1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.1"
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
47 #define HASH_INITVAL ((u32)0xcafef00d)
50 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
54 * count how many distinct tables do not comply with the strict mode
56 * shared_tables value must be 0 in order to enable the strict mode.
58 * example of the evolution of shared_tables:
60 * add vrf0 --> table 100 shared_tables = 0 | t0
61 * add vrf1 --> table 101 shared_tables = 0 | t1
62 * add vrf2 --> table 100 shared_tables = 1 | t2
63 * add vrf3 --> table 100 shared_tables = 1 | t3
64 * add vrf4 --> table 101 shared_tables = 2 v t4
66 * shared_tables is a "step function" (or "staircase function")
67 * and it is increased by one when the second vrf is associated to a
70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
72 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 * value of shared_tables is still 1.
74 * This means that no matter how many new vrfs will register on the
75 * table 100, the shared_tables will not increase (considering only
78 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
80 * Looking at the value of shared_tables we can immediately know if
81 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 * can be enforced iff shared_tables = 0.
84 * Conversely, shared_tables is decreased when a vrf is de-associated
85 * from a table with exactly two associated vrfs.
93 struct hlist_node hnode;
94 struct list_head vrf_list; /* VRFs registered to this table */
101 static unsigned int vrf_net_id;
103 /* per netns vrf data */
105 /* protected by rtnl lock */
109 struct ctl_table_header *ctl_hdr;
113 struct rtable __rcu *rth;
114 struct rt6_info __rcu *rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 struct fib6_table *fib6_table;
120 struct list_head me_list; /* entry in vrf_map_elem */
124 static void vrf_rx_stats(struct net_device *dev, int len)
126 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
128 u64_stats_update_begin(&dstats->syncp);
129 dstats->rx_packets++;
130 dstats->rx_bytes += len;
131 u64_stats_update_end(&dstats->syncp);
134 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
136 vrf_dev->stats.tx_errors++;
140 static void vrf_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats)
145 for_each_possible_cpu(i) {
146 const struct pcpu_dstats *dstats;
147 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
150 dstats = per_cpu_ptr(dev->dstats, i);
152 start = u64_stats_fetch_begin(&dstats->syncp);
153 tbytes = dstats->tx_bytes;
154 tpkts = dstats->tx_packets;
155 tdrops = dstats->tx_drops;
156 rbytes = dstats->rx_bytes;
157 rpkts = dstats->rx_packets;
158 } while (u64_stats_fetch_retry(&dstats->syncp, start));
159 stats->tx_bytes += tbytes;
160 stats->tx_packets += tpkts;
161 stats->tx_dropped += tdrops;
162 stats->rx_bytes += rbytes;
163 stats->rx_packets += rpkts;
167 static struct vrf_map *netns_vrf_map(struct net *net)
169 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
171 return &nn_vrf->vmap;
174 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
176 return netns_vrf_map(dev_net(dev));
179 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
181 struct list_head *me_head = &me->vrf_list;
184 if (list_empty(me_head))
187 vrf = list_first_entry(me_head, struct net_vrf, me_list);
192 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
194 struct vrf_map_elem *me;
196 me = kmalloc(sizeof(*me), flags);
203 static void vrf_map_elem_free(struct vrf_map_elem *me)
208 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
209 int ifindex, int users)
211 me->table_id = table_id;
212 me->ifindex = ifindex;
214 INIT_LIST_HEAD(&me->vrf_list);
217 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
220 struct vrf_map_elem *me;
223 key = jhash_1word(table_id, HASH_INITVAL);
224 hash_for_each_possible(vmap->ht, me, hnode, key) {
225 if (me->table_id == table_id)
232 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
234 u32 table_id = me->table_id;
237 key = jhash_1word(table_id, HASH_INITVAL);
238 hash_add(vmap->ht, &me->hnode, key);
241 static void vrf_map_del_elem(struct vrf_map_elem *me)
243 hash_del(&me->hnode);
246 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
248 spin_lock(&vmap->vmap_lock);
251 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
253 spin_unlock(&vmap->vmap_lock);
256 /* called with rtnl lock held */
258 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
260 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
261 struct net_vrf *vrf = netdev_priv(dev);
262 struct vrf_map_elem *new_me, *me;
263 u32 table_id = vrf->tb_id;
264 bool free_new_me = false;
268 /* we pre-allocate elements used in the spin-locked section (so that we
269 * keep the spinlock as short as possible).
271 new_me = vrf_map_elem_alloc(GFP_KERNEL);
275 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
279 me = vrf_map_lookup_elem(vmap, table_id);
282 vrf_map_add_elem(vmap, me);
286 /* we already have an entry in the vrf_map, so it means there is (at
287 * least) a vrf registered on the specific table.
290 if (vmap->strict_mode) {
291 /* vrfs cannot share the same table */
292 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
300 ++vmap->shared_tables;
302 list_add(&vrf->me_list, &me->vrf_list);
307 vrf_map_unlock(vmap);
309 /* clean-up, if needed */
311 vrf_map_elem_free(new_me);
316 /* called with rtnl lock held */
317 static void vrf_map_unregister_dev(struct net_device *dev)
319 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
320 struct net_vrf *vrf = netdev_priv(dev);
321 u32 table_id = vrf->tb_id;
322 struct vrf_map_elem *me;
327 me = vrf_map_lookup_elem(vmap, table_id);
331 list_del(&vrf->me_list);
335 --vmap->shared_tables;
336 } else if (users == 0) {
337 vrf_map_del_elem(me);
339 /* no one will refer to this element anymore */
340 vrf_map_elem_free(me);
344 vrf_map_unlock(vmap);
347 /* return the vrf device index associated with the table_id */
348 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
350 struct vrf_map *vmap = netns_vrf_map(net);
351 struct vrf_map_elem *me;
356 if (!vmap->strict_mode) {
361 me = vrf_map_lookup_elem(vmap, table_id);
367 ifindex = vrf_map_elem_get_vrf_ifindex(me);
370 vrf_map_unlock(vmap);
375 /* by default VRF devices do not have a qdisc and are expected
376 * to be created with only a single queue.
378 static bool qdisc_tx_is_default(const struct net_device *dev)
380 struct netdev_queue *txq;
383 if (dev->num_tx_queues > 1)
386 txq = netdev_get_tx_queue(dev, 0);
387 qdisc = rcu_access_pointer(txq->qdisc);
389 return !qdisc->enqueue;
392 /* Local traffic destined to local address. Reinsert the packet to rx
393 * path, similar to loopback handling.
395 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
396 struct dst_entry *dst)
402 skb_dst_set(skb, dst);
404 /* set pkt_type to avoid skb hitting packet taps twice -
405 * once on Tx and again in Rx processing
407 skb->pkt_type = PACKET_LOOPBACK;
409 skb->protocol = eth_type_trans(skb, dev);
411 if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
412 vrf_rx_stats(dev, len);
414 this_cpu_inc(dev->dstats->rx_drops);
419 static void vrf_nf_set_untracked(struct sk_buff *skb)
421 if (skb_get_nfct(skb) == 0)
422 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
425 static void vrf_nf_reset_ct(struct sk_buff *skb)
427 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
431 #if IS_ENABLED(CONFIG_IPV6)
432 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
437 vrf_nf_reset_ct(skb);
439 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
440 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
442 if (likely(err == 1))
443 err = dst_output(net, sk, skb);
448 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
449 struct net_device *dev)
451 const struct ipv6hdr *iph;
452 struct net *net = dev_net(skb->dev);
454 int ret = NET_XMIT_DROP;
455 struct dst_entry *dst;
456 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
458 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
463 memset(&fl6, 0, sizeof(fl6));
464 /* needed to match OIF rule */
465 fl6.flowi6_l3mdev = dev->ifindex;
466 fl6.flowi6_iif = LOOPBACK_IFINDEX;
467 fl6.daddr = iph->daddr;
468 fl6.saddr = iph->saddr;
469 fl6.flowlabel = ip6_flowinfo(iph);
470 fl6.flowi6_mark = skb->mark;
471 fl6.flowi6_proto = iph->nexthdr;
473 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
474 if (IS_ERR(dst) || dst == dst_null)
479 /* if dst.dev is the VRF device again this is locally originated traffic
480 * destined to a local address. Short circuit to Rx path.
483 return vrf_local_xmit(skb, dev, dst);
485 skb_dst_set(skb, dst);
487 /* strip the ethernet header added for pass through VRF device */
488 __skb_pull(skb, skb_network_offset(skb));
490 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
491 ret = vrf_ip6_local_out(net, skb->sk, skb);
492 if (unlikely(net_xmit_eval(ret)))
493 dev->stats.tx_errors++;
495 ret = NET_XMIT_SUCCESS;
499 vrf_tx_error(dev, skb);
500 return NET_XMIT_DROP;
503 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
504 struct net_device *dev)
506 vrf_tx_error(dev, skb);
507 return NET_XMIT_DROP;
511 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
512 static int vrf_ip_local_out(struct net *net, struct sock *sk,
517 vrf_nf_reset_ct(skb);
519 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
520 skb, NULL, skb_dst(skb)->dev, dst_output);
521 if (likely(err == 1))
522 err = dst_output(net, sk, skb);
527 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
528 struct net_device *vrf_dev)
531 int ret = NET_XMIT_DROP;
533 struct net *net = dev_net(vrf_dev);
536 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
541 memset(&fl4, 0, sizeof(fl4));
542 /* needed to match OIF rule */
543 fl4.flowi4_l3mdev = vrf_dev->ifindex;
544 fl4.flowi4_iif = LOOPBACK_IFINDEX;
545 fl4.flowi4_tos = RT_TOS(ip4h->tos);
546 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
547 fl4.flowi4_proto = ip4h->protocol;
548 fl4.daddr = ip4h->daddr;
549 fl4.saddr = ip4h->saddr;
551 rt = ip_route_output_flow(net, &fl4, NULL);
557 /* if dst.dev is the VRF device again this is locally originated traffic
558 * destined to a local address. Short circuit to Rx path.
560 if (rt->dst.dev == vrf_dev)
561 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
563 skb_dst_set(skb, &rt->dst);
565 /* strip the ethernet header added for pass through VRF device */
566 __skb_pull(skb, skb_network_offset(skb));
569 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
573 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
574 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
575 if (unlikely(net_xmit_eval(ret)))
576 vrf_dev->stats.tx_errors++;
578 ret = NET_XMIT_SUCCESS;
583 vrf_tx_error(vrf_dev, skb);
587 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
589 switch (skb->protocol) {
590 case htons(ETH_P_IP):
591 return vrf_process_v4_outbound(skb, dev);
592 case htons(ETH_P_IPV6):
593 return vrf_process_v6_outbound(skb, dev);
595 vrf_tx_error(dev, skb);
596 return NET_XMIT_DROP;
600 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
603 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
605 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
606 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
608 u64_stats_update_begin(&dstats->syncp);
609 dstats->tx_packets++;
610 dstats->tx_bytes += len;
611 u64_stats_update_end(&dstats->syncp);
613 this_cpu_inc(dev->dstats->tx_drops);
619 static void vrf_finish_direct(struct sk_buff *skb)
621 struct net_device *vrf_dev = skb->dev;
623 if (!list_empty(&vrf_dev->ptype_all) &&
624 likely(skb_headroom(skb) >= ETH_HLEN)) {
625 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
627 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
628 eth_zero_addr(eth->h_dest);
629 eth->h_proto = skb->protocol;
631 dev_queue_xmit_nit(skb, vrf_dev);
633 skb_pull(skb, ETH_HLEN);
636 vrf_nf_reset_ct(skb);
639 #if IS_ENABLED(CONFIG_IPV6)
640 /* modelled after ip6_finish_output2 */
641 static int vrf_finish_output6(struct net *net, struct sock *sk,
644 struct dst_entry *dst = skb_dst(skb);
645 struct net_device *dev = dst->dev;
646 const struct in6_addr *nexthop;
647 struct neighbour *neigh;
650 vrf_nf_reset_ct(skb);
652 skb->protocol = htons(ETH_P_IPV6);
656 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
657 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
658 if (unlikely(!neigh))
659 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
660 if (!IS_ERR(neigh)) {
661 sock_confirm_neigh(skb, neigh);
662 ret = neigh_output(neigh, skb, false);
668 IP6_INC_STATS(dev_net(dst->dev),
669 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
674 /* modelled after ip6_output */
675 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
677 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
678 net, sk, skb, NULL, skb_dst(skb)->dev,
680 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
683 /* set dst on skb to send packet to us via dev_xmit path. Allows
684 * packet to go through device based features such as qdisc, netfilter
685 * hooks and packet sockets with skb->dev set to vrf device.
687 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
690 struct net_vrf *vrf = netdev_priv(vrf_dev);
691 struct dst_entry *dst = NULL;
692 struct rt6_info *rt6;
696 rt6 = rcu_dereference(vrf->rt6);
704 if (unlikely(!dst)) {
705 vrf_tx_error(vrf_dev, skb);
710 skb_dst_set(skb, dst);
715 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
718 vrf_finish_direct(skb);
720 return vrf_ip6_local_out(net, sk, skb);
723 static int vrf_output6_direct(struct net *net, struct sock *sk,
728 skb->protocol = htons(ETH_P_IPV6);
730 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
731 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
732 NULL, skb->dev, vrf_output6_direct_finish);
734 if (likely(err == 1))
735 vrf_finish_direct(skb);
740 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
745 err = vrf_output6_direct(net, sk, skb);
746 if (likely(err == 1))
747 err = vrf_ip6_local_out(net, sk, skb);
752 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
756 struct net *net = dev_net(vrf_dev);
761 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
762 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
764 if (likely(err == 1))
765 err = vrf_output6_direct(net, sk, skb);
767 if (likely(err == 1))
773 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
777 /* don't divert link scope packets */
778 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
781 vrf_nf_set_untracked(skb);
783 if (qdisc_tx_is_default(vrf_dev) ||
784 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
785 return vrf_ip6_out_direct(vrf_dev, sk, skb);
787 return vrf_ip6_out_redirect(vrf_dev, skb);
791 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
793 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
794 struct net *net = dev_net(dev);
795 struct dst_entry *dst;
797 RCU_INIT_POINTER(vrf->rt6, NULL);
800 /* move dev in dst's to loopback so this VRF device can be deleted
801 * - based on dst_ifdown
805 netdev_ref_replace(dst->dev, net->loopback_dev,
806 &dst->dev_tracker, GFP_KERNEL);
807 dst->dev = net->loopback_dev;
812 static int vrf_rt6_create(struct net_device *dev)
814 int flags = DST_NOPOLICY | DST_NOXFRM;
815 struct net_vrf *vrf = netdev_priv(dev);
816 struct net *net = dev_net(dev);
817 struct rt6_info *rt6;
820 /* IPv6 can be CONFIG enabled and then disabled runtime */
821 if (!ipv6_mod_enabled())
824 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
825 if (!vrf->fib6_table)
828 /* create a dst for routing packets out a VRF device */
829 rt6 = ip6_dst_alloc(net, dev, flags);
833 rt6->dst.output = vrf_output6;
835 rcu_assign_pointer(vrf->rt6, rt6);
842 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
849 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
853 static int vrf_rt6_create(struct net_device *dev)
859 /* modelled after ip_finish_output2 */
860 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
862 struct dst_entry *dst = skb_dst(skb);
863 struct rtable *rt = (struct rtable *)dst;
864 struct net_device *dev = dst->dev;
865 unsigned int hh_len = LL_RESERVED_SPACE(dev);
866 struct neighbour *neigh;
867 bool is_v6gw = false;
869 vrf_nf_reset_ct(skb);
871 /* Be paranoid, rather than too clever. */
872 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
873 skb = skb_expand_head(skb, hh_len);
875 dev->stats.tx_errors++;
882 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
883 if (!IS_ERR(neigh)) {
886 sock_confirm_neigh(skb, neigh);
887 /* if crossing protocols, can not use the cached header */
888 ret = neigh_output(neigh, skb, is_v6gw);
894 vrf_tx_error(skb->dev, skb);
898 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
900 struct net_device *dev = skb_dst(skb)->dev;
902 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
905 skb->protocol = htons(ETH_P_IP);
907 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
908 net, sk, skb, NULL, dev,
910 !(IPCB(skb)->flags & IPSKB_REROUTED));
913 /* set dst on skb to send packet to us via dev_xmit path. Allows
914 * packet to go through device based features such as qdisc, netfilter
915 * hooks and packet sockets with skb->dev set to vrf device.
917 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
920 struct net_vrf *vrf = netdev_priv(vrf_dev);
921 struct dst_entry *dst = NULL;
926 rth = rcu_dereference(vrf->rth);
934 if (unlikely(!dst)) {
935 vrf_tx_error(vrf_dev, skb);
940 skb_dst_set(skb, dst);
945 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
948 vrf_finish_direct(skb);
950 return vrf_ip_local_out(net, sk, skb);
953 static int vrf_output_direct(struct net *net, struct sock *sk,
958 skb->protocol = htons(ETH_P_IP);
960 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
961 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
962 NULL, skb->dev, vrf_output_direct_finish);
964 if (likely(err == 1))
965 vrf_finish_direct(skb);
970 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
975 err = vrf_output_direct(net, sk, skb);
976 if (likely(err == 1))
977 err = vrf_ip_local_out(net, sk, skb);
982 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
986 struct net *net = dev_net(vrf_dev);
991 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
992 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
994 if (likely(err == 1))
995 err = vrf_output_direct(net, sk, skb);
997 if (likely(err == 1))
1003 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1005 struct sk_buff *skb)
1007 /* don't divert multicast or local broadcast */
1008 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1012 vrf_nf_set_untracked(skb);
1014 if (qdisc_tx_is_default(vrf_dev) ||
1015 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1016 return vrf_ip_out_direct(vrf_dev, sk, skb);
1018 return vrf_ip_out_redirect(vrf_dev, skb);
1021 /* called with rcu lock held */
1022 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1024 struct sk_buff *skb,
1029 return vrf_ip_out(vrf_dev, sk, skb);
1031 return vrf_ip6_out(vrf_dev, sk, skb);
1038 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1040 struct rtable *rth = rtnl_dereference(vrf->rth);
1041 struct net *net = dev_net(dev);
1042 struct dst_entry *dst;
1044 RCU_INIT_POINTER(vrf->rth, NULL);
1047 /* move dev in dst's to loopback so this VRF device can be deleted
1048 * - based on dst_ifdown
1052 netdev_ref_replace(dst->dev, net->loopback_dev,
1053 &dst->dev_tracker, GFP_KERNEL);
1054 dst->dev = net->loopback_dev;
1059 static int vrf_rtable_create(struct net_device *dev)
1061 struct net_vrf *vrf = netdev_priv(dev);
1064 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1067 /* create a dst for routing packets out through a VRF device */
1068 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1072 rth->dst.output = vrf_output;
1074 rcu_assign_pointer(vrf->rth, rth);
1079 /**************************** device handling ********************/
1081 /* cycle interface to flush neighbor cache and move routes across tables */
1082 static void cycle_netdev(struct net_device *dev,
1083 struct netlink_ext_ack *extack)
1085 unsigned int flags = dev->flags;
1088 if (!netif_running(dev))
1091 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1093 ret = dev_change_flags(dev, flags, extack);
1097 "Failed to cycle device %s; route tables might be wrong!\n",
1102 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1103 struct netlink_ext_ack *extack)
1107 /* do not allow loopback device to be enslaved to a VRF.
1108 * The vrf device acts as the loopback for the vrf.
1110 if (port_dev == dev_net(dev)->loopback_dev) {
1111 NL_SET_ERR_MSG(extack,
1112 "Can not enslave loopback device to a VRF");
1116 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1117 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1121 cycle_netdev(port_dev, extack);
1126 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1130 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1131 struct netlink_ext_ack *extack)
1133 if (netif_is_l3_master(port_dev)) {
1134 NL_SET_ERR_MSG(extack,
1135 "Can not enslave an L3 master device to a VRF");
1139 if (netif_is_l3_slave(port_dev))
1142 return do_vrf_add_slave(dev, port_dev, extack);
1145 /* inverse of do_vrf_add_slave */
1146 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1148 netdev_upper_dev_unlink(port_dev, dev);
1149 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1151 cycle_netdev(port_dev, NULL);
1156 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1158 return do_vrf_del_slave(dev, port_dev);
1161 static void vrf_dev_uninit(struct net_device *dev)
1163 struct net_vrf *vrf = netdev_priv(dev);
1165 vrf_rtable_release(dev, vrf);
1166 vrf_rt6_release(dev, vrf);
1169 static int vrf_dev_init(struct net_device *dev)
1171 struct net_vrf *vrf = netdev_priv(dev);
1173 /* create the default dst which points back to us */
1174 if (vrf_rtable_create(dev) != 0)
1177 if (vrf_rt6_create(dev) != 0)
1180 dev->flags = IFF_MASTER | IFF_NOARP;
1182 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1183 dev->operstate = IF_OPER_UP;
1184 netdev_lockdep_set_classes(dev);
1188 vrf_rtable_release(dev, vrf);
1193 static const struct net_device_ops vrf_netdev_ops = {
1194 .ndo_init = vrf_dev_init,
1195 .ndo_uninit = vrf_dev_uninit,
1196 .ndo_start_xmit = vrf_xmit,
1197 .ndo_set_mac_address = eth_mac_addr,
1198 .ndo_get_stats64 = vrf_get_stats64,
1199 .ndo_add_slave = vrf_add_slave,
1200 .ndo_del_slave = vrf_del_slave,
1203 static u32 vrf_fib_table(const struct net_device *dev)
1205 struct net_vrf *vrf = netdev_priv(dev);
1210 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1216 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1217 struct sk_buff *skb,
1218 struct net_device *dev)
1220 struct net *net = dev_net(dev);
1222 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1223 skb = NULL; /* kfree_skb(skb) handled by nf code */
1228 static int vrf_prepare_mac_header(struct sk_buff *skb,
1229 struct net_device *vrf_dev, u16 proto)
1234 /* in general, we do not know if there is enough space in the head of
1235 * the packet for hosting the mac header.
1237 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1239 /* no space in the skb head */
1242 __skb_push(skb, ETH_HLEN);
1243 eth = (struct ethhdr *)skb->data;
1245 skb_reset_mac_header(skb);
1246 skb_reset_mac_len(skb);
1248 /* we set the ethernet destination and the source addresses to the
1249 * address of the VRF device.
1251 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1252 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1253 eth->h_proto = htons(proto);
1255 /* the destination address of the Ethernet frame corresponds to the
1256 * address set on the VRF interface; therefore, the packet is intended
1257 * to be processed locally.
1259 skb->protocol = eth->h_proto;
1260 skb->pkt_type = PACKET_HOST;
1262 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1264 skb_pull_inline(skb, ETH_HLEN);
1269 /* prepare and add the mac header to the packet if it was not set previously.
1270 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1271 * If the mac header was already set, the original mac header is left
1272 * untouched and the function returns immediately.
1274 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1275 struct net_device *vrf_dev,
1276 u16 proto, struct net_device *orig_dev)
1278 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1281 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1284 #if IS_ENABLED(CONFIG_IPV6)
1285 /* neighbor handling is done with actual device; do not want
1286 * to flip skb->dev for those ndisc packets. This really fails
1287 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1290 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1292 const struct ipv6hdr *iph = ipv6_hdr(skb);
1295 if (iph->nexthdr == NEXTHDR_ICMP) {
1296 const struct icmp6hdr *icmph;
1297 struct icmp6hdr _icmph;
1299 icmph = skb_header_pointer(skb, sizeof(*iph),
1300 sizeof(_icmph), &_icmph);
1304 switch (icmph->icmp6_type) {
1305 case NDISC_ROUTER_SOLICITATION:
1306 case NDISC_ROUTER_ADVERTISEMENT:
1307 case NDISC_NEIGHBOUR_SOLICITATION:
1308 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1309 case NDISC_REDIRECT:
1319 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1320 const struct net_device *dev,
1323 const struct sk_buff *skb,
1326 struct net_vrf *vrf = netdev_priv(dev);
1328 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1331 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1334 const struct ipv6hdr *iph = ipv6_hdr(skb);
1335 struct flowi6 fl6 = {
1336 .flowi6_iif = ifindex,
1337 .flowi6_mark = skb->mark,
1338 .flowi6_proto = iph->nexthdr,
1339 .daddr = iph->daddr,
1340 .saddr = iph->saddr,
1341 .flowlabel = ip6_flowinfo(iph),
1343 struct net *net = dev_net(vrf_dev);
1344 struct rt6_info *rt6;
1346 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1347 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1351 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1354 skb_dst_set(skb, &rt6->dst);
1357 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1358 struct sk_buff *skb)
1360 int orig_iif = skb->skb_iif;
1361 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1362 bool is_ndisc = ipv6_ndisc_frame(skb);
1364 /* loopback, multicast & non-ND link-local traffic; do not push through
1365 * packet taps again. Reset pkt_type for upper layers to process skb.
1366 * For non-loopback strict packets, determine the dst using the original
1369 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1371 skb->skb_iif = vrf_dev->ifindex;
1372 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1374 if (skb->pkt_type == PACKET_LOOPBACK)
1375 skb->pkt_type = PACKET_HOST;
1377 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1382 /* if packet is NDISC then keep the ingress interface */
1384 struct net_device *orig_dev = skb->dev;
1386 vrf_rx_stats(vrf_dev, skb->len);
1388 skb->skb_iif = vrf_dev->ifindex;
1390 if (!list_empty(&vrf_dev->ptype_all)) {
1393 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1397 skb_push(skb, skb->mac_len);
1398 dev_queue_xmit_nit(skb, vrf_dev);
1399 skb_pull(skb, skb->mac_len);
1403 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1407 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1409 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1415 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1416 struct sk_buff *skb)
1422 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1423 struct sk_buff *skb)
1425 struct net_device *orig_dev = skb->dev;
1428 skb->skb_iif = vrf_dev->ifindex;
1429 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1431 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1434 /* loopback traffic; do not push through packet taps again.
1435 * Reset pkt_type for upper layers to process skb
1437 if (skb->pkt_type == PACKET_LOOPBACK) {
1438 skb->pkt_type = PACKET_HOST;
1442 vrf_rx_stats(vrf_dev, skb->len);
1444 if (!list_empty(&vrf_dev->ptype_all)) {
1447 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1450 skb_push(skb, skb->mac_len);
1451 dev_queue_xmit_nit(skb, vrf_dev);
1452 skb_pull(skb, skb->mac_len);
1456 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1461 /* called with rcu lock held */
1462 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1463 struct sk_buff *skb,
1468 return vrf_ip_rcv(vrf_dev, skb);
1470 return vrf_ip6_rcv(vrf_dev, skb);
1476 #if IS_ENABLED(CONFIG_IPV6)
1477 /* send to link-local or multicast address via interface enslaved to
1478 * VRF device. Force lookup to VRF table without changing flow struct
1479 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1480 * is taken on the dst by this function.
1482 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1485 struct net *net = dev_net(dev);
1486 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1487 struct dst_entry *dst = NULL;
1488 struct rt6_info *rt;
1490 /* VRF device does not have a link-local address and
1491 * sending packets to link-local or mcast addresses over
1492 * a VRF device does not make sense
1494 if (fl6->flowi6_oif == dev->ifindex) {
1495 dst = &net->ipv6.ip6_null_entry->dst;
1499 if (!ipv6_addr_any(&fl6->saddr))
1500 flags |= RT6_LOOKUP_F_HAS_SADDR;
1502 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1510 static const struct l3mdev_ops vrf_l3mdev_ops = {
1511 .l3mdev_fib_table = vrf_fib_table,
1512 .l3mdev_l3_rcv = vrf_l3_rcv,
1513 .l3mdev_l3_out = vrf_l3_out,
1514 #if IS_ENABLED(CONFIG_IPV6)
1515 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1519 static void vrf_get_drvinfo(struct net_device *dev,
1520 struct ethtool_drvinfo *info)
1522 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1523 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1526 static const struct ethtool_ops vrf_ethtool_ops = {
1527 .get_drvinfo = vrf_get_drvinfo,
1530 static inline size_t vrf_fib_rule_nl_size(void)
1534 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1535 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1536 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1537 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1542 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1544 struct fib_rule_hdr *frh;
1545 struct nlmsghdr *nlh;
1546 struct sk_buff *skb;
1549 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1550 !ipv6_mod_enabled())
1553 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1557 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1559 goto nla_put_failure;
1561 /* rule only needs to appear once */
1562 nlh->nlmsg_flags |= NLM_F_EXCL;
1564 frh = nlmsg_data(nlh);
1565 memset(frh, 0, sizeof(*frh));
1566 frh->family = family;
1567 frh->action = FR_ACT_TO_TBL;
1569 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1570 goto nla_put_failure;
1572 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1573 goto nla_put_failure;
1575 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1576 goto nla_put_failure;
1578 nlmsg_end(skb, nlh);
1580 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1581 skb->sk = dev_net(dev)->rtnl;
1583 err = fib_nl_newrule(skb, nlh, NULL);
1587 err = fib_nl_delrule(skb, nlh, NULL);
1601 static int vrf_add_fib_rules(const struct net_device *dev)
1605 err = vrf_fib_rule(dev, AF_INET, true);
1609 err = vrf_fib_rule(dev, AF_INET6, true);
1613 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1619 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1620 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1627 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1629 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1632 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1634 vrf_fib_rule(dev, AF_INET6, false);
1638 vrf_fib_rule(dev, AF_INET, false);
1641 netdev_err(dev, "Failed to add FIB rules.\n");
1645 static void vrf_setup(struct net_device *dev)
1649 /* Initialize the device structure. */
1650 dev->netdev_ops = &vrf_netdev_ops;
1651 dev->l3mdev_ops = &vrf_l3mdev_ops;
1652 dev->ethtool_ops = &vrf_ethtool_ops;
1653 dev->needs_free_netdev = true;
1655 /* Fill in device structure with ethernet-generic values. */
1656 eth_hw_addr_random(dev);
1658 /* don't acquire vrf device's netif_tx_lock when transmitting */
1659 dev->features |= NETIF_F_LLTX;
1661 /* don't allow vrf devices to change network namespaces. */
1662 dev->features |= NETIF_F_NETNS_LOCAL;
1664 /* does not make sense for a VLAN to be added to a vrf device */
1665 dev->features |= NETIF_F_VLAN_CHALLENGED;
1667 /* enable offload features */
1668 dev->features |= NETIF_F_GSO_SOFTWARE;
1669 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1670 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1672 dev->hw_features = dev->features;
1673 dev->hw_enc_features = dev->features;
1675 /* default to no qdisc; user can add if desired */
1676 dev->priv_flags |= IFF_NO_QUEUE;
1677 dev->priv_flags |= IFF_NO_RX_HANDLER;
1678 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1680 /* VRF devices do not care about MTU, but if the MTU is set
1681 * too low then the ipv4 and ipv6 protocols are disabled
1682 * which breaks networking.
1684 dev->min_mtu = IPV6_MIN_MTU;
1685 dev->max_mtu = IP6_MAX_MTU;
1686 dev->mtu = dev->max_mtu;
1688 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1691 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1692 struct netlink_ext_ack *extack)
1694 if (tb[IFLA_ADDRESS]) {
1695 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1696 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1700 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1701 return -EADDRNOTAVAIL;
1707 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1709 struct net_device *port_dev;
1710 struct list_head *iter;
1712 netdev_for_each_lower_dev(dev, port_dev, iter)
1713 vrf_del_slave(dev, port_dev);
1715 vrf_map_unregister_dev(dev);
1717 unregister_netdevice_queue(dev, head);
1720 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1721 struct nlattr *tb[], struct nlattr *data[],
1722 struct netlink_ext_ack *extack)
1724 struct net_vrf *vrf = netdev_priv(dev);
1725 struct netns_vrf *nn_vrf;
1726 bool *add_fib_rules;
1730 if (!data || !data[IFLA_VRF_TABLE]) {
1731 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1735 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1736 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1737 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1738 "Invalid VRF table id");
1742 dev->priv_flags |= IFF_L3MDEV_MASTER;
1744 err = register_netdevice(dev);
1748 /* mapping between table_id and vrf;
1749 * note: such binding could not be done in the dev init function
1750 * because dev->ifindex id is not available yet.
1752 vrf->ifindex = dev->ifindex;
1754 err = vrf_map_register_dev(dev, extack);
1756 unregister_netdevice(dev);
1761 nn_vrf = net_generic(net, vrf_net_id);
1763 add_fib_rules = &nn_vrf->add_fib_rules;
1764 if (*add_fib_rules) {
1765 err = vrf_add_fib_rules(dev);
1767 vrf_map_unregister_dev(dev);
1768 unregister_netdevice(dev);
1771 *add_fib_rules = false;
1778 static size_t vrf_nl_getsize(const struct net_device *dev)
1780 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1783 static int vrf_fillinfo(struct sk_buff *skb,
1784 const struct net_device *dev)
1786 struct net_vrf *vrf = netdev_priv(dev);
1788 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1791 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1792 const struct net_device *slave_dev)
1794 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1797 static int vrf_fill_slave_info(struct sk_buff *skb,
1798 const struct net_device *vrf_dev,
1799 const struct net_device *slave_dev)
1801 struct net_vrf *vrf = netdev_priv(vrf_dev);
1803 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1809 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1810 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1813 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1815 .priv_size = sizeof(struct net_vrf),
1817 .get_size = vrf_nl_getsize,
1818 .policy = vrf_nl_policy,
1819 .validate = vrf_validate,
1820 .fill_info = vrf_fillinfo,
1822 .get_slave_size = vrf_get_slave_size,
1823 .fill_slave_info = vrf_fill_slave_info,
1825 .newlink = vrf_newlink,
1826 .dellink = vrf_dellink,
1828 .maxtype = IFLA_VRF_MAX,
1831 static int vrf_device_event(struct notifier_block *unused,
1832 unsigned long event, void *ptr)
1834 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1836 /* only care about unregister events to drop slave references */
1837 if (event == NETDEV_UNREGISTER) {
1838 struct net_device *vrf_dev;
1840 if (!netif_is_l3_slave(dev))
1843 vrf_dev = netdev_master_upper_dev_get(dev);
1844 vrf_del_slave(vrf_dev, dev);
1850 static struct notifier_block vrf_notifier_block __read_mostly = {
1851 .notifier_call = vrf_device_event,
1854 static int vrf_map_init(struct vrf_map *vmap)
1856 spin_lock_init(&vmap->vmap_lock);
1857 hash_init(vmap->ht);
1859 vmap->strict_mode = false;
1864 #ifdef CONFIG_SYSCTL
1865 static bool vrf_strict_mode(struct vrf_map *vmap)
1870 strict_mode = vmap->strict_mode;
1871 vrf_map_unlock(vmap);
1876 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1883 cur_mode = &vmap->strict_mode;
1884 if (*cur_mode == new_mode)
1888 /* disable strict mode */
1891 if (vmap->shared_tables) {
1892 /* we cannot allow strict_mode because there are some
1893 * vrfs that share one or more tables.
1899 /* no tables are shared among vrfs, so we can go back
1900 * to 1:1 association between a vrf with its table.
1906 vrf_map_unlock(vmap);
1911 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1912 void *buffer, size_t *lenp, loff_t *ppos)
1914 struct net *net = (struct net *)table->extra1;
1915 struct vrf_map *vmap = netns_vrf_map(net);
1916 int proc_strict_mode = 0;
1917 struct ctl_table tmp = {
1918 .procname = table->procname,
1919 .data = &proc_strict_mode,
1920 .maxlen = sizeof(int),
1921 .mode = table->mode,
1922 .extra1 = SYSCTL_ZERO,
1923 .extra2 = SYSCTL_ONE,
1928 proc_strict_mode = vrf_strict_mode(vmap);
1930 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1932 if (write && ret == 0)
1933 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1938 static const struct ctl_table vrf_table[] = {
1940 .procname = "strict_mode",
1942 .maxlen = sizeof(int),
1944 .proc_handler = vrf_shared_table_handler,
1945 /* set by the vrf_netns_init */
1951 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1953 struct ctl_table *table;
1955 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1959 /* init the extra1 parameter with the reference to current netns */
1960 table[0].extra1 = net;
1962 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1963 ARRAY_SIZE(vrf_table));
1964 if (!nn_vrf->ctl_hdr) {
1972 static void vrf_netns_exit_sysctl(struct net *net)
1974 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1975 struct ctl_table *table;
1977 table = nn_vrf->ctl_hdr->ctl_table_arg;
1978 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1982 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1987 static void vrf_netns_exit_sysctl(struct net *net)
1992 /* Initialize per network namespace state */
1993 static int __net_init vrf_netns_init(struct net *net)
1995 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1997 nn_vrf->add_fib_rules = true;
1998 vrf_map_init(&nn_vrf->vmap);
2000 return vrf_netns_init_sysctl(net, nn_vrf);
2003 static void __net_exit vrf_netns_exit(struct net *net)
2005 vrf_netns_exit_sysctl(net);
2008 static struct pernet_operations vrf_net_ops __net_initdata = {
2009 .init = vrf_netns_init,
2010 .exit = vrf_netns_exit,
2012 .size = sizeof(struct netns_vrf),
2015 static int __init vrf_init_module(void)
2019 register_netdevice_notifier(&vrf_notifier_block);
2021 rc = register_pernet_subsys(&vrf_net_ops);
2025 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2026 vrf_ifindex_lookup_by_table_id);
2030 rc = rtnl_link_register(&vrf_link_ops);
2032 goto table_lookup_unreg;
2037 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2038 vrf_ifindex_lookup_by_table_id);
2041 unregister_pernet_subsys(&vrf_net_ops);
2044 unregister_netdevice_notifier(&vrf_notifier_block);
2048 module_init(vrf_init_module);
2049 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2050 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2051 MODULE_LICENSE("GPL");
2052 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2053 MODULE_VERSION(DRV_VERSION);