2568         while (!skb_queue_empty(&list)) {
2569                 __skb_queue_head_init(&amsdu);
2570                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2571                 switch (ret) {
2572                 case 0:
2573                         /* Note: The in-order indication may report interleaved
2574                          * frames from different PPDUs meaning reported rx rate
2575                          * to mac80211 isn't accurate/reliable. It's still
2576                          * better to report something than nothing though. This
2577                          * should still give an idea about rx rate to the user.
2578                          */
2579                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2580                         ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2581                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2582                                              NULL);
2583                         ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2584                         break;
2585                 case -EAGAIN:
2586                         /* fall through */
2587                 default:
2588                         /* Should not happen. */
2589                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2590                         htt->rx_confused = true;
2591                         __skb_queue_purge(&list);
2592                         return -EIO;
2593                 }
2594         }
2595         return ret;
2596 }
2597
2598 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2599                                                    const __le32 *resp_ids,
2600                                                    int num_resp_ids)
2601 {
2602         int i;
2603         u32 resp_id;
2604
2605         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2606                    num_resp_ids);
2607
2608         for (i = 0; i < num_resp_ids; i++) {
2609                 resp_id = le32_to_cpu(resp_ids[i]);
2610
2611                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2612                            resp_id);
2613
2614                 /* TODO: free resp_id */
2615         }
2616 }
2617
2618 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2619 {
2620         struct ieee80211_hw *hw = ar->hw;
2621         struct ieee80211_txq *txq;
2622         struct htt_resp *resp = (struct htt_resp *)skb->data;
2623         struct htt_tx_fetch_record *record;
2624         size_t len;
2625         size_t max_num_bytes;
2626         size_t max_num_msdus;
2627         size_t num_bytes;
2628         size_t num_msdus;
2629         const __le32 *resp_ids;
2630         u16 num_records;
2631         u16 num_resp_ids;
2632         u16 peer_id;
2633         u8 tid;
2634         int ret;
2635         int i;
2636         bool may_tx;
2637
2638         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2639
2640         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2641         if (unlikely(skb->len < len)) {
2642                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2643                 return;
2644         }
2645
2646         num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2647         num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2648
2649         len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2650         len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2651
2652         if (unlikely(skb->len < len)) {
2653                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2654                 return;
2655         }
2656
2657         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2658                    num_records, num_resp_ids,
2659                    le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2660
2661         if (!ar->htt.tx_q_state.enabled) {
2662                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2663                 return;
2664         }
2665
2666         if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2667                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2668                 return;
2669         }
2670
2671         rcu_read_lock();
2672
2673         for (i = 0; i < num_records; i++) {
2674                 record = &resp->tx_fetch_ind.records[i];
2675                 peer_id = MS(le16_to_cpu(record->info),
2676                              HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2677                 tid = MS(le16_to_cpu(record->info),
2678                          HTT_TX_FETCH_RECORD_INFO_TID);
2679                 max_num_msdus = le16_to_cpu(record->num_msdus);
2680                 max_num_bytes = le32_to_cpu(record->num_bytes);
2681
2682                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2683                            i, peer_id, tid, max_num_msdus, max_num_bytes);
2684
2685                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2686                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2687                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2688                                     peer_id, tid);
2689                         continue;
2690                 }
2691
2692                 spin_lock_bh(&ar->data_lock);
2693                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2694                 spin_unlock_bh(&ar->data_lock);
2695
2696                 /* It is okay to release the lock and use txq because RCU read
2697                  * lock is held.
2698                  */
2699
2700                 if (unlikely(!txq)) {
2701                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2702                                     peer_id, tid);
2703                         continue;
2704                 }
2705
2706                 num_msdus = 0;
2707                 num_bytes = 0;
2708
2709                 ieee80211_txq_schedule_start(hw, txq->ac);
2710                 may_tx = ieee80211_txq_may_transmit(hw, txq);
2711                 while (num_msdus < max_num_msdus &&
2712                        num_bytes < max_num_bytes) {
2713                         if (!may_tx)
2714                                 break;
2715
2716                         ret = ath10k_mac_tx_push_txq(hw, txq);
2717                         if (ret < 0)
2718                                 break;
2719
2720                         num_msdus++;
2721                         num_bytes += ret;
2722                 }
2723                 ieee80211_return_txq(hw, txq);
2724                 ieee80211_txq_schedule_end(hw, txq->ac);
2725
2726                 record->num_msdus = cpu_to_le16(num_msdus);
2727                 record->num_bytes = cpu_to_le32(num_bytes);
2728
2729                 ath10k_htt_tx_txq_recalc(hw, txq);
2730         }
2731
2732         rcu_read_unlock();
2733
2734         resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2735         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2736
2737         ret = ath10k_htt_tx_fetch_resp(ar,
2738                                        resp->tx_fetch_ind.token,
2739                                        resp->tx_fetch_ind.fetch_seq_num,
2740                                        resp->tx_fetch_ind.records,
2741                                        num_records);
2742         if (unlikely(ret)) {
2743                 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2744                             le32_to_cpu(resp->tx_fetch_ind.token), ret);
2745                 /* FIXME: request fw restart */
2746         }
2747
2748         ath10k_htt_tx_txq_sync(ar);
2749 }
2750
2751 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2752                                            struct sk_buff *skb)
2753 {
2754         const struct htt_resp *resp = (void *)skb->data;
2755         size_t len;
2756         int num_resp_ids;
2757
2758         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2759
2760         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2761         if (unlikely(skb->len < len)) {
2762                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2763                 return;
2764         }
2765
2766         num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2767         len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2768
2769         if (unlikely(skb->len < len)) {
2770                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2771                 return;
2772         }
2773
2774         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2775                                                resp->tx_fetch_confirm.resp_ids,
2776                                                num_resp_ids);
2777 }
2778
2779 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2780                                              struct sk_buff *skb)
2781 {
2782         const struct htt_resp *resp = (void *)skb->data;
2783         const struct htt_tx_mode_switch_record *record;
2784         struct ieee80211_txq *txq;
2785         struct ath10k_txq *artxq;
2786         size_t len;
2787         size_t num_records;
2788         enum htt_tx_mode_switch_mode mode;
2789         bool enable;
2790         u16 info0;
2791         u16 info1;
2792         u16 threshold;
2793         u16 peer_id;
2794         u8 tid;
2795         int i;
2796
2797         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2798
2799         len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2800         if (unlikely(skb->len < len)) {
2801                 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2802                 return;
2803         }
2804
2805         info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2806         info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2807
2808         enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2809         num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2810         mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2811         threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2812
2813         ath10k_dbg(ar, ATH10K_DBG_HTT,
2814                    "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2815                    info0, info1, enable, num_records, mode, threshold);
2816
2817         len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2818
2819         if (unlikely(skb->len < len)) {
2820                 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2821                 return;
2822         }
2823
2824         switch (mode) {
2825         case HTT_TX_MODE_SWITCH_PUSH:
2826         case HTT_TX_MODE_SWITCH_PUSH_PULL:
2827                 break;
2828         default:
2829                 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2830                             mode);
2831                 return;
2832         }
2833
2834         if (!enable)
2835                 return;
2836
2837         ar->htt.tx_q_state.enabled = enable;
2838         ar->htt.tx_q_state.mode = mode;
2839         ar->htt.tx_q_state.num_push_allowed = threshold;
2840
2841         rcu_read_lock();
2842
2843         for (i = 0; i < num_records; i++) {
2844                 record = &resp->tx_mode_switch_ind.records[i];
2845                 info0 = le16_to_cpu(record->info0);
2846                 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2847                 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2848
2849                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2850                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2851                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2852                                     peer_id, tid);
2853                         continue;
2854                 }
2855
2856                 spin_lock_bh(&ar->data_lock);
2857                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2858                 spin_unlock_bh(&ar->data_lock);
2859
2860                 /* It is okay to release the lock and use txq because RCU read
2861                  * lock is held.
2862                  */
2863
2864                 if (unlikely(!txq)) {
2865                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2866                                     peer_id, tid);
2867                         continue;
2868                 }
2869
2870                 spin_lock_bh(&ar->htt.tx_lock);
2871                 artxq = (void *)txq->drv_priv;
2872                 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2873                 spin_unlock_bh(&ar->htt.tx_lock);
2874         }
2875
2876         rcu_read_unlock();
2877
2878         ath10k_mac_tx_push_pending(ar);
2879 }
2880
2881 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2882 {
2883         bool release;
2884
2885         release = ath10k_htt_t2h_msg_handler(ar, skb);
2886
2887         /* Free the indication buffer */
2888         if (release)
2889                 dev_kfree_skb_any(skb);
2890 }
2891
2892 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
2893 {
2894         static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2895                                           18, 24, 36, 48, 54};
2896         int i;
2897
2898         for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2899                 if (rate == legacy_rates[i])
2900                         return i;
2901         }
2902
2903         ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate);
2904         return -EINVAL;
2905 }
2906
2907 static void
2908 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
2909                                     struct ath10k_sta *arsta,
2910                                     struct ath10k_per_peer_tx_stats *pstats,
2911                                     s8 legacy_rate_idx)
2912 {
2913         struct rate_info *txrate = &arsta->txrate;
2914         struct ath10k_htt_tx_stats *tx_stats;
2915         int idx, ht_idx, gi, mcs, bw, nss;
2916
2917         if (!arsta->tx_stats)
2918                 return;
2919
2920         tx_stats = arsta->tx_stats;
2921         gi = (arsta->txrate.flags & RATE_INFO_FLAGS_SHORT_GI);
2922         ht_idx = txrate->mcs + txrate->nss * 8;
2923         mcs = txrate->mcs;
2924         bw = txrate->bw;
2925         nss = txrate->nss;
2926         idx = mcs * 8 + 8 * 10 * nss;
2927         idx += bw * 2 + gi;
2928
2929 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
2930
2931         if (txrate->flags == RATE_INFO_FLAGS_VHT_MCS) {
2932                 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
2933                 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
2934                 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
2935                 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
2936                 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
2937                 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
2938         } else if (txrate->flags == RATE_INFO_FLAGS_MCS) {
2939                 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
2940                 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
2941                 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
2942                 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
2943                 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
2944                 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
2945         } else {
2946                 mcs = legacy_rate_idx;
2947
2948                 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
2949                 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
2950                 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
2951                 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
2952                 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
2953                 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
2954         }
2955
2956         if (ATH10K_HW_AMPDU(pstats->flags)) {
2957                 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
2958
2959                 if (txrate->flags == RATE_INFO_FLAGS_MCS) {
2960                         STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
2961                                 pstats->succ_bytes + pstats->retry_bytes;
2962                         STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
2963                                 pstats->succ_pkts + pstats->retry_pkts;
2964                 } else {
2965                         STATS_OP_FMT(AMPDU).vht[0][mcs] +=
2966                                 pstats->succ_bytes + pstats->retry_bytes;
2967                         STATS_OP_FMT(AMPDU).vht[1][mcs] +=
2968                                 pstats->succ_pkts + pstats->retry_pkts;
2969                 }
2970                 STATS_OP_FMT(AMPDU).bw[0][bw] +=
2971                         pstats->succ_bytes + pstats->retry_bytes;
2972                 STATS_OP_FMT(AMPDU).nss[0][nss] +=
2973                         pstats->succ_bytes + pstats->retry_bytes;
2974                 STATS_OP_FMT(AMPDU).gi[0][gi] +=
2975                         pstats->succ_bytes + pstats->retry_bytes;
2976                 STATS_OP_FMT(AMPDU).rate_table[0][idx] +=
2977                         pstats->succ_bytes + pstats->retry_bytes;
2978                 STATS_OP_FMT(AMPDU).bw[1][bw] +=
2979                         pstats->succ_pkts + pstats->retry_pkts;
2980                 STATS_OP_FMT(AMPDU).nss[1][nss] +=
2981                         pstats->succ_pkts + pstats->retry_pkts;
2982                 STATS_OP_FMT(AMPDU).gi[1][gi] +=
2983                         pstats->succ_pkts + pstats->retry_pkts;
2984                 STATS_OP_FMT(AMPDU).rate_table[1][idx] +=
2985                         pstats->succ_pkts + pstats->retry_pkts;
2986         } else {
2987                 tx_stats->ack_fails +=
2988                                 ATH10K_HW_BA_FAIL(pstats->flags);
2989         }
2990
2991         STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
2992         STATS_OP_FMT(SUCC).nss[0][nss] += pstats->succ_bytes;
2993         STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
2994
2995         STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
2996         STATS_OP_FMT(SUCC).nss[1][nss] += pstats->succ_pkts;
2997         STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
2998
2999         STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
3000         STATS_OP_FMT(FAIL).nss[0][nss] += pstats->failed_bytes;
3001         STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
3002
3003         STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
3004         STATS_OP_FMT(FAIL).nss[1][nss] += pstats->failed_pkts;
3005         STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
3006
3007         STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
3008         STATS_OP_FMT(RETRY).nss[0][nss] += pstats->retry_bytes;
3009         STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
3010
3011         STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
3012         STATS_OP_FMT(RETRY).nss[1][nss] += pstats->retry_pkts;
3013         STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
3014
3015         if (txrate->flags >= RATE_INFO_FLAGS_MCS) {
3016                 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes;
3017                 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts;
3018                 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes;
3019                 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts;
3020                 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes;
3021                 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts;
3022         }
3023
3024         tx_stats->tx_duration += pstats->duration;
3025 }
3026
3027 static void
3028 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
3029                                 struct ieee80211_sta *sta,
3030                                 struct ath10k_per_peer_tx_stats *peer_stats)
3031 {
3032         struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
3033         struct ieee80211_chanctx_conf *conf = NULL;
3034         u8 rate = 0, sgi;
3035         s8 rate_idx = 0;
3036         bool skip_auto_rate;
3037         struct rate_info txrate;
3038
3039         lockdep_assert_held(&ar->data_lock);
3040
3041         txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
3042         txrate.bw = ATH10K_HW_BW(peer_stats->flags);
3043         txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
3044         txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
3045         sgi = ATH10K_HW_GI(peer_stats->flags);
3046         skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags);
3047
3048         /* Firmware's rate control skips broadcast/management frames,
3049          * if host has configure fixed rates and in some other special cases.
3050          */
3051         if (skip_auto_rate)
3052                 return;
3053
3054         if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
3055                 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
3056                 return;
3057         }
3058
3059         if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
3060             (txrate.mcs > 7 || txrate.nss < 1)) {
3061                 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
3062                             txrate.mcs, txrate.nss);
3063                 return;
3064         }
3065
3066         memset(&arsta->txrate, 0, sizeof(arsta->txrate));
3067         memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status));
3068         if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
3069             txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
3070                 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
3071                 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
3072                 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
3073                         rate = 5;
3074                 rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
3075                 if (rate_idx < 0)
3076                         return;
3077                 arsta->txrate.legacy = rate;
3078         } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
3079                 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
3080                 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
3081         } else {
3082                 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
3083                 arsta->txrate.mcs = txrate.mcs;
3084         }
3085
3086         switch (txrate.flags) {
3087         case WMI_RATE_PREAMBLE_OFDM:
3088                 if (arsta->arvif && arsta->arvif->vif)
3089                         conf = rcu_dereference(arsta->arvif->vif->chanctx_conf);
3090                 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ)
3091                         arsta->tx_info.status.rates[0].idx = rate_idx - 4;
3092                 break;
3093         case WMI_RATE_PREAMBLE_CCK:
3094                 arsta->tx_info.status.rates[0].idx = rate_idx;
3095                 if (sgi)
3096                         arsta->tx_info.status.rates[0].flags |=
3097                                 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE |
3098                                  IEEE80211_TX_RC_SHORT_GI);
3099                 break;
3100         case WMI_RATE_PREAMBLE_HT:
3101                 arsta->tx_info.status.rates[0].idx =
3102                                 txrate.mcs + ((txrate.nss - 1) * 8);
3103                 if (sgi)
3104                         arsta->tx_info.status.rates[0].flags |=
3105                                         IEEE80211_TX_RC_SHORT_GI;
3106                 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS;
3107                 break;
3108         case WMI_RATE_PREAMBLE_VHT:
3109                 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0],
3110                                        txrate.mcs, txrate.nss);
3111                 if (sgi)
3112                         arsta->tx_info.status.rates[0].flags |=
3113                                                 IEEE80211_TX_RC_SHORT_GI;
3114                 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS;
3115                 break;
3116         }
3117
3118         arsta->txrate.nss = txrate.nss;
3119         arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
3120         arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate);
3121         if (sgi)
3122                 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
3123
3124         switch (arsta->txrate.bw) {
3125         case RATE_INFO_BW_40:
3126                 arsta->tx_info.status.rates[0].flags |=
3127                                 IEEE80211_TX_RC_40_MHZ_WIDTH;
3128                 break;
3129         case RATE_INFO_BW_80:
3130                 arsta->tx_info.status.rates[0].flags |=
3131                                 IEEE80211_TX_RC_80_MHZ_WIDTH;
3132                 break;
3133         }
3134
3135         if (peer_stats->succ_pkts) {
3136                 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK;
3137                 arsta->tx_info.status.rates[0].count = 1;
3138                 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info);
3139         }
3140
3141         if (ath10k_debug_is_extd_tx_stats_enabled(ar))
3142                 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
3143                                                     rate_idx);
3144 }
3145
3146 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
3147                                         struct sk_buff *skb)
3148 {
3149         struct htt_resp *resp = (struct htt_resp *)skb->data;
3150         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3151         struct htt_per_peer_tx_stats_ind *tx_stats;
3152         struct ieee80211_sta *sta;
3153         struct ath10k_peer *peer;
3154         int peer_id, i;
3155         u8 ppdu_len, num_ppdu;
3156
3157         num_ppdu = resp->peer_tx_stats.num_ppdu;
3158         ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
3159
3160         if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
3161                 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
3162                 return;
3163         }
3164
3165         tx_stats = (struct htt_per_peer_tx_stats_ind *)
3166                         (resp->peer_tx_stats.payload);
3167         peer_id = __le16_to_cpu(tx_stats->peer_id);
3168
3169         rcu_read_lock();
3170         spin_lock_bh(&ar->data_lock);
3171         peer = ath10k_peer_find_by_id(ar, peer_id);
3172         if (!peer || !peer->sta) {
3173                 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
3174                             peer_id);
3175                 goto out;
3176         }
3177
3178         sta = peer->sta;
3179         for (i = 0; i < num_ppdu; i++) {
3180                 tx_stats = (struct htt_per_peer_tx_stats_ind *)
3181                            (resp->peer_tx_stats.payload + i * ppdu_len);
3182
3183                 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
3184                 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
3185                 p_tx_stats->failed_bytes =
3186                                 __le32_to_cpu(tx_stats->failed_bytes);
3187                 p_tx_stats->ratecode = tx_stats->ratecode;
3188                 p_tx_stats->flags = tx_stats->flags;
3189                 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
3190                 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
3191                 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
3192                 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration);
3193
3194                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3195         }
3196
3197 out:
3198         spin_unlock_bh(&ar->data_lock);
3199         rcu_read_unlock();
3200 }
3201
3202 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
3203 {
3204         struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
3205         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3206         struct ath10k_10_2_peer_tx_stats *tx_stats;
3207         struct ieee80211_sta *sta;
3208         struct ath10k_peer *peer;
3209         u16 log_type = __le16_to_cpu(hdr->log_type);
3210         u32 peer_id = 0, i;
3211
3212         if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
3213                 return;
3214
3215         tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
3216                     ATH10K_10_2_TX_STATS_OFFSET);
3217
3218         if (!tx_stats->tx_ppdu_cnt)
3219                 return;
3220
3221         peer_id = tx_stats->peer_id;
3222
3223         rcu_read_lock();
3224         spin_lock_bh(&ar->data_lock);
3225         peer = ath10k_peer_find_by_id(ar, peer_id);
3226         if (!peer || !peer->sta) {
3227                 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
3228                             peer_id);
3229                 goto out;
3230         }
3231
3232         sta = peer->sta;
3233         for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
3234                 p_tx_stats->succ_bytes =
3235                         __le16_to_cpu(tx_stats->success_bytes[i]);
3236                 p_tx_stats->retry_bytes =
3237                         __le16_to_cpu(tx_stats->retry_bytes[i]);
3238                 p_tx_stats->failed_bytes =
3239                         __le16_to_cpu(tx_stats->failed_bytes[i]);
3240                 p_tx_stats->ratecode = tx_stats->ratecode[i];
3241                 p_tx_stats->flags = tx_stats->flags[i];
3242                 p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
3243                 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
3244                 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
3245
3246                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3247         }
3248         spin_unlock_bh(&ar->data_lock);
3249         rcu_read_unlock();
3250
3251         return;
3252
3253 out:
3254         spin_unlock_bh(&ar->data_lock);
3255         rcu_read_unlock();
3256 }
3257
3258 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3259 {
3260         struct ath10k_htt *htt = &ar->htt;
3261         struct htt_resp *resp = (struct htt_resp *)skb->data;
3262         enum htt_t2h_msg_type type;
3263
3264         /* confirm alignment */
3265         if (!IS_ALIGNED((unsigned long)skb->data, 4))
3266                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
3267
3268         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
3269                    resp->hdr.msg_type);
3270
3271         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
3272                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
3273                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
3274                 return true;
3275         }
3276         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
3277
3278         switch (type) {
3279         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
3280                 htt->target_version_major = resp->ver_resp.major;
3281                 htt->target_version_minor = resp->ver_resp.minor;
3282                 complete(&htt->target_version_received);
3283                 break;
3284         }
3285         case HTT_T2H_MSG_TYPE_RX_IND:
3286                 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
3287                         return ath10k_htt_rx_proc_rx_ind_hl(htt,
3288                                                             &resp->rx_ind_hl,
3289                                                             skb);
3290                 else
3291                         ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
3292                 break;
3293         case HTT_T2H_MSG_TYPE_PEER_MAP: {
3294                 struct htt_peer_map_event ev = {
3295                         .vdev_id = resp->peer_map.vdev_id,
3296                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
3297                 };
3298                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
3299                 ath10k_peer_map_event(htt, &ev);
3300                 break;
3301         }
3302         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
3303                 struct htt_peer_unmap_event ev = {
3304                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
3305                 };
3306                 ath10k_peer_unmap_event(htt, &ev);
3307                 break;
3308         }
3309         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
3310                 struct htt_tx_done tx_done = {};
3311                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
3312                 int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
3313
3314                 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
3315
3316                 switch (status) {
3317                 case HTT_MGMT_TX_STATUS_OK:
3318                         tx_done.status = HTT_TX_COMPL_STATE_ACK;
3319                         if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
3320                                      ar->wmi.svc_map) &&
3321                             (resp->mgmt_tx_completion.flags &
3322                              HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
3323                                 tx_done.ack_rssi =
3324                                 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
3325                                           info);
3326                         }
3327                         break;
3328                 case HTT_MGMT_TX_STATUS_RETRY:
3329                         tx_done.status = HTT_TX_COMPL_STATE_NOACK;
3330                         break;
3331                 case HTT_MGMT_TX_STATUS_DROP:
3332                         tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
3333                         break;
3334                 }
3335
3336                 status = ath10k_txrx_tx_unref(htt, &tx_done);
3337                 if (!status) {
3338                         spin_lock_bh(&htt->tx_lock);
3339                         ath10k_htt_tx_mgmt_dec_pending(htt);
3340                         spin_unlock_bh(&htt->tx_lock);
3341                 }
3342                 break;
3343         }
3344         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
3345                 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
3346                 break;
3347         case HTT_T2H_MSG_TYPE_SEC_IND: {
3348                 struct ath10k *ar = htt->ar;
3349                 struct htt_security_indication *ev = &resp->security_indication;
3350
3351                 ath10k_dbg(ar, ATH10K_DBG_HTT,
3352                            "sec ind peer_id %d unicast %d type %d\n",
3353                           __le16_to_cpu(ev->peer_id),
3354                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
3355                           MS(ev->flags, HTT_SECURITY_TYPE));
3356                 complete(&ar->install_key_done);
3357                 break;
3358         }
3359         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
3360                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3361                                 skb->data, skb->len);
3362                 atomic_inc(&htt->num_mpdus_ready);
3363                 break;
3364         }
3365         case HTT_T2H_MSG_TYPE_TEST:
3366                 break;
3367         case HTT_T2H_MSG_TYPE_STATS_CONF:
3368                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
3369                 break;
3370         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
3371                 /* Firmware can return tx frames if it's unable to fully
3372                  * process them and suspects host may be able to fix it. ath10k
3373                  * sends all tx frames as already inspected so this shouldn't
3374                  * happen unless fw has a bug.
3375                  */
3376                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
3377                 break;
3378         case HTT_T2H_MSG_TYPE_RX_ADDBA:
3379                 ath10k_htt_rx_addba(ar, resp);
3380                 break;
3381         case HTT_T2H_MSG_TYPE_RX_DELBA:
3382                 ath10k_htt_rx_delba(ar, resp);
3383                 break;
3384         case HTT_T2H_MSG_TYPE_PKTLOG: {
3385                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
3386                                         skb->len -
3387                                         offsetof(struct htt_resp,
3388                                                  pktlog_msg.payload));
3389
3390                 if (ath10k_peer_stats_enabled(ar))
3391                         ath10k_fetch_10_2_tx_stats(ar,
3392                                                    resp->pktlog_msg.payload);
3393                 break;
3394         }
3395         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
3396                 /* Ignore this event because mac80211 takes care of Rx
3397                  * aggregation reordering.
3398                  */
3399                 break;
3400         }
3401         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
3402                 skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
3403                 return false;
3404         }
3405         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
3406                 break;
3407         case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
3408                 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
3409                 u32 freq = __le32_to_cpu(resp->chan_change.freq);
3410
3411                 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
3412                 ath10k_dbg(ar, ATH10K_DBG_HTT,
3413                            "htt chan change freq %u phymode %s\n",
3414                            freq, ath10k_wmi_phymode_str(phymode));
3415                 break;
3416         }
3417         case HTT_T2H_MSG_TYPE_AGGR_CONF:
3418                 break;
3419         case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
3420                 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
3421
3422                 if (!tx_fetch_ind) {
3423                         ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
3424                         break;
3425                 }
3426                 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
3427                 break;
3428         }
3429         case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
3430                 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
3431                 break;
3432         case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
3433                 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
3434                 break;
3435         case HTT_T2H_MSG_TYPE_PEER_STATS:
3436                 ath10k_htt_fetch_peer_stats(ar, skb);
3437                 break;
3438         case HTT_T2H_MSG_TYPE_EN_STATS:
3439         default:
3440                 ath10k_warn(ar, "htt event (%d) not handled\n",
3441                             resp->hdr.msg_type);
3442                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3443                                 skb->data, skb->len);
3444                 break;
3445         }
3446         return true;
3447 }
3448 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
3449
3450 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
3451                                              struct sk_buff *skb)
3452 {
3453         trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
3454         dev_kfree_skb_any(skb);
3455 }
3456 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
3457
3458 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
3459 {
3460         struct sk_buff *skb;
3461
3462         while (quota < budget) {
3463                 if (skb_queue_empty(&ar->htt.rx_msdus_q))
3464                         break;
3465
3466                 skb = skb_dequeue(&ar->htt.rx_msdus_q);
3467                 if (!skb)
3468                         break;
3469                 ath10k_process_rx(ar, skb);
3470                 quota++;
3471         }
3472
3473         return quota;
3474 }
3475
3476 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
3477 {
3478         struct ath10k_htt *htt = &ar->htt;
3479         struct htt_tx_done tx_done = {};
3480         struct sk_buff_head tx_ind_q;
3481         struct sk_buff *skb;
3482         unsigned long flags;
3483         int quota = 0, done, ret;
3484         bool resched_napi = false;
3485
3486         __skb_queue_head_init(&tx_ind_q);
3487
3488         /* Process pending frames before dequeuing more data
3489          * from hardware.
3490          */
3491         quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3492         if (quota == budget) {
3493                 resched_napi = true;
3494                 goto exit;
3495         }
3496
3497         while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
3498                 spin_lock_bh(&htt->rx_ring.lock);
3499                 ret = ath10k_htt_rx_in_ord_ind(ar, skb);
3500                 spin_unlock_bh(&htt->rx_ring.lock);
3501
3502                 dev_kfree_skb_any(skb);
3503                 if (ret == -EIO) {
3504                         resched_napi = true;
3505                         goto exit;
3506                 }
3507         }
3508
3509         while (atomic_read(&htt->num_mpdus_ready)) {
3510                 ret = ath10k_htt_rx_handle_amsdu(htt);
3511                 if (ret == -EIO) {
3512                         resched_napi = true;
3513                         goto exit;
3514                 }
3515                 atomic_dec(&htt->num_mpdus_ready);
3516         }
3517
3518         /* Deliver received data after processing data from hardware */
3519         quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3520
3521         /* From NAPI documentation:
3522          *  The napi poll() function may also process TX completions, in which
3523          *  case if it processes the entire TX ring then it should count that
3524          *  work as the rest of the budget.
3525          */
3526         if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
3527                 quota = budget;
3528
3529         /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
3530          * From kfifo_get() documentation:
3531          *  Note that with only one concurrent reader and one concurrent writer,
3532          *  you don't need extra locking to use these macro.
3533          */
3534         while (kfifo_get(&htt->txdone_fifo, &tx_done))
3535                 ath10k_txrx_tx_unref(htt, &tx_done);
3536
3537         ath10k_mac_tx_push_pending(ar);
3538
3539         spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
3540         skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
3541         spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
3542
3543         while ((skb = __skb_dequeue(&tx_ind_q))) {
3544                 ath10k_htt_rx_tx_fetch_ind(ar, skb);
3545                 dev_kfree_skb_any(skb);
3546         }
3547
3548 exit:
3549         ath10k_htt_rx_msdu_buff_replenish(htt);
3550         /* In case of rx failure or more data to read, report budget
3551          * to reschedule NAPI poll
3552          */
3553         done = resched_napi ? budget : quota;
3554
3555         return done;
3556 }
3557 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
3558
3559 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
3560         .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
3561         .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
3562         .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
3563         .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
3564         .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
3565 };
3566
3567 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
3568         .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
3569         .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
3570         .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
3571         .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
3572         .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
3573 };
3574
3575 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
3576 };
3577
3578 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
3579 {
3580         struct ath10k *ar = htt->ar;
3581
3582         if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
3583                 htt->rx_ops = &htt_rx_ops_hl;
3584         else if (ar->hw_params.target_64bit)
3585                 htt->rx_ops = &htt_rx_ops_64;
3586         else
3587                 htt->rx_ops = &htt_rx_ops_32;
3588 }