1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
18 #include <net/rtnetlink.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
30 #define DRV_NAME "veth"
31 #define DRV_VERSION "1.0"
33 #define VETH_XDP_FLAG BIT(0)
34 #define VETH_RING_SIZE 256
35 #define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN)
37 #define VETH_XDP_TX_BULK_SIZE 16
38 #define VETH_XDP_BATCH 16
50 u64 peer_tq_xdp_xmit_err;
53 struct veth_rq_stats {
55 struct u64_stats_sync syncp;
59 struct napi_struct xdp_napi;
60 struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */
61 struct net_device *dev;
62 struct bpf_prog __rcu *xdp_prog;
63 struct xdp_mem_info xdp_mem;
64 struct veth_rq_stats stats;
65 bool rx_notify_masked;
66 struct ptr_ring xdp_ring;
67 struct xdp_rxq_info xdp_rxq;
71 struct net_device __rcu *peer;
73 struct bpf_prog *_xdp_prog;
75 unsigned int requested_headroom;
78 struct veth_xdp_tx_bq {
79 struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
87 struct veth_q_stat_desc {
88 char desc[ETH_GSTRING_LEN];
92 #define VETH_RQ_STAT(m) offsetof(struct veth_stats, m)
94 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
95 { "xdp_packets", VETH_RQ_STAT(xdp_packets) },
96 { "xdp_bytes", VETH_RQ_STAT(xdp_bytes) },
97 { "drops", VETH_RQ_STAT(rx_drops) },
98 { "xdp_redirect", VETH_RQ_STAT(xdp_redirect) },
99 { "xdp_drops", VETH_RQ_STAT(xdp_drops) },
100 { "xdp_tx", VETH_RQ_STAT(xdp_tx) },
101 { "xdp_tx_errors", VETH_RQ_STAT(xdp_tx_err) },
104 #define VETH_RQ_STATS_LEN ARRAY_SIZE(veth_rq_stats_desc)
106 static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
107 { "xdp_xmit", VETH_RQ_STAT(peer_tq_xdp_xmit) },
108 { "xdp_xmit_errors", VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
111 #define VETH_TQ_STATS_LEN ARRAY_SIZE(veth_tq_stats_desc)
114 const char string[ETH_GSTRING_LEN];
115 } ethtool_stats_keys[] = {
119 static int veth_get_link_ksettings(struct net_device *dev,
120 struct ethtool_link_ksettings *cmd)
122 cmd->base.speed = SPEED_10000;
123 cmd->base.duplex = DUPLEX_FULL;
124 cmd->base.port = PORT_TP;
125 cmd->base.autoneg = AUTONEG_DISABLE;
129 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
131 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
132 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
135 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
142 memcpy(p, ðtool_stats_keys, sizeof(ethtool_stats_keys));
143 p += sizeof(ethtool_stats_keys);
144 for (i = 0; i < dev->real_num_rx_queues; i++)
145 for (j = 0; j < VETH_RQ_STATS_LEN; j++)
146 ethtool_sprintf(&p, "rx_queue_%u_%.18s",
147 i, veth_rq_stats_desc[j].desc);
149 for (i = 0; i < dev->real_num_tx_queues; i++)
150 for (j = 0; j < VETH_TQ_STATS_LEN; j++)
151 ethtool_sprintf(&p, "tx_queue_%u_%.18s",
152 i, veth_tq_stats_desc[j].desc);
157 static int veth_get_sset_count(struct net_device *dev, int sset)
161 return ARRAY_SIZE(ethtool_stats_keys) +
162 VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
163 VETH_TQ_STATS_LEN * dev->real_num_tx_queues;
169 static void veth_get_ethtool_stats(struct net_device *dev,
170 struct ethtool_stats *stats, u64 *data)
172 struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
173 struct net_device *peer = rtnl_dereference(priv->peer);
176 data[0] = peer ? peer->ifindex : 0;
178 for (i = 0; i < dev->real_num_rx_queues; i++) {
179 const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
180 const void *stats_base = (void *)&rq_stats->vs;
185 start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
186 for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
187 offset = veth_rq_stats_desc[j].offset;
188 data[idx + j] = *(u64 *)(stats_base + offset);
190 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
191 idx += VETH_RQ_STATS_LEN;
197 rcv_priv = netdev_priv(peer);
198 for (i = 0; i < peer->real_num_rx_queues; i++) {
199 const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
200 const void *base = (void *)&rq_stats->vs;
201 unsigned int start, tx_idx = idx;
204 tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
206 start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
207 for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
208 offset = veth_tq_stats_desc[j].offset;
209 data[tx_idx + j] += *(u64 *)(base + offset);
211 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
215 static void veth_get_channels(struct net_device *dev,
216 struct ethtool_channels *channels)
218 channels->tx_count = dev->real_num_tx_queues;
219 channels->rx_count = dev->real_num_rx_queues;
220 channels->max_tx = dev->num_tx_queues;
221 channels->max_rx = dev->num_rx_queues;
224 static int veth_set_channels(struct net_device *dev,
225 struct ethtool_channels *ch);
227 static const struct ethtool_ops veth_ethtool_ops = {
228 .get_drvinfo = veth_get_drvinfo,
229 .get_link = ethtool_op_get_link,
230 .get_strings = veth_get_strings,
231 .get_sset_count = veth_get_sset_count,
232 .get_ethtool_stats = veth_get_ethtool_stats,
233 .get_link_ksettings = veth_get_link_ksettings,
234 .get_ts_info = ethtool_op_get_ts_info,
235 .get_channels = veth_get_channels,
236 .set_channels = veth_set_channels,
239 /* general routines */
241 static bool veth_is_xdp_frame(void *ptr)
243 return (unsigned long)ptr & VETH_XDP_FLAG;
246 static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
248 return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
251 static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
253 return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
256 static void veth_ptr_free(void *ptr)
258 if (veth_is_xdp_frame(ptr))
259 xdp_return_frame(veth_ptr_to_xdp(ptr));
264 static void __veth_xdp_flush(struct veth_rq *rq)
266 /* Write ptr_ring before reading rx_notify_masked */
268 if (!READ_ONCE(rq->rx_notify_masked) &&
269 napi_schedule_prep(&rq->xdp_napi)) {
270 WRITE_ONCE(rq->rx_notify_masked, true);
271 __napi_schedule(&rq->xdp_napi);
275 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
277 if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
278 dev_kfree_skb_any(skb);
282 return NET_RX_SUCCESS;
285 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
286 struct veth_rq *rq, bool xdp)
288 return __dev_forward_skb(dev, skb) ?: xdp ?
289 veth_xdp_rx(rq, skb) :
293 /* return true if the specified skb has chances of GRO aggregation
294 * Don't strive for accuracy, but try to avoid GRO overhead in the most
296 * When XDP is enabled, all traffic is considered eligible, as the xmit
297 * device has TSO off.
298 * When TSO is enabled on the xmit device, we are likely interested only
299 * in UDP aggregation, explicitly check for that if the skb is suspected
300 * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets -
301 * to belong to locally generated UDP traffic.
303 static bool veth_skb_is_eligible_for_gro(const struct net_device *dev,
304 const struct net_device *rcv,
305 const struct sk_buff *skb)
307 return !(dev->features & NETIF_F_ALL_TSO) ||
308 (skb->destructor == sock_wfree &&
309 rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD));
312 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
314 struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
315 struct netdev_queue *queue = NULL;
316 struct veth_rq *rq = NULL;
317 struct net_device *rcv;
318 int length = skb->len;
319 bool use_napi = false;
323 rcv = rcu_dereference(priv->peer);
324 if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) {
329 rcv_priv = netdev_priv(rcv);
330 rxq = skb_get_queue_mapping(skb);
331 if (rxq < rcv->real_num_rx_queues) {
332 rq = &rcv_priv->rq[rxq];
333 queue = netdev_get_tx_queue(dev, rxq);
335 /* The napi pointer is available when an XDP program is
336 * attached or when GRO is enabled
337 * Don't bother with napi/GRO if the skb can't be aggregated
339 use_napi = rcu_access_pointer(rq->napi) &&
340 veth_skb_is_eligible_for_gro(dev, rcv, skb);
343 skb_tx_timestamp(skb);
344 if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) {
346 txq_trans_cond_update(queue);
348 dev_lstats_add(dev, length);
351 atomic64_inc(&priv->dropped);
355 __veth_xdp_flush(rq);
362 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
364 struct veth_priv *priv = netdev_priv(dev);
366 dev_lstats_read(dev, packets, bytes);
367 return atomic64_read(&priv->dropped);
370 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
372 struct veth_priv *priv = netdev_priv(dev);
375 result->peer_tq_xdp_xmit_err = 0;
376 result->xdp_packets = 0;
377 result->xdp_tx_err = 0;
378 result->xdp_bytes = 0;
379 result->rx_drops = 0;
380 for (i = 0; i < dev->num_rx_queues; i++) {
381 u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
382 struct veth_rq_stats *stats = &priv->rq[i].stats;
386 start = u64_stats_fetch_begin_irq(&stats->syncp);
387 peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
388 xdp_tx_err = stats->vs.xdp_tx_err;
389 packets = stats->vs.xdp_packets;
390 bytes = stats->vs.xdp_bytes;
391 drops = stats->vs.rx_drops;
392 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
393 result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
394 result->xdp_tx_err += xdp_tx_err;
395 result->xdp_packets += packets;
396 result->xdp_bytes += bytes;
397 result->rx_drops += drops;
401 static void veth_get_stats64(struct net_device *dev,
402 struct rtnl_link_stats64 *tot)
404 struct veth_priv *priv = netdev_priv(dev);
405 struct net_device *peer;
406 struct veth_stats rx;
409 tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
410 tot->tx_bytes = bytes;
411 tot->tx_packets = packets;
413 veth_stats_rx(&rx, dev);
414 tot->tx_dropped += rx.xdp_tx_err;
415 tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
416 tot->rx_bytes = rx.xdp_bytes;
417 tot->rx_packets = rx.xdp_packets;
420 peer = rcu_dereference(priv->peer);
422 veth_stats_tx(peer, &packets, &bytes);
423 tot->rx_bytes += bytes;
424 tot->rx_packets += packets;
426 veth_stats_rx(&rx, peer);
427 tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
428 tot->rx_dropped += rx.xdp_tx_err;
429 tot->tx_bytes += rx.xdp_bytes;
430 tot->tx_packets += rx.xdp_packets;
435 /* fake multicast ability */
436 static void veth_set_multicast_list(struct net_device *dev)
440 static int veth_select_rxq(struct net_device *dev)
442 return smp_processor_id() % dev->real_num_rx_queues;
445 static struct net_device *veth_peer_dev(struct net_device *dev)
447 struct veth_priv *priv = netdev_priv(dev);
449 /* Callers must be under RCU read side. */
450 return rcu_dereference(priv->peer);
453 static int veth_xdp_xmit(struct net_device *dev, int n,
454 struct xdp_frame **frames,
455 u32 flags, bool ndo_xmit)
457 struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
458 int i, ret = -ENXIO, nxmit = 0;
459 struct net_device *rcv;
460 unsigned int max_len;
463 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
467 rcv = rcu_dereference(priv->peer);
471 rcv_priv = netdev_priv(rcv);
472 rq = &rcv_priv->rq[veth_select_rxq(rcv)];
473 /* The napi pointer is set if NAPI is enabled, which ensures that
474 * xdp_ring is initialized on receive side and the peer device is up.
476 if (!rcu_access_pointer(rq->napi))
479 max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
481 spin_lock(&rq->xdp_ring.producer_lock);
482 for (i = 0; i < n; i++) {
483 struct xdp_frame *frame = frames[i];
484 void *ptr = veth_xdp_to_ptr(frame);
486 if (unlikely(xdp_get_frame_len(frame) > max_len ||
487 __ptr_ring_produce(&rq->xdp_ring, ptr)))
491 spin_unlock(&rq->xdp_ring.producer_lock);
493 if (flags & XDP_XMIT_FLUSH)
494 __veth_xdp_flush(rq);
498 u64_stats_update_begin(&rq->stats.syncp);
499 rq->stats.vs.peer_tq_xdp_xmit += nxmit;
500 rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
501 u64_stats_update_end(&rq->stats.syncp);
510 static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
511 struct xdp_frame **frames, u32 flags)
515 err = veth_xdp_xmit(dev, n, frames, flags, true);
517 struct veth_priv *priv = netdev_priv(dev);
519 atomic64_add(n, &priv->dropped);
525 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
527 int sent, i, err = 0, drops;
529 sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
535 for (i = sent; unlikely(i < bq->count); i++)
536 xdp_return_frame(bq->q[i]);
538 drops = bq->count - sent;
539 trace_xdp_bulk_tx(rq->dev, sent, drops, err);
541 u64_stats_update_begin(&rq->stats.syncp);
542 rq->stats.vs.xdp_tx += sent;
543 rq->stats.vs.xdp_tx_err += drops;
544 u64_stats_update_end(&rq->stats.syncp);
549 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
551 struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
552 struct net_device *rcv;
553 struct veth_rq *rcv_rq;
556 veth_xdp_flush_bq(rq, bq);
557 rcv = rcu_dereference(priv->peer);
561 rcv_priv = netdev_priv(rcv);
562 rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
563 /* xdp_ring is initialized on receive side? */
564 if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
567 __veth_xdp_flush(rcv_rq);
572 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
573 struct veth_xdp_tx_bq *bq)
575 struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
577 if (unlikely(!frame))
580 if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
581 veth_xdp_flush_bq(rq, bq);
583 bq->q[bq->count++] = frame;
588 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
589 struct xdp_frame *frame,
590 struct veth_xdp_tx_bq *bq,
591 struct veth_stats *stats)
593 struct xdp_frame orig_frame;
594 struct bpf_prog *xdp_prog;
597 xdp_prog = rcu_dereference(rq->xdp_prog);
598 if (likely(xdp_prog)) {
602 xdp_convert_frame_to_buff(frame, &xdp);
603 xdp.rxq = &rq->xdp_rxq;
605 act = bpf_prog_run_xdp(xdp_prog, &xdp);
609 if (xdp_update_frame_from_buff(&xdp, frame))
614 xdp.rxq->mem = frame->mem;
615 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
616 trace_xdp_exception(rq->dev, xdp_prog, act);
626 xdp.rxq->mem = frame->mem;
627 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
632 stats->xdp_redirect++;
636 bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
639 trace_xdp_exception(rq->dev, xdp_prog, act);
651 xdp_return_frame(frame);
656 /* frames array contains VETH_XDP_BATCH at most */
657 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
658 int n_xdpf, struct veth_xdp_tx_bq *bq,
659 struct veth_stats *stats)
661 void *skbs[VETH_XDP_BATCH];
664 if (xdp_alloc_skb_bulk(skbs, n_xdpf,
665 GFP_ATOMIC | __GFP_ZERO) < 0) {
666 for (i = 0; i < n_xdpf; i++)
667 xdp_return_frame(frames[i]);
668 stats->rx_drops += n_xdpf;
673 for (i = 0; i < n_xdpf; i++) {
674 struct sk_buff *skb = skbs[i];
676 skb = __xdp_build_skb_from_frame(frames[i], skb,
679 xdp_return_frame(frames[i]);
683 napi_gro_receive(&rq->xdp_napi, skb);
687 static void veth_xdp_get(struct xdp_buff *xdp)
689 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
692 get_page(virt_to_page(xdp->data));
693 if (likely(!xdp_buff_has_frags(xdp)))
696 for (i = 0; i < sinfo->nr_frags; i++)
697 __skb_frag_ref(&sinfo->frags[i]);
700 static int veth_convert_skb_to_xdp_buff(struct veth_rq *rq,
701 struct xdp_buff *xdp,
702 struct sk_buff **pskb)
704 struct sk_buff *skb = *pskb;
707 if (skb_shared(skb) || skb_head_is_locked(skb) ||
708 skb_shinfo(skb)->nr_frags) {
709 u32 size, len, max_head_size, off;
710 struct sk_buff *nskb;
714 /* We need a private copy of the skb and data buffers since
715 * the ebpf program can modify it. We segment the original skb
716 * into order-0 pages without linearize it.
718 * Make sure we have enough space for linear and paged area
720 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE -
722 if (skb->len > PAGE_SIZE * MAX_SKB_FRAGS + max_head_size)
725 /* Allocate skb head */
726 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
730 nskb = build_skb(page_address(page), PAGE_SIZE);
736 skb_reserve(nskb, VETH_XDP_HEADROOM);
737 size = min_t(u32, skb->len, max_head_size);
738 if (skb_copy_bits(skb, 0, nskb->data, size)) {
744 skb_copy_header(nskb, skb);
745 head_off = skb_headroom(nskb) - skb_headroom(skb);
746 skb_headers_offset_update(nskb, head_off);
748 /* Allocate paged area of new skb */
750 len = skb->len - off;
752 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
753 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
759 size = min_t(u32, len, PAGE_SIZE);
760 skb_add_rx_frag(nskb, i, page, 0, size, PAGE_SIZE);
761 if (skb_copy_bits(skb, off, page_address(page),
773 } else if (skb_headroom(skb) < XDP_PACKET_HEADROOM &&
774 pskb_expand_head(skb, VETH_XDP_HEADROOM, 0, GFP_ATOMIC)) {
778 /* SKB "head" area always have tailroom for skb_shared_info */
779 frame_sz = skb_end_pointer(skb) - skb->head;
780 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
781 xdp_init_buff(xdp, frame_sz, &rq->xdp_rxq);
782 xdp_prepare_buff(xdp, skb->head, skb_headroom(skb),
783 skb_headlen(skb), true);
785 if (skb_is_nonlinear(skb)) {
786 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
787 xdp_buff_set_frags_flag(xdp);
789 xdp_buff_clear_frags_flag(xdp);
801 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
803 struct veth_xdp_tx_bq *bq,
804 struct veth_stats *stats)
806 void *orig_data, *orig_data_end;
807 struct bpf_prog *xdp_prog;
812 skb_prepare_for_gro(skb);
815 xdp_prog = rcu_dereference(rq->xdp_prog);
816 if (unlikely(!xdp_prog)) {
821 __skb_push(skb, skb->data - skb_mac_header(skb));
822 if (veth_convert_skb_to_xdp_buff(rq, &xdp, &skb))
825 orig_data = xdp.data;
826 orig_data_end = xdp.data_end;
828 act = bpf_prog_run_xdp(xdp_prog, &xdp);
836 xdp.rxq->mem = rq->xdp_mem;
837 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
838 trace_xdp_exception(rq->dev, xdp_prog, act);
848 xdp.rxq->mem = rq->xdp_mem;
849 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
853 stats->xdp_redirect++;
857 bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
860 trace_xdp_exception(rq->dev, xdp_prog, act);
868 /* check if bpf_xdp_adjust_head was used */
869 off = orig_data - xdp.data;
871 __skb_push(skb, off);
873 __skb_pull(skb, -off);
875 skb_reset_mac_header(skb);
877 /* check if bpf_xdp_adjust_tail was used */
878 off = xdp.data_end - orig_data_end;
880 __skb_put(skb, off); /* positive on grow, negative on shrink */
882 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
883 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
885 if (xdp_buff_has_frags(&xdp))
886 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
890 skb->protocol = eth_type_trans(skb, rq->dev);
892 metalen = xdp.data - xdp.data_meta;
894 skb_metadata_set(skb, metalen);
905 xdp_return_buff(&xdp);
910 static int veth_xdp_rcv(struct veth_rq *rq, int budget,
911 struct veth_xdp_tx_bq *bq,
912 struct veth_stats *stats)
914 int i, done = 0, n_xdpf = 0;
915 void *xdpf[VETH_XDP_BATCH];
917 for (i = 0; i < budget; i++) {
918 void *ptr = __ptr_ring_consume(&rq->xdp_ring);
923 if (veth_is_xdp_frame(ptr)) {
925 struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
927 stats->xdp_bytes += xdp_get_frame_len(frame);
928 frame = veth_xdp_rcv_one(rq, frame, bq, stats);
931 xdpf[n_xdpf++] = frame;
932 if (n_xdpf == VETH_XDP_BATCH) {
933 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
940 struct sk_buff *skb = ptr;
942 stats->xdp_bytes += skb->len;
943 skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
945 if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC))
946 netif_receive_skb(skb);
948 napi_gro_receive(&rq->xdp_napi, skb);
955 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
957 u64_stats_update_begin(&rq->stats.syncp);
958 rq->stats.vs.xdp_redirect += stats->xdp_redirect;
959 rq->stats.vs.xdp_bytes += stats->xdp_bytes;
960 rq->stats.vs.xdp_drops += stats->xdp_drops;
961 rq->stats.vs.rx_drops += stats->rx_drops;
962 rq->stats.vs.xdp_packets += done;
963 u64_stats_update_end(&rq->stats.syncp);
968 static int veth_poll(struct napi_struct *napi, int budget)
971 container_of(napi, struct veth_rq, xdp_napi);
972 struct veth_stats stats = {};
973 struct veth_xdp_tx_bq bq;
978 xdp_set_return_frame_no_direct();
979 done = veth_xdp_rcv(rq, budget, &bq, &stats);
981 if (done < budget && napi_complete_done(napi, done)) {
982 /* Write rx_notify_masked before reading ptr_ring */
983 smp_store_mb(rq->rx_notify_masked, false);
984 if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
985 if (napi_schedule_prep(&rq->xdp_napi)) {
986 WRITE_ONCE(rq->rx_notify_masked, true);
987 __napi_schedule(&rq->xdp_napi);
992 if (stats.xdp_tx > 0)
993 veth_xdp_flush(rq, &bq);
994 if (stats.xdp_redirect > 0)
996 xdp_clear_return_frame_no_direct();
1001 static int __veth_napi_enable_range(struct net_device *dev, int start, int end)
1003 struct veth_priv *priv = netdev_priv(dev);
1006 for (i = start; i < end; i++) {
1007 struct veth_rq *rq = &priv->rq[i];
1009 err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
1014 for (i = start; i < end; i++) {
1015 struct veth_rq *rq = &priv->rq[i];
1017 napi_enable(&rq->xdp_napi);
1018 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1024 for (i--; i >= start; i--)
1025 ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
1030 static int __veth_napi_enable(struct net_device *dev)
1032 return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1035 static void veth_napi_del_range(struct net_device *dev, int start, int end)
1037 struct veth_priv *priv = netdev_priv(dev);
1040 for (i = start; i < end; i++) {
1041 struct veth_rq *rq = &priv->rq[i];
1043 rcu_assign_pointer(priv->rq[i].napi, NULL);
1044 napi_disable(&rq->xdp_napi);
1045 __netif_napi_del(&rq->xdp_napi);
1049 for (i = start; i < end; i++) {
1050 struct veth_rq *rq = &priv->rq[i];
1052 rq->rx_notify_masked = false;
1053 ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
1057 static void veth_napi_del(struct net_device *dev)
1059 veth_napi_del_range(dev, 0, dev->real_num_rx_queues);
1062 static bool veth_gro_requested(const struct net_device *dev)
1064 return !!(dev->wanted_features & NETIF_F_GRO);
1067 static int veth_enable_xdp_range(struct net_device *dev, int start, int end,
1068 bool napi_already_on)
1070 struct veth_priv *priv = netdev_priv(dev);
1073 for (i = start; i < end; i++) {
1074 struct veth_rq *rq = &priv->rq[i];
1076 if (!napi_already_on)
1077 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
1078 err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
1082 err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
1083 MEM_TYPE_PAGE_SHARED,
1088 /* Save original mem info as it can be overwritten */
1089 rq->xdp_mem = rq->xdp_rxq.mem;
1094 xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
1096 for (i--; i >= start; i--) {
1097 struct veth_rq *rq = &priv->rq[i];
1099 xdp_rxq_info_unreg(&rq->xdp_rxq);
1100 if (!napi_already_on)
1101 netif_napi_del(&rq->xdp_napi);
1107 static void veth_disable_xdp_range(struct net_device *dev, int start, int end,
1110 struct veth_priv *priv = netdev_priv(dev);
1113 for (i = start; i < end; i++) {
1114 struct veth_rq *rq = &priv->rq[i];
1116 rq->xdp_rxq.mem = rq->xdp_mem;
1117 xdp_rxq_info_unreg(&rq->xdp_rxq);
1120 netif_napi_del(&rq->xdp_napi);
1124 static int veth_enable_xdp(struct net_device *dev)
1126 bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP);
1127 struct veth_priv *priv = netdev_priv(dev);
1130 if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
1131 err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on);
1135 if (!napi_already_on) {
1136 err = __veth_napi_enable(dev);
1138 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true);
1142 if (!veth_gro_requested(dev)) {
1143 /* user-space did not require GRO, but adding XDP
1144 * is supposed to get GRO working
1146 dev->features |= NETIF_F_GRO;
1147 netdev_features_change(dev);
1152 for (i = 0; i < dev->real_num_rx_queues; i++) {
1153 rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
1154 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1160 static void veth_disable_xdp(struct net_device *dev)
1162 struct veth_priv *priv = netdev_priv(dev);
1165 for (i = 0; i < dev->real_num_rx_queues; i++)
1166 rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
1168 if (!netif_running(dev) || !veth_gro_requested(dev)) {
1171 /* if user-space did not require GRO, since adding XDP
1172 * enabled it, clear it now
1174 if (!veth_gro_requested(dev) && netif_running(dev)) {
1175 dev->features &= ~NETIF_F_GRO;
1176 netdev_features_change(dev);
1180 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false);
1183 static int veth_napi_enable_range(struct net_device *dev, int start, int end)
1185 struct veth_priv *priv = netdev_priv(dev);
1188 for (i = start; i < end; i++) {
1189 struct veth_rq *rq = &priv->rq[i];
1191 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
1194 err = __veth_napi_enable_range(dev, start, end);
1196 for (i = start; i < end; i++) {
1197 struct veth_rq *rq = &priv->rq[i];
1199 netif_napi_del(&rq->xdp_napi);
1206 static int veth_napi_enable(struct net_device *dev)
1208 return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1211 static void veth_disable_range_safe(struct net_device *dev, int start, int end)
1213 struct veth_priv *priv = netdev_priv(dev);
1218 if (priv->_xdp_prog) {
1219 veth_napi_del_range(dev, start, end);
1220 veth_disable_xdp_range(dev, start, end, false);
1221 } else if (veth_gro_requested(dev)) {
1222 veth_napi_del_range(dev, start, end);
1226 static int veth_enable_range_safe(struct net_device *dev, int start, int end)
1228 struct veth_priv *priv = netdev_priv(dev);
1234 if (priv->_xdp_prog) {
1235 /* these channels are freshly initialized, napi is not on there even
1236 * when GRO is requeste
1238 err = veth_enable_xdp_range(dev, start, end, false);
1242 err = __veth_napi_enable_range(dev, start, end);
1244 /* on error always delete the newly added napis */
1245 veth_disable_xdp_range(dev, start, end, true);
1248 } else if (veth_gro_requested(dev)) {
1249 return veth_napi_enable_range(dev, start, end);
1254 static int veth_set_channels(struct net_device *dev,
1255 struct ethtool_channels *ch)
1257 struct veth_priv *priv = netdev_priv(dev);
1258 unsigned int old_rx_count, new_rx_count;
1259 struct veth_priv *peer_priv;
1260 struct net_device *peer;
1263 /* sanity check. Upper bounds are already enforced by the caller */
1264 if (!ch->rx_count || !ch->tx_count)
1267 /* avoid braking XDP, if that is enabled */
1268 peer = rtnl_dereference(priv->peer);
1269 peer_priv = peer ? netdev_priv(peer) : NULL;
1270 if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues)
1273 if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues)
1276 old_rx_count = dev->real_num_rx_queues;
1277 new_rx_count = ch->rx_count;
1278 if (netif_running(dev)) {
1279 /* turn device off */
1280 netif_carrier_off(dev);
1282 netif_carrier_off(peer);
1284 /* try to allocate new resurces, as needed*/
1285 err = veth_enable_range_safe(dev, old_rx_count, new_rx_count);
1290 err = netif_set_real_num_rx_queues(dev, ch->rx_count);
1294 err = netif_set_real_num_tx_queues(dev, ch->tx_count);
1296 int err2 = netif_set_real_num_rx_queues(dev, old_rx_count);
1298 /* this error condition could happen only if rx and tx change
1299 * in opposite directions (e.g. tx nr raises, rx nr decreases)
1300 * and we can't do anything to fully restore the original
1304 pr_warn("Can't restore rx queues config %d -> %d %d",
1305 new_rx_count, old_rx_count, err2);
1311 if (netif_running(dev)) {
1312 /* note that we need to swap the arguments WRT the enable part
1313 * to identify the range we have to disable
1315 veth_disable_range_safe(dev, new_rx_count, old_rx_count);
1316 netif_carrier_on(dev);
1318 netif_carrier_on(peer);
1323 new_rx_count = old_rx_count;
1324 old_rx_count = ch->rx_count;
1328 static int veth_open(struct net_device *dev)
1330 struct veth_priv *priv = netdev_priv(dev);
1331 struct net_device *peer = rtnl_dereference(priv->peer);
1337 if (priv->_xdp_prog) {
1338 err = veth_enable_xdp(dev);
1341 } else if (veth_gro_requested(dev)) {
1342 err = veth_napi_enable(dev);
1347 if (peer->flags & IFF_UP) {
1348 netif_carrier_on(dev);
1349 netif_carrier_on(peer);
1355 static int veth_close(struct net_device *dev)
1357 struct veth_priv *priv = netdev_priv(dev);
1358 struct net_device *peer = rtnl_dereference(priv->peer);
1360 netif_carrier_off(dev);
1362 netif_carrier_off(peer);
1364 if (priv->_xdp_prog)
1365 veth_disable_xdp(dev);
1366 else if (veth_gro_requested(dev))
1372 static int is_valid_veth_mtu(int mtu)
1374 return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
1377 static int veth_alloc_queues(struct net_device *dev)
1379 struct veth_priv *priv = netdev_priv(dev);
1382 priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL_ACCOUNT);
1386 for (i = 0; i < dev->num_rx_queues; i++) {
1387 priv->rq[i].dev = dev;
1388 u64_stats_init(&priv->rq[i].stats.syncp);
1394 static void veth_free_queues(struct net_device *dev)
1396 struct veth_priv *priv = netdev_priv(dev);
1401 static int veth_dev_init(struct net_device *dev)
1405 dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
1409 err = veth_alloc_queues(dev);
1411 free_percpu(dev->lstats);
1418 static void veth_dev_free(struct net_device *dev)
1420 veth_free_queues(dev);
1421 free_percpu(dev->lstats);
1424 #ifdef CONFIG_NET_POLL_CONTROLLER
1425 static void veth_poll_controller(struct net_device *dev)
1427 /* veth only receives frames when its peer sends one
1428 * Since it has nothing to do with disabling irqs, we are guaranteed
1429 * never to have pending data when we poll for it so
1430 * there is nothing to do here.
1432 * We need this though so netpoll recognizes us as an interface that
1433 * supports polling, which enables bridge devices in virt setups to
1434 * still use netconsole
1437 #endif /* CONFIG_NET_POLL_CONTROLLER */
1439 static int veth_get_iflink(const struct net_device *dev)
1441 struct veth_priv *priv = netdev_priv(dev);
1442 struct net_device *peer;
1446 peer = rcu_dereference(priv->peer);
1447 iflink = peer ? peer->ifindex : 0;
1453 static netdev_features_t veth_fix_features(struct net_device *dev,
1454 netdev_features_t features)
1456 struct veth_priv *priv = netdev_priv(dev);
1457 struct net_device *peer;
1459 peer = rtnl_dereference(priv->peer);
1461 struct veth_priv *peer_priv = netdev_priv(peer);
1463 if (peer_priv->_xdp_prog)
1464 features &= ~NETIF_F_GSO_SOFTWARE;
1466 if (priv->_xdp_prog)
1467 features |= NETIF_F_GRO;
1472 static int veth_set_features(struct net_device *dev,
1473 netdev_features_t features)
1475 netdev_features_t changed = features ^ dev->features;
1476 struct veth_priv *priv = netdev_priv(dev);
1479 if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog)
1482 if (features & NETIF_F_GRO) {
1483 err = veth_napi_enable(dev);
1492 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1494 struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1495 struct net_device *peer;
1501 peer = rcu_dereference(priv->peer);
1502 if (unlikely(!peer))
1505 peer_priv = netdev_priv(peer);
1506 priv->requested_headroom = new_hr;
1507 new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1508 dev->needed_headroom = new_hr;
1509 peer->needed_headroom = new_hr;
1515 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1516 struct netlink_ext_ack *extack)
1518 struct veth_priv *priv = netdev_priv(dev);
1519 struct bpf_prog *old_prog;
1520 struct net_device *peer;
1521 unsigned int max_mtu;
1524 old_prog = priv->_xdp_prog;
1525 priv->_xdp_prog = prog;
1526 peer = rtnl_dereference(priv->peer);
1530 NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1535 max_mtu = SKB_WITH_OVERHEAD(PAGE_SIZE - VETH_XDP_HEADROOM) -
1536 peer->hard_header_len;
1537 /* Allow increasing the max_mtu if the program supports
1540 if (prog->aux->xdp_has_frags)
1541 max_mtu += PAGE_SIZE * MAX_SKB_FRAGS;
1543 if (peer->mtu > max_mtu) {
1544 NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1549 if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1550 NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1555 if (dev->flags & IFF_UP) {
1556 err = veth_enable_xdp(dev);
1558 NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1564 peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1565 peer->max_mtu = max_mtu;
1571 if (dev->flags & IFF_UP)
1572 veth_disable_xdp(dev);
1575 peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1576 peer->max_mtu = ETH_MAX_MTU;
1579 bpf_prog_put(old_prog);
1582 if ((!!old_prog ^ !!prog) && peer)
1583 netdev_update_features(peer);
1587 priv->_xdp_prog = old_prog;
1592 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1594 switch (xdp->command) {
1595 case XDP_SETUP_PROG:
1596 return veth_xdp_set(dev, xdp->prog, xdp->extack);
1602 static const struct net_device_ops veth_netdev_ops = {
1603 .ndo_init = veth_dev_init,
1604 .ndo_open = veth_open,
1605 .ndo_stop = veth_close,
1606 .ndo_start_xmit = veth_xmit,
1607 .ndo_get_stats64 = veth_get_stats64,
1608 .ndo_set_rx_mode = veth_set_multicast_list,
1609 .ndo_set_mac_address = eth_mac_addr,
1610 #ifdef CONFIG_NET_POLL_CONTROLLER
1611 .ndo_poll_controller = veth_poll_controller,
1613 .ndo_get_iflink = veth_get_iflink,
1614 .ndo_fix_features = veth_fix_features,
1615 .ndo_set_features = veth_set_features,
1616 .ndo_features_check = passthru_features_check,
1617 .ndo_set_rx_headroom = veth_set_rx_headroom,
1618 .ndo_bpf = veth_xdp,
1619 .ndo_xdp_xmit = veth_ndo_xdp_xmit,
1620 .ndo_get_peer_dev = veth_peer_dev,
1623 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1624 NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1625 NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1626 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1627 NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1629 static void veth_setup(struct net_device *dev)
1633 dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1634 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1635 dev->priv_flags |= IFF_NO_QUEUE;
1636 dev->priv_flags |= IFF_PHONY_HEADROOM;
1638 dev->netdev_ops = &veth_netdev_ops;
1639 dev->ethtool_ops = &veth_ethtool_ops;
1640 dev->features |= NETIF_F_LLTX;
1641 dev->features |= VETH_FEATURES;
1642 dev->vlan_features = dev->features &
1643 ~(NETIF_F_HW_VLAN_CTAG_TX |
1644 NETIF_F_HW_VLAN_STAG_TX |
1645 NETIF_F_HW_VLAN_CTAG_RX |
1646 NETIF_F_HW_VLAN_STAG_RX);
1647 dev->needs_free_netdev = true;
1648 dev->priv_destructor = veth_dev_free;
1649 dev->max_mtu = ETH_MAX_MTU;
1651 dev->hw_features = VETH_FEATURES;
1652 dev->hw_enc_features = VETH_FEATURES;
1653 dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1654 netif_set_tso_max_size(dev, GSO_MAX_SIZE);
1661 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1662 struct netlink_ext_ack *extack)
1664 if (tb[IFLA_ADDRESS]) {
1665 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1667 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1668 return -EADDRNOTAVAIL;
1671 if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1677 static struct rtnl_link_ops veth_link_ops;
1679 static void veth_disable_gro(struct net_device *dev)
1681 dev->features &= ~NETIF_F_GRO;
1682 dev->wanted_features &= ~NETIF_F_GRO;
1683 netdev_update_features(dev);
1686 static int veth_init_queues(struct net_device *dev, struct nlattr *tb[])
1690 if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) {
1691 err = netif_set_real_num_tx_queues(dev, 1);
1695 if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) {
1696 err = netif_set_real_num_rx_queues(dev, 1);
1703 static int veth_newlink(struct net *src_net, struct net_device *dev,
1704 struct nlattr *tb[], struct nlattr *data[],
1705 struct netlink_ext_ack *extack)
1708 struct net_device *peer;
1709 struct veth_priv *priv;
1710 char ifname[IFNAMSIZ];
1711 struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1712 unsigned char name_assign_type;
1713 struct ifinfomsg *ifmp;
1717 * create and register peer first
1719 if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1720 struct nlattr *nla_peer;
1722 nla_peer = data[VETH_INFO_PEER];
1723 ifmp = nla_data(nla_peer);
1724 err = rtnl_nla_parse_ifla(peer_tb,
1725 nla_data(nla_peer) + sizeof(struct ifinfomsg),
1726 nla_len(nla_peer) - sizeof(struct ifinfomsg),
1731 err = veth_validate(peer_tb, NULL, extack);
1741 if (ifmp && tbp[IFLA_IFNAME]) {
1742 nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1743 name_assign_type = NET_NAME_USER;
1745 snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1746 name_assign_type = NET_NAME_ENUM;
1749 net = rtnl_link_get_net(src_net, tbp);
1751 return PTR_ERR(net);
1753 peer = rtnl_create_link(net, ifname, name_assign_type,
1754 &veth_link_ops, tbp, extack);
1757 return PTR_ERR(peer);
1760 if (!ifmp || !tbp[IFLA_ADDRESS])
1761 eth_hw_addr_random(peer);
1763 if (ifmp && (dev->ifindex != 0))
1764 peer->ifindex = ifmp->ifi_index;
1766 netif_inherit_tso_max(peer, dev);
1768 err = register_netdevice(peer);
1772 goto err_register_peer;
1774 /* keep GRO disabled by default to be consistent with the established
1777 veth_disable_gro(peer);
1778 netif_carrier_off(peer);
1780 err = rtnl_configure_link(peer, ifmp);
1782 goto err_configure_peer;
1787 * note, that since we've registered new device the dev's name
1788 * should be re-allocated
1791 if (tb[IFLA_ADDRESS] == NULL)
1792 eth_hw_addr_random(dev);
1794 if (tb[IFLA_IFNAME])
1795 nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1797 snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1799 err = register_netdevice(dev);
1801 goto err_register_dev;
1803 netif_carrier_off(dev);
1806 * tie the deviced together
1809 priv = netdev_priv(dev);
1810 rcu_assign_pointer(priv->peer, peer);
1811 err = veth_init_queues(dev, tb);
1815 priv = netdev_priv(peer);
1816 rcu_assign_pointer(priv->peer, dev);
1817 err = veth_init_queues(peer, tb);
1821 veth_disable_gro(dev);
1825 unregister_netdevice(dev);
1829 unregister_netdevice(peer);
1837 static void veth_dellink(struct net_device *dev, struct list_head *head)
1839 struct veth_priv *priv;
1840 struct net_device *peer;
1842 priv = netdev_priv(dev);
1843 peer = rtnl_dereference(priv->peer);
1845 /* Note : dellink() is called from default_device_exit_batch(),
1846 * before a rcu_synchronize() point. The devices are guaranteed
1847 * not being freed before one RCU grace period.
1849 RCU_INIT_POINTER(priv->peer, NULL);
1850 unregister_netdevice_queue(dev, head);
1853 priv = netdev_priv(peer);
1854 RCU_INIT_POINTER(priv->peer, NULL);
1855 unregister_netdevice_queue(peer, head);
1859 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1860 [VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) },
1863 static struct net *veth_get_link_net(const struct net_device *dev)
1865 struct veth_priv *priv = netdev_priv(dev);
1866 struct net_device *peer = rtnl_dereference(priv->peer);
1868 return peer ? dev_net(peer) : dev_net(dev);
1871 static unsigned int veth_get_num_queues(void)
1873 /* enforce the same queue limit as rtnl_create_link */
1874 int queues = num_possible_cpus();
1881 static struct rtnl_link_ops veth_link_ops = {
1883 .priv_size = sizeof(struct veth_priv),
1884 .setup = veth_setup,
1885 .validate = veth_validate,
1886 .newlink = veth_newlink,
1887 .dellink = veth_dellink,
1888 .policy = veth_policy,
1889 .maxtype = VETH_INFO_MAX,
1890 .get_link_net = veth_get_link_net,
1891 .get_num_tx_queues = veth_get_num_queues,
1892 .get_num_rx_queues = veth_get_num_queues,
1899 static __init int veth_init(void)
1901 return rtnl_link_register(&veth_link_ops);
1904 static __exit void veth_exit(void)
1906 rtnl_link_unregister(&veth_link_ops);
1909 module_init(veth_init);
1910 module_exit(veth_exit);
1912 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1913 MODULE_LICENSE("GPL v2");
1914 MODULE_ALIAS_RTNL_LINK(DRV_NAME);