Merge branch 'for-next' of git://git.pengutronix.de/git/ukl/linux into devel-stable
[profile/ivi/kernel-x86-ivi.git] / drivers / net / wan / farsync.c
1 /*
2  *      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/if.h>
30 #include <linux/hdlc.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33
34 #include "farsync.h"
35
36 /*
37  *      Module info
38  */
39 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
40 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
41 MODULE_LICENSE("GPL");
42
43 /*      Driver configuration and global parameters
44  *      ==========================================
45  */
46
47 /*      Number of ports (per card) and cards supported
48  */
49 #define FST_MAX_PORTS           4
50 #define FST_MAX_CARDS           32
51
52 /*      Default parameters for the link
53  */
54 #define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
55                                          * useful */
56 #define FST_TXQ_DEPTH           16      /* This one is for the buffering
57                                          * of frames on the way down to the card
58                                          * so that we can keep the card busy
59                                          * and maximise throughput
60                                          */
61 #define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
62                                          * network layer */
63 #define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
64                                          * control from network layer */
65 #define FST_MAX_MTU             8000    /* Huge but possible */
66 #define FST_DEF_MTU             1500    /* Common sane value */
67
68 #define FST_TX_TIMEOUT          (2*HZ)
69
70 #ifdef ARPHRD_RAWHDLC
71 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
72 #else
73 #define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
74 #endif
75
76 /*
77  * Modules parameters and associated variables
78  */
79 static int fst_txq_low = FST_LOW_WATER_MARK;
80 static int fst_txq_high = FST_HIGH_WATER_MARK;
81 static int fst_max_reads = 7;
82 static int fst_excluded_cards = 0;
83 static int fst_excluded_list[FST_MAX_CARDS];
84
85 module_param(fst_txq_low, int, 0);
86 module_param(fst_txq_high, int, 0);
87 module_param(fst_max_reads, int, 0);
88 module_param(fst_excluded_cards, int, 0);
89 module_param_array(fst_excluded_list, int, NULL, 0);
90
91 /*      Card shared memory layout
92  *      =========================
93  */
94 #pragma pack(1)
95
96 /*      This information is derived in part from the FarSite FarSync Smc.h
97  *      file. Unfortunately various name clashes and the non-portability of the
98  *      bit field declarations in that file have meant that I have chosen to
99  *      recreate the information here.
100  *
101  *      The SMC (Shared Memory Configuration) has a version number that is
102  *      incremented every time there is a significant change. This number can
103  *      be used to check that we have not got out of step with the firmware
104  *      contained in the .CDE files.
105  */
106 #define SMC_VERSION 24
107
108 #define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
109
110 #define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
111                                  * configuration structure */
112 #define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
113                                  * buffers */
114
115 #define LEN_TX_BUFFER 8192      /* Size of packet buffers */
116 #define LEN_RX_BUFFER 8192
117
118 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
119 #define LEN_SMALL_RX_BUFFER 256
120
121 #define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
122 #define NUM_RX_BUFFER 8
123
124 /* Interrupt retry time in milliseconds */
125 #define INT_RETRY_TIME 2
126
127 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
128  *      of buffer descriptors. The structure is almost identical to that used
129  *      in the LANCE Ethernet controllers. Details available as PDF from the
130  *      AMD web site: http://www.amd.com/products/epd/processors/\
131  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
132  */
133 struct txdesc {                 /* Transmit descriptor */
134         volatile u16 ladr;      /* Low order address of packet. This is a
135                                  * linear address in the Am186 memory space
136                                  */
137         volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
138                                  * bits must be zero
139                                  */
140         volatile u8 bits;       /* Status and config */
141         volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
142                                  * Transmit terminal count interrupt enable in
143                                  * top bit.
144                                  */
145         u16 unused;             /* Not used in Tx */
146 };
147
148 struct rxdesc {                 /* Receive descriptor */
149         volatile u16 ladr;      /* Low order address of packet */
150         volatile u8 hadr;       /* High order address */
151         volatile u8 bits;       /* Status and config */
152         volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
153                                  * Receive terminal count interrupt enable in
154                                  * top bit.
155                                  */
156         volatile u16 mcnt;      /* Message byte count (15 bits) */
157 };
158
159 /* Convert a length into the 15 bit 2's complement */
160 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
161 /* Since we need to set the high bit to enable the completion interrupt this
162  * can be made a lot simpler
163  */
164 #define cnv_bcnt(len)   (-(len))
165
166 /* Status and config bits for the above */
167 #define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
168 #define TX_STP          0x02    /* Tx: start of packet */
169 #define TX_ENP          0x01    /* Tx: end of packet */
170 #define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
171 #define RX_FRAM         0x20    /* Rx: framing error */
172 #define RX_OFLO         0x10    /* Rx: overflow error */
173 #define RX_CRC          0x08    /* Rx: CRC error */
174 #define RX_HBUF         0x04    /* Rx: buffer error */
175 #define RX_STP          0x02    /* Rx: start of packet */
176 #define RX_ENP          0x01    /* Rx: end of packet */
177
178 /* Interrupts from the card are caused by various events which are presented
179  * in a circular buffer as several events may be processed on one physical int
180  */
181 #define MAX_CIRBUFF     32
182
183 struct cirbuff {
184         u8 rdindex;             /* read, then increment and wrap */
185         u8 wrindex;             /* write, then increment and wrap */
186         u8 evntbuff[MAX_CIRBUFF];
187 };
188
189 /* Interrupt event codes.
190  * Where appropriate the two low order bits indicate the port number
191  */
192 #define CTLA_CHG        0x18    /* Control signal changed */
193 #define CTLB_CHG        0x19
194 #define CTLC_CHG        0x1A
195 #define CTLD_CHG        0x1B
196
197 #define INIT_CPLT       0x20    /* Initialisation complete */
198 #define INIT_FAIL       0x21    /* Initialisation failed */
199
200 #define ABTA_SENT       0x24    /* Abort sent */
201 #define ABTB_SENT       0x25
202 #define ABTC_SENT       0x26
203 #define ABTD_SENT       0x27
204
205 #define TXA_UNDF        0x28    /* Transmission underflow */
206 #define TXB_UNDF        0x29
207 #define TXC_UNDF        0x2A
208 #define TXD_UNDF        0x2B
209
210 #define F56_INT         0x2C
211 #define M32_INT         0x2D
212
213 #define TE1_ALMA        0x30
214
215 /* Port physical configuration. See farsync.h for field values */
216 struct port_cfg {
217         u16 lineInterface;      /* Physical interface type */
218         u8 x25op;               /* Unused at present */
219         u8 internalClock;       /* 1 => internal clock, 0 => external */
220         u8 transparentMode;     /* 1 => on, 0 => off */
221         u8 invertClock;         /* 0 => normal, 1 => inverted */
222         u8 padBytes[6];         /* Padding */
223         u32 lineSpeed;          /* Speed in bps */
224 };
225
226 /* TE1 port physical configuration */
227 struct su_config {
228         u32 dataRate;
229         u8 clocking;
230         u8 framing;
231         u8 structure;
232         u8 interface;
233         u8 coding;
234         u8 lineBuildOut;
235         u8 equalizer;
236         u8 transparentMode;
237         u8 loopMode;
238         u8 range;
239         u8 txBufferMode;
240         u8 rxBufferMode;
241         u8 startingSlot;
242         u8 losThreshold;
243         u8 enableIdleCode;
244         u8 idleCode;
245         u8 spare[44];
246 };
247
248 /* TE1 Status */
249 struct su_status {
250         u32 receiveBufferDelay;
251         u32 framingErrorCount;
252         u32 codeViolationCount;
253         u32 crcErrorCount;
254         u32 lineAttenuation;
255         u8 portStarted;
256         u8 lossOfSignal;
257         u8 receiveRemoteAlarm;
258         u8 alarmIndicationSignal;
259         u8 spare[40];
260 };
261
262 /* Finally sling all the above together into the shared memory structure.
263  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
264  * evolving under NT for some time so I guess we're stuck with it.
265  * The structure starts at offset SMC_BASE.
266  * See farsync.h for some field values.
267  */
268 struct fst_shared {
269         /* DMA descriptor rings */
270         struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
271         struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
272
273         /* Obsolete small buffers */
274         u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
275         u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
276
277         u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
278                                  * 0xFF => halted
279                                  */
280
281         u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
282                                  * set to 0xEE by host to acknowledge interrupt
283                                  */
284
285         u16 smcVersion;         /* Must match SMC_VERSION */
286
287         u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
288                                  * version, RR = revision and BB = build
289                                  */
290
291         u16 txa_done;           /* Obsolete completion flags */
292         u16 rxa_done;
293         u16 txb_done;
294         u16 rxb_done;
295         u16 txc_done;
296         u16 rxc_done;
297         u16 txd_done;
298         u16 rxd_done;
299
300         u16 mailbox[4];         /* Diagnostics mailbox. Not used */
301
302         struct cirbuff interruptEvent;  /* interrupt causes */
303
304         u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
305         u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
306
307         struct port_cfg portConfig[FST_MAX_PORTS];
308
309         u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
310
311         u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
312
313         u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
314         u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
315
316         u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
317         u16 cardMailbox[4];     /* Not used */
318
319         /* Number of times the card thinks the host has
320          * missed an interrupt by not acknowledging
321          * within 2mS (I guess NT has problems)
322          */
323         u32 interruptRetryCount;
324
325         /* Driver private data used as an ID. We'll not
326          * use this as I'd rather keep such things
327          * in main memory rather than on the PCI bus
328          */
329         u32 portHandle[FST_MAX_PORTS];
330
331         /* Count of Tx underflows for stats */
332         u32 transmitBufferUnderflow[FST_MAX_PORTS];
333
334         /* Debounced V.24 control input status */
335         u32 v24DebouncedSts[FST_MAX_PORTS];
336
337         /* Adapter debounce timers. Don't touch */
338         u32 ctsTimer[FST_MAX_PORTS];
339         u32 ctsTimerRun[FST_MAX_PORTS];
340         u32 dcdTimer[FST_MAX_PORTS];
341         u32 dcdTimerRun[FST_MAX_PORTS];
342
343         u32 numberOfPorts;      /* Number of ports detected at startup */
344
345         u16 _reserved[64];
346
347         u16 cardMode;           /* Bit-mask to enable features:
348                                  * Bit 0: 1 enables LED identify mode
349                                  */
350
351         u16 portScheduleOffset;
352
353         struct su_config suConfig;      /* TE1 Bits */
354         struct su_status suStatus;
355
356         u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
357                                  * the structure and marks the end of shared
358                                  * memory. Adapter code initializes it as
359                                  * END_SIG.
360                                  */
361 };
362
363 /* endOfSmcSignature value */
364 #define END_SIG                 0x12345678
365
366 /* Mailbox values. (portMailbox) */
367 #define NOP             0       /* No operation */
368 #define ACK             1       /* Positive acknowledgement to PC driver */
369 #define NAK             2       /* Negative acknowledgement to PC driver */
370 #define STARTPORT       3       /* Start an HDLC port */
371 #define STOPPORT        4       /* Stop an HDLC port */
372 #define ABORTTX         5       /* Abort the transmitter for a port */
373 #define SETV24O         6       /* Set V24 outputs */
374
375 /* PLX Chip Register Offsets */
376 #define CNTRL_9052      0x50    /* Control Register */
377 #define CNTRL_9054      0x6c    /* Control Register */
378
379 #define INTCSR_9052     0x4c    /* Interrupt control/status register */
380 #define INTCSR_9054     0x68    /* Interrupt control/status register */
381
382 /* 9054 DMA Registers */
383 /*
384  * Note that we will be using DMA Channel 0 for copying rx data
385  * and Channel 1 for copying tx data
386  */
387 #define DMAMODE0        0x80
388 #define DMAPADR0        0x84
389 #define DMALADR0        0x88
390 #define DMASIZ0         0x8c
391 #define DMADPR0         0x90
392 #define DMAMODE1        0x94
393 #define DMAPADR1        0x98
394 #define DMALADR1        0x9c
395 #define DMASIZ1         0xa0
396 #define DMADPR1         0xa4
397 #define DMACSR0         0xa8
398 #define DMACSR1         0xa9
399 #define DMAARB          0xac
400 #define DMATHR          0xb0
401 #define DMADAC0         0xb4
402 #define DMADAC1         0xb8
403 #define DMAMARBR        0xac
404
405 #define FST_MIN_DMA_LEN 64
406 #define FST_RX_DMA_INT  0x01
407 #define FST_TX_DMA_INT  0x02
408 #define FST_CARD_INT    0x04
409
410 /* Larger buffers are positioned in memory at offset BFM_BASE */
411 struct buf_window {
412         u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
413         u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
414 };
415
416 /* Calculate offset of a buffer object within the shared memory window */
417 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
418
419 #pragma pack()
420
421 /*      Device driver private information
422  *      =================================
423  */
424 /*      Per port (line or channel) information
425  */
426 struct fst_port_info {
427         struct net_device *dev; /* Device struct - must be first */
428         struct fst_card_info *card;     /* Card we're associated with */
429         int index;              /* Port index on the card */
430         int hwif;               /* Line hardware (lineInterface copy) */
431         int run;                /* Port is running */
432         int mode;               /* Normal or FarSync raw */
433         int rxpos;              /* Next Rx buffer to use */
434         int txpos;              /* Next Tx buffer to use */
435         int txipos;             /* Next Tx buffer to check for free */
436         int start;              /* Indication of start/stop to network */
437         /*
438          * A sixteen entry transmit queue
439          */
440         int txqs;               /* index to get next buffer to tx */
441         int txqe;               /* index to queue next packet */
442         struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
443         int rxqdepth;
444 };
445
446 /*      Per card information
447  */
448 struct fst_card_info {
449         char __iomem *mem;      /* Card memory mapped to kernel space */
450         char __iomem *ctlmem;   /* Control memory for PCI cards */
451         unsigned int phys_mem;  /* Physical memory window address */
452         unsigned int phys_ctlmem;       /* Physical control memory address */
453         unsigned int irq;       /* Interrupt request line number */
454         unsigned int nports;    /* Number of serial ports */
455         unsigned int type;      /* Type index of card */
456         unsigned int state;     /* State of card */
457         spinlock_t card_lock;   /* Lock for SMP access */
458         unsigned short pci_conf;        /* PCI card config in I/O space */
459         /* Per port info */
460         struct fst_port_info ports[FST_MAX_PORTS];
461         struct pci_dev *device; /* Information about the pci device */
462         int card_no;            /* Inst of the card on the system */
463         int family;             /* TxP or TxU */
464         int dmarx_in_progress;
465         int dmatx_in_progress;
466         unsigned long int_count;
467         unsigned long int_time_ave;
468         void *rx_dma_handle_host;
469         dma_addr_t rx_dma_handle_card;
470         void *tx_dma_handle_host;
471         dma_addr_t tx_dma_handle_card;
472         struct sk_buff *dma_skb_rx;
473         struct fst_port_info *dma_port_rx;
474         struct fst_port_info *dma_port_tx;
475         int dma_len_rx;
476         int dma_len_tx;
477         int dma_txpos;
478         int dma_rxpos;
479 };
480
481 /* Convert an HDLC device pointer into a port info pointer and similar */
482 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
483 #define port_to_dev(P)  ((P)->dev)
484
485
486 /*
487  *      Shared memory window access macros
488  *
489  *      We have a nice memory based structure above, which could be directly
490  *      mapped on i386 but might not work on other architectures unless we use
491  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
492  *      physical offsets so we have to convert. The only saving grace is that
493  *      this should all collapse back to a simple indirection eventually.
494  */
495 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
496
497 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
498 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
500
501 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
502 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
504
505 /*
506  *      Debug support
507  */
508 #if FST_DEBUG
509
510 static int fst_debug_mask = { FST_DEBUG };
511
512 /* Most common debug activity is to print something if the corresponding bit
513  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
514  * support variable numbers of macro parameters. The inverted if prevents us
515  * eating someone else's else clause.
516  */
517 #define dbg(F, fmt, args...)                                    \
518 do {                                                            \
519         if (fst_debug_mask & (F))                               \
520                 printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
521 } while (0)
522 #else
523 #define dbg(F, fmt, args...)                                    \
524 do {                                                            \
525         if (0)                                                  \
526                 printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
527 } while (0)
528 #endif
529
530 /*
531  *      PCI ID lookup table
532  */
533 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
534         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
535          PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536
537         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
538          PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539
540         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
541          PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542
543         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
544          PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545
546         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
547          PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548
549         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
550          PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551
552         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
553          PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554         {0,}                    /* End */
555 };
556
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558
559 /*
560  *      Device Driver Work Queues
561  *
562  *      So that we don't spend too much time processing events in the 
563  *      Interrupt Service routine, we will declare a work queue per Card 
564  *      and make the ISR schedule a task in the queue for later execution.
565  *      In the 2.4 Kernel we used to use the immediate queue for BH's
566  *      Now that they are gone, tasklets seem to be much better than work 
567  *      queues.
568  */
569
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
574
575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577
578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 static spinlock_t fst_work_q_lock;
580 static u64 fst_work_txq;
581 static u64 fst_work_intq;
582
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
585 {
586         unsigned long flags;
587         u64 mask;
588
589         /*
590          * Grab the queue exclusively
591          */
592         spin_lock_irqsave(&fst_work_q_lock, flags);
593
594         /*
595          * Making an entry in the queue is simply a matter of setting
596          * a bit for the card indicating that there is work to do in the
597          * bottom half for the card.  Note the limitation of 64 cards.
598          * That ought to be enough
599          */
600         mask = (u64)1 << card_index;
601         *queue |= mask;
602         spin_unlock_irqrestore(&fst_work_q_lock, flags);
603 }
604
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
607 {
608         unsigned long flags;
609         u64 work_txq;
610         int i;
611
612         /*
613          * Grab the queue exclusively
614          */
615         dbg(DBG_TX, "fst_process_tx_work_q\n");
616         spin_lock_irqsave(&fst_work_q_lock, flags);
617         work_txq = fst_work_txq;
618         fst_work_txq = 0;
619         spin_unlock_irqrestore(&fst_work_q_lock, flags);
620
621         /*
622          * Call the bottom half for each card with work waiting
623          */
624         for (i = 0; i < FST_MAX_CARDS; i++) {
625                 if (work_txq & 0x01) {
626                         if (fst_card_array[i] != NULL) {
627                                 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628                                 do_bottom_half_tx(fst_card_array[i]);
629                         }
630                 }
631                 work_txq = work_txq >> 1;
632         }
633 }
634
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
637 {
638         unsigned long flags;
639         u64 work_intq;
640         int i;
641
642         /*
643          * Grab the queue exclusively
644          */
645         dbg(DBG_INTR, "fst_process_int_work_q\n");
646         spin_lock_irqsave(&fst_work_q_lock, flags);
647         work_intq = fst_work_intq;
648         fst_work_intq = 0;
649         spin_unlock_irqrestore(&fst_work_q_lock, flags);
650
651         /*
652          * Call the bottom half for each card with work waiting
653          */
654         for (i = 0; i < FST_MAX_CARDS; i++) {
655                 if (work_intq & 0x01) {
656                         if (fst_card_array[i] != NULL) {
657                                 dbg(DBG_INTR,
658                                     "Calling rx & tx bh for card %d\n", i);
659                                 do_bottom_half_rx(fst_card_array[i]);
660                                 do_bottom_half_tx(fst_card_array[i]);
661                         }
662                 }
663                 work_intq = work_intq >> 1;
664         }
665 }
666
667 /*      Card control functions
668  *      ======================
669  */
670 /*      Place the processor in reset state
671  *
672  * Used to be a simple write to card control space but a glitch in the latest
673  * AMD Am186CH processor means that we now have to do it by asserting and de-
674  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675  * at offset 9052_CNTRL.  Note the updates for the TXU.
676  */
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
679 {
680         unsigned char interrupt_line_register;
681         unsigned long j = jiffies + 1;
682         unsigned int regval;
683
684         if (card->family == FST_FAMILY_TXU) {
685                 if (pci_read_config_byte
686                     (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687                         dbg(DBG_ASS,
688                             "Error in reading interrupt line register\n");
689                 }
690                 /*
691                  * Assert PLX software reset and Am186 hardware reset
692                  * and then deassert the PLX software reset but 186 still in reset
693                  */
694                 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696                 /*
697                  * We are delaying here to allow the 9054 to reset itself
698                  */
699                 j = jiffies + 1;
700                 while (jiffies < j)
701                         /* Do nothing */ ;
702                 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703                 /*
704                  * We are delaying here to allow the 9054 to reload its eeprom
705                  */
706                 j = jiffies + 1;
707                 while (jiffies < j)
708                         /* Do nothing */ ;
709                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710
711                 if (pci_write_config_byte
712                     (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713                         dbg(DBG_ASS,
714                             "Error in writing interrupt line register\n");
715                 }
716
717         } else {
718                 regval = inl(card->pci_conf + CNTRL_9052);
719
720                 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721                 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722         }
723 }
724
725 /*      Release the processor from reset
726  */
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
729 {
730         if (card->family == FST_FAMILY_TXU) {
731                 /*
732                  * Force posted writes to complete
733                  */
734                 (void) readb(card->mem);
735
736                 /*
737                  * Release LRESET DO = 1
738                  * Then release Local Hold, DO = 1
739                  */
740                 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742         } else {
743                 (void) readb(card->ctlmem);
744         }
745 }
746
747 /*      Clear the cards interrupt flag
748  */
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
751 {
752         if (card->family == FST_FAMILY_TXU) {
753                 (void) readb(card->ctlmem);
754         } else {
755                 /* Poke the appropriate PLX chip register (same as enabling interrupts)
756                  */
757                 outw(0x0543, card->pci_conf + INTCSR_9052);
758         }
759 }
760
761 /*      Enable card interrupts
762  */
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
765 {
766         if (card->family == FST_FAMILY_TXU) {
767                 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768         } else {
769                 outw(0x0543, card->pci_conf + INTCSR_9052);
770         }
771 }
772
773 /*      Disable card interrupts
774  */
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
777 {
778         if (card->family == FST_FAMILY_TXU) {
779                 outl(0x00000000, card->pci_conf + INTCSR_9054);
780         } else {
781                 outw(0x0000, card->pci_conf + INTCSR_9052);
782         }
783 }
784
785 /*      Process the result of trying to pass a received frame up the stack
786  */
787 static void
788 fst_process_rx_status(int rx_status, char *name)
789 {
790         switch (rx_status) {
791         case NET_RX_SUCCESS:
792                 {
793                         /*
794                          * Nothing to do here
795                          */
796                         break;
797                 }
798         case NET_RX_DROP:
799                 {
800                         dbg(DBG_ASS, "%s: Received packet dropped\n", name);
801                         break;
802                 }
803         }
804 }
805
806 /*      Initilaise DMA for PLX 9054
807  */
808 static inline void
809 fst_init_dma(struct fst_card_info *card)
810 {
811         /*
812          * This is only required for the PLX 9054
813          */
814         if (card->family == FST_FAMILY_TXU) {
815                 pci_set_master(card->device);
816                 outl(0x00020441, card->pci_conf + DMAMODE0);
817                 outl(0x00020441, card->pci_conf + DMAMODE1);
818                 outl(0x0, card->pci_conf + DMATHR);
819         }
820 }
821
822 /*      Tx dma complete interrupt
823  */
824 static void
825 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826                     int len, int txpos)
827 {
828         struct net_device *dev = port_to_dev(port);
829
830         /*
831          * Everything is now set, just tell the card to go
832          */
833         dbg(DBG_TX, "fst_tx_dma_complete\n");
834         FST_WRB(card, txDescrRing[port->index][txpos].bits,
835                 DMA_OWN | TX_STP | TX_ENP);
836         dev->stats.tx_packets++;
837         dev->stats.tx_bytes += len;
838         dev->trans_start = jiffies;
839 }
840
841 /*
842  * Mark it for our own raw sockets interface
843  */
844 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
845 {
846         skb->dev = dev;
847         skb_reset_mac_header(skb);
848         skb->pkt_type = PACKET_HOST;
849         return htons(ETH_P_CUST);
850 }
851
852 /*      Rx dma complete interrupt
853  */
854 static void
855 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
856                     int len, struct sk_buff *skb, int rxp)
857 {
858         struct net_device *dev = port_to_dev(port);
859         int pi;
860         int rx_status;
861
862         dbg(DBG_TX, "fst_rx_dma_complete\n");
863         pi = port->index;
864         memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
865
866         /* Reset buffer descriptor */
867         FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
868
869         /* Update stats */
870         dev->stats.rx_packets++;
871         dev->stats.rx_bytes += len;
872
873         /* Push upstream */
874         dbg(DBG_RX, "Pushing the frame up the stack\n");
875         if (port->mode == FST_RAW)
876                 skb->protocol = farsync_type_trans(skb, dev);
877         else
878                 skb->protocol = hdlc_type_trans(skb, dev);
879         rx_status = netif_rx(skb);
880         fst_process_rx_status(rx_status, port_to_dev(port)->name);
881         if (rx_status == NET_RX_DROP)
882                 dev->stats.rx_dropped++;
883 }
884
885 /*
886  *      Receive a frame through the DMA
887  */
888 static inline void
889 fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
890            dma_addr_t mem, int len)
891 {
892         /*
893          * This routine will setup the DMA and start it
894          */
895
896         dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
897             (unsigned long) skb, (unsigned long) mem, len);
898         if (card->dmarx_in_progress) {
899                 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
900         }
901
902         outl(skb, card->pci_conf + DMAPADR0);   /* Copy to here */
903         outl(mem, card->pci_conf + DMALADR0);   /* from here */
904         outl(len, card->pci_conf + DMASIZ0);    /* for this length */
905         outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
906
907         /*
908          * We use the dmarx_in_progress flag to flag the channel as busy
909          */
910         card->dmarx_in_progress = 1;
911         outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
912 }
913
914 /*
915  *      Send a frame through the DMA
916  */
917 static inline void
918 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
919            unsigned char *mem, int len)
920 {
921         /*
922          * This routine will setup the DMA and start it.
923          */
924
925         dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
926         if (card->dmatx_in_progress) {
927                 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
928         }
929
930         outl((unsigned long) skb, card->pci_conf + DMAPADR1);   /* Copy from here */
931         outl((unsigned long) mem, card->pci_conf + DMALADR1);   /* to here */
932         outl(len, card->pci_conf + DMASIZ1);    /* for this length */
933         outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
934
935         /*
936          * We use the dmatx_in_progress to flag the channel as busy
937          */
938         card->dmatx_in_progress = 1;
939         outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
940 }
941
942 /*      Issue a Mailbox command for a port.
943  *      Note we issue them on a fire and forget basis, not expecting to see an
944  *      error and not waiting for completion.
945  */
946 static void
947 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
948 {
949         struct fst_card_info *card;
950         unsigned short mbval;
951         unsigned long flags;
952         int safety;
953
954         card = port->card;
955         spin_lock_irqsave(&card->card_lock, flags);
956         mbval = FST_RDW(card, portMailbox[port->index][0]);
957
958         safety = 0;
959         /* Wait for any previous command to complete */
960         while (mbval > NAK) {
961                 spin_unlock_irqrestore(&card->card_lock, flags);
962                 schedule_timeout_uninterruptible(1);
963                 spin_lock_irqsave(&card->card_lock, flags);
964
965                 if (++safety > 2000) {
966                         pr_err("Mailbox safety timeout\n");
967                         break;
968                 }
969
970                 mbval = FST_RDW(card, portMailbox[port->index][0]);
971         }
972         if (safety > 0) {
973                 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
974         }
975         if (mbval == NAK) {
976                 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
977         }
978
979         FST_WRW(card, portMailbox[port->index][0], cmd);
980
981         if (cmd == ABORTTX || cmd == STARTPORT) {
982                 port->txpos = 0;
983                 port->txipos = 0;
984                 port->start = 0;
985         }
986
987         spin_unlock_irqrestore(&card->card_lock, flags);
988 }
989
990 /*      Port output signals control
991  */
992 static inline void
993 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
994 {
995         outputs |= FST_RDL(port->card, v24OpSts[port->index]);
996         FST_WRL(port->card, v24OpSts[port->index], outputs);
997
998         if (port->run)
999                 fst_issue_cmd(port, SETV24O);
1000 }
1001
1002 static inline void
1003 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004 {
1005         outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006         FST_WRL(port->card, v24OpSts[port->index], outputs);
1007
1008         if (port->run)
1009                 fst_issue_cmd(port, SETV24O);
1010 }
1011
1012 /*
1013  *      Setup port Rx buffers
1014  */
1015 static void
1016 fst_rx_config(struct fst_port_info *port)
1017 {
1018         int i;
1019         int pi;
1020         unsigned int offset;
1021         unsigned long flags;
1022         struct fst_card_info *card;
1023
1024         pi = port->index;
1025         card = port->card;
1026         spin_lock_irqsave(&card->card_lock, flags);
1027         for (i = 0; i < NUM_RX_BUFFER; i++) {
1028                 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029
1030                 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031                 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032                 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033                 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034                 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035         }
1036         port->rxpos = 0;
1037         spin_unlock_irqrestore(&card->card_lock, flags);
1038 }
1039
1040 /*
1041  *      Setup port Tx buffers
1042  */
1043 static void
1044 fst_tx_config(struct fst_port_info *port)
1045 {
1046         int i;
1047         int pi;
1048         unsigned int offset;
1049         unsigned long flags;
1050         struct fst_card_info *card;
1051
1052         pi = port->index;
1053         card = port->card;
1054         spin_lock_irqsave(&card->card_lock, flags);
1055         for (i = 0; i < NUM_TX_BUFFER; i++) {
1056                 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057
1058                 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059                 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060                 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061                 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062         }
1063         port->txpos = 0;
1064         port->txipos = 0;
1065         port->start = 0;
1066         spin_unlock_irqrestore(&card->card_lock, flags);
1067 }
1068
1069 /*      TE1 Alarm change interrupt event
1070  */
1071 static void
1072 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073 {
1074         u8 los;
1075         u8 rra;
1076         u8 ais;
1077
1078         los = FST_RDB(card, suStatus.lossOfSignal);
1079         rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080         ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081
1082         if (los) {
1083                 /*
1084                  * Lost the link
1085                  */
1086                 if (netif_carrier_ok(port_to_dev(port))) {
1087                         dbg(DBG_INTR, "Net carrier off\n");
1088                         netif_carrier_off(port_to_dev(port));
1089                 }
1090         } else {
1091                 /*
1092                  * Link available
1093                  */
1094                 if (!netif_carrier_ok(port_to_dev(port))) {
1095                         dbg(DBG_INTR, "Net carrier on\n");
1096                         netif_carrier_on(port_to_dev(port));
1097                 }
1098         }
1099
1100         if (los)
1101                 dbg(DBG_INTR, "Assert LOS Alarm\n");
1102         else
1103                 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104         if (rra)
1105                 dbg(DBG_INTR, "Assert RRA Alarm\n");
1106         else
1107                 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108
1109         if (ais)
1110                 dbg(DBG_INTR, "Assert AIS Alarm\n");
1111         else
1112                 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113 }
1114
1115 /*      Control signal change interrupt event
1116  */
1117 static void
1118 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119 {
1120         int signals;
1121
1122         signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123
1124         if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125                        ? IPSTS_INDICATE : IPSTS_DCD)) {
1126                 if (!netif_carrier_ok(port_to_dev(port))) {
1127                         dbg(DBG_INTR, "DCD active\n");
1128                         netif_carrier_on(port_to_dev(port));
1129                 }
1130         } else {
1131                 if (netif_carrier_ok(port_to_dev(port))) {
1132                         dbg(DBG_INTR, "DCD lost\n");
1133                         netif_carrier_off(port_to_dev(port));
1134                 }
1135         }
1136 }
1137
1138 /*      Log Rx Errors
1139  */
1140 static void
1141 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142                  unsigned char dmabits, int rxp, unsigned short len)
1143 {
1144         struct net_device *dev = port_to_dev(port);
1145
1146         /*
1147          * Increment the appropriate error counter
1148          */
1149         dev->stats.rx_errors++;
1150         if (dmabits & RX_OFLO) {
1151                 dev->stats.rx_fifo_errors++;
1152                 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153                     card->card_no, port->index, rxp);
1154         }
1155         if (dmabits & RX_CRC) {
1156                 dev->stats.rx_crc_errors++;
1157                 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158                     card->card_no, port->index);
1159         }
1160         if (dmabits & RX_FRAM) {
1161                 dev->stats.rx_frame_errors++;
1162                 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163                     card->card_no, port->index);
1164         }
1165         if (dmabits == (RX_STP | RX_ENP)) {
1166                 dev->stats.rx_length_errors++;
1167                 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168                     len, card->card_no, port->index);
1169         }
1170 }
1171
1172 /*      Rx Error Recovery
1173  */
1174 static void
1175 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176                      unsigned char dmabits, int rxp, unsigned short len)
1177 {
1178         int i;
1179         int pi;
1180
1181         pi = port->index;
1182         /* 
1183          * Discard buffer descriptors until we see the start of the
1184          * next frame.  Note that for long frames this could be in
1185          * a subsequent interrupt. 
1186          */
1187         i = 0;
1188         while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190                 rxp = (rxp+1) % NUM_RX_BUFFER;
1191                 if (++i > NUM_RX_BUFFER) {
1192                         dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193                             " than we have\n");
1194                         break;
1195                 }
1196                 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197                 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198         }
1199         dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200
1201         /* Discard the terminal buffer */
1202         if (!(dmabits & DMA_OWN)) {
1203                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204                 rxp = (rxp+1) % NUM_RX_BUFFER;
1205         }
1206         port->rxpos = rxp;
1207         return;
1208
1209 }
1210
1211 /*      Rx complete interrupt
1212  */
1213 static void
1214 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215 {
1216         unsigned char dmabits;
1217         int pi;
1218         int rxp;
1219         int rx_status;
1220         unsigned short len;
1221         struct sk_buff *skb;
1222         struct net_device *dev = port_to_dev(port);
1223
1224         /* Check we have a buffer to process */
1225         pi = port->index;
1226         rxp = port->rxpos;
1227         dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228         if (dmabits & DMA_OWN) {
1229                 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230                     pi, rxp);
1231                 return;
1232         }
1233         if (card->dmarx_in_progress) {
1234                 return;
1235         }
1236
1237         /* Get buffer length */
1238         len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239         /* Discard the CRC */
1240         len -= 2;
1241         if (len == 0) {
1242                 /*
1243                  * This seems to happen on the TE1 interface sometimes
1244                  * so throw the frame away and log the event.
1245                  */
1246                 pr_err("Frame received with 0 length. Card %d Port %d\n",
1247                        card->card_no, port->index);
1248                 /* Return descriptor to card */
1249                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250
1251                 rxp = (rxp+1) % NUM_RX_BUFFER;
1252                 port->rxpos = rxp;
1253                 return;
1254         }
1255
1256         /* Check buffer length and for other errors. We insist on one packet
1257          * in one buffer. This simplifies things greatly and since we've
1258          * allocated 8K it shouldn't be a real world limitation
1259          */
1260         dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261         if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262                 fst_log_rx_error(card, port, dmabits, rxp, len);
1263                 fst_recover_rx_error(card, port, dmabits, rxp, len);
1264                 return;
1265         }
1266
1267         /* Allocate SKB */
1268         if ((skb = dev_alloc_skb(len)) == NULL) {
1269                 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270
1271                 dev->stats.rx_dropped++;
1272
1273                 /* Return descriptor to card */
1274                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275
1276                 rxp = (rxp+1) % NUM_RX_BUFFER;
1277                 port->rxpos = rxp;
1278                 return;
1279         }
1280
1281         /*
1282          * We know the length we need to receive, len.
1283          * It's not worth using the DMA for reads of less than
1284          * FST_MIN_DMA_LEN
1285          */
1286
1287         if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288                 memcpy_fromio(skb_put(skb, len),
1289                               card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290                               len);
1291
1292                 /* Reset buffer descriptor */
1293                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294
1295                 /* Update stats */
1296                 dev->stats.rx_packets++;
1297                 dev->stats.rx_bytes += len;
1298
1299                 /* Push upstream */
1300                 dbg(DBG_RX, "Pushing frame up the stack\n");
1301                 if (port->mode == FST_RAW)
1302                         skb->protocol = farsync_type_trans(skb, dev);
1303                 else
1304                         skb->protocol = hdlc_type_trans(skb, dev);
1305                 rx_status = netif_rx(skb);
1306                 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307                 if (rx_status == NET_RX_DROP)
1308                         dev->stats.rx_dropped++;
1309         } else {
1310                 card->dma_skb_rx = skb;
1311                 card->dma_port_rx = port;
1312                 card->dma_len_rx = len;
1313                 card->dma_rxpos = rxp;
1314                 fst_rx_dma(card, card->rx_dma_handle_card,
1315                            BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316         }
1317         if (rxp != port->rxpos) {
1318                 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319                 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320         }
1321         rxp = (rxp+1) % NUM_RX_BUFFER;
1322         port->rxpos = rxp;
1323 }
1324
1325 /*
1326  *      The bottom halfs to the ISR
1327  *
1328  */
1329
1330 static void
1331 do_bottom_half_tx(struct fst_card_info *card)
1332 {
1333         struct fst_port_info *port;
1334         int pi;
1335         int txq_length;
1336         struct sk_buff *skb;
1337         unsigned long flags;
1338         struct net_device *dev;
1339
1340         /*
1341          *  Find a free buffer for the transmit
1342          *  Step through each port on this card
1343          */
1344
1345         dbg(DBG_TX, "do_bottom_half_tx\n");
1346         for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347                 if (!port->run)
1348                         continue;
1349
1350                 dev = port_to_dev(port);
1351                 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352                          DMA_OWN) &&
1353                        !(card->dmatx_in_progress)) {
1354                         /*
1355                          * There doesn't seem to be a txdone event per-se
1356                          * We seem to have to deduce it, by checking the DMA_OWN
1357                          * bit on the next buffer we think we can use
1358                          */
1359                         spin_lock_irqsave(&card->card_lock, flags);
1360                         if ((txq_length = port->txqe - port->txqs) < 0) {
1361                                 /*
1362                                  * This is the case where one has wrapped and the
1363                                  * maths gives us a negative number
1364                                  */
1365                                 txq_length = txq_length + FST_TXQ_DEPTH;
1366                         }
1367                         spin_unlock_irqrestore(&card->card_lock, flags);
1368                         if (txq_length > 0) {
1369                                 /*
1370                                  * There is something to send
1371                                  */
1372                                 spin_lock_irqsave(&card->card_lock, flags);
1373                                 skb = port->txq[port->txqs];
1374                                 port->txqs++;
1375                                 if (port->txqs == FST_TXQ_DEPTH) {
1376                                         port->txqs = 0;
1377                                 }
1378                                 spin_unlock_irqrestore(&card->card_lock, flags);
1379                                 /*
1380                                  * copy the data and set the required indicators on the
1381                                  * card.
1382                                  */
1383                                 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384                                         cnv_bcnt(skb->len));
1385                                 if ((skb->len < FST_MIN_DMA_LEN) ||
1386                                     (card->family == FST_FAMILY_TXP)) {
1387                                         /* Enqueue the packet with normal io */
1388                                         memcpy_toio(card->mem +
1389                                                     BUF_OFFSET(txBuffer[pi]
1390                                                                [port->
1391                                                                 txpos][0]),
1392                                                     skb->data, skb->len);
1393                                         FST_WRB(card,
1394                                                 txDescrRing[pi][port->txpos].
1395                                                 bits,
1396                                                 DMA_OWN | TX_STP | TX_ENP);
1397                                         dev->stats.tx_packets++;
1398                                         dev->stats.tx_bytes += skb->len;
1399                                         dev->trans_start = jiffies;
1400                                 } else {
1401                                         /* Or do it through dma */
1402                                         memcpy(card->tx_dma_handle_host,
1403                                                skb->data, skb->len);
1404                                         card->dma_port_tx = port;
1405                                         card->dma_len_tx = skb->len;
1406                                         card->dma_txpos = port->txpos;
1407                                         fst_tx_dma(card,
1408                                                    (char *) card->
1409                                                    tx_dma_handle_card,
1410                                                    (char *)
1411                                                    BUF_OFFSET(txBuffer[pi]
1412                                                               [port->txpos][0]),
1413                                                    skb->len);
1414                                 }
1415                                 if (++port->txpos >= NUM_TX_BUFFER)
1416                                         port->txpos = 0;
1417                                 /*
1418                                  * If we have flow control on, can we now release it?
1419                                  */
1420                                 if (port->start) {
1421                                         if (txq_length < fst_txq_low) {
1422                                                 netif_wake_queue(port_to_dev
1423                                                                  (port));
1424                                                 port->start = 0;
1425                                         }
1426                                 }
1427                                 dev_kfree_skb(skb);
1428                         } else {
1429                                 /*
1430                                  * Nothing to send so break out of the while loop
1431                                  */
1432                                 break;
1433                         }
1434                 }
1435         }
1436 }
1437
1438 static void
1439 do_bottom_half_rx(struct fst_card_info *card)
1440 {
1441         struct fst_port_info *port;
1442         int pi;
1443         int rx_count = 0;
1444
1445         /* Check for rx completions on all ports on this card */
1446         dbg(DBG_RX, "do_bottom_half_rx\n");
1447         for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448                 if (!port->run)
1449                         continue;
1450
1451                 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452                          & DMA_OWN) && !(card->dmarx_in_progress)) {
1453                         if (rx_count > fst_max_reads) {
1454                                 /*
1455                                  * Don't spend forever in receive processing
1456                                  * Schedule another event
1457                                  */
1458                                 fst_q_work_item(&fst_work_intq, card->card_no);
1459                                 tasklet_schedule(&fst_int_task);
1460                                 break;  /* Leave the loop */
1461                         }
1462                         fst_intr_rx(card, port);
1463                         rx_count++;
1464                 }
1465         }
1466 }
1467
1468 /*
1469  *      The interrupt service routine
1470  *      Dev_id is our fst_card_info pointer
1471  */
1472 static irqreturn_t
1473 fst_intr(int dummy, void *dev_id)
1474 {
1475         struct fst_card_info *card = dev_id;
1476         struct fst_port_info *port;
1477         int rdidx;              /* Event buffer indices */
1478         int wridx;
1479         int event;              /* Actual event for processing */
1480         unsigned int dma_intcsr = 0;
1481         unsigned int do_card_interrupt;
1482         unsigned int int_retry_count;
1483
1484         /*
1485          * Check to see if the interrupt was for this card
1486          * return if not
1487          * Note that the call to clear the interrupt is important
1488          */
1489         dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490         if (card->state != FST_RUNNING) {
1491                 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492                        card->card_no, card->state);
1493
1494                 /* 
1495                  * It is possible to really be running, i.e. we have re-loaded
1496                  * a running card
1497                  * Clear and reprime the interrupt source 
1498                  */
1499                 fst_clear_intr(card);
1500                 return IRQ_HANDLED;
1501         }
1502
1503         /* Clear and reprime the interrupt source */
1504         fst_clear_intr(card);
1505
1506         /*
1507          * Is the interrupt for this card (handshake == 1)
1508          */
1509         do_card_interrupt = 0;
1510         if (FST_RDB(card, interruptHandshake) == 1) {
1511                 do_card_interrupt += FST_CARD_INT;
1512                 /* Set the software acknowledge */
1513                 FST_WRB(card, interruptHandshake, 0xEE);
1514         }
1515         if (card->family == FST_FAMILY_TXU) {
1516                 /*
1517                  * Is it a DMA Interrupt
1518                  */
1519                 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520                 if (dma_intcsr & 0x00200000) {
1521                         /*
1522                          * DMA Channel 0 (Rx transfer complete)
1523                          */
1524                         dbg(DBG_RX, "DMA Rx xfer complete\n");
1525                         outb(0x8, card->pci_conf + DMACSR0);
1526                         fst_rx_dma_complete(card, card->dma_port_rx,
1527                                             card->dma_len_rx, card->dma_skb_rx,
1528                                             card->dma_rxpos);
1529                         card->dmarx_in_progress = 0;
1530                         do_card_interrupt += FST_RX_DMA_INT;
1531                 }
1532                 if (dma_intcsr & 0x00400000) {
1533                         /*
1534                          * DMA Channel 1 (Tx transfer complete)
1535                          */
1536                         dbg(DBG_TX, "DMA Tx xfer complete\n");
1537                         outb(0x8, card->pci_conf + DMACSR1);
1538                         fst_tx_dma_complete(card, card->dma_port_tx,
1539                                             card->dma_len_tx, card->dma_txpos);
1540                         card->dmatx_in_progress = 0;
1541                         do_card_interrupt += FST_TX_DMA_INT;
1542                 }
1543         }
1544
1545         /*
1546          * Have we been missing Interrupts
1547          */
1548         int_retry_count = FST_RDL(card, interruptRetryCount);
1549         if (int_retry_count) {
1550                 dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1551                     card->card_no, int_retry_count);
1552                 FST_WRL(card, interruptRetryCount, 0);
1553         }
1554
1555         if (!do_card_interrupt) {
1556                 return IRQ_HANDLED;
1557         }
1558
1559         /* Scehdule the bottom half of the ISR */
1560         fst_q_work_item(&fst_work_intq, card->card_no);
1561         tasklet_schedule(&fst_int_task);
1562
1563         /* Drain the event queue */
1564         rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565         wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566         while (rdidx != wridx) {
1567                 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568                 port = &card->ports[event & 0x03];
1569
1570                 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571
1572                 switch (event) {
1573                 case TE1_ALMA:
1574                         dbg(DBG_INTR, "TE1 Alarm intr\n");
1575                         if (port->run)
1576                                 fst_intr_te1_alarm(card, port);
1577                         break;
1578
1579                 case CTLA_CHG:
1580                 case CTLB_CHG:
1581                 case CTLC_CHG:
1582                 case CTLD_CHG:
1583                         if (port->run)
1584                                 fst_intr_ctlchg(card, port);
1585                         break;
1586
1587                 case ABTA_SENT:
1588                 case ABTB_SENT:
1589                 case ABTC_SENT:
1590                 case ABTD_SENT:
1591                         dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592                         break;
1593
1594                 case TXA_UNDF:
1595                 case TXB_UNDF:
1596                 case TXC_UNDF:
1597                 case TXD_UNDF:
1598                         /* Difficult to see how we'd get this given that we
1599                          * always load up the entire packet for DMA.
1600                          */
1601                         dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602                         port_to_dev(port)->stats.tx_errors++;
1603                         port_to_dev(port)->stats.tx_fifo_errors++;
1604                         dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605                             card->card_no, port->index);
1606                         break;
1607
1608                 case INIT_CPLT:
1609                         dbg(DBG_INIT, "Card init OK intr\n");
1610                         break;
1611
1612                 case INIT_FAIL:
1613                         dbg(DBG_INIT, "Card init FAILED intr\n");
1614                         card->state = FST_IFAILED;
1615                         break;
1616
1617                 default:
1618                         pr_err("intr: unknown card event %d. ignored\n", event);
1619                         break;
1620                 }
1621
1622                 /* Bump and wrap the index */
1623                 if (++rdidx >= MAX_CIRBUFF)
1624                         rdidx = 0;
1625         }
1626         FST_WRB(card, interruptEvent.rdindex, rdidx);
1627         return IRQ_HANDLED;
1628 }
1629
1630 /*      Check that the shared memory configuration is one that we can handle
1631  *      and that some basic parameters are correct
1632  */
1633 static void
1634 check_started_ok(struct fst_card_info *card)
1635 {
1636         int i;
1637
1638         /* Check structure version and end marker */
1639         if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640                 pr_err("Bad shared memory version %d expected %d\n",
1641                        FST_RDW(card, smcVersion), SMC_VERSION);
1642                 card->state = FST_BADVERSION;
1643                 return;
1644         }
1645         if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646                 pr_err("Missing shared memory signature\n");
1647                 card->state = FST_BADVERSION;
1648                 return;
1649         }
1650         /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651         if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652                 card->state = FST_RUNNING;
1653         } else if (i == 0xFF) {
1654                 pr_err("Firmware initialisation failed. Card halted\n");
1655                 card->state = FST_HALTED;
1656                 return;
1657         } else if (i != 0x00) {
1658                 pr_err("Unknown firmware status 0x%x\n", i);
1659                 card->state = FST_HALTED;
1660                 return;
1661         }
1662
1663         /* Finally check the number of ports reported by firmware against the
1664          * number we assumed at card detection. Should never happen with
1665          * existing firmware etc so we just report it for the moment.
1666          */
1667         if (FST_RDL(card, numberOfPorts) != card->nports) {
1668                 pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1669                         card->card_no,
1670                         FST_RDL(card, numberOfPorts), card->nports);
1671         }
1672 }
1673
1674 static int
1675 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676                    struct fstioc_info *info)
1677 {
1678         int err;
1679         unsigned char my_framing;
1680
1681         /* Set things according to the user set valid flags 
1682          * Several of the old options have been invalidated/replaced by the 
1683          * generic hdlc package.
1684          */
1685         err = 0;
1686         if (info->valid & FSTVAL_PROTO) {
1687                 if (info->proto == FST_RAW)
1688                         port->mode = FST_RAW;
1689                 else
1690                         port->mode = FST_GEN_HDLC;
1691         }
1692
1693         if (info->valid & FSTVAL_CABLE)
1694                 err = -EINVAL;
1695
1696         if (info->valid & FSTVAL_SPEED)
1697                 err = -EINVAL;
1698
1699         if (info->valid & FSTVAL_PHASE)
1700                 FST_WRB(card, portConfig[port->index].invertClock,
1701                         info->invertClock);
1702         if (info->valid & FSTVAL_MODE)
1703                 FST_WRW(card, cardMode, info->cardMode);
1704         if (info->valid & FSTVAL_TE1) {
1705                 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706                 FST_WRB(card, suConfig.clocking, info->clockSource);
1707                 my_framing = FRAMING_E1;
1708                 if (info->framing == E1)
1709                         my_framing = FRAMING_E1;
1710                 if (info->framing == T1)
1711                         my_framing = FRAMING_T1;
1712                 if (info->framing == J1)
1713                         my_framing = FRAMING_J1;
1714                 FST_WRB(card, suConfig.framing, my_framing);
1715                 FST_WRB(card, suConfig.structure, info->structure);
1716                 FST_WRB(card, suConfig.interface, info->interface);
1717                 FST_WRB(card, suConfig.coding, info->coding);
1718                 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719                 FST_WRB(card, suConfig.equalizer, info->equalizer);
1720                 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721                 FST_WRB(card, suConfig.loopMode, info->loopMode);
1722                 FST_WRB(card, suConfig.range, info->range);
1723                 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724                 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725                 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726                 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727                 if (info->idleCode)
1728                         FST_WRB(card, suConfig.enableIdleCode, 1);
1729                 else
1730                         FST_WRB(card, suConfig.enableIdleCode, 0);
1731                 FST_WRB(card, suConfig.idleCode, info->idleCode);
1732 #if FST_DEBUG
1733                 if (info->valid & FSTVAL_TE1) {
1734                         printk("Setting TE1 data\n");
1735                         printk("Line Speed = %d\n", info->lineSpeed);
1736                         printk("Start slot = %d\n", info->startingSlot);
1737                         printk("Clock source = %d\n", info->clockSource);
1738                         printk("Framing = %d\n", my_framing);
1739                         printk("Structure = %d\n", info->structure);
1740                         printk("interface = %d\n", info->interface);
1741                         printk("Coding = %d\n", info->coding);
1742                         printk("Line build out = %d\n", info->lineBuildOut);
1743                         printk("Equaliser = %d\n", info->equalizer);
1744                         printk("Transparent mode = %d\n",
1745                                info->transparentMode);
1746                         printk("Loop mode = %d\n", info->loopMode);
1747                         printk("Range = %d\n", info->range);
1748                         printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749                         printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750                         printk("LOS Threshold = %d\n", info->losThreshold);
1751                         printk("Idle Code = %d\n", info->idleCode);
1752                 }
1753 #endif
1754         }
1755 #if FST_DEBUG
1756         if (info->valid & FSTVAL_DEBUG) {
1757                 fst_debug_mask = info->debug;
1758         }
1759 #endif
1760
1761         return err;
1762 }
1763
1764 static void
1765 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766                  struct fstioc_info *info)
1767 {
1768         int i;
1769
1770         memset(info, 0, sizeof (struct fstioc_info));
1771
1772         i = port->index;
1773         info->kernelVersion = LINUX_VERSION_CODE;
1774         info->nports = card->nports;
1775         info->type = card->type;
1776         info->state = card->state;
1777         info->proto = FST_GEN_HDLC;
1778         info->index = i;
1779 #if FST_DEBUG
1780         info->debug = fst_debug_mask;
1781 #endif
1782
1783         /* Only mark information as valid if card is running.
1784          * Copy the data anyway in case it is useful for diagnostics
1785          */
1786         info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787 #if FST_DEBUG
1788             | FSTVAL_DEBUG
1789 #endif
1790             ;
1791
1792         info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793         info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794         info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795         info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796         info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797         info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798         info->clockStatus = FST_RDW(card, clockStatus[i]);
1799         info->cableStatus = FST_RDW(card, cableStatus);
1800         info->cardMode = FST_RDW(card, cardMode);
1801         info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803         /*
1804          * The T2U can report cable presence for both A or B
1805          * in bits 0 and 1 of cableStatus.  See which port we are and 
1806          * do the mapping.
1807          */
1808         if (card->family == FST_FAMILY_TXU) {
1809                 if (port->index == 0) {
1810                         /*
1811                          * Port A
1812                          */
1813                         info->cableStatus = info->cableStatus & 1;
1814                 } else {
1815                         /*
1816                          * Port B
1817                          */
1818                         info->cableStatus = info->cableStatus >> 1;
1819                         info->cableStatus = info->cableStatus & 1;
1820                 }
1821         }
1822         /*
1823          * Some additional bits if we are TE1
1824          */
1825         if (card->type == FST_TYPE_TE1) {
1826                 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827                 info->clockSource = FST_RDB(card, suConfig.clocking);
1828                 info->framing = FST_RDB(card, suConfig.framing);
1829                 info->structure = FST_RDB(card, suConfig.structure);
1830                 info->interface = FST_RDB(card, suConfig.interface);
1831                 info->coding = FST_RDB(card, suConfig.coding);
1832                 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833                 info->equalizer = FST_RDB(card, suConfig.equalizer);
1834                 info->loopMode = FST_RDB(card, suConfig.loopMode);
1835                 info->range = FST_RDB(card, suConfig.range);
1836                 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837                 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838                 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839                 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840                 if (FST_RDB(card, suConfig.enableIdleCode))
1841                         info->idleCode = FST_RDB(card, suConfig.idleCode);
1842                 else
1843                         info->idleCode = 0;
1844                 info->receiveBufferDelay =
1845                     FST_RDL(card, suStatus.receiveBufferDelay);
1846                 info->framingErrorCount =
1847                     FST_RDL(card, suStatus.framingErrorCount);
1848                 info->codeViolationCount =
1849                     FST_RDL(card, suStatus.codeViolationCount);
1850                 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851                 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852                 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853                 info->receiveRemoteAlarm =
1854                     FST_RDB(card, suStatus.receiveRemoteAlarm);
1855                 info->alarmIndicationSignal =
1856                     FST_RDB(card, suStatus.alarmIndicationSignal);
1857         }
1858 }
1859
1860 static int
1861 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862               struct ifreq *ifr)
1863 {
1864         sync_serial_settings sync;
1865         int i;
1866
1867         if (ifr->ifr_settings.size != sizeof (sync)) {
1868                 return -ENOMEM;
1869         }
1870
1871         if (copy_from_user
1872             (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873                 return -EFAULT;
1874         }
1875
1876         if (sync.loopback)
1877                 return -EINVAL;
1878
1879         i = port->index;
1880
1881         switch (ifr->ifr_settings.type) {
1882         case IF_IFACE_V35:
1883                 FST_WRW(card, portConfig[i].lineInterface, V35);
1884                 port->hwif = V35;
1885                 break;
1886
1887         case IF_IFACE_V24:
1888                 FST_WRW(card, portConfig[i].lineInterface, V24);
1889                 port->hwif = V24;
1890                 break;
1891
1892         case IF_IFACE_X21:
1893                 FST_WRW(card, portConfig[i].lineInterface, X21);
1894                 port->hwif = X21;
1895                 break;
1896
1897         case IF_IFACE_X21D:
1898                 FST_WRW(card, portConfig[i].lineInterface, X21D);
1899                 port->hwif = X21D;
1900                 break;
1901
1902         case IF_IFACE_T1:
1903                 FST_WRW(card, portConfig[i].lineInterface, T1);
1904                 port->hwif = T1;
1905                 break;
1906
1907         case IF_IFACE_E1:
1908                 FST_WRW(card, portConfig[i].lineInterface, E1);
1909                 port->hwif = E1;
1910                 break;
1911
1912         case IF_IFACE_SYNC_SERIAL:
1913                 break;
1914
1915         default:
1916                 return -EINVAL;
1917         }
1918
1919         switch (sync.clock_type) {
1920         case CLOCK_EXT:
1921                 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922                 break;
1923
1924         case CLOCK_INT:
1925                 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926                 break;
1927
1928         default:
1929                 return -EINVAL;
1930         }
1931         FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932         return 0;
1933 }
1934
1935 static int
1936 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937               struct ifreq *ifr)
1938 {
1939         sync_serial_settings sync;
1940         int i;
1941
1942         /* First check what line type is set, we'll default to reporting X.21
1943          * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944          * changed
1945          */
1946         switch (port->hwif) {
1947         case E1:
1948                 ifr->ifr_settings.type = IF_IFACE_E1;
1949                 break;
1950         case T1:
1951                 ifr->ifr_settings.type = IF_IFACE_T1;
1952                 break;
1953         case V35:
1954                 ifr->ifr_settings.type = IF_IFACE_V35;
1955                 break;
1956         case V24:
1957                 ifr->ifr_settings.type = IF_IFACE_V24;
1958                 break;
1959         case X21D:
1960                 ifr->ifr_settings.type = IF_IFACE_X21D;
1961                 break;
1962         case X21:
1963         default:
1964                 ifr->ifr_settings.type = IF_IFACE_X21;
1965                 break;
1966         }
1967         if (ifr->ifr_settings.size == 0) {
1968                 return 0;       /* only type requested */
1969         }
1970         if (ifr->ifr_settings.size < sizeof (sync)) {
1971                 return -ENOMEM;
1972         }
1973
1974         i = port->index;
1975         sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976         /* Lucky card and linux use same encoding here */
1977         sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978             INTCLK ? CLOCK_INT : CLOCK_EXT;
1979         sync.loopback = 0;
1980
1981         if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982                 return -EFAULT;
1983         }
1984
1985         ifr->ifr_settings.size = sizeof (sync);
1986         return 0;
1987 }
1988
1989 static int
1990 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991 {
1992         struct fst_card_info *card;
1993         struct fst_port_info *port;
1994         struct fstioc_write wrthdr;
1995         struct fstioc_info info;
1996         unsigned long flags;
1997         void *buf;
1998
1999         dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001         port = dev_to_port(dev);
2002         card = port->card;
2003
2004         if (!capable(CAP_NET_ADMIN))
2005                 return -EPERM;
2006
2007         switch (cmd) {
2008         case FSTCPURESET:
2009                 fst_cpureset(card);
2010                 card->state = FST_RESET;
2011                 return 0;
2012
2013         case FSTCPURELEASE:
2014                 fst_cpurelease(card);
2015                 card->state = FST_STARTING;
2016                 return 0;
2017
2018         case FSTWRITE:          /* Code write (download) */
2019
2020                 /* First copy in the header with the length and offset of data
2021                  * to write
2022                  */
2023                 if (ifr->ifr_data == NULL) {
2024                         return -EINVAL;
2025                 }
2026                 if (copy_from_user(&wrthdr, ifr->ifr_data,
2027                                    sizeof (struct fstioc_write))) {
2028                         return -EFAULT;
2029                 }
2030
2031                 /* Sanity check the parameters. We don't support partial writes
2032                  * when going over the top
2033                  */
2034                 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035                     wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036                         return -ENXIO;
2037                 }
2038
2039                 /* Now copy the data to the card. */
2040
2041                 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042                                   wrthdr.size);
2043                 if (IS_ERR(buf))
2044                         return PTR_ERR(buf);
2045
2046                 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047                 kfree(buf);
2048
2049                 /* Writes to the memory of a card in the reset state constitute
2050                  * a download
2051                  */
2052                 if (card->state == FST_RESET) {
2053                         card->state = FST_DOWNLOAD;
2054                 }
2055                 return 0;
2056
2057         case FSTGETCONF:
2058
2059                 /* If card has just been started check the shared memory config
2060                  * version and marker
2061                  */
2062                 if (card->state == FST_STARTING) {
2063                         check_started_ok(card);
2064
2065                         /* If everything checked out enable card interrupts */
2066                         if (card->state == FST_RUNNING) {
2067                                 spin_lock_irqsave(&card->card_lock, flags);
2068                                 fst_enable_intr(card);
2069                                 FST_WRB(card, interruptHandshake, 0xEE);
2070                                 spin_unlock_irqrestore(&card->card_lock, flags);
2071                         }
2072                 }
2073
2074                 if (ifr->ifr_data == NULL) {
2075                         return -EINVAL;
2076                 }
2077
2078                 gather_conf_info(card, port, &info);
2079
2080                 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081                         return -EFAULT;
2082                 }
2083                 return 0;
2084
2085         case FSTSETCONF:
2086
2087                 /*
2088                  * Most of the settings have been moved to the generic ioctls
2089                  * this just covers debug and board ident now
2090                  */
2091
2092                 if (card->state != FST_RUNNING) {
2093                         pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094                                card->card_no, card->state);
2095                         return -EIO;
2096                 }
2097                 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098                         return -EFAULT;
2099                 }
2100
2101                 return set_conf_from_info(card, port, &info);
2102
2103         case SIOCWANDEV:
2104                 switch (ifr->ifr_settings.type) {
2105                 case IF_GET_IFACE:
2106                         return fst_get_iface(card, port, ifr);
2107
2108                 case IF_IFACE_SYNC_SERIAL:
2109                 case IF_IFACE_V35:
2110                 case IF_IFACE_V24:
2111                 case IF_IFACE_X21:
2112                 case IF_IFACE_X21D:
2113                 case IF_IFACE_T1:
2114                 case IF_IFACE_E1:
2115                         return fst_set_iface(card, port, ifr);
2116
2117                 case IF_PROTO_RAW:
2118                         port->mode = FST_RAW;
2119                         return 0;
2120
2121                 case IF_GET_PROTO:
2122                         if (port->mode == FST_RAW) {
2123                                 ifr->ifr_settings.type = IF_PROTO_RAW;
2124                                 return 0;
2125                         }
2126                         return hdlc_ioctl(dev, ifr, cmd);
2127
2128                 default:
2129                         port->mode = FST_GEN_HDLC;
2130                         dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131                             ifr->ifr_settings.type);
2132                         return hdlc_ioctl(dev, ifr, cmd);
2133                 }
2134
2135         default:
2136                 /* Not one of ours. Pass through to HDLC package */
2137                 return hdlc_ioctl(dev, ifr, cmd);
2138         }
2139 }
2140
2141 static void
2142 fst_openport(struct fst_port_info *port)
2143 {
2144         int signals;
2145         int txq_length;
2146
2147         /* Only init things if card is actually running. This allows open to
2148          * succeed for downloads etc.
2149          */
2150         if (port->card->state == FST_RUNNING) {
2151                 if (port->run) {
2152                         dbg(DBG_OPEN, "open: found port already running\n");
2153
2154                         fst_issue_cmd(port, STOPPORT);
2155                         port->run = 0;
2156                 }
2157
2158                 fst_rx_config(port);
2159                 fst_tx_config(port);
2160                 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161
2162                 fst_issue_cmd(port, STARTPORT);
2163                 port->run = 1;
2164
2165                 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166                 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167                                ? IPSTS_INDICATE : IPSTS_DCD))
2168                         netif_carrier_on(port_to_dev(port));
2169                 else
2170                         netif_carrier_off(port_to_dev(port));
2171
2172                 txq_length = port->txqe - port->txqs;
2173                 port->txqe = 0;
2174                 port->txqs = 0;
2175         }
2176
2177 }
2178
2179 static void
2180 fst_closeport(struct fst_port_info *port)
2181 {
2182         if (port->card->state == FST_RUNNING) {
2183                 if (port->run) {
2184                         port->run = 0;
2185                         fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186
2187                         fst_issue_cmd(port, STOPPORT);
2188                 } else {
2189                         dbg(DBG_OPEN, "close: port not running\n");
2190                 }
2191         }
2192 }
2193
2194 static int
2195 fst_open(struct net_device *dev)
2196 {
2197         int err;
2198         struct fst_port_info *port;
2199
2200         port = dev_to_port(dev);
2201         if (!try_module_get(THIS_MODULE))
2202           return -EBUSY;
2203
2204         if (port->mode != FST_RAW) {
2205                 err = hdlc_open(dev);
2206                 if (err) {
2207                         module_put(THIS_MODULE);
2208                         return err;
2209                 }
2210         }
2211
2212         fst_openport(port);
2213         netif_wake_queue(dev);
2214         return 0;
2215 }
2216
2217 static int
2218 fst_close(struct net_device *dev)
2219 {
2220         struct fst_port_info *port;
2221         struct fst_card_info *card;
2222         unsigned char tx_dma_done;
2223         unsigned char rx_dma_done;
2224
2225         port = dev_to_port(dev);
2226         card = port->card;
2227
2228         tx_dma_done = inb(card->pci_conf + DMACSR1);
2229         rx_dma_done = inb(card->pci_conf + DMACSR0);
2230         dbg(DBG_OPEN,
2231             "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2232             card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2233             rx_dma_done);
2234
2235         netif_stop_queue(dev);
2236         fst_closeport(dev_to_port(dev));
2237         if (port->mode != FST_RAW) {
2238                 hdlc_close(dev);
2239         }
2240         module_put(THIS_MODULE);
2241         return 0;
2242 }
2243
2244 static int
2245 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2246 {
2247         /*
2248          * Setting currently fixed in FarSync card so we check and forget
2249          */
2250         if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2251                 return -EINVAL;
2252         return 0;
2253 }
2254
2255 static void
2256 fst_tx_timeout(struct net_device *dev)
2257 {
2258         struct fst_port_info *port;
2259         struct fst_card_info *card;
2260
2261         port = dev_to_port(dev);
2262         card = port->card;
2263         dev->stats.tx_errors++;
2264         dev->stats.tx_aborted_errors++;
2265         dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2266             card->card_no, port->index);
2267         fst_issue_cmd(port, ABORTTX);
2268
2269         dev->trans_start = jiffies;
2270         netif_wake_queue(dev);
2271         port->start = 0;
2272 }
2273
2274 static netdev_tx_t
2275 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2276 {
2277         struct fst_card_info *card;
2278         struct fst_port_info *port;
2279         unsigned long flags;
2280         int txq_length;
2281
2282         port = dev_to_port(dev);
2283         card = port->card;
2284         dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2285
2286         /* Drop packet with error if we don't have carrier */
2287         if (!netif_carrier_ok(dev)) {
2288                 dev_kfree_skb(skb);
2289                 dev->stats.tx_errors++;
2290                 dev->stats.tx_carrier_errors++;
2291                 dbg(DBG_ASS,
2292                     "Tried to transmit but no carrier on card %d port %d\n",
2293                     card->card_no, port->index);
2294                 return NETDEV_TX_OK;
2295         }
2296
2297         /* Drop it if it's too big! MTU failure ? */
2298         if (skb->len > LEN_TX_BUFFER) {
2299                 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2300                     LEN_TX_BUFFER);
2301                 dev_kfree_skb(skb);
2302                 dev->stats.tx_errors++;
2303                 return NETDEV_TX_OK;
2304         }
2305
2306         /*
2307          * We are always going to queue the packet
2308          * so that the bottom half is the only place we tx from
2309          * Check there is room in the port txq
2310          */
2311         spin_lock_irqsave(&card->card_lock, flags);
2312         if ((txq_length = port->txqe - port->txqs) < 0) {
2313                 /*
2314                  * This is the case where the next free has wrapped but the
2315                  * last used hasn't
2316                  */
2317                 txq_length = txq_length + FST_TXQ_DEPTH;
2318         }
2319         spin_unlock_irqrestore(&card->card_lock, flags);
2320         if (txq_length > fst_txq_high) {
2321                 /*
2322                  * We have got enough buffers in the pipeline.  Ask the network
2323                  * layer to stop sending frames down
2324                  */
2325                 netif_stop_queue(dev);
2326                 port->start = 1;        /* I'm using this to signal stop sent up */
2327         }
2328
2329         if (txq_length == FST_TXQ_DEPTH - 1) {
2330                 /*
2331                  * This shouldn't have happened but such is life
2332                  */
2333                 dev_kfree_skb(skb);
2334                 dev->stats.tx_errors++;
2335                 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2336                     card->card_no, port->index);
2337                 return NETDEV_TX_OK;
2338         }
2339
2340         /*
2341          * queue the buffer
2342          */
2343         spin_lock_irqsave(&card->card_lock, flags);
2344         port->txq[port->txqe] = skb;
2345         port->txqe++;
2346         if (port->txqe == FST_TXQ_DEPTH)
2347                 port->txqe = 0;
2348         spin_unlock_irqrestore(&card->card_lock, flags);
2349
2350         /* Scehdule the bottom half which now does transmit processing */
2351         fst_q_work_item(&fst_work_txq, card->card_no);
2352         tasklet_schedule(&fst_tx_task);
2353
2354         return NETDEV_TX_OK;
2355 }
2356
2357 /*
2358  *      Card setup having checked hardware resources.
2359  *      Should be pretty bizarre if we get an error here (kernel memory
2360  *      exhaustion is one possibility). If we do see a problem we report it
2361  *      via a printk and leave the corresponding interface and all that follow
2362  *      disabled.
2363  */
2364 static char *type_strings[] = {
2365         "no hardware",          /* Should never be seen */
2366         "FarSync T2P",
2367         "FarSync T4P",
2368         "FarSync T1U",
2369         "FarSync T2U",
2370         "FarSync T4U",
2371         "FarSync TE1"
2372 };
2373
2374 static void
2375 fst_init_card(struct fst_card_info *card)
2376 {
2377         int i;
2378         int err;
2379
2380         /* We're working on a number of ports based on the card ID. If the
2381          * firmware detects something different later (should never happen)
2382          * we'll have to revise it in some way then.
2383          */
2384         for (i = 0; i < card->nports; i++) {
2385                 err = register_hdlc_device(card->ports[i].dev);
2386                 if (err < 0) {
2387                         int j;
2388                         pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2389                                i, -err);
2390                         for (j = i; j < card->nports; j++) {
2391                                 free_netdev(card->ports[j].dev);
2392                                 card->ports[j].dev = NULL;
2393                         }
2394                         card->nports = i;
2395                         break;
2396                 }
2397         }
2398
2399         pr_info("%s-%s: %s IRQ%d, %d ports\n",
2400                 port_to_dev(&card->ports[0])->name,
2401                 port_to_dev(&card->ports[card->nports - 1])->name,
2402                 type_strings[card->type], card->irq, card->nports);
2403 }
2404
2405 static const struct net_device_ops fst_ops = {
2406         .ndo_open       = fst_open,
2407         .ndo_stop       = fst_close,
2408         .ndo_change_mtu = hdlc_change_mtu,
2409         .ndo_start_xmit = hdlc_start_xmit,
2410         .ndo_do_ioctl   = fst_ioctl,
2411         .ndo_tx_timeout = fst_tx_timeout,
2412 };
2413
2414 /*
2415  *      Initialise card when detected.
2416  *      Returns 0 to indicate success, or errno otherwise.
2417  */
2418 static int
2419 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2420 {
2421         static int no_of_cards_added = 0;
2422         struct fst_card_info *card;
2423         int err = 0;
2424         int i;
2425
2426         printk_once(KERN_INFO
2427                     pr_fmt("FarSync WAN driver " FST_USER_VERSION
2428                            " (c) 2001-2004 FarSite Communications Ltd.\n"));
2429 #if FST_DEBUG
2430         dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2431 #endif
2432         /*
2433          * We are going to be clever and allow certain cards not to be
2434          * configured.  An exclude list can be provided in /etc/modules.conf
2435          */
2436         if (fst_excluded_cards != 0) {
2437                 /*
2438                  * There are cards to exclude
2439                  *
2440                  */
2441                 for (i = 0; i < fst_excluded_cards; i++) {
2442                         if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2443                                 pr_info("FarSync PCI device %d not assigned\n",
2444                                         (pdev->devfn) >> 3);
2445                                 return -EBUSY;
2446                         }
2447                 }
2448         }
2449
2450         /* Allocate driver private data */
2451         card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2452         if (card == NULL)
2453                 return -ENOMEM;
2454
2455         /* Try to enable the device */
2456         if ((err = pci_enable_device(pdev)) != 0) {
2457                 pr_err("Failed to enable card. Err %d\n", -err);
2458                 kfree(card);
2459                 return err;
2460         }
2461
2462         if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2463                 pr_err("Failed to allocate regions. Err %d\n", -err);
2464                 pci_disable_device(pdev);
2465                 kfree(card);
2466                 return err;
2467         }
2468
2469         /* Get virtual addresses of memory regions */
2470         card->pci_conf = pci_resource_start(pdev, 1);
2471         card->phys_mem = pci_resource_start(pdev, 2);
2472         card->phys_ctlmem = pci_resource_start(pdev, 3);
2473         if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2474                 pr_err("Physical memory remap failed\n");
2475                 pci_release_regions(pdev);
2476                 pci_disable_device(pdev);
2477                 kfree(card);
2478                 return -ENODEV;
2479         }
2480         if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2481                 pr_err("Control memory remap failed\n");
2482                 pci_release_regions(pdev);
2483                 pci_disable_device(pdev);
2484                 iounmap(card->mem);
2485                 kfree(card);
2486                 return -ENODEV;
2487         }
2488         dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2489
2490         /* Register the interrupt handler */
2491         if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2492                 pr_err("Unable to register interrupt %d\n", card->irq);
2493                 pci_release_regions(pdev);
2494                 pci_disable_device(pdev);
2495                 iounmap(card->ctlmem);
2496                 iounmap(card->mem);
2497                 kfree(card);
2498                 return -ENODEV;
2499         }
2500
2501         /* Record info we need */
2502         card->irq = pdev->irq;
2503         card->type = ent->driver_data;
2504         card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2505                         (ent->driver_data == FST_TYPE_T4P))
2506             ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2507         if ((ent->driver_data == FST_TYPE_T1U) ||
2508             (ent->driver_data == FST_TYPE_TE1))
2509                 card->nports = 1;
2510         else
2511                 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2512                                 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2513
2514         card->state = FST_UNINIT;
2515         spin_lock_init ( &card->card_lock );
2516
2517         for ( i = 0 ; i < card->nports ; i++ ) {
2518                 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2519                 hdlc_device *hdlc;
2520                 if (!dev) {
2521                         while (i--)
2522                                 free_netdev(card->ports[i].dev);
2523                         pr_err("FarSync: out of memory\n");
2524                         free_irq(card->irq, card);
2525                         pci_release_regions(pdev);
2526                         pci_disable_device(pdev);
2527                         iounmap(card->ctlmem);
2528                         iounmap(card->mem);
2529                         kfree(card);
2530                         return -ENODEV;
2531                 }
2532                 card->ports[i].dev    = dev;
2533                 card->ports[i].card   = card;
2534                 card->ports[i].index  = i;
2535                 card->ports[i].run    = 0;
2536
2537                 hdlc = dev_to_hdlc(dev);
2538
2539                 /* Fill in the net device info */
2540                 /* Since this is a PCI setup this is purely
2541                  * informational. Give them the buffer addresses
2542                  * and basic card I/O.
2543                  */
2544                 dev->mem_start   = card->phys_mem
2545                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2546                 dev->mem_end     = card->phys_mem
2547                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2548                 dev->base_addr   = card->pci_conf;
2549                 dev->irq         = card->irq;
2550
2551                 dev->netdev_ops = &fst_ops;
2552                 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2553                 dev->watchdog_timeo = FST_TX_TIMEOUT;
2554                 hdlc->attach = fst_attach;
2555                 hdlc->xmit   = fst_start_xmit;
2556         }
2557
2558         card->device = pdev;
2559
2560         dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2561             card->nports, card->irq);
2562         dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2563             card->pci_conf, card->phys_mem, card->phys_ctlmem);
2564
2565         /* Reset the card's processor */
2566         fst_cpureset(card);
2567         card->state = FST_RESET;
2568
2569         /* Initialise DMA (if required) */
2570         fst_init_dma(card);
2571
2572         /* Record driver data for later use */
2573         pci_set_drvdata(pdev, card);
2574
2575         /* Remainder of card setup */
2576         fst_card_array[no_of_cards_added] = card;
2577         card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2578         fst_init_card(card);
2579         if (card->family == FST_FAMILY_TXU) {
2580                 /*
2581                  * Allocate a dma buffer for transmit and receives
2582                  */
2583                 card->rx_dma_handle_host =
2584                     pci_alloc_consistent(card->device, FST_MAX_MTU,
2585                                          &card->rx_dma_handle_card);
2586                 if (card->rx_dma_handle_host == NULL) {
2587                         pr_err("Could not allocate rx dma buffer\n");
2588                         fst_disable_intr(card);
2589                         pci_release_regions(pdev);
2590                         pci_disable_device(pdev);
2591                         iounmap(card->ctlmem);
2592                         iounmap(card->mem);
2593                         kfree(card);
2594                         return -ENOMEM;
2595                 }
2596                 card->tx_dma_handle_host =
2597                     pci_alloc_consistent(card->device, FST_MAX_MTU,
2598                                          &card->tx_dma_handle_card);
2599                 if (card->tx_dma_handle_host == NULL) {
2600                         pr_err("Could not allocate tx dma buffer\n");
2601                         fst_disable_intr(card);
2602                         pci_release_regions(pdev);
2603                         pci_disable_device(pdev);
2604                         iounmap(card->ctlmem);
2605                         iounmap(card->mem);
2606                         kfree(card);
2607                         return -ENOMEM;
2608                 }
2609         }
2610         return 0;               /* Success */
2611 }
2612
2613 /*
2614  *      Cleanup and close down a card
2615  */
2616 static void
2617 fst_remove_one(struct pci_dev *pdev)
2618 {
2619         struct fst_card_info *card;
2620         int i;
2621
2622         card = pci_get_drvdata(pdev);
2623
2624         for (i = 0; i < card->nports; i++) {
2625                 struct net_device *dev = port_to_dev(&card->ports[i]);
2626                 unregister_hdlc_device(dev);
2627         }
2628
2629         fst_disable_intr(card);
2630         free_irq(card->irq, card);
2631
2632         iounmap(card->ctlmem);
2633         iounmap(card->mem);
2634         pci_release_regions(pdev);
2635         if (card->family == FST_FAMILY_TXU) {
2636                 /*
2637                  * Free dma buffers
2638                  */
2639                 pci_free_consistent(card->device, FST_MAX_MTU,
2640                                     card->rx_dma_handle_host,
2641                                     card->rx_dma_handle_card);
2642                 pci_free_consistent(card->device, FST_MAX_MTU,
2643                                     card->tx_dma_handle_host,
2644                                     card->tx_dma_handle_card);
2645         }
2646         fst_card_array[card->card_no] = NULL;
2647 }
2648
2649 static struct pci_driver fst_driver = {
2650         .name           = FST_NAME,
2651         .id_table       = fst_pci_dev_id,
2652         .probe          = fst_add_one,
2653         .remove = fst_remove_one,
2654         .suspend        = NULL,
2655         .resume = NULL,
2656 };
2657
2658 static int __init
2659 fst_init(void)
2660 {
2661         int i;
2662
2663         for (i = 0; i < FST_MAX_CARDS; i++)
2664                 fst_card_array[i] = NULL;
2665         spin_lock_init(&fst_work_q_lock);
2666         return pci_register_driver(&fst_driver);
2667 }
2668
2669 static void __exit
2670 fst_cleanup_module(void)
2671 {
2672         pr_info("FarSync WAN driver unloading\n");
2673         pci_unregister_driver(&fst_driver);
2674 }
2675
2676 module_init(fst_init);
2677 module_exit(fst_cleanup_module);