1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
31 #define EFX_MAX_MTU (9 * 1024)
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
38 static struct workqueue_struct *refill_workqueue;
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
44 static struct workqueue_struct *reset_workqueue;
46 /**************************************************************************
50 *************************************************************************/
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
55 * This sets the default for new devices. It can be controlled later
58 static int lro = true;
59 module_param(lro, int, 0644);
60 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
63 * Use separate channels for TX and RX events
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
68 * This is only used in MSI-X interrupt mode
70 static unsigned int separate_tx_channels;
71 module_param(separate_tx_channels, uint, 0644);
72 MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
75 /* This is the weight assigned to each of the (per-channel) virtual
78 static int napi_weight = 64;
80 /* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
84 unsigned int efx_monitor_interval = 1 * HZ;
86 /* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
93 static unsigned int allow_bad_hwaddr;
95 /* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
101 static unsigned int rx_irq_mod_usec = 60;
103 /* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
112 static unsigned int tx_irq_mod_usec = 150;
114 /* This is the first interrupt mode to try out of:
119 static unsigned int interrupt_mode;
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
132 static int phy_flash_cfg;
133 module_param(phy_flash_cfg, int, 0644);
134 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
136 /**************************************************************************
138 * Utility functions and prototypes
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
148 if (efx->state == STATE_RUNNING) \
152 /**************************************************************************
154 * Event queue processing
156 *************************************************************************/
158 /* Process channel's event queue
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
167 struct efx_nic *efx = channel->efx;
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
174 rx_packets = falcon_process_eventq(channel, rx_quota);
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
185 efx_flush_lro(channel);
186 efx_rx_strategy(channel);
188 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
193 /* Mark channel as finished processing
195 * Note that since we will not receive further interrupts for this
196 * channel before we finish processing and call the eventq_read_ack()
197 * method, there is no need to use the interrupt hold-off timers.
199 static inline void efx_channel_processed(struct efx_channel *channel)
201 /* The interrupt handler for this channel may set work_pending
202 * as soon as we acknowledge the events we've seen. Make sure
203 * it's cleared before then. */
204 channel->work_pending = false;
207 falcon_eventq_read_ack(channel);
212 * NAPI guarantees serialisation of polls of the same device, which
213 * provides the guarantee required by efx_process_channel().
215 static int efx_poll(struct napi_struct *napi, int budget)
217 struct efx_channel *channel =
218 container_of(napi, struct efx_channel, napi_str);
221 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
222 channel->channel, raw_smp_processor_id());
224 rx_packets = efx_process_channel(channel, budget);
226 if (rx_packets < budget) {
227 /* There is no race here; although napi_disable() will
228 * only wait for netif_rx_complete(), this isn't a problem
229 * since efx_channel_processed() will have no effect if
230 * interrupts have already been disabled.
232 netif_rx_complete(napi);
233 efx_channel_processed(channel);
239 /* Process the eventq of the specified channel immediately on this CPU
241 * Disable hardware generated interrupts, wait for any existing
242 * processing to finish, then directly poll (and ack ) the eventq.
243 * Finally reenable NAPI and interrupts.
245 * Since we are touching interrupts the caller should hold the suspend lock
247 void efx_process_channel_now(struct efx_channel *channel)
249 struct efx_nic *efx = channel->efx;
251 BUG_ON(!channel->used_flags);
252 BUG_ON(!channel->enabled);
254 /* Disable interrupts and wait for ISRs to complete */
255 falcon_disable_interrupts(efx);
257 synchronize_irq(efx->legacy_irq);
259 synchronize_irq(channel->irq);
261 /* Wait for any NAPI processing to complete */
262 napi_disable(&channel->napi_str);
264 /* Poll the channel */
265 efx_process_channel(channel, efx->type->evq_size);
267 /* Ack the eventq. This may cause an interrupt to be generated
268 * when they are reenabled */
269 efx_channel_processed(channel);
271 napi_enable(&channel->napi_str);
272 falcon_enable_interrupts(efx);
275 /* Create event queue
276 * Event queue memory allocations are done only once. If the channel
277 * is reset, the memory buffer will be reused; this guards against
278 * errors during channel reset and also simplifies interrupt handling.
280 static int efx_probe_eventq(struct efx_channel *channel)
282 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
284 return falcon_probe_eventq(channel);
287 /* Prepare channel's event queue */
288 static void efx_init_eventq(struct efx_channel *channel)
290 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
292 channel->eventq_read_ptr = 0;
294 falcon_init_eventq(channel);
297 static void efx_fini_eventq(struct efx_channel *channel)
299 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
301 falcon_fini_eventq(channel);
304 static void efx_remove_eventq(struct efx_channel *channel)
306 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
308 falcon_remove_eventq(channel);
311 /**************************************************************************
315 *************************************************************************/
317 static int efx_probe_channel(struct efx_channel *channel)
319 struct efx_tx_queue *tx_queue;
320 struct efx_rx_queue *rx_queue;
323 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
325 rc = efx_probe_eventq(channel);
329 efx_for_each_channel_tx_queue(tx_queue, channel) {
330 rc = efx_probe_tx_queue(tx_queue);
335 efx_for_each_channel_rx_queue(rx_queue, channel) {
336 rc = efx_probe_rx_queue(rx_queue);
341 channel->n_rx_frm_trunc = 0;
346 efx_for_each_channel_rx_queue(rx_queue, channel)
347 efx_remove_rx_queue(rx_queue);
349 efx_for_each_channel_tx_queue(tx_queue, channel)
350 efx_remove_tx_queue(tx_queue);
356 static void efx_set_channel_names(struct efx_nic *efx)
358 struct efx_channel *channel;
359 const char *type = "";
362 efx_for_each_channel(channel, efx) {
363 number = channel->channel;
364 if (efx->n_channels > efx->n_rx_queues) {
365 if (channel->channel < efx->n_rx_queues) {
369 number -= efx->n_rx_queues;
372 snprintf(channel->name, sizeof(channel->name),
373 "%s%s-%d", efx->name, type, number);
377 /* Channels are shutdown and reinitialised whilst the NIC is running
378 * to propagate configuration changes (mtu, checksum offload), or
379 * to clear hardware error conditions
381 static void efx_init_channels(struct efx_nic *efx)
383 struct efx_tx_queue *tx_queue;
384 struct efx_rx_queue *rx_queue;
385 struct efx_channel *channel;
387 /* Calculate the rx buffer allocation parameters required to
388 * support the current MTU, including padding for header
389 * alignment and overruns.
391 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
392 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
393 efx->type->rx_buffer_padding);
394 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
396 /* Initialise the channels */
397 efx_for_each_channel(channel, efx) {
398 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
400 efx_init_eventq(channel);
402 efx_for_each_channel_tx_queue(tx_queue, channel)
403 efx_init_tx_queue(tx_queue);
405 /* The rx buffer allocation strategy is MTU dependent */
406 efx_rx_strategy(channel);
408 efx_for_each_channel_rx_queue(rx_queue, channel)
409 efx_init_rx_queue(rx_queue);
411 WARN_ON(channel->rx_pkt != NULL);
412 efx_rx_strategy(channel);
416 /* This enables event queue processing and packet transmission.
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
421 static void efx_start_channel(struct efx_channel *channel)
423 struct efx_rx_queue *rx_queue;
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
434 channel->work_pending = false;
435 channel->enabled = true;
438 napi_enable(&channel->napi_str);
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
445 /* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
449 static void efx_stop_channel(struct efx_channel *channel)
451 struct efx_rx_queue *rx_queue;
453 if (!channel->enabled)
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
458 channel->enabled = false;
459 napi_disable(&channel->napi_str);
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
468 static void efx_fini_channels(struct efx_nic *efx)
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
475 EFX_ASSERT_RESET_SERIALISED(efx);
476 BUG_ON(efx->port_enabled);
478 rc = falcon_flush_queues(efx);
480 EFX_ERR(efx, "failed to flush queues\n");
482 EFX_LOG(efx, "successfully flushed all queues\n");
484 efx_for_each_channel(channel, efx) {
485 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
487 efx_for_each_channel_rx_queue(rx_queue, channel)
488 efx_fini_rx_queue(rx_queue);
489 efx_for_each_channel_tx_queue(tx_queue, channel)
490 efx_fini_tx_queue(tx_queue);
491 efx_fini_eventq(channel);
495 static void efx_remove_channel(struct efx_channel *channel)
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
508 channel->used_flags = 0;
511 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
516 /**************************************************************************
520 **************************************************************************/
522 /* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
526 static void efx_link_status_changed(struct efx_nic *efx)
528 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
529 * that no events are triggered between unregister_netdev() and the
530 * driver unloading. A more general condition is that NETDEV_CHANGE
531 * can only be generated between NETDEV_UP and NETDEV_DOWN */
532 if (!netif_running(efx->net_dev))
535 if (efx->port_inhibited) {
536 netif_carrier_off(efx->net_dev);
540 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
541 efx->n_link_state_changes++;
544 netif_carrier_on(efx->net_dev);
546 netif_carrier_off(efx->net_dev);
549 /* Status message for kernel log */
551 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
552 efx->link_speed, efx->link_fd ? "full" : "half",
554 (efx->promiscuous ? " [PROMISC]" : ""));
556 EFX_INFO(efx, "link down\n");
561 /* This call reinitialises the MAC to pick up new PHY settings. The
562 * caller must hold the mac_lock */
563 void __efx_reconfigure_port(struct efx_nic *efx)
565 WARN_ON(!mutex_is_locked(&efx->mac_lock));
567 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
568 raw_smp_processor_id());
570 /* Serialise the promiscuous flag with efx_set_multicast_list. */
571 if (efx_dev_registered(efx)) {
572 netif_addr_lock_bh(efx->net_dev);
573 netif_addr_unlock_bh(efx->net_dev);
576 falcon_deconfigure_mac_wrapper(efx);
578 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
579 if (LOOPBACK_INTERNAL(efx))
580 efx->phy_mode |= PHY_MODE_TX_DISABLED;
582 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
583 efx->phy_op->reconfigure(efx);
585 if (falcon_switch_mac(efx))
588 efx->mac_op->reconfigure(efx);
590 /* Inform kernel of loss/gain of carrier */
591 efx_link_status_changed(efx);
595 EFX_ERR(efx, "failed to reconfigure MAC\n");
596 efx->phy_op->fini(efx);
597 efx->port_initialized = false;
600 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
602 void efx_reconfigure_port(struct efx_nic *efx)
604 EFX_ASSERT_RESET_SERIALISED(efx);
606 mutex_lock(&efx->mac_lock);
607 __efx_reconfigure_port(efx);
608 mutex_unlock(&efx->mac_lock);
611 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
612 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
613 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
614 static void efx_phy_work(struct work_struct *data)
616 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
618 mutex_lock(&efx->mac_lock);
619 if (efx->port_enabled)
620 __efx_reconfigure_port(efx);
621 mutex_unlock(&efx->mac_lock);
624 static void efx_mac_work(struct work_struct *data)
626 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
628 mutex_lock(&efx->mac_lock);
629 if (efx->port_enabled)
630 efx->mac_op->irq(efx);
631 mutex_unlock(&efx->mac_lock);
634 static int efx_probe_port(struct efx_nic *efx)
638 EFX_LOG(efx, "create port\n");
640 /* Connect up MAC/PHY operations table and read MAC address */
641 rc = falcon_probe_port(efx);
646 efx->phy_mode = PHY_MODE_SPECIAL;
648 /* Sanity check MAC address */
649 if (is_valid_ether_addr(efx->mac_address)) {
650 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
652 EFX_ERR(efx, "invalid MAC address %pM\n",
654 if (!allow_bad_hwaddr) {
658 random_ether_addr(efx->net_dev->dev_addr);
659 EFX_INFO(efx, "using locally-generated MAC %pM\n",
660 efx->net_dev->dev_addr);
666 efx_remove_port(efx);
670 static int efx_init_port(struct efx_nic *efx)
674 EFX_LOG(efx, "init port\n");
676 rc = efx->phy_op->init(efx);
679 mutex_lock(&efx->mac_lock);
680 efx->phy_op->reconfigure(efx);
681 rc = falcon_switch_mac(efx);
682 mutex_unlock(&efx->mac_lock);
685 efx->mac_op->reconfigure(efx);
687 efx->port_initialized = true;
688 efx_stats_enable(efx);
692 efx->phy_op->fini(efx);
696 /* Allow efx_reconfigure_port() to be scheduled, and close the window
697 * between efx_stop_port and efx_flush_all whereby a previously scheduled
698 * efx_phy_work()/efx_mac_work() may have been cancelled */
699 static void efx_start_port(struct efx_nic *efx)
701 EFX_LOG(efx, "start port\n");
702 BUG_ON(efx->port_enabled);
704 mutex_lock(&efx->mac_lock);
705 efx->port_enabled = true;
706 __efx_reconfigure_port(efx);
707 efx->mac_op->irq(efx);
708 mutex_unlock(&efx->mac_lock);
711 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
712 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
713 * and efx_mac_work may still be scheduled via NAPI processing until
714 * efx_flush_all() is called */
715 static void efx_stop_port(struct efx_nic *efx)
717 EFX_LOG(efx, "stop port\n");
719 mutex_lock(&efx->mac_lock);
720 efx->port_enabled = false;
721 mutex_unlock(&efx->mac_lock);
723 /* Serialise against efx_set_multicast_list() */
724 if (efx_dev_registered(efx)) {
725 netif_addr_lock_bh(efx->net_dev);
726 netif_addr_unlock_bh(efx->net_dev);
730 static void efx_fini_port(struct efx_nic *efx)
732 EFX_LOG(efx, "shut down port\n");
734 if (!efx->port_initialized)
737 efx_stats_disable(efx);
738 efx->phy_op->fini(efx);
739 efx->port_initialized = false;
741 efx->link_up = false;
742 efx_link_status_changed(efx);
745 static void efx_remove_port(struct efx_nic *efx)
747 EFX_LOG(efx, "destroying port\n");
749 falcon_remove_port(efx);
752 /**************************************************************************
756 **************************************************************************/
758 /* This configures the PCI device to enable I/O and DMA. */
759 static int efx_init_io(struct efx_nic *efx)
761 struct pci_dev *pci_dev = efx->pci_dev;
762 dma_addr_t dma_mask = efx->type->max_dma_mask;
765 EFX_LOG(efx, "initialising I/O\n");
767 rc = pci_enable_device(pci_dev);
769 EFX_ERR(efx, "failed to enable PCI device\n");
773 pci_set_master(pci_dev);
775 /* Set the PCI DMA mask. Try all possibilities from our
776 * genuine mask down to 32 bits, because some architectures
777 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
778 * masks event though they reject 46 bit masks.
780 while (dma_mask > 0x7fffffffUL) {
781 if (pci_dma_supported(pci_dev, dma_mask) &&
782 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
787 EFX_ERR(efx, "could not find a suitable DMA mask\n");
790 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
791 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
793 /* pci_set_consistent_dma_mask() is not *allowed* to
794 * fail with a mask that pci_set_dma_mask() accepted,
795 * but just in case...
797 EFX_ERR(efx, "failed to set consistent DMA mask\n");
801 efx->membase_phys = pci_resource_start(efx->pci_dev,
803 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
805 EFX_ERR(efx, "request for memory BAR failed\n");
809 efx->membase = ioremap_nocache(efx->membase_phys,
810 efx->type->mem_map_size);
812 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
814 (unsigned long long)efx->membase_phys,
815 efx->type->mem_map_size);
819 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
820 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
821 efx->type->mem_map_size, efx->membase);
826 pci_release_region(efx->pci_dev, efx->type->mem_bar);
828 efx->membase_phys = 0;
830 pci_disable_device(efx->pci_dev);
835 static void efx_fini_io(struct efx_nic *efx)
837 EFX_LOG(efx, "shutting down I/O\n");
840 iounmap(efx->membase);
844 if (efx->membase_phys) {
845 pci_release_region(efx->pci_dev, efx->type->mem_bar);
846 efx->membase_phys = 0;
849 pci_disable_device(efx->pci_dev);
852 /* Get number of RX queues wanted. Return number of online CPU
853 * packages in the expectation that an IRQ balancer will spread
854 * interrupts across them. */
855 static int efx_wanted_rx_queues(void)
861 cpus_clear(core_mask);
863 for_each_online_cpu(cpu) {
864 if (!cpu_isset(cpu, core_mask)) {
866 cpus_or(core_mask, core_mask,
867 topology_core_siblings(cpu));
874 /* Probe the number and type of interrupts we are able to obtain, and
875 * the resulting numbers of channels and RX queues.
877 static void efx_probe_interrupts(struct efx_nic *efx)
880 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
883 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
884 struct msix_entry xentries[EFX_MAX_CHANNELS];
888 /* We want one RX queue and interrupt per CPU package
889 * (or as specified by the rss_cpus module parameter).
890 * We will need one channel per interrupt.
892 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
893 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
894 wanted_ints = min(wanted_ints, max_channels);
896 for (i = 0; i < wanted_ints; i++)
897 xentries[i].entry = i;
898 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
900 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
901 " available (%d < %d).\n", rc, wanted_ints);
902 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
903 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
905 rc = pci_enable_msix(efx->pci_dev, xentries,
910 efx->n_rx_queues = min(rx_queues, wanted_ints);
911 efx->n_channels = wanted_ints;
912 for (i = 0; i < wanted_ints; i++)
913 efx->channel[i].irq = xentries[i].vector;
915 /* Fall back to single channel MSI */
916 efx->interrupt_mode = EFX_INT_MODE_MSI;
917 EFX_ERR(efx, "could not enable MSI-X\n");
921 /* Try single interrupt MSI */
922 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
923 efx->n_rx_queues = 1;
925 rc = pci_enable_msi(efx->pci_dev);
927 efx->channel[0].irq = efx->pci_dev->irq;
929 EFX_ERR(efx, "could not enable MSI\n");
930 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
934 /* Assume legacy interrupts */
935 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
936 efx->n_rx_queues = 1;
937 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
938 efx->legacy_irq = efx->pci_dev->irq;
942 static void efx_remove_interrupts(struct efx_nic *efx)
944 struct efx_channel *channel;
946 /* Remove MSI/MSI-X interrupts */
947 efx_for_each_channel(channel, efx)
949 pci_disable_msi(efx->pci_dev);
950 pci_disable_msix(efx->pci_dev);
952 /* Remove legacy interrupt */
956 static void efx_set_channels(struct efx_nic *efx)
958 struct efx_tx_queue *tx_queue;
959 struct efx_rx_queue *rx_queue;
961 efx_for_each_tx_queue(tx_queue, efx) {
962 if (separate_tx_channels)
963 tx_queue->channel = &efx->channel[efx->n_channels-1];
965 tx_queue->channel = &efx->channel[0];
966 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
969 efx_for_each_rx_queue(rx_queue, efx) {
970 rx_queue->channel = &efx->channel[rx_queue->queue];
971 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
975 static int efx_probe_nic(struct efx_nic *efx)
979 EFX_LOG(efx, "creating NIC\n");
981 /* Carry out hardware-type specific initialisation */
982 rc = falcon_probe_nic(efx);
986 /* Determine the number of channels and RX queues by trying to hook
987 * in MSI-X interrupts. */
988 efx_probe_interrupts(efx);
990 efx_set_channels(efx);
992 /* Initialise the interrupt moderation settings */
993 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
998 static void efx_remove_nic(struct efx_nic *efx)
1000 EFX_LOG(efx, "destroying NIC\n");
1002 efx_remove_interrupts(efx);
1003 falcon_remove_nic(efx);
1006 /**************************************************************************
1008 * NIC startup/shutdown
1010 *************************************************************************/
1012 static int efx_probe_all(struct efx_nic *efx)
1014 struct efx_channel *channel;
1018 rc = efx_probe_nic(efx);
1020 EFX_ERR(efx, "failed to create NIC\n");
1025 rc = efx_probe_port(efx);
1027 EFX_ERR(efx, "failed to create port\n");
1031 /* Create channels */
1032 efx_for_each_channel(channel, efx) {
1033 rc = efx_probe_channel(channel);
1035 EFX_ERR(efx, "failed to create channel %d\n",
1040 efx_set_channel_names(efx);
1045 efx_for_each_channel(channel, efx)
1046 efx_remove_channel(channel);
1047 efx_remove_port(efx);
1049 efx_remove_nic(efx);
1054 /* Called after previous invocation(s) of efx_stop_all, restarts the
1055 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1056 * and ensures that the port is scheduled to be reconfigured.
1057 * This function is safe to call multiple times when the NIC is in any
1059 static void efx_start_all(struct efx_nic *efx)
1061 struct efx_channel *channel;
1063 EFX_ASSERT_RESET_SERIALISED(efx);
1065 /* Check that it is appropriate to restart the interface. All
1066 * of these flags are safe to read under just the rtnl lock */
1067 if (efx->port_enabled)
1069 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1071 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1074 /* Mark the port as enabled so port reconfigurations can start, then
1075 * restart the transmit interface early so the watchdog timer stops */
1076 efx_start_port(efx);
1077 if (efx_dev_registered(efx))
1078 efx_wake_queue(efx);
1080 efx_for_each_channel(channel, efx)
1081 efx_start_channel(channel);
1083 falcon_enable_interrupts(efx);
1085 /* Start hardware monitor if we're in RUNNING */
1086 if (efx->state == STATE_RUNNING)
1087 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1088 efx_monitor_interval);
1091 /* Flush all delayed work. Should only be called when no more delayed work
1092 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1093 * since we're holding the rtnl_lock at this point. */
1094 static void efx_flush_all(struct efx_nic *efx)
1096 struct efx_rx_queue *rx_queue;
1098 /* Make sure the hardware monitor is stopped */
1099 cancel_delayed_work_sync(&efx->monitor_work);
1101 /* Ensure that all RX slow refills are complete. */
1102 efx_for_each_rx_queue(rx_queue, efx)
1103 cancel_delayed_work_sync(&rx_queue->work);
1105 /* Stop scheduled port reconfigurations */
1106 cancel_work_sync(&efx->mac_work);
1107 cancel_work_sync(&efx->phy_work);
1111 /* Quiesce hardware and software without bringing the link down.
1112 * Safe to call multiple times, when the nic and interface is in any
1113 * state. The caller is guaranteed to subsequently be in a position
1114 * to modify any hardware and software state they see fit without
1116 static void efx_stop_all(struct efx_nic *efx)
1118 struct efx_channel *channel;
1120 EFX_ASSERT_RESET_SERIALISED(efx);
1122 /* port_enabled can be read safely under the rtnl lock */
1123 if (!efx->port_enabled)
1126 /* Disable interrupts and wait for ISR to complete */
1127 falcon_disable_interrupts(efx);
1128 if (efx->legacy_irq)
1129 synchronize_irq(efx->legacy_irq);
1130 efx_for_each_channel(channel, efx) {
1132 synchronize_irq(channel->irq);
1135 /* Stop all NAPI processing and synchronous rx refills */
1136 efx_for_each_channel(channel, efx)
1137 efx_stop_channel(channel);
1139 /* Stop all asynchronous port reconfigurations. Since all
1140 * event processing has already been stopped, there is no
1141 * window to loose phy events */
1144 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1147 /* Isolate the MAC from the TX and RX engines, so that queue
1148 * flushes will complete in a timely fashion. */
1149 falcon_drain_tx_fifo(efx);
1151 /* Stop the kernel transmit interface late, so the watchdog
1152 * timer isn't ticking over the flush */
1153 if (efx_dev_registered(efx)) {
1154 efx_stop_queue(efx);
1155 netif_tx_lock_bh(efx->net_dev);
1156 netif_tx_unlock_bh(efx->net_dev);
1160 static void efx_remove_all(struct efx_nic *efx)
1162 struct efx_channel *channel;
1164 efx_for_each_channel(channel, efx)
1165 efx_remove_channel(channel);
1166 efx_remove_port(efx);
1167 efx_remove_nic(efx);
1170 /* A convinience function to safely flush all the queues */
1171 void efx_flush_queues(struct efx_nic *efx)
1173 EFX_ASSERT_RESET_SERIALISED(efx);
1177 efx_fini_channels(efx);
1178 efx_init_channels(efx);
1183 /**************************************************************************
1185 * Interrupt moderation
1187 **************************************************************************/
1189 /* Set interrupt moderation parameters */
1190 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1192 struct efx_tx_queue *tx_queue;
1193 struct efx_rx_queue *rx_queue;
1195 EFX_ASSERT_RESET_SERIALISED(efx);
1197 efx_for_each_tx_queue(tx_queue, efx)
1198 tx_queue->channel->irq_moderation = tx_usecs;
1200 efx_for_each_rx_queue(rx_queue, efx)
1201 rx_queue->channel->irq_moderation = rx_usecs;
1204 /**************************************************************************
1208 **************************************************************************/
1210 /* Run periodically off the general workqueue. Serialised against
1211 * efx_reconfigure_port via the mac_lock */
1212 static void efx_monitor(struct work_struct *data)
1214 struct efx_nic *efx = container_of(data, struct efx_nic,
1218 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1219 raw_smp_processor_id());
1221 /* If the mac_lock is already held then it is likely a port
1222 * reconfiguration is already in place, which will likely do
1223 * most of the work of check_hw() anyway. */
1224 if (!mutex_trylock(&efx->mac_lock))
1226 if (!efx->port_enabled)
1228 rc = efx->board_info.monitor(efx);
1230 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1231 (rc == -ERANGE) ? "reported fault" : "failed");
1232 efx->phy_mode |= PHY_MODE_LOW_POWER;
1233 falcon_sim_phy_event(efx);
1235 efx->phy_op->poll(efx);
1236 efx->mac_op->poll(efx);
1239 mutex_unlock(&efx->mac_lock);
1241 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1242 efx_monitor_interval);
1245 /**************************************************************************
1249 *************************************************************************/
1252 * Context: process, rtnl_lock() held.
1254 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1256 struct efx_nic *efx = netdev_priv(net_dev);
1258 EFX_ASSERT_RESET_SERIALISED(efx);
1260 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1263 /**************************************************************************
1267 **************************************************************************/
1269 static int efx_init_napi(struct efx_nic *efx)
1271 struct efx_channel *channel;
1274 efx_for_each_channel(channel, efx) {
1275 channel->napi_dev = efx->net_dev;
1276 rc = efx_lro_init(&channel->lro_mgr, efx);
1286 static void efx_fini_napi(struct efx_nic *efx)
1288 struct efx_channel *channel;
1290 efx_for_each_channel(channel, efx) {
1291 efx_lro_fini(&channel->lro_mgr);
1292 channel->napi_dev = NULL;
1296 /**************************************************************************
1298 * Kernel netpoll interface
1300 *************************************************************************/
1302 #ifdef CONFIG_NET_POLL_CONTROLLER
1304 /* Although in the common case interrupts will be disabled, this is not
1305 * guaranteed. However, all our work happens inside the NAPI callback,
1306 * so no locking is required.
1308 static void efx_netpoll(struct net_device *net_dev)
1310 struct efx_nic *efx = netdev_priv(net_dev);
1311 struct efx_channel *channel;
1313 efx_for_each_channel(channel, efx)
1314 efx_schedule_channel(channel);
1319 /**************************************************************************
1321 * Kernel net device interface
1323 *************************************************************************/
1325 /* Context: process, rtnl_lock() held. */
1326 static int efx_net_open(struct net_device *net_dev)
1328 struct efx_nic *efx = netdev_priv(net_dev);
1329 EFX_ASSERT_RESET_SERIALISED(efx);
1331 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1332 raw_smp_processor_id());
1334 if (efx->state == STATE_DISABLED)
1336 if (efx->phy_mode & PHY_MODE_SPECIAL)
1343 /* Context: process, rtnl_lock() held.
1344 * Note that the kernel will ignore our return code; this method
1345 * should really be a void.
1347 static int efx_net_stop(struct net_device *net_dev)
1349 struct efx_nic *efx = netdev_priv(net_dev);
1351 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1352 raw_smp_processor_id());
1354 if (efx->state != STATE_DISABLED) {
1355 /* Stop the device and flush all the channels */
1357 efx_fini_channels(efx);
1358 efx_init_channels(efx);
1364 void efx_stats_disable(struct efx_nic *efx)
1366 spin_lock(&efx->stats_lock);
1367 ++efx->stats_disable_count;
1368 spin_unlock(&efx->stats_lock);
1371 void efx_stats_enable(struct efx_nic *efx)
1373 spin_lock(&efx->stats_lock);
1374 --efx->stats_disable_count;
1375 spin_unlock(&efx->stats_lock);
1378 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1379 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1381 struct efx_nic *efx = netdev_priv(net_dev);
1382 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1383 struct net_device_stats *stats = &net_dev->stats;
1385 /* Update stats if possible, but do not wait if another thread
1386 * is updating them or if MAC stats fetches are temporarily
1387 * disabled; slightly stale stats are acceptable.
1389 if (!spin_trylock(&efx->stats_lock))
1391 if (!efx->stats_disable_count) {
1392 efx->mac_op->update_stats(efx);
1393 falcon_update_nic_stats(efx);
1395 spin_unlock(&efx->stats_lock);
1397 stats->rx_packets = mac_stats->rx_packets;
1398 stats->tx_packets = mac_stats->tx_packets;
1399 stats->rx_bytes = mac_stats->rx_bytes;
1400 stats->tx_bytes = mac_stats->tx_bytes;
1401 stats->multicast = mac_stats->rx_multicast;
1402 stats->collisions = mac_stats->tx_collision;
1403 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1404 mac_stats->rx_length_error);
1405 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1406 stats->rx_crc_errors = mac_stats->rx_bad;
1407 stats->rx_frame_errors = mac_stats->rx_align_error;
1408 stats->rx_fifo_errors = mac_stats->rx_overflow;
1409 stats->rx_missed_errors = mac_stats->rx_missed;
1410 stats->tx_window_errors = mac_stats->tx_late_collision;
1412 stats->rx_errors = (stats->rx_length_errors +
1413 stats->rx_over_errors +
1414 stats->rx_crc_errors +
1415 stats->rx_frame_errors +
1416 stats->rx_fifo_errors +
1417 stats->rx_missed_errors +
1418 mac_stats->rx_symbol_error);
1419 stats->tx_errors = (stats->tx_window_errors +
1425 /* Context: netif_tx_lock held, BHs disabled. */
1426 static void efx_watchdog(struct net_device *net_dev)
1428 struct efx_nic *efx = netdev_priv(net_dev);
1430 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1431 " resetting channels\n",
1432 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1434 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1438 /* Context: process, rtnl_lock() held. */
1439 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1441 struct efx_nic *efx = netdev_priv(net_dev);
1444 EFX_ASSERT_RESET_SERIALISED(efx);
1446 if (new_mtu > EFX_MAX_MTU)
1451 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1453 efx_fini_channels(efx);
1454 net_dev->mtu = new_mtu;
1455 efx_init_channels(efx);
1461 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1463 struct efx_nic *efx = netdev_priv(net_dev);
1464 struct sockaddr *addr = data;
1465 char *new_addr = addr->sa_data;
1467 EFX_ASSERT_RESET_SERIALISED(efx);
1469 if (!is_valid_ether_addr(new_addr)) {
1470 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1475 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1477 /* Reconfigure the MAC */
1478 efx_reconfigure_port(efx);
1483 /* Context: netif_addr_lock held, BHs disabled. */
1484 static void efx_set_multicast_list(struct net_device *net_dev)
1486 struct efx_nic *efx = netdev_priv(net_dev);
1487 struct dev_mc_list *mc_list = net_dev->mc_list;
1488 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1489 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1490 bool changed = (efx->promiscuous != promiscuous);
1495 efx->promiscuous = promiscuous;
1497 /* Build multicast hash table */
1498 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1499 memset(mc_hash, 0xff, sizeof(*mc_hash));
1501 memset(mc_hash, 0x00, sizeof(*mc_hash));
1502 for (i = 0; i < net_dev->mc_count; i++) {
1503 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1504 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1505 set_bit_le(bit, mc_hash->byte);
1506 mc_list = mc_list->next;
1510 if (!efx->port_enabled)
1511 /* Delay pushing settings until efx_start_port() */
1515 queue_work(efx->workqueue, &efx->phy_work);
1517 /* Create and activate new global multicast hash table */
1518 falcon_set_multicast_hash(efx);
1521 static const struct net_device_ops efx_netdev_ops = {
1522 .ndo_open = efx_net_open,
1523 .ndo_stop = efx_net_stop,
1524 .ndo_get_stats = efx_net_stats,
1525 .ndo_tx_timeout = efx_watchdog,
1526 .ndo_start_xmit = efx_hard_start_xmit,
1527 .ndo_validate_addr = eth_validate_addr,
1528 .ndo_do_ioctl = efx_ioctl,
1529 .ndo_change_mtu = efx_change_mtu,
1530 .ndo_set_mac_address = efx_set_mac_address,
1531 .ndo_set_multicast_list = efx_set_multicast_list,
1532 #ifdef CONFIG_NET_POLL_CONTROLLER
1533 .ndo_poll_controller = efx_netpoll,
1537 static void efx_update_name(struct efx_nic *efx)
1539 strcpy(efx->name, efx->net_dev->name);
1540 efx_mtd_rename(efx);
1541 efx_set_channel_names(efx);
1544 static int efx_netdev_event(struct notifier_block *this,
1545 unsigned long event, void *ptr)
1547 struct net_device *net_dev = ptr;
1549 if (net_dev->netdev_ops == &efx_netdev_ops &&
1550 event == NETDEV_CHANGENAME)
1551 efx_update_name(netdev_priv(net_dev));
1556 static struct notifier_block efx_netdev_notifier = {
1557 .notifier_call = efx_netdev_event,
1561 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1563 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1564 return sprintf(buf, "%d\n", efx->phy_type);
1566 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1568 static int efx_register_netdev(struct efx_nic *efx)
1570 struct net_device *net_dev = efx->net_dev;
1573 net_dev->watchdog_timeo = 5 * HZ;
1574 net_dev->irq = efx->pci_dev->irq;
1575 net_dev->netdev_ops = &efx_netdev_ops;
1576 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1577 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1579 /* Always start with carrier off; PHY events will detect the link */
1580 netif_carrier_off(efx->net_dev);
1582 /* Clear MAC statistics */
1583 efx->mac_op->update_stats(efx);
1584 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1586 rc = register_netdev(net_dev);
1588 EFX_ERR(efx, "could not register net dev\n");
1593 efx_update_name(efx);
1596 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1598 EFX_ERR(efx, "failed to init net dev attributes\n");
1599 goto fail_registered;
1605 unregister_netdev(net_dev);
1609 static void efx_unregister_netdev(struct efx_nic *efx)
1611 struct efx_tx_queue *tx_queue;
1616 BUG_ON(netdev_priv(efx->net_dev) != efx);
1618 /* Free up any skbs still remaining. This has to happen before
1619 * we try to unregister the netdev as running their destructors
1620 * may be needed to get the device ref. count to 0. */
1621 efx_for_each_tx_queue(tx_queue, efx)
1622 efx_release_tx_buffers(tx_queue);
1624 if (efx_dev_registered(efx)) {
1625 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1626 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1627 unregister_netdev(efx->net_dev);
1631 /**************************************************************************
1633 * Device reset and suspend
1635 **************************************************************************/
1637 /* Tears down the entire software state and most of the hardware state
1639 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1640 struct ethtool_cmd *ecmd)
1642 EFX_ASSERT_RESET_SERIALISED(efx);
1644 efx_stats_disable(efx);
1646 mutex_lock(&efx->mac_lock);
1647 mutex_lock(&efx->spi_lock);
1649 efx->phy_op->get_settings(efx, ecmd);
1651 efx_fini_channels(efx);
1652 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1653 efx->phy_op->fini(efx);
1656 /* This function will always ensure that the locks acquired in
1657 * efx_reset_down() are released. A failure return code indicates
1658 * that we were unable to reinitialise the hardware, and the
1659 * driver should be disabled. If ok is false, then the rx and tx
1660 * engines are not restarted, pending a RESET_DISABLE. */
1661 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1662 struct ethtool_cmd *ecmd, bool ok)
1666 EFX_ASSERT_RESET_SERIALISED(efx);
1668 rc = falcon_init_nic(efx);
1670 EFX_ERR(efx, "failed to initialise NIC\n");
1674 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1676 rc = efx->phy_op->init(efx);
1680 efx->port_initialized = false;
1684 efx_init_channels(efx);
1686 if (efx->phy_op->set_settings(efx, ecmd))
1687 EFX_ERR(efx, "could not restore PHY settings\n");
1690 mutex_unlock(&efx->spi_lock);
1691 mutex_unlock(&efx->mac_lock);
1695 efx_stats_enable(efx);
1700 /* Reset the NIC as transparently as possible. Do not reset the PHY
1701 * Note that the reset may fail, in which case the card will be left
1702 * in a most-probably-unusable state.
1704 * This function will sleep. You cannot reset from within an atomic
1705 * state; use efx_schedule_reset() instead.
1707 * Grabs the rtnl_lock.
1709 static int efx_reset(struct efx_nic *efx)
1711 struct ethtool_cmd ecmd;
1712 enum reset_type method = efx->reset_pending;
1715 /* Serialise with kernel interfaces */
1718 /* If we're not RUNNING then don't reset. Leave the reset_pending
1719 * flag set so that efx_pci_probe_main will be retried */
1720 if (efx->state != STATE_RUNNING) {
1721 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1725 EFX_INFO(efx, "resetting (%d)\n", method);
1727 efx_reset_down(efx, method, &ecmd);
1729 rc = falcon_reset_hw(efx, method);
1731 EFX_ERR(efx, "failed to reset hardware\n");
1735 /* Allow resets to be rescheduled. */
1736 efx->reset_pending = RESET_TYPE_NONE;
1738 /* Reinitialise bus-mastering, which may have been turned off before
1739 * the reset was scheduled. This is still appropriate, even in the
1740 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1741 * can respond to requests. */
1742 pci_set_master(efx->pci_dev);
1744 /* Leave device stopped if necessary */
1745 if (method == RESET_TYPE_DISABLE) {
1746 efx_reset_up(efx, method, &ecmd, false);
1749 rc = efx_reset_up(efx, method, &ecmd, true);
1754 EFX_ERR(efx, "has been disabled\n");
1755 efx->state = STATE_DISABLED;
1756 dev_close(efx->net_dev);
1758 EFX_LOG(efx, "reset complete\n");
1766 /* The worker thread exists so that code that cannot sleep can
1767 * schedule a reset for later.
1769 static void efx_reset_work(struct work_struct *data)
1771 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1776 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1778 enum reset_type method;
1780 if (efx->reset_pending != RESET_TYPE_NONE) {
1781 EFX_INFO(efx, "quenching already scheduled reset\n");
1786 case RESET_TYPE_INVISIBLE:
1787 case RESET_TYPE_ALL:
1788 case RESET_TYPE_WORLD:
1789 case RESET_TYPE_DISABLE:
1792 case RESET_TYPE_RX_RECOVERY:
1793 case RESET_TYPE_RX_DESC_FETCH:
1794 case RESET_TYPE_TX_DESC_FETCH:
1795 case RESET_TYPE_TX_SKIP:
1796 method = RESET_TYPE_INVISIBLE;
1799 method = RESET_TYPE_ALL;
1804 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1806 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1808 efx->reset_pending = method;
1810 queue_work(reset_workqueue, &efx->reset_work);
1813 /**************************************************************************
1815 * List of NICs we support
1817 **************************************************************************/
1819 /* PCI device ID table */
1820 static struct pci_device_id efx_pci_table[] __devinitdata = {
1821 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1822 .driver_data = (unsigned long) &falcon_a_nic_type},
1823 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1824 .driver_data = (unsigned long) &falcon_b_nic_type},
1825 {0} /* end of list */
1828 /**************************************************************************
1830 * Dummy PHY/MAC/Board operations
1832 * Can be used for some unimplemented operations
1833 * Needed so all function pointers are valid and do not have to be tested
1836 **************************************************************************/
1837 int efx_port_dummy_op_int(struct efx_nic *efx)
1841 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1842 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1844 static struct efx_mac_operations efx_dummy_mac_operations = {
1845 .reconfigure = efx_port_dummy_op_void,
1846 .poll = efx_port_dummy_op_void,
1847 .irq = efx_port_dummy_op_void,
1850 static struct efx_phy_operations efx_dummy_phy_operations = {
1851 .init = efx_port_dummy_op_int,
1852 .reconfigure = efx_port_dummy_op_void,
1853 .poll = efx_port_dummy_op_void,
1854 .fini = efx_port_dummy_op_void,
1855 .clear_interrupt = efx_port_dummy_op_void,
1858 static struct efx_board efx_dummy_board_info = {
1859 .init = efx_port_dummy_op_int,
1860 .init_leds = efx_port_dummy_op_int,
1861 .set_fault_led = efx_port_dummy_op_blink,
1862 .monitor = efx_port_dummy_op_int,
1863 .blink = efx_port_dummy_op_blink,
1864 .fini = efx_port_dummy_op_void,
1867 /**************************************************************************
1871 **************************************************************************/
1873 /* This zeroes out and then fills in the invariants in a struct
1874 * efx_nic (including all sub-structures).
1876 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1877 struct pci_dev *pci_dev, struct net_device *net_dev)
1879 struct efx_channel *channel;
1880 struct efx_tx_queue *tx_queue;
1881 struct efx_rx_queue *rx_queue;
1884 /* Initialise common structures */
1885 memset(efx, 0, sizeof(*efx));
1886 spin_lock_init(&efx->biu_lock);
1887 spin_lock_init(&efx->phy_lock);
1888 mutex_init(&efx->spi_lock);
1889 INIT_WORK(&efx->reset_work, efx_reset_work);
1890 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1891 efx->pci_dev = pci_dev;
1892 efx->state = STATE_INIT;
1893 efx->reset_pending = RESET_TYPE_NONE;
1894 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1895 efx->board_info = efx_dummy_board_info;
1897 efx->net_dev = net_dev;
1898 efx->rx_checksum_enabled = true;
1899 spin_lock_init(&efx->netif_stop_lock);
1900 spin_lock_init(&efx->stats_lock);
1901 efx->stats_disable_count = 1;
1902 mutex_init(&efx->mac_lock);
1903 efx->mac_op = &efx_dummy_mac_operations;
1904 efx->phy_op = &efx_dummy_phy_operations;
1905 efx->mii.dev = net_dev;
1906 INIT_WORK(&efx->phy_work, efx_phy_work);
1907 INIT_WORK(&efx->mac_work, efx_mac_work);
1908 atomic_set(&efx->netif_stop_count, 1);
1910 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1911 channel = &efx->channel[i];
1913 channel->channel = i;
1914 channel->work_pending = false;
1916 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1917 tx_queue = &efx->tx_queue[i];
1918 tx_queue->efx = efx;
1919 tx_queue->queue = i;
1920 tx_queue->buffer = NULL;
1921 tx_queue->channel = &efx->channel[0]; /* for safety */
1922 tx_queue->tso_headers_free = NULL;
1924 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1925 rx_queue = &efx->rx_queue[i];
1926 rx_queue->efx = efx;
1927 rx_queue->queue = i;
1928 rx_queue->channel = &efx->channel[0]; /* for safety */
1929 rx_queue->buffer = NULL;
1930 spin_lock_init(&rx_queue->add_lock);
1931 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1936 /* Sanity-check NIC type */
1937 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1938 (efx->type->txd_ring_mask + 1));
1939 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1940 (efx->type->rxd_ring_mask + 1));
1941 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1942 (efx->type->evq_size - 1));
1943 /* As close as we can get to guaranteeing that we don't overflow */
1944 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1945 (efx->type->txd_ring_mask + 1 +
1946 efx->type->rxd_ring_mask + 1));
1947 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1949 /* Higher numbered interrupt modes are less capable! */
1950 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1953 /* Would be good to use the net_dev name, but we're too early */
1954 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1956 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1957 if (!efx->workqueue)
1963 static void efx_fini_struct(struct efx_nic *efx)
1965 if (efx->workqueue) {
1966 destroy_workqueue(efx->workqueue);
1967 efx->workqueue = NULL;
1971 /**************************************************************************
1975 **************************************************************************/
1977 /* Main body of final NIC shutdown code
1978 * This is called only at module unload (or hotplug removal).
1980 static void efx_pci_remove_main(struct efx_nic *efx)
1982 EFX_ASSERT_RESET_SERIALISED(efx);
1984 /* Skip everything if we never obtained a valid membase */
1988 efx_fini_channels(efx);
1991 /* Shutdown the board, then the NIC and board state */
1992 efx->board_info.fini(efx);
1993 falcon_fini_interrupt(efx);
1996 efx_remove_all(efx);
1999 /* Final NIC shutdown
2000 * This is called only at module unload (or hotplug removal).
2002 static void efx_pci_remove(struct pci_dev *pci_dev)
2004 struct efx_nic *efx;
2006 efx = pci_get_drvdata(pci_dev);
2010 /* Mark the NIC as fini, then stop the interface */
2012 efx->state = STATE_FINI;
2013 dev_close(efx->net_dev);
2015 /* Allow any queued efx_resets() to complete */
2018 if (efx->membase == NULL)
2021 efx_unregister_netdev(efx);
2023 efx_mtd_remove(efx);
2025 /* Wait for any scheduled resets to complete. No more will be
2026 * scheduled from this point because efx_stop_all() has been
2027 * called, we are no longer registered with driverlink, and
2028 * the net_device's have been removed. */
2029 cancel_work_sync(&efx->reset_work);
2031 efx_pci_remove_main(efx);
2035 EFX_LOG(efx, "shutdown successful\n");
2037 pci_set_drvdata(pci_dev, NULL);
2038 efx_fini_struct(efx);
2039 free_netdev(efx->net_dev);
2042 /* Main body of NIC initialisation
2043 * This is called at module load (or hotplug insertion, theoretically).
2045 static int efx_pci_probe_main(struct efx_nic *efx)
2049 /* Do start-of-day initialisation */
2050 rc = efx_probe_all(efx);
2054 rc = efx_init_napi(efx);
2058 /* Initialise the board */
2059 rc = efx->board_info.init(efx);
2061 EFX_ERR(efx, "failed to initialise board\n");
2065 rc = falcon_init_nic(efx);
2067 EFX_ERR(efx, "failed to initialise NIC\n");
2071 rc = efx_init_port(efx);
2073 EFX_ERR(efx, "failed to initialise port\n");
2077 efx_init_channels(efx);
2079 rc = falcon_init_interrupt(efx);
2086 efx_fini_channels(efx);
2090 efx->board_info.fini(efx);
2094 efx_remove_all(efx);
2099 /* NIC initialisation
2101 * This is called at module load (or hotplug insertion,
2102 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2103 * sets up and registers the network devices with the kernel and hooks
2104 * the interrupt service routine. It does not prepare the device for
2105 * transmission; this is left to the first time one of the network
2106 * interfaces is brought up (i.e. efx_net_open).
2108 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2109 const struct pci_device_id *entry)
2111 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2112 struct net_device *net_dev;
2113 struct efx_nic *efx;
2116 /* Allocate and initialise a struct net_device and struct efx_nic */
2117 net_dev = alloc_etherdev(sizeof(*efx));
2120 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2121 NETIF_F_HIGHDMA | NETIF_F_TSO);
2123 net_dev->features |= NETIF_F_LRO;
2124 /* Mask for features that also apply to VLAN devices */
2125 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2126 NETIF_F_HIGHDMA | NETIF_F_TSO);
2127 efx = netdev_priv(net_dev);
2128 pci_set_drvdata(pci_dev, efx);
2129 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2133 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2135 /* Set up basic I/O (BAR mappings etc) */
2136 rc = efx_init_io(efx);
2140 /* No serialisation is required with the reset path because
2141 * we're in STATE_INIT. */
2142 for (i = 0; i < 5; i++) {
2143 rc = efx_pci_probe_main(efx);
2145 /* Serialise against efx_reset(). No more resets will be
2146 * scheduled since efx_stop_all() has been called, and we
2147 * have not and never have been registered with either
2148 * the rtnetlink or driverlink layers. */
2149 cancel_work_sync(&efx->reset_work);
2152 if (efx->reset_pending != RESET_TYPE_NONE) {
2153 /* If there was a scheduled reset during
2154 * probe, the NIC is probably hosed anyway */
2155 efx_pci_remove_main(efx);
2162 /* Retry if a recoverably reset event has been scheduled */
2163 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2164 (efx->reset_pending != RESET_TYPE_ALL))
2167 efx->reset_pending = RESET_TYPE_NONE;
2171 EFX_ERR(efx, "Could not reset NIC\n");
2175 /* Switch to the running state before we expose the device to
2176 * the OS. This is to ensure that the initial gathering of
2177 * MAC stats succeeds. */
2178 efx->state = STATE_RUNNING;
2180 efx_mtd_probe(efx); /* allowed to fail */
2182 rc = efx_register_netdev(efx);
2186 EFX_LOG(efx, "initialisation successful\n");
2190 efx_pci_remove_main(efx);
2195 efx_fini_struct(efx);
2197 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2198 free_netdev(net_dev);
2202 static struct pci_driver efx_pci_driver = {
2203 .name = EFX_DRIVER_NAME,
2204 .id_table = efx_pci_table,
2205 .probe = efx_pci_probe,
2206 .remove = efx_pci_remove,
2209 /**************************************************************************
2211 * Kernel module interface
2213 *************************************************************************/
2215 module_param(interrupt_mode, uint, 0444);
2216 MODULE_PARM_DESC(interrupt_mode,
2217 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2219 static int __init efx_init_module(void)
2223 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2225 rc = register_netdevice_notifier(&efx_netdev_notifier);
2229 refill_workqueue = create_workqueue("sfc_refill");
2230 if (!refill_workqueue) {
2234 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2235 if (!reset_workqueue) {
2240 rc = pci_register_driver(&efx_pci_driver);
2247 destroy_workqueue(reset_workqueue);
2249 destroy_workqueue(refill_workqueue);
2251 unregister_netdevice_notifier(&efx_netdev_notifier);
2256 static void __exit efx_exit_module(void)
2258 printk(KERN_INFO "Solarflare NET driver unloading\n");
2260 pci_unregister_driver(&efx_pci_driver);
2261 destroy_workqueue(reset_workqueue);
2262 destroy_workqueue(refill_workqueue);
2263 unregister_netdevice_notifier(&efx_netdev_notifier);
2267 module_init(efx_init_module);
2268 module_exit(efx_exit_module);
2270 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2271 "Solarflare Communications");
2272 MODULE_DESCRIPTION("Solarflare Communications network driver");
2273 MODULE_LICENSE("GPL");
2274 MODULE_DEVICE_TABLE(pci, efx_pci_table);