Merge branch 'master' of git://git.denx.de/u-boot-blackfin
[platform/kernel/u-boot.git] / drivers / net / sh_eth.h
1 /*
2  * sh_eth.h - Driver for Renesas SH7763's gigabit ethernet controler.
3  *
4  * Copyright (C) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Nobuhiro Iwamatsu
6  * Copyright (c) 2007 Carlos Munoz <carlos@kenati.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <netdev.h>
24 #include <asm/types.h>
25
26 #define SHETHER_NAME "sh_eth"
27
28 /* Malloc returns addresses in the P1 area (cacheable). However we need to
29    use area P2 (non-cacheable) */
30 #define ADDR_TO_P2(addr)        ((((int)(addr) & ~0xe0000000) | 0xa0000000))
31
32 /* The ethernet controller needs to use physical addresses */
33 #define ADDR_TO_PHY(addr)       ((int)(addr) & ~0xe0000000)
34
35 /* Number of supported ports */
36 #define MAX_PORT_NUM    2
37
38 /* Buffers must be big enough to hold the largest ethernet frame. Also, rx
39    buffers must be a multiple of 32 bytes */
40 #define MAX_BUF_SIZE    (48 * 32)
41
42 /* The number of tx descriptors must be large enough to point to 5 or more
43    frames. If each frame uses 2 descriptors, at least 10 descriptors are needed.
44    We use one descriptor per frame */
45 #define NUM_TX_DESC             8
46
47 /* The size of the tx descriptor is determined by how much padding is used.
48    4, 20, or 52 bytes of padding can be used */
49 #define TX_DESC_PADDING         4
50 #define TX_DESC_SIZE            (12 + TX_DESC_PADDING)
51
52 /* Tx descriptor. We always use 3 bytes of padding */
53 struct tx_desc_s {
54         volatile u32 td0;
55         u32 td1;
56         u32 td2;                /* Buffer start */
57         u32 padding;
58 };
59
60 /* There is no limitation in the number of rx descriptors */
61 #define NUM_RX_DESC     8
62
63 /* The size of the rx descriptor is determined by how much padding is used.
64    4, 20, or 52 bytes of padding can be used */
65 #define RX_DESC_PADDING         4
66 #define RX_DESC_SIZE            (12 + RX_DESC_PADDING)
67
68 /* Rx descriptor. We always use 4 bytes of padding */
69 struct rx_desc_s {
70         volatile u32 rd0;
71         volatile u32 rd1;
72         u32 rd2;                /* Buffer start */
73         u32 padding;
74 };
75
76 struct sh_eth_info {
77         struct tx_desc_s *tx_desc_malloc;
78         struct tx_desc_s *tx_desc_base;
79         struct tx_desc_s *tx_desc_cur;
80         struct rx_desc_s *rx_desc_malloc;
81         struct rx_desc_s *rx_desc_base;
82         struct rx_desc_s *rx_desc_cur;
83         u8 *rx_buf_malloc;
84         u8 *rx_buf_base;
85         u8 mac_addr[6];
86         u8 phy_addr;
87         struct eth_device *dev;
88 };
89
90 struct sh_eth_dev {
91         int port;
92         struct sh_eth_info port_info[MAX_PORT_NUM];
93 };
94
95 /* Register Address */
96 #define BASE_IO_ADDR    0xfee00000
97
98 #define EDSR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0000)
99
100 #define TDLAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0010)
101 #define TDFAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0014)
102 #define TDFXR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0018)
103 #define TDFFR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x001c)
104
105 #define RDLAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0030)
106 #define RDFAR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0034)
107 #define RDFXR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0038)
108 #define RDFFR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x003c)
109
110 #define EDMR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0400)
111 #define EDTRR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0408)
112 #define EDRRR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0410)
113 #define EESR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0428)
114 #define EESIPR(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0430)
115 #define TRSCER(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0438)
116 #define TFTR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0448)
117 #define FDR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0450)
118 #define RMCR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0458)
119 #define RPADIR(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0460)
120 #define FCFTR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x0468)
121 #define ECMR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0500)
122 #define RFLR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x0508)
123 #define ECSIPR(port)    (BASE_IO_ADDR + 0x800 * (port) + 0x0518)
124 #define PIR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0520)
125 #define PIPR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x052c)
126 #define APR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0554)
127 #define MPR(port)               (BASE_IO_ADDR + 0x800 * (port) + 0x0558)
128 #define TPAUSER(port)   (BASE_IO_ADDR + 0x800 * (port) + 0x0564)
129 #define GECMR(port)             (BASE_IO_ADDR + 0x800 * (port) + 0x05b0)
130 #define MALR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x05c8)
131 #define MAHR(port)              (BASE_IO_ADDR + 0x800 * (port) + 0x05c0)
132
133 /*
134  * Register's bits
135  * Copy from Linux driver source code
136  */
137 #ifdef CONFIG_CPU_SH7763
138 /* EDSR */
139 enum EDSR_BIT {
140         EDSR_ENT = 0x01, EDSR_ENR = 0x02,
141 };
142 #define EDSR_ENALL (EDSR_ENT|EDSR_ENR)
143 #endif
144
145 /* EDMR */
146 enum DMAC_M_BIT {
147         EDMR_DL1 = 0x20, EDMR_DL0 = 0x10,
148 #ifdef CONFIG_CPU_SH7763
149         EDMR_SRST       = 0x03,
150         EMDR_DESC_R     = 0x30, /* Descriptor reserve size */
151         EDMR_EL         = 0x40, /* Litte endian */
152 #else /* CONFIG_CPU_SH7763 */
153         EDMR_SRST = 0x01,
154 #endif
155 };
156
157 /* RFLR */
158 #define RFLR_RFL_MIN    0x05EE  /* Recv Frame length 1518 byte */
159
160 /* EDTRR */
161 enum DMAC_T_BIT {
162 #ifdef CONFIG_CPU_SH7763
163         EDTRR_TRNS = 0x03,
164 #else
165         EDTRR_TRNS = 0x01,
166 #endif
167 };
168
169 /* GECMR */
170 enum GECMR_BIT {
171         GECMR_1000B = 0x01, GECMR_100B = 0x04, GECMR_10B = 0x00,
172 };
173
174 /* EDRRR*/
175 enum EDRRR_R_BIT {
176         EDRRR_R = 0x01,
177 };
178
179 /* TPAUSER */
180 enum TPAUSER_BIT {
181         TPAUSER_TPAUSE = 0x0000ffff,
182         TPAUSER_UNLIMITED = 0,
183 };
184
185 /* BCFR */
186 enum BCFR_BIT {
187         BCFR_RPAUSE = 0x0000ffff,
188         BCFR_UNLIMITED = 0,
189 };
190
191 /* PIR */
192 enum PIR_BIT {
193         PIR_MDI = 0x08, PIR_MDO = 0x04, PIR_MMD = 0x02, PIR_MDC = 0x01,
194 };
195
196 /* PSR */
197 enum PHY_STATUS_BIT { PHY_ST_LINK = 0x01, };
198
199 /* EESR */
200 enum EESR_BIT {
201 #ifndef CONFIG_CPU_SH7763
202         EESR_TWB  = 0x40000000,
203 #else
204         EESR_TWB  = 0xC0000000,
205         EESR_TC1  = 0x20000000,
206         EESR_TUC  = 0x10000000,
207         EESR_ROC  = 0x80000000,
208 #endif
209         EESR_TABT = 0x04000000,
210         EESR_RABT = 0x02000000, EESR_RFRMER = 0x01000000,
211 #ifndef CONFIG_CPU_SH7763
212         EESR_ADE  = 0x00800000,
213 #endif
214         EESR_ECI  = 0x00400000,
215         EESR_FTC  = 0x00200000, EESR_TDE  = 0x00100000,
216         EESR_TFE  = 0x00080000, EESR_FRC  = 0x00040000,
217         EESR_RDE  = 0x00020000, EESR_RFE  = 0x00010000,
218 #ifndef CONFIG_CPU_SH7763
219         EESR_CND  = 0x00000800,
220 #endif
221         EESR_DLC  = 0x00000400,
222         EESR_CD   = 0x00000200, EESR_RTO  = 0x00000100,
223         EESR_RMAF = 0x00000080, EESR_CEEF = 0x00000040,
224         EESR_CELF = 0x00000020, EESR_RRF  = 0x00000010,
225         rESR_RTLF = 0x00000008, EESR_RTSF = 0x00000004,
226         EESR_PRE  = 0x00000002, EESR_CERF = 0x00000001,
227 };
228
229
230 #ifdef CONFIG_CPU_SH7763
231 # define TX_CHECK (EESR_TC1 | EESR_FTC)
232 # define EESR_ERR_CHECK (EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE \
233                 | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI)
234 # define TX_ERROR_CEHCK (EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE)
235
236 #else
237 # define TX_CHECK (EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO)
238 # define EESR_ERR_CHECK (EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE \
239                 | EESR_RFRMER | EESR_ADE | EESR_TFE | EESR_TDE | EESR_ECI)
240 # define TX_ERROR_CEHCK (EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE)
241 #endif
242
243 /* EESIPR */
244 enum DMAC_IM_BIT {
245         DMAC_M_TWB = 0x40000000, DMAC_M_TABT = 0x04000000,
246         DMAC_M_RABT = 0x02000000,
247         DMAC_M_RFRMER = 0x01000000, DMAC_M_ADF = 0x00800000,
248         DMAC_M_ECI = 0x00400000, DMAC_M_FTC = 0x00200000,
249         DMAC_M_TDE = 0x00100000, DMAC_M_TFE = 0x00080000,
250         DMAC_M_FRC = 0x00040000, DMAC_M_RDE = 0x00020000,
251         DMAC_M_RFE = 0x00010000, DMAC_M_TINT4 = 0x00000800,
252         DMAC_M_TINT3 = 0x00000400, DMAC_M_TINT2 = 0x00000200,
253         DMAC_M_TINT1 = 0x00000100, DMAC_M_RINT8 = 0x00000080,
254         DMAC_M_RINT5 = 0x00000010, DMAC_M_RINT4 = 0x00000008,
255         DMAC_M_RINT3 = 0x00000004, DMAC_M_RINT2 = 0x00000002,
256         DMAC_M_RINT1 = 0x00000001,
257 };
258
259 /* Receive descriptor bit */
260 enum RD_STS_BIT {
261         RD_RACT = 0x80000000, RD_RDLE = 0x40000000,
262         RD_RFP1 = 0x20000000, RD_RFP0 = 0x10000000,
263         RD_RFE = 0x08000000, RD_RFS10 = 0x00000200,
264         RD_RFS9 = 0x00000100, RD_RFS8 = 0x00000080,
265         RD_RFS7 = 0x00000040, RD_RFS6 = 0x00000020,
266         RD_RFS5 = 0x00000010, RD_RFS4 = 0x00000008,
267         RD_RFS3 = 0x00000004, RD_RFS2 = 0x00000002,
268         RD_RFS1 = 0x00000001,
269 };
270 #define RDF1ST  RD_RFP1
271 #define RDFEND  RD_RFP0
272 #define RD_RFP  (RD_RFP1|RD_RFP0)
273
274 /* RDFFR*/
275 enum RDFFR_BIT {
276         RDFFR_RDLF = 0x01,
277 };
278
279 /* FCFTR */
280 enum FCFTR_BIT {
281         FCFTR_RFF2 = 0x00040000, FCFTR_RFF1 = 0x00020000,
282         FCFTR_RFF0 = 0x00010000, FCFTR_RFD2 = 0x00000004,
283         FCFTR_RFD1 = 0x00000002, FCFTR_RFD0 = 0x00000001,
284 };
285 #define FIFO_F_D_RFF    (FCFTR_RFF2|FCFTR_RFF1|FCFTR_RFF0)
286 #define FIFO_F_D_RFD    (FCFTR_RFD2|FCFTR_RFD1|FCFTR_RFD0)
287
288 /* Transfer descriptor bit */
289 enum TD_STS_BIT {
290 #ifdef CONFIG_CPU_SH7763
291         TD_TACT = 0x80000000,
292 #else
293         TD_TACT = 0x7fffffff,
294 #endif
295         TD_TDLE = 0x40000000, TD_TFP1 = 0x20000000,
296         TD_TFP0 = 0x10000000,
297 };
298 #define TDF1ST  TD_TFP1
299 #define TDFEND  TD_TFP0
300 #define TD_TFP  (TD_TFP1|TD_TFP0)
301
302 /* RMCR */
303 enum RECV_RST_BIT { RMCR_RST = 0x01, };
304 /* ECMR */
305 enum FELIC_MODE_BIT {
306 #ifdef CONFIG_CPU_SH7763
307         ECMR_TRCCM=0x04000000, ECMR_RCSC= 0x00800000, ECMR_DPAD= 0x00200000,
308         ECMR_RZPF = 0x00100000,
309 #endif
310         ECMR_ZPF = 0x00080000, ECMR_PFR = 0x00040000, ECMR_RXF = 0x00020000,
311         ECMR_TXF = 0x00010000, ECMR_MCT = 0x00002000, ECMR_PRCEF = 0x00001000,
312         ECMR_PMDE = 0x00000200, ECMR_RE = 0x00000040, ECMR_TE = 0x00000020,
313         ECMR_ILB = 0x00000008, ECMR_ELB = 0x00000004, ECMR_DM = 0x00000002,
314         ECMR_PRM = 0x00000001,
315 };
316
317 #ifdef CONFIG_CPU_SH7763
318 #define ECMR_CHG_DM     (ECMR_TRCCM | ECMR_RZPF | ECMR_ZPF | ECMR_PFR | ECMR_RXF | \
319                                                 ECMR_TXF | ECMR_MCT)
320 #else
321 #define ECMR_CHG_DM     (ECMR_ZPF | ECMR_PFR ECMR_RXF | ECMR_TXF | ECMR_MCT)
322 #endif
323
324 /* ECSR */
325 enum ECSR_STATUS_BIT {
326 #ifndef CONFIG_CPU_SH7763
327         ECSR_BRCRX = 0x20, ECSR_PSRTO = 0x10,
328 #endif
329         ECSR_LCHNG = 0x04,
330         ECSR_MPD = 0x02, ECSR_ICD = 0x01,
331 };
332
333 #ifdef CONFIG_CPU_SH7763
334 # define ECSR_INIT (ECSR_ICD | ECSIPR_MPDIP)
335 #else
336 # define ECSR_INIT (ECSR_BRCRX | ECSR_PSRTO | \
337                         ECSR_LCHNG | ECSR_ICD | ECSIPR_MPDIP)
338 #endif
339
340 /* ECSIPR */
341 enum ECSIPR_STATUS_MASK_BIT {
342 #ifndef CONFIG_CPU_SH7763
343         ECSIPR_BRCRXIP = 0x20, ECSIPR_PSRTOIP = 0x10,
344 #endif
345         ECSIPR_LCHNGIP = 0x04,
346         ECSIPR_MPDIP = 0x02, ECSIPR_ICDIP = 0x01,
347 };
348
349 #ifdef CONFIG_CPU_SH7763
350 # define ECSIPR_INIT (ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP)
351 #else
352 # define ECSIPR_INIT (ECSIPR_BRCRXIP | ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | \
353                                 ECSIPR_ICDIP | ECSIPR_MPDIP)
354 #endif
355
356 /* APR */
357 enum APR_BIT {
358         APR_AP = 0x00000004,
359 };
360
361 /* MPR */
362 enum MPR_BIT {
363         MPR_MP = 0x00000006,
364 };
365
366 /* TRSCER */
367 enum DESC_I_BIT {
368         DESC_I_TINT4 = 0x0800, DESC_I_TINT3 = 0x0400, DESC_I_TINT2 = 0x0200,
369         DESC_I_TINT1 = 0x0100, DESC_I_RINT8 = 0x0080, DESC_I_RINT5 = 0x0010,
370         DESC_I_RINT4 = 0x0008, DESC_I_RINT3 = 0x0004, DESC_I_RINT2 = 0x0002,
371         DESC_I_RINT1 = 0x0001,
372 };
373
374 /* RPADIR */
375 enum RPADIR_BIT {
376         RPADIR_PADS1 = 0x20000, RPADIR_PADS0 = 0x10000,
377         RPADIR_PADR = 0x0003f,
378 };
379
380 #ifdef CONFIG_CPU_SH7763
381 # define RPADIR_INIT (0x00)
382 #else
383 # define RPADIR_INIT (RPADIR_PADS1)
384 #endif
385
386 /* FDR */
387 enum FIFO_SIZE_BIT {
388         FIFO_SIZE_T = 0x00000700, FIFO_SIZE_R = 0x00000007,
389 };
390
391 enum PHY_OFFSETS {
392         PHY_CTRL = 0, PHY_STAT = 1, PHY_IDT1 = 2, PHY_IDT2 = 3,
393         PHY_ANA = 4, PHY_ANL = 5, PHY_ANE = 6,
394         PHY_16 = 16,
395 };
396
397 /* PHY_CTRL */
398 enum PHY_CTRL_BIT {
399         PHY_C_RESET = 0x8000, PHY_C_LOOPBK = 0x4000, PHY_C_SPEEDSL = 0x2000,
400         PHY_C_ANEGEN = 0x1000, PHY_C_PWRDN = 0x0800, PHY_C_ISO = 0x0400,
401         PHY_C_RANEG = 0x0200, PHY_C_DUPLEX = 0x0100, PHY_C_COLT = 0x0080,
402 };
403 #define DM9161_PHY_C_ANEGEN 0   /* auto nego special */
404
405 /* PHY_STAT */
406 enum PHY_STAT_BIT {
407         PHY_S_100T4 = 0x8000, PHY_S_100X_F = 0x4000, PHY_S_100X_H = 0x2000,
408         PHY_S_10T_F = 0x1000, PHY_S_10T_H = 0x0800, PHY_S_ANEGC = 0x0020,
409         PHY_S_RFAULT = 0x0010, PHY_S_ANEGA = 0x0008, PHY_S_LINK = 0x0004,
410         PHY_S_JAB = 0x0002, PHY_S_EXTD = 0x0001,
411 };
412
413 /* PHY_ANA */
414 enum PHY_ANA_BIT {
415         PHY_A_NP = 0x8000, PHY_A_ACK = 0x4000, PHY_A_RF = 0x2000,
416         PHY_A_FCS = 0x0400, PHY_A_T4 = 0x0200, PHY_A_FDX = 0x0100,
417         PHY_A_HDX = 0x0080, PHY_A_10FDX = 0x0040, PHY_A_10HDX = 0x0020,
418         PHY_A_SEL = 0x001e,
419         PHY_A_EXT = 0x0001,
420 };
421
422 /* PHY_ANL */
423 enum PHY_ANL_BIT {
424         PHY_L_NP = 0x8000, PHY_L_ACK = 0x4000, PHY_L_RF = 0x2000,
425         PHY_L_FCS = 0x0400, PHY_L_T4 = 0x0200, PHY_L_FDX = 0x0100,
426         PHY_L_HDX = 0x0080, PHY_L_10FDX = 0x0040, PHY_L_10HDX = 0x0020,
427         PHY_L_SEL = 0x001f,
428 };
429
430 /* PHY_ANE */
431 enum PHY_ANE_BIT {
432         PHY_E_PDF = 0x0010, PHY_E_LPNPA = 0x0008, PHY_E_NPA = 0x0004,
433         PHY_E_PRX = 0x0002, PHY_E_LPANEGA = 0x0001,
434 };
435
436 /* DM9161 */
437 enum PHY_16_BIT {
438         PHY_16_BP4B45 = 0x8000, PHY_16_BPSCR = 0x4000, PHY_16_BPALIGN = 0x2000,
439         PHY_16_BP_ADPOK = 0x1000, PHY_16_Repeatmode = 0x0800,
440         PHY_16_TXselect = 0x0400,
441         PHY_16_Rsvd = 0x0200, PHY_16_RMIIEnable = 0x0100,
442         PHY_16_Force100LNK = 0x0080,
443         PHY_16_APDLED_CTL = 0x0040, PHY_16_COLLED_CTL = 0x0020,
444         PHY_16_RPDCTR_EN = 0x0010,
445         PHY_16_ResetStMch = 0x0008, PHY_16_PreamSupr = 0x0004,
446         PHY_16_Sleepmode = 0x0002,
447         PHY_16_RemoteLoopOut = 0x0001,
448 };