Merge branch 'next' into for-linus
[platform/kernel/linux-rpi.git] / drivers / net / sb1000.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* sb1000.c: A General Instruments SB1000 driver for linux. */
3 /*
4         Written 1998 by Franco Venturi.
5
6         Copyright 1998 by Franco Venturi.
7         Copyright 1994,1995 by Donald Becker.
8         Copyright 1993 United States Government as represented by the
9         Director, National Security Agency.
10
11         This driver is for the General Instruments SB1000 (internal SURFboard)
12
13         The author may be reached as fventuri@mediaone.net
14
15
16         Changes:
17
18         981115 Steven Hirsch <shirsch@adelphia.net>
19
20         Linus changed the timer interface.  Should work on all recent
21         development kernels.
22
23         980608 Steven Hirsch <shirsch@adelphia.net>
24
25         Small changes to make it work with 2.1.x kernels. Hopefully,
26         nothing major will change before official release of Linux 2.2.
27
28         Merged with 2.2 - Alan Cox
29 */
30
31 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/string.h>
37 #include <linux/interrupt.h>
38 #include <linux/errno.h>
39 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
40 #include <linux/in.h>
41 #include <linux/ioport.h>
42 #include <linux/netdevice.h>
43 #include <linux/if_arp.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>        /* for udelay() */
46 #include <linux/etherdevice.h>
47 #include <linux/pnp.h>
48 #include <linux/init.h>
49 #include <linux/bitops.h>
50 #include <linux/gfp.h>
51
52 #include <asm/io.h>
53 #include <asm/processor.h>
54 #include <linux/uaccess.h>
55
56 #ifdef SB1000_DEBUG
57 static int sb1000_debug = SB1000_DEBUG;
58 #else
59 static const int sb1000_debug = 1;
60 #endif
61
62 static const int SB1000_IO_EXTENT = 8;
63 /* SB1000 Maximum Receive Unit */
64 static const int SB1000_MRU = 1500; /* octects */
65
66 #define NPIDS 4
67 struct sb1000_private {
68         struct sk_buff *rx_skb[NPIDS];
69         short rx_dlen[NPIDS];
70         unsigned int rx_frames;
71         short rx_error_count;
72         short rx_error_dpc_count;
73         unsigned char rx_session_id[NPIDS];
74         unsigned char rx_frame_id[NPIDS];
75         unsigned char rx_pkt_type[NPIDS];
76 };
77
78 /* prototypes for Linux interface */
79 extern int sb1000_probe(struct net_device *dev);
80 static int sb1000_open(struct net_device *dev);
81 static int sb1000_siocdevprivate(struct net_device *dev, struct ifreq *ifr,
82                                  void __user *data, int cmd);
83 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
84                                      struct net_device *dev);
85 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
86 static int sb1000_close(struct net_device *dev);
87
88
89 /* SB1000 hardware routines to be used during open/configuration phases */
90 static int card_wait_for_busy_clear(const int ioaddr[],
91         const char* name);
92 static int card_wait_for_ready(const int ioaddr[], const char* name,
93         unsigned char in[]);
94 static int card_send_command(const int ioaddr[], const char* name,
95         const unsigned char out[], unsigned char in[]);
96
97 /* SB1000 hardware routines to be used during frame rx interrupt */
98 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
99 static int sb1000_wait_for_ready_clear(const int ioaddr[],
100         const char* name);
101 static void sb1000_send_command(const int ioaddr[], const char* name,
102         const unsigned char out[]);
103 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
104 static void sb1000_issue_read_command(const int ioaddr[],
105         const char* name);
106
107 /* SB1000 commands for open/configuration */
108 static int sb1000_reset(const int ioaddr[], const char* name);
109 static int sb1000_check_CRC(const int ioaddr[], const char* name);
110 static inline int sb1000_start_get_set_command(const int ioaddr[],
111         const char* name);
112 static int sb1000_end_get_set_command(const int ioaddr[],
113         const char* name);
114 static int sb1000_activate(const int ioaddr[], const char* name);
115 static int sb1000_get_firmware_version(const int ioaddr[],
116         const char* name, unsigned char version[], int do_end);
117 static int sb1000_get_frequency(const int ioaddr[], const char* name,
118         int* frequency);
119 static int sb1000_set_frequency(const int ioaddr[], const char* name,
120         int frequency);
121 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
122         short PID[]);
123 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
124         const short PID[]);
125
126 /* SB1000 commands for frame rx interrupt */
127 static int sb1000_rx(struct net_device *dev);
128 static void sb1000_error_dpc(struct net_device *dev);
129
130 static const struct pnp_device_id sb1000_pnp_ids[] = {
131         { "GIC1000", 0 },
132         { "", 0 }
133 };
134 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
135
136 static const struct net_device_ops sb1000_netdev_ops = {
137         .ndo_open               = sb1000_open,
138         .ndo_start_xmit         = sb1000_start_xmit,
139         .ndo_siocdevprivate     = sb1000_siocdevprivate,
140         .ndo_stop               = sb1000_close,
141         .ndo_set_mac_address    = eth_mac_addr,
142         .ndo_validate_addr      = eth_validate_addr,
143 };
144
145 static int
146 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
147 {
148         struct net_device *dev;
149         unsigned short ioaddr[2], irq;
150         unsigned int serial_number;
151         int error = -ENODEV;
152         u8 addr[ETH_ALEN];
153
154         if (pnp_device_attach(pdev) < 0)
155                 return -ENODEV;
156         if (pnp_activate_dev(pdev) < 0)
157                 goto out_detach;
158
159         if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
160                 goto out_disable;
161         if (!pnp_irq_valid(pdev, 0))
162                 goto out_disable;
163
164         serial_number = pdev->card->serial;
165
166         ioaddr[0] = pnp_port_start(pdev, 0);
167         ioaddr[1] = pnp_port_start(pdev, 0);
168
169         irq = pnp_irq(pdev, 0);
170
171         if (!request_region(ioaddr[0], 16, "sb1000"))
172                 goto out_disable;
173         if (!request_region(ioaddr[1], 16, "sb1000"))
174                 goto out_release_region0;
175
176         dev = alloc_etherdev(sizeof(struct sb1000_private));
177         if (!dev) {
178                 error = -ENOMEM;
179                 goto out_release_regions;
180         }
181
182
183         dev->base_addr = ioaddr[0];
184         /* mem_start holds the second I/O address */
185         dev->mem_start = ioaddr[1];
186         dev->irq = irq;
187
188         if (sb1000_debug > 0)
189                 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
190                         "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
191                         dev->mem_start, serial_number, dev->irq);
192
193         /*
194          * The SB1000 is an rx-only cable modem device.  The uplink is a modem
195          * and we do not want to arp on it.
196          */
197         dev->flags = IFF_POINTOPOINT|IFF_NOARP;
198
199         SET_NETDEV_DEV(dev, &pdev->dev);
200
201         if (sb1000_debug > 0)
202                 printk(KERN_NOTICE "%s", version);
203
204         dev->netdev_ops = &sb1000_netdev_ops;
205
206         /* hardware address is 0:0:serial_number */
207         addr[0] = 0;
208         addr[1] = 0;
209         addr[2] = serial_number >> 24 & 0xff;
210         addr[3] = serial_number >> 16 & 0xff;
211         addr[4] = serial_number >>  8 & 0xff;
212         addr[5] = serial_number >>  0 & 0xff;
213         eth_hw_addr_set(dev, addr);
214
215         pnp_set_drvdata(pdev, dev);
216
217         error = register_netdev(dev);
218         if (error)
219                 goto out_free_netdev;
220         return 0;
221
222  out_free_netdev:
223         free_netdev(dev);
224  out_release_regions:
225         release_region(ioaddr[1], 16);
226  out_release_region0:
227         release_region(ioaddr[0], 16);
228  out_disable:
229         pnp_disable_dev(pdev);
230  out_detach:
231         pnp_device_detach(pdev);
232         return error;
233 }
234
235 static void
236 sb1000_remove_one(struct pnp_dev *pdev)
237 {
238         struct net_device *dev = pnp_get_drvdata(pdev);
239
240         unregister_netdev(dev);
241         release_region(dev->base_addr, 16);
242         release_region(dev->mem_start, 16);
243         free_netdev(dev);
244 }
245
246 static struct pnp_driver sb1000_driver = {
247         .name           = "sb1000",
248         .id_table       = sb1000_pnp_ids,
249         .probe          = sb1000_probe_one,
250         .remove         = sb1000_remove_one,
251 };
252
253
254 /*
255  * SB1000 hardware routines to be used during open/configuration phases
256  */
257
258 static const int TimeOutJiffies = (875 * HZ) / 100;
259
260 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
261 static int
262 card_wait_for_busy_clear(const int ioaddr[], const char* name)
263 {
264         unsigned char a;
265         unsigned long timeout;
266
267         a = inb(ioaddr[0] + 7);
268         timeout = jiffies + TimeOutJiffies;
269         while (a & 0x80 || a & 0x40) {
270                 /* a little sleep */
271                 yield();
272
273                 a = inb(ioaddr[0] + 7);
274                 if (time_after_eq(jiffies, timeout)) {
275                         printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
276                                 name);
277                         return -ETIME;
278                 }
279         }
280
281         return 0;
282 }
283
284 /* Card Wait For Ready (cannot be used during an interrupt) */
285 static int
286 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
287 {
288         unsigned char a;
289         unsigned long timeout;
290
291         a = inb(ioaddr[1] + 6);
292         timeout = jiffies + TimeOutJiffies;
293         while (a & 0x80 || !(a & 0x40)) {
294                 /* a little sleep */
295                 yield();
296
297                 a = inb(ioaddr[1] + 6);
298                 if (time_after_eq(jiffies, timeout)) {
299                         printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
300                                 name);
301                         return -ETIME;
302                 }
303         }
304
305         in[1] = inb(ioaddr[0] + 1);
306         in[2] = inb(ioaddr[0] + 2);
307         in[3] = inb(ioaddr[0] + 3);
308         in[4] = inb(ioaddr[0] + 4);
309         in[0] = inb(ioaddr[0] + 5);
310         in[6] = inb(ioaddr[0] + 6);
311         in[5] = inb(ioaddr[1] + 6);
312         return 0;
313 }
314
315 /* Card Send Command (cannot be used during an interrupt) */
316 static int
317 card_send_command(const int ioaddr[], const char* name,
318         const unsigned char out[], unsigned char in[])
319 {
320         int status;
321
322         if ((status = card_wait_for_busy_clear(ioaddr, name)))
323                 return status;
324         outb(0xa0, ioaddr[0] + 6);
325         outb(out[2], ioaddr[0] + 1);
326         outb(out[3], ioaddr[0] + 2);
327         outb(out[4], ioaddr[0] + 3);
328         outb(out[5], ioaddr[0] + 4);
329         outb(out[1], ioaddr[0] + 5);
330         outb(0xa0, ioaddr[0] + 6);
331         outb(out[0], ioaddr[0] + 7);
332         if (out[0] != 0x20 && out[0] != 0x30) {
333                 if ((status = card_wait_for_ready(ioaddr, name, in)))
334                         return status;
335                 inb(ioaddr[0] + 7);
336                 if (sb1000_debug > 3)
337                         printk(KERN_DEBUG "%s: card_send_command "
338                                 "out: %02x%02x%02x%02x%02x%02x  "
339                                 "in: %02x%02x%02x%02x%02x%02x%02x\n", name,
340                                 out[0], out[1], out[2], out[3], out[4], out[5],
341                                 in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
342         } else {
343                 if (sb1000_debug > 3)
344                         printk(KERN_DEBUG "%s: card_send_command "
345                                 "out: %02x%02x%02x%02x%02x%02x\n", name,
346                                 out[0], out[1], out[2], out[3], out[4], out[5]);
347         }
348
349         if (out[1] != 0x1b) {
350                 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
351                         return -EIO;
352         }
353         return 0;
354 }
355
356
357 /*
358  * SB1000 hardware routines to be used during frame rx interrupt
359  */
360 static const int Sb1000TimeOutJiffies = 7 * HZ;
361
362 /* Card Wait For Ready (to be used during frame rx) */
363 static int
364 sb1000_wait_for_ready(const int ioaddr[], const char* name)
365 {
366         unsigned long timeout;
367
368         timeout = jiffies + Sb1000TimeOutJiffies;
369         while (inb(ioaddr[1] + 6) & 0x80) {
370                 if (time_after_eq(jiffies, timeout)) {
371                         printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
372                                 name);
373                         return -ETIME;
374                 }
375         }
376         timeout = jiffies + Sb1000TimeOutJiffies;
377         while (!(inb(ioaddr[1] + 6) & 0x40)) {
378                 if (time_after_eq(jiffies, timeout)) {
379                         printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
380                                 name);
381                         return -ETIME;
382                 }
383         }
384         inb(ioaddr[0] + 7);
385         return 0;
386 }
387
388 /* Card Wait For Ready Clear (to be used during frame rx) */
389 static int
390 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
391 {
392         unsigned long timeout;
393
394         timeout = jiffies + Sb1000TimeOutJiffies;
395         while (inb(ioaddr[1] + 6) & 0x80) {
396                 if (time_after_eq(jiffies, timeout)) {
397                         printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
398                                 name);
399                         return -ETIME;
400                 }
401         }
402         timeout = jiffies + Sb1000TimeOutJiffies;
403         while (inb(ioaddr[1] + 6) & 0x40) {
404                 if (time_after_eq(jiffies, timeout)) {
405                         printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
406                                 name);
407                         return -ETIME;
408                 }
409         }
410         return 0;
411 }
412
413 /* Card Send Command (to be used during frame rx) */
414 static void
415 sb1000_send_command(const int ioaddr[], const char* name,
416         const unsigned char out[])
417 {
418         outb(out[2], ioaddr[0] + 1);
419         outb(out[3], ioaddr[0] + 2);
420         outb(out[4], ioaddr[0] + 3);
421         outb(out[5], ioaddr[0] + 4);
422         outb(out[1], ioaddr[0] + 5);
423         outb(out[0], ioaddr[0] + 7);
424         if (sb1000_debug > 3)
425                 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
426                         "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
427 }
428
429 /* Card Read Status (to be used during frame rx) */
430 static void
431 sb1000_read_status(const int ioaddr[], unsigned char in[])
432 {
433         in[1] = inb(ioaddr[0] + 1);
434         in[2] = inb(ioaddr[0] + 2);
435         in[3] = inb(ioaddr[0] + 3);
436         in[4] = inb(ioaddr[0] + 4);
437         in[0] = inb(ioaddr[0] + 5);
438 }
439
440 /* Issue Read Command (to be used during frame rx) */
441 static void
442 sb1000_issue_read_command(const int ioaddr[], const char* name)
443 {
444         static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
445
446         sb1000_wait_for_ready_clear(ioaddr, name);
447         outb(0xa0, ioaddr[0] + 6);
448         sb1000_send_command(ioaddr, name, Command0);
449 }
450
451
452 /*
453  * SB1000 commands for open/configuration
454  */
455 /* reset SB1000 card */
456 static int
457 sb1000_reset(const int ioaddr[], const char* name)
458 {
459         static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
460
461         unsigned char st[7];
462         int port, status;
463
464         port = ioaddr[1] + 6;
465         outb(0x4, port);
466         inb(port);
467         udelay(1000);
468         outb(0x0, port);
469         inb(port);
470         ssleep(1);
471         outb(0x4, port);
472         inb(port);
473         udelay(1000);
474         outb(0x0, port);
475         inb(port);
476         udelay(0);
477
478         if ((status = card_send_command(ioaddr, name, Command0, st)))
479                 return status;
480         if (st[3] != 0xf0)
481                 return -EIO;
482         return 0;
483 }
484
485 /* check SB1000 firmware CRC */
486 static int
487 sb1000_check_CRC(const int ioaddr[], const char* name)
488 {
489         static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
490
491         unsigned char st[7];
492         int status;
493
494         /* check CRC */
495         if ((status = card_send_command(ioaddr, name, Command0, st)))
496                 return status;
497         if (st[1] != st[3] || st[2] != st[4])
498                 return -EIO;
499         return 0;
500 }
501
502 static inline int
503 sb1000_start_get_set_command(const int ioaddr[], const char* name)
504 {
505         static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
506
507         unsigned char st[7];
508
509         return card_send_command(ioaddr, name, Command0, st);
510 }
511
512 static int
513 sb1000_end_get_set_command(const int ioaddr[], const char* name)
514 {
515         static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
516         static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
517
518         unsigned char st[7];
519         int status;
520
521         if ((status = card_send_command(ioaddr, name, Command0, st)))
522                 return status;
523         return card_send_command(ioaddr, name, Command1, st);
524 }
525
526 static int
527 sb1000_activate(const int ioaddr[], const char* name)
528 {
529         static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
530         static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
531
532         unsigned char st[7];
533         int status;
534
535         ssleep(1);
536         status = card_send_command(ioaddr, name, Command0, st);
537         if (status)
538                 return status;
539         status = card_send_command(ioaddr, name, Command1, st);
540         if (status)
541                 return status;
542         if (st[3] != 0xf1) {
543                 status = sb1000_start_get_set_command(ioaddr, name);
544                 if (status)
545                         return status;
546                 return -EIO;
547         }
548         udelay(1000);
549         return sb1000_start_get_set_command(ioaddr, name);
550 }
551
552 /* get SB1000 firmware version */
553 static int
554 sb1000_get_firmware_version(const int ioaddr[], const char* name,
555         unsigned char version[], int do_end)
556 {
557         static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
558
559         unsigned char st[7];
560         int status;
561
562         if ((status = sb1000_start_get_set_command(ioaddr, name)))
563                 return status;
564         if ((status = card_send_command(ioaddr, name, Command0, st)))
565                 return status;
566         if (st[0] != 0xa3)
567                 return -EIO;
568         version[0] = st[1];
569         version[1] = st[2];
570         if (do_end)
571                 return sb1000_end_get_set_command(ioaddr, name);
572         else
573                 return 0;
574 }
575
576 /* get SB1000 frequency */
577 static int
578 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
579 {
580         static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
581
582         unsigned char st[7];
583         int status;
584
585         udelay(1000);
586         if ((status = sb1000_start_get_set_command(ioaddr, name)))
587                 return status;
588         if ((status = card_send_command(ioaddr, name, Command0, st)))
589                 return status;
590         *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
591         return sb1000_end_get_set_command(ioaddr, name);
592 }
593
594 /* set SB1000 frequency */
595 static int
596 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
597 {
598         unsigned char st[7];
599         int status;
600         unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
601
602         const int FrequencyLowerLimit = 57000;
603         const int FrequencyUpperLimit = 804000;
604
605         if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
606                 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
607                         "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
608                         FrequencyUpperLimit);
609                 return -EINVAL;
610         }
611         udelay(1000);
612         if ((status = sb1000_start_get_set_command(ioaddr, name)))
613                 return status;
614         Command0[5] = frequency & 0xff;
615         frequency >>= 8;
616         Command0[4] = frequency & 0xff;
617         frequency >>= 8;
618         Command0[3] = frequency & 0xff;
619         frequency >>= 8;
620         Command0[2] = frequency & 0xff;
621         return card_send_command(ioaddr, name, Command0, st);
622 }
623
624 /* get SB1000 PIDs */
625 static int
626 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
627 {
628         static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
629         static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
630         static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
631         static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
632
633         unsigned char st[7];
634         int status;
635
636         udelay(1000);
637         if ((status = sb1000_start_get_set_command(ioaddr, name)))
638                 return status;
639
640         if ((status = card_send_command(ioaddr, name, Command0, st)))
641                 return status;
642         PID[0] = st[1] << 8 | st[2];
643
644         if ((status = card_send_command(ioaddr, name, Command1, st)))
645                 return status;
646         PID[1] = st[1] << 8 | st[2];
647
648         if ((status = card_send_command(ioaddr, name, Command2, st)))
649                 return status;
650         PID[2] = st[1] << 8 | st[2];
651
652         if ((status = card_send_command(ioaddr, name, Command3, st)))
653                 return status;
654         PID[3] = st[1] << 8 | st[2];
655
656         return sb1000_end_get_set_command(ioaddr, name);
657 }
658
659 /* set SB1000 PIDs */
660 static int
661 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
662 {
663         static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
664
665         unsigned char st[7];
666         short p;
667         int status;
668         unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
669         unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
670         unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
671         unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
672
673         udelay(1000);
674         if ((status = sb1000_start_get_set_command(ioaddr, name)))
675                 return status;
676
677         p = PID[0];
678         Command0[3] = p & 0xff;
679         p >>= 8;
680         Command0[2] = p & 0xff;
681         if ((status = card_send_command(ioaddr, name, Command0, st)))
682                 return status;
683
684         p = PID[1];
685         Command1[3] = p & 0xff;
686         p >>= 8;
687         Command1[2] = p & 0xff;
688         if ((status = card_send_command(ioaddr, name, Command1, st)))
689                 return status;
690
691         p = PID[2];
692         Command2[3] = p & 0xff;
693         p >>= 8;
694         Command2[2] = p & 0xff;
695         if ((status = card_send_command(ioaddr, name, Command2, st)))
696                 return status;
697
698         p = PID[3];
699         Command3[3] = p & 0xff;
700         p >>= 8;
701         Command3[2] = p & 0xff;
702         if ((status = card_send_command(ioaddr, name, Command3, st)))
703                 return status;
704
705         if ((status = card_send_command(ioaddr, name, Command4, st)))
706                 return status;
707         return sb1000_end_get_set_command(ioaddr, name);
708 }
709
710
711 static void
712 sb1000_print_status_buffer(const char* name, unsigned char st[],
713         unsigned char buffer[], int size)
714 {
715         int i, j, k;
716
717         printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
718         if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
719                 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
720                         "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
721                         buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
722             buffer[46] << 8 | buffer[47],
723                         buffer[42], buffer[43], buffer[44], buffer[45],
724             buffer[48] << 8 | buffer[49]);
725         } else {
726                 for (i = 0, k = 0; i < (size + 7) / 8; i++) {
727                         printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
728                         for (j = 0; j < 8 && k < size; j++, k++)
729                                 printk(" %02x", buffer[k]);
730                         printk("\n");
731                 }
732         }
733 }
734
735 /*
736  * SB1000 commands for frame rx interrupt
737  */
738 /* receive a single frame and assemble datagram
739  * (this is the heart of the interrupt routine)
740  */
741 static int
742 sb1000_rx(struct net_device *dev)
743 {
744
745 #define FRAMESIZE 184
746         unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
747         short dlen;
748         int ioaddr, ns;
749         unsigned int skbsize;
750         struct sk_buff *skb;
751         struct sb1000_private *lp = netdev_priv(dev);
752         struct net_device_stats *stats = &dev->stats;
753
754         /* SB1000 frame constants */
755         const int FrameSize = FRAMESIZE;
756         const int NewDatagramHeaderSkip = 8;
757         const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
758         const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
759         const int ContDatagramHeaderSkip = 7;
760         const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
761         const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
762         const int TrailerSize = 4;
763
764         ioaddr = dev->base_addr;
765
766         insw(ioaddr, (unsigned short*) st, 1);
767 #ifdef XXXDEBUG
768 printk("cm0: received: %02x %02x\n", st[0], st[1]);
769 #endif /* XXXDEBUG */
770         lp->rx_frames++;
771
772         /* decide if it is a good or bad frame */
773         for (ns = 0; ns < NPIDS; ns++) {
774                 session_id = lp->rx_session_id[ns];
775                 frame_id = lp->rx_frame_id[ns];
776                 if (st[0] == session_id) {
777                         if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
778                                 goto good_frame;
779                         } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
780                                 goto skipped_frame;
781                         } else {
782                                 goto bad_frame;
783                         }
784                 } else if (st[0] == (session_id | 0x40)) {
785                         if ((st[1] & 0xf0) == 0x30) {
786                                 goto skipped_frame;
787                         } else {
788                                 goto bad_frame;
789                         }
790                 }
791         }
792         goto bad_frame;
793
794 skipped_frame:
795         stats->rx_frame_errors++;
796         skb = lp->rx_skb[ns];
797         if (sb1000_debug > 1)
798                 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
799                         "expecting %02x %02x\n", dev->name, st[0], st[1],
800                         skb ? session_id : session_id | 0x40, frame_id);
801         if (skb) {
802                 dev_kfree_skb(skb);
803                 skb = NULL;
804         }
805
806 good_frame:
807         lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
808         /* new datagram */
809         if (st[0] & 0x40) {
810                 /* get data length */
811                 insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
812 #ifdef XXXDEBUG
813 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
814 #endif /* XXXDEBUG */
815                 if (buffer[0] != NewDatagramHeaderSkip) {
816                         if (sb1000_debug > 1)
817                                 printk(KERN_WARNING "%s: new datagram header skip error: "
818                                         "got %02x expecting %02x\n", dev->name, buffer[0],
819                                         NewDatagramHeaderSkip);
820                         stats->rx_length_errors++;
821                         insw(ioaddr, buffer, NewDatagramDataSize / 2);
822                         goto bad_frame_next;
823                 }
824                 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
825                         buffer[NewDatagramHeaderSkip + 4]) - 17;
826                 if (dlen > SB1000_MRU) {
827                         if (sb1000_debug > 1)
828                                 printk(KERN_WARNING "%s: datagram length (%d) greater "
829                                         "than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
830                         stats->rx_length_errors++;
831                         insw(ioaddr, buffer, NewDatagramDataSize / 2);
832                         goto bad_frame_next;
833                 }
834                 lp->rx_dlen[ns] = dlen;
835                 /* compute size to allocate for datagram */
836                 skbsize = dlen + FrameSize;
837                 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
838                         if (sb1000_debug > 1)
839                                 printk(KERN_WARNING "%s: can't allocate %d bytes long "
840                                         "skbuff\n", dev->name, skbsize);
841                         stats->rx_dropped++;
842                         insw(ioaddr, buffer, NewDatagramDataSize / 2);
843                         goto dropped_frame;
844                 }
845                 skb->dev = dev;
846                 skb_reset_mac_header(skb);
847                 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
848                 insw(ioaddr, skb_put(skb, NewDatagramDataSize),
849                         NewDatagramDataSize / 2);
850                 lp->rx_skb[ns] = skb;
851         } else {
852                 /* continuation of previous datagram */
853                 insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
854                 if (buffer[0] != ContDatagramHeaderSkip) {
855                         if (sb1000_debug > 1)
856                                 printk(KERN_WARNING "%s: cont datagram header skip error: "
857                                         "got %02x expecting %02x\n", dev->name, buffer[0],
858                                         ContDatagramHeaderSkip);
859                         stats->rx_length_errors++;
860                         insw(ioaddr, buffer, ContDatagramDataSize / 2);
861                         goto bad_frame_next;
862                 }
863                 skb = lp->rx_skb[ns];
864                 insw(ioaddr, skb_put(skb, ContDatagramDataSize),
865                         ContDatagramDataSize / 2);
866                 dlen = lp->rx_dlen[ns];
867         }
868         if (skb->len < dlen + TrailerSize) {
869                 lp->rx_session_id[ns] &= ~0x40;
870                 return 0;
871         }
872
873         /* datagram completed: send to upper level */
874         skb_trim(skb, dlen);
875         __netif_rx(skb);
876         stats->rx_bytes+=dlen;
877         stats->rx_packets++;
878         lp->rx_skb[ns] = NULL;
879         lp->rx_session_id[ns] |= 0x40;
880         return 0;
881
882 bad_frame:
883         insw(ioaddr, buffer, FrameSize / 2);
884         if (sb1000_debug > 1)
885                 printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
886                         dev->name, st[0], st[1]);
887         stats->rx_frame_errors++;
888 bad_frame_next:
889         if (sb1000_debug > 2)
890                 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
891 dropped_frame:
892         stats->rx_errors++;
893         if (ns < NPIDS) {
894                 if ((skb = lp->rx_skb[ns])) {
895                         dev_kfree_skb(skb);
896                         lp->rx_skb[ns] = NULL;
897                 }
898                 lp->rx_session_id[ns] |= 0x40;
899         }
900         return -1;
901 }
902
903 static void
904 sb1000_error_dpc(struct net_device *dev)
905 {
906         static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
907
908         char *name;
909         unsigned char st[5];
910         int ioaddr[2];
911         struct sb1000_private *lp = netdev_priv(dev);
912         const int ErrorDpcCounterInitialize = 200;
913
914         ioaddr[0] = dev->base_addr;
915         /* mem_start holds the second I/O address */
916         ioaddr[1] = dev->mem_start;
917         name = dev->name;
918
919         sb1000_wait_for_ready_clear(ioaddr, name);
920         sb1000_send_command(ioaddr, name, Command0);
921         sb1000_wait_for_ready(ioaddr, name);
922         sb1000_read_status(ioaddr, st);
923         if (st[1] & 0x10)
924                 lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
925 }
926
927
928 /*
929  * Linux interface functions
930  */
931 static int
932 sb1000_open(struct net_device *dev)
933 {
934         char *name;
935         int ioaddr[2], status;
936         struct sb1000_private *lp = netdev_priv(dev);
937         const unsigned short FirmwareVersion[] = {0x01, 0x01};
938
939         ioaddr[0] = dev->base_addr;
940         /* mem_start holds the second I/O address */
941         ioaddr[1] = dev->mem_start;
942         name = dev->name;
943
944         /* initialize sb1000 */
945         if ((status = sb1000_reset(ioaddr, name)))
946                 return status;
947         ssleep(1);
948         if ((status = sb1000_check_CRC(ioaddr, name)))
949                 return status;
950
951         /* initialize private data before board can catch interrupts */
952         lp->rx_skb[0] = NULL;
953         lp->rx_skb[1] = NULL;
954         lp->rx_skb[2] = NULL;
955         lp->rx_skb[3] = NULL;
956         lp->rx_dlen[0] = 0;
957         lp->rx_dlen[1] = 0;
958         lp->rx_dlen[2] = 0;
959         lp->rx_dlen[3] = 0;
960         lp->rx_frames = 0;
961         lp->rx_error_count = 0;
962         lp->rx_error_dpc_count = 0;
963         lp->rx_session_id[0] = 0x50;
964         lp->rx_session_id[1] = 0x48;
965         lp->rx_session_id[2] = 0x44;
966         lp->rx_session_id[3] = 0x42;
967         lp->rx_frame_id[0] = 0;
968         lp->rx_frame_id[1] = 0;
969         lp->rx_frame_id[2] = 0;
970         lp->rx_frame_id[3] = 0;
971         if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) {
972                 return -EAGAIN;
973         }
974
975         if (sb1000_debug > 2)
976                 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
977
978         /* Activate board and check firmware version */
979         udelay(1000);
980         if ((status = sb1000_activate(ioaddr, name)))
981                 return status;
982         udelay(0);
983         if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
984                 return status;
985         if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
986                 printk(KERN_WARNING "%s: found firmware version %x.%02x "
987                         "(should be %x.%02x)\n", name, version[0], version[1],
988                         FirmwareVersion[0], FirmwareVersion[1]);
989
990
991         netif_start_queue(dev);
992         return 0;                                       /* Always succeed */
993 }
994
995 static int sb1000_siocdevprivate(struct net_device *dev, struct ifreq *ifr,
996                                  void __user *data, int cmd)
997 {
998         char* name;
999         unsigned char version[2];
1000         short PID[4];
1001         int ioaddr[2], status, frequency;
1002         unsigned int stats[5];
1003         struct sb1000_private *lp = netdev_priv(dev);
1004
1005         if (!(dev && dev->flags & IFF_UP))
1006                 return -ENODEV;
1007
1008         ioaddr[0] = dev->base_addr;
1009         /* mem_start holds the second I/O address */
1010         ioaddr[1] = dev->mem_start;
1011         name = dev->name;
1012
1013         switch (cmd) {
1014         case SIOCGCMSTATS:              /* get statistics */
1015                 stats[0] = dev->stats.rx_bytes;
1016                 stats[1] = lp->rx_frames;
1017                 stats[2] = dev->stats.rx_packets;
1018                 stats[3] = dev->stats.rx_errors;
1019                 stats[4] = dev->stats.rx_dropped;
1020                 if (copy_to_user(data, stats, sizeof(stats)))
1021                         return -EFAULT;
1022                 status = 0;
1023                 break;
1024
1025         case SIOCGCMFIRMWARE:           /* get firmware version */
1026                 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1027                         return status;
1028                 if (copy_to_user(data, version, sizeof(version)))
1029                         return -EFAULT;
1030                 break;
1031
1032         case SIOCGCMFREQUENCY:          /* get frequency */
1033                 if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1034                         return status;
1035                 if (put_user(frequency, (int __user *)data))
1036                         return -EFAULT;
1037                 break;
1038
1039         case SIOCSCMFREQUENCY:          /* set frequency */
1040                 if (!capable(CAP_NET_ADMIN))
1041                         return -EPERM;
1042                 if (get_user(frequency, (int __user *)data))
1043                         return -EFAULT;
1044                 if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1045                         return status;
1046                 break;
1047
1048         case SIOCGCMPIDS:                       /* get PIDs */
1049                 if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1050                         return status;
1051                 if (copy_to_user(data, PID, sizeof(PID)))
1052                         return -EFAULT;
1053                 break;
1054
1055         case SIOCSCMPIDS:                       /* set PIDs */
1056                 if (!capable(CAP_NET_ADMIN))
1057                         return -EPERM;
1058                 if (copy_from_user(PID, data, sizeof(PID)))
1059                         return -EFAULT;
1060                 if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1061                         return status;
1062                 /* set session_id, frame_id and pkt_type too */
1063                 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1064                 lp->rx_session_id[1] = 0x48;
1065                 lp->rx_session_id[2] = 0x44;
1066                 lp->rx_session_id[3] = 0x42;
1067                 lp->rx_frame_id[0] = 0;
1068                 lp->rx_frame_id[1] = 0;
1069                 lp->rx_frame_id[2] = 0;
1070                 lp->rx_frame_id[3] = 0;
1071                 break;
1072
1073         default:
1074                 status = -EINVAL;
1075                 break;
1076         }
1077         return status;
1078 }
1079
1080 /* transmit function: do nothing since SB1000 can't send anything out */
1081 static netdev_tx_t
1082 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1083 {
1084         printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1085         /* sb1000 can't xmit datagrams */
1086         dev_kfree_skb(skb);
1087         return NETDEV_TX_OK;
1088 }
1089
1090 /* SB1000 interrupt handler. */
1091 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1092 {
1093         static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1094         static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1095
1096         char *name;
1097         unsigned char st;
1098         int ioaddr[2];
1099         struct net_device *dev = dev_id;
1100         struct sb1000_private *lp = netdev_priv(dev);
1101
1102         const int MaxRxErrorCount = 6;
1103
1104         ioaddr[0] = dev->base_addr;
1105         /* mem_start holds the second I/O address */
1106         ioaddr[1] = dev->mem_start;
1107         name = dev->name;
1108
1109         /* is it a good interrupt? */
1110         st = inb(ioaddr[1] + 6);
1111         if (!(st & 0x08 && st & 0x20)) {
1112                 return IRQ_NONE;
1113         }
1114
1115         if (sb1000_debug > 3)
1116                 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1117
1118         st = inb(ioaddr[0] + 7);
1119         if (sb1000_rx(dev))
1120                 lp->rx_error_count++;
1121 #ifdef SB1000_DELAY
1122         udelay(SB1000_DELAY);
1123 #endif /* SB1000_DELAY */
1124         sb1000_issue_read_command(ioaddr, name);
1125         if (st & 0x01) {
1126                 sb1000_error_dpc(dev);
1127                 sb1000_issue_read_command(ioaddr, name);
1128         }
1129         if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1130                 sb1000_wait_for_ready_clear(ioaddr, name);
1131                 sb1000_send_command(ioaddr, name, Command0);
1132                 sb1000_wait_for_ready(ioaddr, name);
1133                 sb1000_issue_read_command(ioaddr, name);
1134         }
1135         if (lp->rx_error_count >= MaxRxErrorCount) {
1136                 sb1000_wait_for_ready_clear(ioaddr, name);
1137                 sb1000_send_command(ioaddr, name, Command1);
1138                 sb1000_wait_for_ready(ioaddr, name);
1139                 sb1000_issue_read_command(ioaddr, name);
1140                 lp->rx_error_count = 0;
1141         }
1142
1143         return IRQ_HANDLED;
1144 }
1145
1146 static int sb1000_close(struct net_device *dev)
1147 {
1148         int i;
1149         int ioaddr[2];
1150         struct sb1000_private *lp = netdev_priv(dev);
1151
1152         if (sb1000_debug > 2)
1153                 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1154
1155         netif_stop_queue(dev);
1156
1157         ioaddr[0] = dev->base_addr;
1158         /* mem_start holds the second I/O address */
1159         ioaddr[1] = dev->mem_start;
1160
1161         free_irq(dev->irq, dev);
1162         /* If we don't do this, we can't re-insmod it later. */
1163         release_region(ioaddr[1], SB1000_IO_EXTENT);
1164         release_region(ioaddr[0], SB1000_IO_EXTENT);
1165
1166         /* free rx_skb's if needed */
1167         for (i=0; i<4; i++) {
1168                 if (lp->rx_skb[i]) {
1169                         dev_kfree_skb(lp->rx_skb[i]);
1170                 }
1171         }
1172         return 0;
1173 }
1174
1175 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1176 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1177 MODULE_LICENSE("GPL");
1178
1179 module_pnp_driver(sb1000_driver);