1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
18 #include <net/rtnetlink.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
30 #define DRV_NAME "veth"
31 #define DRV_VERSION "1.0"
33 #define VETH_XDP_FLAG BIT(0)
34 #define VETH_RING_SIZE 256
35 #define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN)
37 #define VETH_XDP_TX_BULK_SIZE 16
38 #define VETH_XDP_BATCH 16
50 u64 peer_tq_xdp_xmit_err;
53 struct veth_rq_stats {
55 struct u64_stats_sync syncp;
59 struct napi_struct xdp_napi;
60 struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */
61 struct net_device *dev;
62 struct bpf_prog __rcu *xdp_prog;
63 struct xdp_mem_info xdp_mem;
64 struct veth_rq_stats stats;
65 bool rx_notify_masked;
66 struct ptr_ring xdp_ring;
67 struct xdp_rxq_info xdp_rxq;
71 struct net_device __rcu *peer;
73 struct bpf_prog *_xdp_prog;
75 unsigned int requested_headroom;
78 struct veth_xdp_tx_bq {
79 struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
87 struct veth_q_stat_desc {
88 char desc[ETH_GSTRING_LEN];
92 #define VETH_RQ_STAT(m) offsetof(struct veth_stats, m)
94 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
95 { "xdp_packets", VETH_RQ_STAT(xdp_packets) },
96 { "xdp_bytes", VETH_RQ_STAT(xdp_bytes) },
97 { "drops", VETH_RQ_STAT(rx_drops) },
98 { "xdp_redirect", VETH_RQ_STAT(xdp_redirect) },
99 { "xdp_drops", VETH_RQ_STAT(xdp_drops) },
100 { "xdp_tx", VETH_RQ_STAT(xdp_tx) },
101 { "xdp_tx_errors", VETH_RQ_STAT(xdp_tx_err) },
104 #define VETH_RQ_STATS_LEN ARRAY_SIZE(veth_rq_stats_desc)
106 static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
107 { "xdp_xmit", VETH_RQ_STAT(peer_tq_xdp_xmit) },
108 { "xdp_xmit_errors", VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
111 #define VETH_TQ_STATS_LEN ARRAY_SIZE(veth_tq_stats_desc)
114 const char string[ETH_GSTRING_LEN];
115 } ethtool_stats_keys[] = {
119 static int veth_get_link_ksettings(struct net_device *dev,
120 struct ethtool_link_ksettings *cmd)
122 cmd->base.speed = SPEED_10000;
123 cmd->base.duplex = DUPLEX_FULL;
124 cmd->base.port = PORT_TP;
125 cmd->base.autoneg = AUTONEG_DISABLE;
129 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
131 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
132 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
135 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
137 char *p = (char *)buf;
142 memcpy(p, ðtool_stats_keys, sizeof(ethtool_stats_keys));
143 p += sizeof(ethtool_stats_keys);
144 for (i = 0; i < dev->real_num_rx_queues; i++) {
145 for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
146 snprintf(p, ETH_GSTRING_LEN,
148 i, veth_rq_stats_desc[j].desc);
149 p += ETH_GSTRING_LEN;
152 for (i = 0; i < dev->real_num_tx_queues; i++) {
153 for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
154 snprintf(p, ETH_GSTRING_LEN,
156 i, veth_tq_stats_desc[j].desc);
157 p += ETH_GSTRING_LEN;
164 static int veth_get_sset_count(struct net_device *dev, int sset)
168 return ARRAY_SIZE(ethtool_stats_keys) +
169 VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
170 VETH_TQ_STATS_LEN * dev->real_num_tx_queues;
176 static void veth_get_ethtool_stats(struct net_device *dev,
177 struct ethtool_stats *stats, u64 *data)
179 struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
180 struct net_device *peer = rtnl_dereference(priv->peer);
183 data[0] = peer ? peer->ifindex : 0;
185 for (i = 0; i < dev->real_num_rx_queues; i++) {
186 const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
187 const void *stats_base = (void *)&rq_stats->vs;
192 start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
193 for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
194 offset = veth_rq_stats_desc[j].offset;
195 data[idx + j] = *(u64 *)(stats_base + offset);
197 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
198 idx += VETH_RQ_STATS_LEN;
204 rcv_priv = netdev_priv(peer);
205 for (i = 0; i < peer->real_num_rx_queues; i++) {
206 const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
207 const void *base = (void *)&rq_stats->vs;
208 unsigned int start, tx_idx = idx;
211 tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
213 start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
214 for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
215 offset = veth_tq_stats_desc[j].offset;
216 data[tx_idx + j] += *(u64 *)(base + offset);
218 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
222 static void veth_get_channels(struct net_device *dev,
223 struct ethtool_channels *channels)
225 channels->tx_count = dev->real_num_tx_queues;
226 channels->rx_count = dev->real_num_rx_queues;
227 channels->max_tx = dev->num_tx_queues;
228 channels->max_rx = dev->num_rx_queues;
231 static int veth_set_channels(struct net_device *dev,
232 struct ethtool_channels *ch);
234 static const struct ethtool_ops veth_ethtool_ops = {
235 .get_drvinfo = veth_get_drvinfo,
236 .get_link = ethtool_op_get_link,
237 .get_strings = veth_get_strings,
238 .get_sset_count = veth_get_sset_count,
239 .get_ethtool_stats = veth_get_ethtool_stats,
240 .get_link_ksettings = veth_get_link_ksettings,
241 .get_ts_info = ethtool_op_get_ts_info,
242 .get_channels = veth_get_channels,
243 .set_channels = veth_set_channels,
246 /* general routines */
248 static bool veth_is_xdp_frame(void *ptr)
250 return (unsigned long)ptr & VETH_XDP_FLAG;
253 static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
255 return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
258 static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
260 return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
263 static void veth_ptr_free(void *ptr)
265 if (veth_is_xdp_frame(ptr))
266 xdp_return_frame(veth_ptr_to_xdp(ptr));
271 static void __veth_xdp_flush(struct veth_rq *rq)
273 /* Write ptr_ring before reading rx_notify_masked */
275 if (!READ_ONCE(rq->rx_notify_masked) &&
276 napi_schedule_prep(&rq->xdp_napi)) {
277 WRITE_ONCE(rq->rx_notify_masked, true);
278 __napi_schedule(&rq->xdp_napi);
282 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
284 if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
285 dev_kfree_skb_any(skb);
289 return NET_RX_SUCCESS;
292 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
293 struct veth_rq *rq, bool xdp)
295 return __dev_forward_skb(dev, skb) ?: xdp ?
296 veth_xdp_rx(rq, skb) :
300 /* return true if the specified skb has chances of GRO aggregation
301 * Don't strive for accuracy, but try to avoid GRO overhead in the most
303 * When XDP is enabled, all traffic is considered eligible, as the xmit
304 * device has TSO off.
305 * When TSO is enabled on the xmit device, we are likely interested only
306 * in UDP aggregation, explicitly check for that if the skb is suspected
307 * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets -
308 * to belong to locally generated UDP traffic.
310 static bool veth_skb_is_eligible_for_gro(const struct net_device *dev,
311 const struct net_device *rcv,
312 const struct sk_buff *skb)
314 return !(dev->features & NETIF_F_ALL_TSO) ||
315 (skb->destructor == sock_wfree &&
316 rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD));
319 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
321 struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
322 struct veth_rq *rq = NULL;
323 struct net_device *rcv;
324 int length = skb->len;
325 bool use_napi = false;
329 rcv = rcu_dereference(priv->peer);
330 if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) {
335 rcv_priv = netdev_priv(rcv);
336 rxq = skb_get_queue_mapping(skb);
337 if (rxq < rcv->real_num_rx_queues) {
338 rq = &rcv_priv->rq[rxq];
340 /* The napi pointer is available when an XDP program is
341 * attached or when GRO is enabled
342 * Don't bother with napi/GRO if the skb can't be aggregated
344 use_napi = rcu_access_pointer(rq->napi) &&
345 veth_skb_is_eligible_for_gro(dev, rcv, skb);
348 skb_tx_timestamp(skb);
349 if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) {
351 dev_lstats_add(dev, length);
354 atomic64_inc(&priv->dropped);
358 __veth_xdp_flush(rq);
365 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
367 struct veth_priv *priv = netdev_priv(dev);
369 dev_lstats_read(dev, packets, bytes);
370 return atomic64_read(&priv->dropped);
373 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
375 struct veth_priv *priv = netdev_priv(dev);
378 result->peer_tq_xdp_xmit_err = 0;
379 result->xdp_packets = 0;
380 result->xdp_tx_err = 0;
381 result->xdp_bytes = 0;
382 result->rx_drops = 0;
383 for (i = 0; i < dev->num_rx_queues; i++) {
384 u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
385 struct veth_rq_stats *stats = &priv->rq[i].stats;
389 start = u64_stats_fetch_begin_irq(&stats->syncp);
390 peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
391 xdp_tx_err = stats->vs.xdp_tx_err;
392 packets = stats->vs.xdp_packets;
393 bytes = stats->vs.xdp_bytes;
394 drops = stats->vs.rx_drops;
395 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
396 result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
397 result->xdp_tx_err += xdp_tx_err;
398 result->xdp_packets += packets;
399 result->xdp_bytes += bytes;
400 result->rx_drops += drops;
404 static void veth_get_stats64(struct net_device *dev,
405 struct rtnl_link_stats64 *tot)
407 struct veth_priv *priv = netdev_priv(dev);
408 struct net_device *peer;
409 struct veth_stats rx;
412 tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
413 tot->tx_bytes = bytes;
414 tot->tx_packets = packets;
416 veth_stats_rx(&rx, dev);
417 tot->tx_dropped += rx.xdp_tx_err;
418 tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
419 tot->rx_bytes = rx.xdp_bytes;
420 tot->rx_packets = rx.xdp_packets;
423 peer = rcu_dereference(priv->peer);
425 veth_stats_tx(peer, &packets, &bytes);
426 tot->rx_bytes += bytes;
427 tot->rx_packets += packets;
429 veth_stats_rx(&rx, peer);
430 tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
431 tot->rx_dropped += rx.xdp_tx_err;
432 tot->tx_bytes += rx.xdp_bytes;
433 tot->tx_packets += rx.xdp_packets;
438 /* fake multicast ability */
439 static void veth_set_multicast_list(struct net_device *dev)
443 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
448 skb = build_skb(head, buflen);
452 skb_reserve(skb, headroom);
458 static int veth_select_rxq(struct net_device *dev)
460 return smp_processor_id() % dev->real_num_rx_queues;
463 static struct net_device *veth_peer_dev(struct net_device *dev)
465 struct veth_priv *priv = netdev_priv(dev);
467 /* Callers must be under RCU read side. */
468 return rcu_dereference(priv->peer);
471 static int veth_xdp_xmit(struct net_device *dev, int n,
472 struct xdp_frame **frames,
473 u32 flags, bool ndo_xmit)
475 struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
476 int i, ret = -ENXIO, nxmit = 0;
477 struct net_device *rcv;
478 unsigned int max_len;
481 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
485 rcv = rcu_dereference(priv->peer);
489 rcv_priv = netdev_priv(rcv);
490 rq = &rcv_priv->rq[veth_select_rxq(rcv)];
491 /* The napi pointer is set if NAPI is enabled, which ensures that
492 * xdp_ring is initialized on receive side and the peer device is up.
494 if (!rcu_access_pointer(rq->napi))
497 max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
499 spin_lock(&rq->xdp_ring.producer_lock);
500 for (i = 0; i < n; i++) {
501 struct xdp_frame *frame = frames[i];
502 void *ptr = veth_xdp_to_ptr(frame);
504 if (unlikely(frame->len > max_len ||
505 __ptr_ring_produce(&rq->xdp_ring, ptr)))
509 spin_unlock(&rq->xdp_ring.producer_lock);
511 if (flags & XDP_XMIT_FLUSH)
512 __veth_xdp_flush(rq);
516 u64_stats_update_begin(&rq->stats.syncp);
517 rq->stats.vs.peer_tq_xdp_xmit += nxmit;
518 rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
519 u64_stats_update_end(&rq->stats.syncp);
528 static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
529 struct xdp_frame **frames, u32 flags)
533 err = veth_xdp_xmit(dev, n, frames, flags, true);
535 struct veth_priv *priv = netdev_priv(dev);
537 atomic64_add(n, &priv->dropped);
543 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
545 int sent, i, err = 0, drops;
547 sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
553 for (i = sent; unlikely(i < bq->count); i++)
554 xdp_return_frame(bq->q[i]);
556 drops = bq->count - sent;
557 trace_xdp_bulk_tx(rq->dev, sent, drops, err);
559 u64_stats_update_begin(&rq->stats.syncp);
560 rq->stats.vs.xdp_tx += sent;
561 rq->stats.vs.xdp_tx_err += drops;
562 u64_stats_update_end(&rq->stats.syncp);
567 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
569 struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
570 struct net_device *rcv;
571 struct veth_rq *rcv_rq;
574 veth_xdp_flush_bq(rq, bq);
575 rcv = rcu_dereference(priv->peer);
579 rcv_priv = netdev_priv(rcv);
580 rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
581 /* xdp_ring is initialized on receive side? */
582 if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
585 __veth_xdp_flush(rcv_rq);
590 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
591 struct veth_xdp_tx_bq *bq)
593 struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
595 if (unlikely(!frame))
598 if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
599 veth_xdp_flush_bq(rq, bq);
601 bq->q[bq->count++] = frame;
606 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
607 struct xdp_frame *frame,
608 struct veth_xdp_tx_bq *bq,
609 struct veth_stats *stats)
611 struct xdp_frame orig_frame;
612 struct bpf_prog *xdp_prog;
615 xdp_prog = rcu_dereference(rq->xdp_prog);
616 if (likely(xdp_prog)) {
620 xdp_convert_frame_to_buff(frame, &xdp);
621 xdp.rxq = &rq->xdp_rxq;
623 act = bpf_prog_run_xdp(xdp_prog, &xdp);
627 if (xdp_update_frame_from_buff(&xdp, frame))
632 xdp.rxq->mem = frame->mem;
633 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
634 trace_xdp_exception(rq->dev, xdp_prog, act);
644 xdp.rxq->mem = frame->mem;
645 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
650 stats->xdp_redirect++;
654 bpf_warn_invalid_xdp_action(act);
657 trace_xdp_exception(rq->dev, xdp_prog, act);
669 xdp_return_frame(frame);
674 /* frames array contains VETH_XDP_BATCH at most */
675 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
676 int n_xdpf, struct veth_xdp_tx_bq *bq,
677 struct veth_stats *stats)
679 void *skbs[VETH_XDP_BATCH];
682 if (xdp_alloc_skb_bulk(skbs, n_xdpf,
683 GFP_ATOMIC | __GFP_ZERO) < 0) {
684 for (i = 0; i < n_xdpf; i++)
685 xdp_return_frame(frames[i]);
686 stats->rx_drops += n_xdpf;
691 for (i = 0; i < n_xdpf; i++) {
692 struct sk_buff *skb = skbs[i];
694 skb = __xdp_build_skb_from_frame(frames[i], skb,
697 xdp_return_frame(frames[i]);
701 napi_gro_receive(&rq->xdp_napi, skb);
705 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
707 struct veth_xdp_tx_bq *bq,
708 struct veth_stats *stats)
710 u32 pktlen, headroom, act, metalen, frame_sz;
711 void *orig_data, *orig_data_end;
712 struct bpf_prog *xdp_prog;
713 int mac_len, delta, off;
716 skb_prepare_for_gro(skb);
719 xdp_prog = rcu_dereference(rq->xdp_prog);
720 if (unlikely(!xdp_prog)) {
725 mac_len = skb->data - skb_mac_header(skb);
726 pktlen = skb->len + mac_len;
727 headroom = skb_headroom(skb) - mac_len;
729 if (skb_shared(skb) || skb_head_is_locked(skb) ||
730 skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
731 struct sk_buff *nskb;
736 size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
737 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
738 if (size > PAGE_SIZE)
741 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
745 head = page_address(page);
746 start = head + VETH_XDP_HEADROOM;
747 if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
748 page_frag_free(head);
752 nskb = veth_build_skb(head, VETH_XDP_HEADROOM + mac_len,
753 skb->len, PAGE_SIZE);
755 page_frag_free(head);
759 skb_copy_header(nskb, skb);
760 head_off = skb_headroom(nskb) - skb_headroom(skb);
761 skb_headers_offset_update(nskb, head_off);
766 /* SKB "head" area always have tailroom for skb_shared_info */
767 frame_sz = skb_end_pointer(skb) - skb->head;
768 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
769 xdp_init_buff(&xdp, frame_sz, &rq->xdp_rxq);
770 xdp_prepare_buff(&xdp, skb->head, skb->mac_header, pktlen, true);
772 orig_data = xdp.data;
773 orig_data_end = xdp.data_end;
775 act = bpf_prog_run_xdp(xdp_prog, &xdp);
781 get_page(virt_to_page(xdp.data));
783 xdp.rxq->mem = rq->xdp_mem;
784 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
785 trace_xdp_exception(rq->dev, xdp_prog, act);
793 get_page(virt_to_page(xdp.data));
795 xdp.rxq->mem = rq->xdp_mem;
796 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
800 stats->xdp_redirect++;
804 bpf_warn_invalid_xdp_action(act);
807 trace_xdp_exception(rq->dev, xdp_prog, act);
815 /* check if bpf_xdp_adjust_head was used */
816 delta = orig_data - xdp.data;
817 off = mac_len + delta;
819 __skb_push(skb, off);
821 __skb_pull(skb, -off);
822 skb->mac_header -= delta;
824 /* check if bpf_xdp_adjust_tail was used */
825 off = xdp.data_end - orig_data_end;
827 __skb_put(skb, off); /* positive on grow, negative on shrink */
828 skb->protocol = eth_type_trans(skb, rq->dev);
830 metalen = xdp.data - xdp.data_meta;
832 skb_metadata_set(skb, metalen);
843 page_frag_free(xdp.data);
848 static int veth_xdp_rcv(struct veth_rq *rq, int budget,
849 struct veth_xdp_tx_bq *bq,
850 struct veth_stats *stats)
852 int i, done = 0, n_xdpf = 0;
853 void *xdpf[VETH_XDP_BATCH];
855 for (i = 0; i < budget; i++) {
856 void *ptr = __ptr_ring_consume(&rq->xdp_ring);
861 if (veth_is_xdp_frame(ptr)) {
863 struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
865 stats->xdp_bytes += frame->len;
866 frame = veth_xdp_rcv_one(rq, frame, bq, stats);
869 xdpf[n_xdpf++] = frame;
870 if (n_xdpf == VETH_XDP_BATCH) {
871 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
878 struct sk_buff *skb = ptr;
880 stats->xdp_bytes += skb->len;
881 skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
883 if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC))
884 netif_receive_skb(skb);
886 napi_gro_receive(&rq->xdp_napi, skb);
893 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
895 u64_stats_update_begin(&rq->stats.syncp);
896 rq->stats.vs.xdp_redirect += stats->xdp_redirect;
897 rq->stats.vs.xdp_bytes += stats->xdp_bytes;
898 rq->stats.vs.xdp_drops += stats->xdp_drops;
899 rq->stats.vs.rx_drops += stats->rx_drops;
900 rq->stats.vs.xdp_packets += done;
901 u64_stats_update_end(&rq->stats.syncp);
906 static int veth_poll(struct napi_struct *napi, int budget)
909 container_of(napi, struct veth_rq, xdp_napi);
910 struct veth_stats stats = {};
911 struct veth_xdp_tx_bq bq;
916 xdp_set_return_frame_no_direct();
917 done = veth_xdp_rcv(rq, budget, &bq, &stats);
919 if (stats.xdp_redirect > 0)
922 if (done < budget && napi_complete_done(napi, done)) {
923 /* Write rx_notify_masked before reading ptr_ring */
924 smp_store_mb(rq->rx_notify_masked, false);
925 if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
926 if (napi_schedule_prep(&rq->xdp_napi)) {
927 WRITE_ONCE(rq->rx_notify_masked, true);
928 __napi_schedule(&rq->xdp_napi);
933 if (stats.xdp_tx > 0)
934 veth_xdp_flush(rq, &bq);
935 xdp_clear_return_frame_no_direct();
940 static int __veth_napi_enable_range(struct net_device *dev, int start, int end)
942 struct veth_priv *priv = netdev_priv(dev);
945 for (i = start; i < end; i++) {
946 struct veth_rq *rq = &priv->rq[i];
948 err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
953 for (i = start; i < end; i++) {
954 struct veth_rq *rq = &priv->rq[i];
956 napi_enable(&rq->xdp_napi);
957 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
963 for (i--; i >= start; i--)
964 ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
969 static int __veth_napi_enable(struct net_device *dev)
971 return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
974 static void veth_napi_del_range(struct net_device *dev, int start, int end)
976 struct veth_priv *priv = netdev_priv(dev);
979 for (i = start; i < end; i++) {
980 struct veth_rq *rq = &priv->rq[i];
982 rcu_assign_pointer(priv->rq[i].napi, NULL);
983 napi_disable(&rq->xdp_napi);
984 __netif_napi_del(&rq->xdp_napi);
988 for (i = start; i < end; i++) {
989 struct veth_rq *rq = &priv->rq[i];
991 rq->rx_notify_masked = false;
992 ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
996 static void veth_napi_del(struct net_device *dev)
998 veth_napi_del_range(dev, 0, dev->real_num_rx_queues);
1001 static bool veth_gro_requested(const struct net_device *dev)
1003 return !!(dev->wanted_features & NETIF_F_GRO);
1006 static int veth_enable_xdp_range(struct net_device *dev, int start, int end,
1007 bool napi_already_on)
1009 struct veth_priv *priv = netdev_priv(dev);
1012 for (i = start; i < end; i++) {
1013 struct veth_rq *rq = &priv->rq[i];
1015 if (!napi_already_on)
1016 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
1017 err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
1021 err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
1022 MEM_TYPE_PAGE_SHARED,
1027 /* Save original mem info as it can be overwritten */
1028 rq->xdp_mem = rq->xdp_rxq.mem;
1033 xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
1035 for (i--; i >= start; i--) {
1036 struct veth_rq *rq = &priv->rq[i];
1038 xdp_rxq_info_unreg(&rq->xdp_rxq);
1039 if (!napi_already_on)
1040 netif_napi_del(&rq->xdp_napi);
1046 static void veth_disable_xdp_range(struct net_device *dev, int start, int end,
1049 struct veth_priv *priv = netdev_priv(dev);
1052 for (i = start; i < end; i++) {
1053 struct veth_rq *rq = &priv->rq[i];
1055 rq->xdp_rxq.mem = rq->xdp_mem;
1056 xdp_rxq_info_unreg(&rq->xdp_rxq);
1059 netif_napi_del(&rq->xdp_napi);
1063 static int veth_enable_xdp(struct net_device *dev)
1065 bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP);
1066 struct veth_priv *priv = netdev_priv(dev);
1069 if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
1070 err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on);
1074 if (!napi_already_on) {
1075 err = __veth_napi_enable(dev);
1077 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true);
1081 if (!veth_gro_requested(dev)) {
1082 /* user-space did not require GRO, but adding XDP
1083 * is supposed to get GRO working
1085 dev->features |= NETIF_F_GRO;
1086 netdev_features_change(dev);
1091 for (i = 0; i < dev->real_num_rx_queues; i++) {
1092 rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
1093 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1099 static void veth_disable_xdp(struct net_device *dev)
1101 struct veth_priv *priv = netdev_priv(dev);
1104 for (i = 0; i < dev->real_num_rx_queues; i++)
1105 rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
1107 if (!netif_running(dev) || !veth_gro_requested(dev)) {
1110 /* if user-space did not require GRO, since adding XDP
1111 * enabled it, clear it now
1113 if (!veth_gro_requested(dev) && netif_running(dev)) {
1114 dev->features &= ~NETIF_F_GRO;
1115 netdev_features_change(dev);
1119 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false);
1122 static int veth_napi_enable_range(struct net_device *dev, int start, int end)
1124 struct veth_priv *priv = netdev_priv(dev);
1127 for (i = start; i < end; i++) {
1128 struct veth_rq *rq = &priv->rq[i];
1130 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
1133 err = __veth_napi_enable_range(dev, start, end);
1135 for (i = start; i < end; i++) {
1136 struct veth_rq *rq = &priv->rq[i];
1138 netif_napi_del(&rq->xdp_napi);
1145 static int veth_napi_enable(struct net_device *dev)
1147 return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1150 static void veth_disable_range_safe(struct net_device *dev, int start, int end)
1152 struct veth_priv *priv = netdev_priv(dev);
1157 if (priv->_xdp_prog) {
1158 veth_napi_del_range(dev, start, end);
1159 veth_disable_xdp_range(dev, start, end, false);
1160 } else if (veth_gro_requested(dev)) {
1161 veth_napi_del_range(dev, start, end);
1165 static int veth_enable_range_safe(struct net_device *dev, int start, int end)
1167 struct veth_priv *priv = netdev_priv(dev);
1173 if (priv->_xdp_prog) {
1174 /* these channels are freshly initialized, napi is not on there even
1175 * when GRO is requeste
1177 err = veth_enable_xdp_range(dev, start, end, false);
1181 err = __veth_napi_enable_range(dev, start, end);
1183 /* on error always delete the newly added napis */
1184 veth_disable_xdp_range(dev, start, end, true);
1187 } else if (veth_gro_requested(dev)) {
1188 return veth_napi_enable_range(dev, start, end);
1193 static int veth_set_channels(struct net_device *dev,
1194 struct ethtool_channels *ch)
1196 struct veth_priv *priv = netdev_priv(dev);
1197 unsigned int old_rx_count, new_rx_count;
1198 struct veth_priv *peer_priv;
1199 struct net_device *peer;
1202 /* sanity check. Upper bounds are already enforced by the caller */
1203 if (!ch->rx_count || !ch->tx_count)
1206 /* avoid braking XDP, if that is enabled */
1207 peer = rtnl_dereference(priv->peer);
1208 peer_priv = peer ? netdev_priv(peer) : NULL;
1209 if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues)
1212 if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues)
1215 old_rx_count = dev->real_num_rx_queues;
1216 new_rx_count = ch->rx_count;
1217 if (netif_running(dev)) {
1218 /* turn device off */
1219 netif_carrier_off(dev);
1221 netif_carrier_off(peer);
1223 /* try to allocate new resurces, as needed*/
1224 err = veth_enable_range_safe(dev, old_rx_count, new_rx_count);
1229 err = netif_set_real_num_rx_queues(dev, ch->rx_count);
1233 err = netif_set_real_num_tx_queues(dev, ch->tx_count);
1235 int err2 = netif_set_real_num_rx_queues(dev, old_rx_count);
1237 /* this error condition could happen only if rx and tx change
1238 * in opposite directions (e.g. tx nr raises, rx nr decreases)
1239 * and we can't do anything to fully restore the original
1243 pr_warn("Can't restore rx queues config %d -> %d %d",
1244 new_rx_count, old_rx_count, err2);
1250 if (netif_running(dev)) {
1251 /* note that we need to swap the arguments WRT the enable part
1252 * to identify the range we have to disable
1254 veth_disable_range_safe(dev, new_rx_count, old_rx_count);
1255 netif_carrier_on(dev);
1257 netif_carrier_on(peer);
1262 new_rx_count = old_rx_count;
1263 old_rx_count = ch->rx_count;
1267 static int veth_open(struct net_device *dev)
1269 struct veth_priv *priv = netdev_priv(dev);
1270 struct net_device *peer = rtnl_dereference(priv->peer);
1276 if (priv->_xdp_prog) {
1277 err = veth_enable_xdp(dev);
1280 } else if (veth_gro_requested(dev)) {
1281 err = veth_napi_enable(dev);
1286 if (peer->flags & IFF_UP) {
1287 netif_carrier_on(dev);
1288 netif_carrier_on(peer);
1294 static int veth_close(struct net_device *dev)
1296 struct veth_priv *priv = netdev_priv(dev);
1297 struct net_device *peer = rtnl_dereference(priv->peer);
1299 netif_carrier_off(dev);
1301 netif_carrier_off(peer);
1303 if (priv->_xdp_prog)
1304 veth_disable_xdp(dev);
1305 else if (veth_gro_requested(dev))
1311 static int is_valid_veth_mtu(int mtu)
1313 return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
1316 static int veth_alloc_queues(struct net_device *dev)
1318 struct veth_priv *priv = netdev_priv(dev);
1321 priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
1325 for (i = 0; i < dev->num_rx_queues; i++) {
1326 priv->rq[i].dev = dev;
1327 u64_stats_init(&priv->rq[i].stats.syncp);
1333 static void veth_free_queues(struct net_device *dev)
1335 struct veth_priv *priv = netdev_priv(dev);
1340 static int veth_dev_init(struct net_device *dev)
1344 dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
1348 err = veth_alloc_queues(dev);
1350 free_percpu(dev->lstats);
1357 static void veth_dev_free(struct net_device *dev)
1359 veth_free_queues(dev);
1360 free_percpu(dev->lstats);
1363 #ifdef CONFIG_NET_POLL_CONTROLLER
1364 static void veth_poll_controller(struct net_device *dev)
1366 /* veth only receives frames when its peer sends one
1367 * Since it has nothing to do with disabling irqs, we are guaranteed
1368 * never to have pending data when we poll for it so
1369 * there is nothing to do here.
1371 * We need this though so netpoll recognizes us as an interface that
1372 * supports polling, which enables bridge devices in virt setups to
1373 * still use netconsole
1376 #endif /* CONFIG_NET_POLL_CONTROLLER */
1378 static int veth_get_iflink(const struct net_device *dev)
1380 struct veth_priv *priv = netdev_priv(dev);
1381 struct net_device *peer;
1385 peer = rcu_dereference(priv->peer);
1386 iflink = peer ? peer->ifindex : 0;
1392 static netdev_features_t veth_fix_features(struct net_device *dev,
1393 netdev_features_t features)
1395 struct veth_priv *priv = netdev_priv(dev);
1396 struct net_device *peer;
1398 peer = rtnl_dereference(priv->peer);
1400 struct veth_priv *peer_priv = netdev_priv(peer);
1402 if (peer_priv->_xdp_prog)
1403 features &= ~NETIF_F_GSO_SOFTWARE;
1405 if (priv->_xdp_prog)
1406 features |= NETIF_F_GRO;
1411 static int veth_set_features(struct net_device *dev,
1412 netdev_features_t features)
1414 netdev_features_t changed = features ^ dev->features;
1415 struct veth_priv *priv = netdev_priv(dev);
1418 if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog)
1421 if (features & NETIF_F_GRO) {
1422 err = veth_napi_enable(dev);
1431 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1433 struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1434 struct net_device *peer;
1440 peer = rcu_dereference(priv->peer);
1441 if (unlikely(!peer))
1444 peer_priv = netdev_priv(peer);
1445 priv->requested_headroom = new_hr;
1446 new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1447 dev->needed_headroom = new_hr;
1448 peer->needed_headroom = new_hr;
1454 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1455 struct netlink_ext_ack *extack)
1457 struct veth_priv *priv = netdev_priv(dev);
1458 struct bpf_prog *old_prog;
1459 struct net_device *peer;
1460 unsigned int max_mtu;
1463 old_prog = priv->_xdp_prog;
1464 priv->_xdp_prog = prog;
1465 peer = rtnl_dereference(priv->peer);
1469 NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1474 max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1475 peer->hard_header_len -
1476 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1477 if (peer->mtu > max_mtu) {
1478 NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1483 if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1484 NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1489 if (dev->flags & IFF_UP) {
1490 err = veth_enable_xdp(dev);
1492 NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1498 peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1499 peer->max_mtu = max_mtu;
1505 if (dev->flags & IFF_UP)
1506 veth_disable_xdp(dev);
1509 peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1510 peer->max_mtu = ETH_MAX_MTU;
1513 bpf_prog_put(old_prog);
1516 if ((!!old_prog ^ !!prog) && peer)
1517 netdev_update_features(peer);
1521 priv->_xdp_prog = old_prog;
1526 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1528 switch (xdp->command) {
1529 case XDP_SETUP_PROG:
1530 return veth_xdp_set(dev, xdp->prog, xdp->extack);
1536 static const struct net_device_ops veth_netdev_ops = {
1537 .ndo_init = veth_dev_init,
1538 .ndo_open = veth_open,
1539 .ndo_stop = veth_close,
1540 .ndo_start_xmit = veth_xmit,
1541 .ndo_get_stats64 = veth_get_stats64,
1542 .ndo_set_rx_mode = veth_set_multicast_list,
1543 .ndo_set_mac_address = eth_mac_addr,
1544 #ifdef CONFIG_NET_POLL_CONTROLLER
1545 .ndo_poll_controller = veth_poll_controller,
1547 .ndo_get_iflink = veth_get_iflink,
1548 .ndo_fix_features = veth_fix_features,
1549 .ndo_set_features = veth_set_features,
1550 .ndo_features_check = passthru_features_check,
1551 .ndo_set_rx_headroom = veth_set_rx_headroom,
1552 .ndo_bpf = veth_xdp,
1553 .ndo_xdp_xmit = veth_ndo_xdp_xmit,
1554 .ndo_get_peer_dev = veth_peer_dev,
1557 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1558 NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1559 NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1560 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1561 NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1563 static void veth_setup(struct net_device *dev)
1567 dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1568 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1569 dev->priv_flags |= IFF_NO_QUEUE;
1570 dev->priv_flags |= IFF_PHONY_HEADROOM;
1572 dev->netdev_ops = &veth_netdev_ops;
1573 dev->ethtool_ops = &veth_ethtool_ops;
1574 dev->features |= NETIF_F_LLTX;
1575 dev->features |= VETH_FEATURES;
1576 dev->vlan_features = dev->features &
1577 ~(NETIF_F_HW_VLAN_CTAG_TX |
1578 NETIF_F_HW_VLAN_STAG_TX |
1579 NETIF_F_HW_VLAN_CTAG_RX |
1580 NETIF_F_HW_VLAN_STAG_RX);
1581 dev->needs_free_netdev = true;
1582 dev->priv_destructor = veth_dev_free;
1583 dev->max_mtu = ETH_MAX_MTU;
1585 dev->hw_features = VETH_FEATURES;
1586 dev->hw_enc_features = VETH_FEATURES;
1587 dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1594 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1595 struct netlink_ext_ack *extack)
1597 if (tb[IFLA_ADDRESS]) {
1598 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1600 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1601 return -EADDRNOTAVAIL;
1604 if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1610 static struct rtnl_link_ops veth_link_ops;
1612 static void veth_disable_gro(struct net_device *dev)
1614 dev->features &= ~NETIF_F_GRO;
1615 dev->wanted_features &= ~NETIF_F_GRO;
1616 netdev_update_features(dev);
1619 static int veth_init_queues(struct net_device *dev, struct nlattr *tb[])
1623 if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) {
1624 err = netif_set_real_num_tx_queues(dev, 1);
1628 if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) {
1629 err = netif_set_real_num_rx_queues(dev, 1);
1636 static int veth_newlink(struct net *src_net, struct net_device *dev,
1637 struct nlattr *tb[], struct nlattr *data[],
1638 struct netlink_ext_ack *extack)
1641 struct net_device *peer;
1642 struct veth_priv *priv;
1643 char ifname[IFNAMSIZ];
1644 struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1645 unsigned char name_assign_type;
1646 struct ifinfomsg *ifmp;
1650 * create and register peer first
1652 if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1653 struct nlattr *nla_peer;
1655 nla_peer = data[VETH_INFO_PEER];
1656 ifmp = nla_data(nla_peer);
1657 err = rtnl_nla_parse_ifla(peer_tb,
1658 nla_data(nla_peer) + sizeof(struct ifinfomsg),
1659 nla_len(nla_peer) - sizeof(struct ifinfomsg),
1664 err = veth_validate(peer_tb, NULL, extack);
1674 if (ifmp && tbp[IFLA_IFNAME]) {
1675 nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1676 name_assign_type = NET_NAME_USER;
1678 snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1679 name_assign_type = NET_NAME_ENUM;
1682 net = rtnl_link_get_net(src_net, tbp);
1684 return PTR_ERR(net);
1686 peer = rtnl_create_link(net, ifname, name_assign_type,
1687 &veth_link_ops, tbp, extack);
1690 return PTR_ERR(peer);
1693 if (!ifmp || !tbp[IFLA_ADDRESS])
1694 eth_hw_addr_random(peer);
1696 if (ifmp && (dev->ifindex != 0))
1697 peer->ifindex = ifmp->ifi_index;
1699 peer->gso_max_size = dev->gso_max_size;
1700 peer->gso_max_segs = dev->gso_max_segs;
1702 err = register_netdevice(peer);
1706 goto err_register_peer;
1708 /* keep GRO disabled by default to be consistent with the established
1711 veth_disable_gro(peer);
1712 netif_carrier_off(peer);
1714 err = rtnl_configure_link(peer, ifmp);
1716 goto err_configure_peer;
1721 * note, that since we've registered new device the dev's name
1722 * should be re-allocated
1725 if (tb[IFLA_ADDRESS] == NULL)
1726 eth_hw_addr_random(dev);
1728 if (tb[IFLA_IFNAME])
1729 nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1731 snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1733 err = register_netdevice(dev);
1735 goto err_register_dev;
1737 netif_carrier_off(dev);
1740 * tie the deviced together
1743 priv = netdev_priv(dev);
1744 rcu_assign_pointer(priv->peer, peer);
1745 err = veth_init_queues(dev, tb);
1749 priv = netdev_priv(peer);
1750 rcu_assign_pointer(priv->peer, dev);
1751 err = veth_init_queues(peer, tb);
1755 veth_disable_gro(dev);
1759 unregister_netdevice(dev);
1763 unregister_netdevice(peer);
1771 static void veth_dellink(struct net_device *dev, struct list_head *head)
1773 struct veth_priv *priv;
1774 struct net_device *peer;
1776 priv = netdev_priv(dev);
1777 peer = rtnl_dereference(priv->peer);
1779 /* Note : dellink() is called from default_device_exit_batch(),
1780 * before a rcu_synchronize() point. The devices are guaranteed
1781 * not being freed before one RCU grace period.
1783 RCU_INIT_POINTER(priv->peer, NULL);
1784 unregister_netdevice_queue(dev, head);
1787 priv = netdev_priv(peer);
1788 RCU_INIT_POINTER(priv->peer, NULL);
1789 unregister_netdevice_queue(peer, head);
1793 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1794 [VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) },
1797 static struct net *veth_get_link_net(const struct net_device *dev)
1799 struct veth_priv *priv = netdev_priv(dev);
1800 struct net_device *peer = rtnl_dereference(priv->peer);
1802 return peer ? dev_net(peer) : dev_net(dev);
1805 static unsigned int veth_get_num_queues(void)
1807 /* enforce the same queue limit as rtnl_create_link */
1808 int queues = num_possible_cpus();
1815 static struct rtnl_link_ops veth_link_ops = {
1817 .priv_size = sizeof(struct veth_priv),
1818 .setup = veth_setup,
1819 .validate = veth_validate,
1820 .newlink = veth_newlink,
1821 .dellink = veth_dellink,
1822 .policy = veth_policy,
1823 .maxtype = VETH_INFO_MAX,
1824 .get_link_net = veth_get_link_net,
1825 .get_num_tx_queues = veth_get_num_queues,
1826 .get_num_rx_queues = veth_get_num_queues,
1833 static __init int veth_init(void)
1835 return rtnl_link_register(&veth_link_ops);
1838 static __exit void veth_exit(void)
1840 rtnl_link_unregister(&veth_link_ops);
1843 module_init(veth_init);
1844 module_exit(veth_exit);
1846 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1847 MODULE_LICENSE("GPL v2");
1848 MODULE_ALIAS_RTNL_LINK(DRV_NAME);