1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
75 static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
85 static const char *mod_state_to_str(unsigned short mod_state)
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
92 static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
98 static const char *dev_state_to_str(unsigned short dev_state)
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
105 static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
119 static const char *event_to_str(unsigned short event)
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
126 static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
140 static const char *sm_state_to_str(unsigned short sm_state)
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
147 static const char *gpio_of_names[] = {
155 static const enum gpiod_flags gpio_flags[] = {
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
168 #define T_WAIT msecs_to_jiffies(50)
169 #define T_START_UP msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173 * an indicated TX_FAULT.
175 #define T_RESET_US 10
176 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179 * time. If the TX_FAULT signal is not deasserted after this number of
180 * attempts at clearing it, we decide that the module is faulty.
181 * N_FAULT is the same but after the module has initialised.
183 #define N_FAULT_INIT 5
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187 * R_PHY_RETRY is the number of attempts.
189 #define T_PHY_RETRY msecs_to_jiffies(50)
190 #define R_PHY_RETRY 12
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
194 * connect before the I2C bus on MOD DEF 1/2.
196 * The SFF-8472 specifies t_serial ("Time from power on until module is
197 * ready for data transmission over the two wire serial bus.") as 300ms.
199 #define T_SERIAL msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT 10
203 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW 12
206 /* SFP modules appear to always have their PHY configured for bus address
207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
209 #define SFP_PHY_ADDR 22
213 bool (*module_supported)(const struct sfp_eeprom_id *id);
218 struct i2c_adapter *i2c;
219 struct mii_bus *i2c_mii;
220 struct sfp_bus *sfp_bus;
221 struct phy_device *mod_phy;
222 const struct sff_data *type;
223 size_t i2c_block_size;
226 unsigned int (*get_state)(struct sfp *);
227 void (*set_state)(struct sfp *, unsigned int);
228 int (*read)(struct sfp *, bool, u8, void *, size_t);
229 int (*write)(struct sfp *, bool, u8, void *, size_t);
231 struct gpio_desc *gpio[GPIO_MAX];
232 int gpio_irq[GPIO_MAX];
236 struct mutex st_mutex; /* Protects state */
237 unsigned int state_soft_mask;
239 struct delayed_work poll;
240 struct delayed_work timeout;
241 struct mutex sm_mutex; /* Protects state machine */
242 unsigned char sm_mod_state;
243 unsigned char sm_mod_tries_init;
244 unsigned char sm_mod_tries;
245 unsigned char sm_dev_state;
246 unsigned short sm_state;
247 unsigned char sm_fault_retries;
248 unsigned char sm_phy_retries;
250 struct sfp_eeprom_id id;
251 unsigned int module_power_mW;
252 unsigned int module_t_start_up;
254 #if IS_ENABLED(CONFIG_HWMON)
255 struct sfp_diag diag;
256 struct delayed_work hwmon_probe;
257 unsigned int hwmon_tries;
258 struct device *hwmon_dev;
262 #if IS_ENABLED(CONFIG_DEBUG_FS)
263 struct dentry *debugfs_dir;
267 static bool sff_module_supported(const struct sfp_eeprom_id *id)
269 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
270 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
273 static const struct sff_data sff_data = {
274 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
275 .module_supported = sff_module_supported,
278 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
280 if (id->base.phys_id == SFF8024_ID_SFP &&
281 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
284 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
285 * phys id SFF instead of SFP. Therefore mark this module explicitly
286 * as supported based on vendor name and pn match.
288 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
289 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
290 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
291 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
297 static const struct sff_data sfp_data = {
298 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
299 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
300 .module_supported = sfp_module_supported,
303 static const struct of_device_id sfp_of_match[] = {
304 { .compatible = "sff,sff", .data = &sff_data, },
305 { .compatible = "sff,sfp", .data = &sfp_data, },
308 MODULE_DEVICE_TABLE(of, sfp_of_match);
310 static unsigned long poll_jiffies;
312 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
314 unsigned int i, state, v;
316 for (i = state = 0; i < GPIO_MAX; i++) {
317 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
320 v = gpiod_get_value_cansleep(sfp->gpio[i]);
328 static unsigned int sff_gpio_get_state(struct sfp *sfp)
330 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
333 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
335 if (state & SFP_F_PRESENT) {
336 /* If the module is present, drive the signals */
337 if (sfp->gpio[GPIO_TX_DISABLE])
338 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
339 state & SFP_F_TX_DISABLE);
340 if (state & SFP_F_RATE_SELECT)
341 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
342 state & SFP_F_RATE_SELECT);
344 /* Otherwise, let them float to the pull-ups */
345 if (sfp->gpio[GPIO_TX_DISABLE])
346 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
347 if (state & SFP_F_RATE_SELECT)
348 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
352 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
355 struct i2c_msg msgs[2];
356 u8 bus_addr = a2 ? 0x51 : 0x50;
357 size_t block_size = sfp->i2c_block_size;
361 msgs[0].addr = bus_addr;
364 msgs[0].buf = &dev_addr;
365 msgs[1].addr = bus_addr;
366 msgs[1].flags = I2C_M_RD;
372 if (this_len > block_size)
373 this_len = block_size;
375 msgs[1].len = this_len;
377 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
381 if (ret != ARRAY_SIZE(msgs))
384 msgs[1].buf += this_len;
385 dev_addr += this_len;
389 return msgs[1].buf - (u8 *)buf;
392 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
395 struct i2c_msg msgs[1];
396 u8 bus_addr = a2 ? 0x51 : 0x50;
399 msgs[0].addr = bus_addr;
401 msgs[0].len = 1 + len;
402 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
406 msgs[0].buf[0] = dev_addr;
407 memcpy(&msgs[0].buf[1], buf, len);
409 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
416 return ret == ARRAY_SIZE(msgs) ? len : 0;
419 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
421 struct mii_bus *i2c_mii;
424 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
428 sfp->read = sfp_i2c_read;
429 sfp->write = sfp_i2c_write;
431 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
433 return PTR_ERR(i2c_mii);
435 i2c_mii->name = "SFP I2C Bus";
436 i2c_mii->phy_mask = ~0;
438 ret = mdiobus_register(i2c_mii);
440 mdiobus_free(i2c_mii);
444 sfp->i2c_mii = i2c_mii;
450 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
452 return sfp->read(sfp, a2, addr, buf, len);
455 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
457 return sfp->write(sfp, a2, addr, buf, len);
460 static unsigned int sfp_soft_get_state(struct sfp *sfp)
462 unsigned int state = 0;
466 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
467 if (ret == sizeof(status)) {
468 if (status & SFP_STATUS_RX_LOS)
470 if (status & SFP_STATUS_TX_FAULT)
471 state |= SFP_F_TX_FAULT;
473 dev_err_ratelimited(sfp->dev,
474 "failed to read SFP soft status: %d\n",
476 /* Preserve the current state */
480 return state & sfp->state_soft_mask;
483 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
487 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
489 if (state & SFP_F_TX_DISABLE)
490 status |= SFP_STATUS_TX_DISABLE_FORCE;
492 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
494 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
498 static void sfp_soft_start_poll(struct sfp *sfp)
500 const struct sfp_eeprom_id *id = &sfp->id;
502 sfp->state_soft_mask = 0;
503 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
504 !sfp->gpio[GPIO_TX_DISABLE])
505 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
506 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
507 !sfp->gpio[GPIO_TX_FAULT])
508 sfp->state_soft_mask |= SFP_F_TX_FAULT;
509 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
510 !sfp->gpio[GPIO_LOS])
511 sfp->state_soft_mask |= SFP_F_LOS;
513 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
515 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
518 static void sfp_soft_stop_poll(struct sfp *sfp)
520 sfp->state_soft_mask = 0;
523 static unsigned int sfp_get_state(struct sfp *sfp)
525 unsigned int state = sfp->get_state(sfp);
527 if (state & SFP_F_PRESENT &&
528 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
529 state |= sfp_soft_get_state(sfp);
534 static void sfp_set_state(struct sfp *sfp, unsigned int state)
536 sfp->set_state(sfp, state);
538 if (state & SFP_F_PRESENT &&
539 sfp->state_soft_mask & SFP_F_TX_DISABLE)
540 sfp_soft_set_state(sfp, state);
543 static unsigned int sfp_check(void *buf, size_t len)
547 for (p = buf, check = 0; len; p++, len--)
554 #if IS_ENABLED(CONFIG_HWMON)
555 static umode_t sfp_hwmon_is_visible(const void *data,
556 enum hwmon_sensor_types type,
557 u32 attr, int channel)
559 const struct sfp *sfp = data;
564 case hwmon_temp_min_alarm:
565 case hwmon_temp_max_alarm:
566 case hwmon_temp_lcrit_alarm:
567 case hwmon_temp_crit_alarm:
570 case hwmon_temp_lcrit:
571 case hwmon_temp_crit:
572 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
575 case hwmon_temp_input:
576 case hwmon_temp_label:
583 case hwmon_in_min_alarm:
584 case hwmon_in_max_alarm:
585 case hwmon_in_lcrit_alarm:
586 case hwmon_in_crit_alarm:
591 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
602 case hwmon_curr_min_alarm:
603 case hwmon_curr_max_alarm:
604 case hwmon_curr_lcrit_alarm:
605 case hwmon_curr_crit_alarm:
608 case hwmon_curr_lcrit:
609 case hwmon_curr_crit:
610 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
613 case hwmon_curr_input:
614 case hwmon_curr_label:
620 /* External calibration of receive power requires
621 * floating point arithmetic. Doing that in the kernel
622 * is not easy, so just skip it. If the module does
623 * not require external calibration, we can however
624 * show receiver power, since FP is then not needed.
626 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
630 case hwmon_power_min_alarm:
631 case hwmon_power_max_alarm:
632 case hwmon_power_lcrit_alarm:
633 case hwmon_power_crit_alarm:
634 case hwmon_power_min:
635 case hwmon_power_max:
636 case hwmon_power_lcrit:
637 case hwmon_power_crit:
638 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
641 case hwmon_power_input:
642 case hwmon_power_label:
652 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
657 err = sfp_read(sfp, true, reg, &val, sizeof(val));
661 *value = be16_to_cpu(val);
666 static void sfp_hwmon_to_rx_power(long *value)
668 *value = DIV_ROUND_CLOSEST(*value, 10);
671 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
674 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
675 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
678 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
680 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
681 be16_to_cpu(sfp->diag.cal_t_offset), value);
683 if (*value >= 0x8000)
686 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
689 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
691 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
692 be16_to_cpu(sfp->diag.cal_v_offset), value);
694 *value = DIV_ROUND_CLOSEST(*value, 10);
697 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
699 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
700 be16_to_cpu(sfp->diag.cal_txi_offset), value);
702 *value = DIV_ROUND_CLOSEST(*value, 500);
705 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
707 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
708 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
710 *value = DIV_ROUND_CLOSEST(*value, 10);
713 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
717 err = sfp_hwmon_read_sensor(sfp, reg, value);
721 sfp_hwmon_calibrate_temp(sfp, value);
726 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
730 err = sfp_hwmon_read_sensor(sfp, reg, value);
734 sfp_hwmon_calibrate_vcc(sfp, value);
739 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
743 err = sfp_hwmon_read_sensor(sfp, reg, value);
747 sfp_hwmon_calibrate_bias(sfp, value);
752 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
756 err = sfp_hwmon_read_sensor(sfp, reg, value);
760 sfp_hwmon_calibrate_tx_power(sfp, value);
765 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
769 err = sfp_hwmon_read_sensor(sfp, reg, value);
773 sfp_hwmon_to_rx_power(value);
778 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
784 case hwmon_temp_input:
785 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
787 case hwmon_temp_lcrit:
788 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
789 sfp_hwmon_calibrate_temp(sfp, value);
793 *value = be16_to_cpu(sfp->diag.temp_low_warn);
794 sfp_hwmon_calibrate_temp(sfp, value);
797 *value = be16_to_cpu(sfp->diag.temp_high_warn);
798 sfp_hwmon_calibrate_temp(sfp, value);
801 case hwmon_temp_crit:
802 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
803 sfp_hwmon_calibrate_temp(sfp, value);
806 case hwmon_temp_lcrit_alarm:
807 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
811 *value = !!(status & SFP_ALARM0_TEMP_LOW);
814 case hwmon_temp_min_alarm:
815 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
819 *value = !!(status & SFP_WARN0_TEMP_LOW);
822 case hwmon_temp_max_alarm:
823 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
827 *value = !!(status & SFP_WARN0_TEMP_HIGH);
830 case hwmon_temp_crit_alarm:
831 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
835 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
844 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
851 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
854 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
855 sfp_hwmon_calibrate_vcc(sfp, value);
859 *value = be16_to_cpu(sfp->diag.volt_low_warn);
860 sfp_hwmon_calibrate_vcc(sfp, value);
864 *value = be16_to_cpu(sfp->diag.volt_high_warn);
865 sfp_hwmon_calibrate_vcc(sfp, value);
869 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
870 sfp_hwmon_calibrate_vcc(sfp, value);
873 case hwmon_in_lcrit_alarm:
874 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
878 *value = !!(status & SFP_ALARM0_VCC_LOW);
881 case hwmon_in_min_alarm:
882 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
886 *value = !!(status & SFP_WARN0_VCC_LOW);
889 case hwmon_in_max_alarm:
890 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
894 *value = !!(status & SFP_WARN0_VCC_HIGH);
897 case hwmon_in_crit_alarm:
898 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
902 *value = !!(status & SFP_ALARM0_VCC_HIGH);
911 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
917 case hwmon_curr_input:
918 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
920 case hwmon_curr_lcrit:
921 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
922 sfp_hwmon_calibrate_bias(sfp, value);
926 *value = be16_to_cpu(sfp->diag.bias_low_warn);
927 sfp_hwmon_calibrate_bias(sfp, value);
931 *value = be16_to_cpu(sfp->diag.bias_high_warn);
932 sfp_hwmon_calibrate_bias(sfp, value);
935 case hwmon_curr_crit:
936 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
937 sfp_hwmon_calibrate_bias(sfp, value);
940 case hwmon_curr_lcrit_alarm:
941 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
945 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
948 case hwmon_curr_min_alarm:
949 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
953 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
956 case hwmon_curr_max_alarm:
957 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
961 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
964 case hwmon_curr_crit_alarm:
965 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
969 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
978 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
984 case hwmon_power_input:
985 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
987 case hwmon_power_lcrit:
988 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
989 sfp_hwmon_calibrate_tx_power(sfp, value);
992 case hwmon_power_min:
993 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
994 sfp_hwmon_calibrate_tx_power(sfp, value);
997 case hwmon_power_max:
998 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
999 sfp_hwmon_calibrate_tx_power(sfp, value);
1002 case hwmon_power_crit:
1003 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004 sfp_hwmon_calibrate_tx_power(sfp, value);
1007 case hwmon_power_lcrit_alarm:
1008 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1012 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1015 case hwmon_power_min_alarm:
1016 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1020 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1023 case hwmon_power_max_alarm:
1024 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1028 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1031 case hwmon_power_crit_alarm:
1032 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1036 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1045 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1051 case hwmon_power_input:
1052 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1054 case hwmon_power_lcrit:
1055 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056 sfp_hwmon_to_rx_power(value);
1059 case hwmon_power_min:
1060 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061 sfp_hwmon_to_rx_power(value);
1064 case hwmon_power_max:
1065 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066 sfp_hwmon_to_rx_power(value);
1069 case hwmon_power_crit:
1070 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071 sfp_hwmon_to_rx_power(value);
1074 case hwmon_power_lcrit_alarm:
1075 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1079 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1082 case hwmon_power_min_alarm:
1083 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1087 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1090 case hwmon_power_max_alarm:
1091 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1095 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1098 case hwmon_power_crit_alarm:
1099 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1103 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1112 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113 u32 attr, int channel, long *value)
1115 struct sfp *sfp = dev_get_drvdata(dev);
1119 return sfp_hwmon_temp(sfp, attr, value);
1121 return sfp_hwmon_vcc(sfp, attr, value);
1123 return sfp_hwmon_bias(sfp, attr, value);
1127 return sfp_hwmon_tx_power(sfp, attr, value);
1129 return sfp_hwmon_rx_power(sfp, attr, value);
1138 static const char *const sfp_hwmon_power_labels[] = {
1143 static int sfp_hwmon_read_string(struct device *dev,
1144 enum hwmon_sensor_types type,
1145 u32 attr, int channel, const char **str)
1150 case hwmon_curr_label:
1159 case hwmon_temp_label:
1160 *str = "temperature";
1168 case hwmon_in_label:
1177 case hwmon_power_label:
1178 *str = sfp_hwmon_power_labels[channel];
1191 static const struct hwmon_ops sfp_hwmon_ops = {
1192 .is_visible = sfp_hwmon_is_visible,
1193 .read = sfp_hwmon_read,
1194 .read_string = sfp_hwmon_read_string,
1197 static u32 sfp_hwmon_chip_config[] = {
1198 HWMON_C_REGISTER_TZ,
1202 static const struct hwmon_channel_info sfp_hwmon_chip = {
1204 .config = sfp_hwmon_chip_config,
1207 static u32 sfp_hwmon_temp_config[] = {
1209 HWMON_T_MAX | HWMON_T_MIN |
1210 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211 HWMON_T_CRIT | HWMON_T_LCRIT |
1212 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1217 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1219 .config = sfp_hwmon_temp_config,
1222 static u32 sfp_hwmon_vcc_config[] = {
1224 HWMON_I_MAX | HWMON_I_MIN |
1225 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226 HWMON_I_CRIT | HWMON_I_LCRIT |
1227 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1232 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1234 .config = sfp_hwmon_vcc_config,
1237 static u32 sfp_hwmon_bias_config[] = {
1239 HWMON_C_MAX | HWMON_C_MIN |
1240 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241 HWMON_C_CRIT | HWMON_C_LCRIT |
1242 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1247 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1249 .config = sfp_hwmon_bias_config,
1252 static u32 sfp_hwmon_power_config[] = {
1253 /* Transmit power */
1255 HWMON_P_MAX | HWMON_P_MIN |
1256 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257 HWMON_P_CRIT | HWMON_P_LCRIT |
1258 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1262 HWMON_P_MAX | HWMON_P_MIN |
1263 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264 HWMON_P_CRIT | HWMON_P_LCRIT |
1265 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1270 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271 .type = hwmon_power,
1272 .config = sfp_hwmon_power_config,
1275 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1277 &sfp_hwmon_vcc_channel_info,
1278 &sfp_hwmon_temp_channel_info,
1279 &sfp_hwmon_bias_channel_info,
1280 &sfp_hwmon_power_channel_info,
1284 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285 .ops = &sfp_hwmon_ops,
1286 .info = sfp_hwmon_info,
1289 static void sfp_hwmon_probe(struct work_struct *work)
1291 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1294 /* hwmon interface needs to access 16bit registers in atomic way to
1295 * guarantee coherency of the diagnostic monitoring data. If it is not
1296 * possible to guarantee coherency because EEPROM is broken in such way
1297 * that does not support atomic 16bit read operation then we have to
1298 * skip registration of hwmon device.
1300 if (sfp->i2c_block_size < 2) {
1302 "skipping hwmon device registration due to broken EEPROM\n");
1304 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1308 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1310 if (sfp->hwmon_tries--) {
1311 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312 T_PROBE_RETRY_SLOW);
1314 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1319 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320 if (!sfp->hwmon_name) {
1321 dev_err(sfp->dev, "out of memory for hwmon name\n");
1325 for (i = 0; sfp->hwmon_name[i]; i++)
1326 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327 sfp->hwmon_name[i] = '_';
1329 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330 sfp->hwmon_name, sfp,
1331 &sfp_hwmon_chip_info,
1333 if (IS_ERR(sfp->hwmon_dev))
1334 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335 PTR_ERR(sfp->hwmon_dev));
1338 static int sfp_hwmon_insert(struct sfp *sfp)
1340 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1343 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1346 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347 /* This driver in general does not support address
1352 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1358 static void sfp_hwmon_remove(struct sfp *sfp)
1360 cancel_delayed_work_sync(&sfp->hwmon_probe);
1361 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362 hwmon_device_unregister(sfp->hwmon_dev);
1363 sfp->hwmon_dev = NULL;
1364 kfree(sfp->hwmon_name);
1368 static int sfp_hwmon_init(struct sfp *sfp)
1370 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1375 static void sfp_hwmon_exit(struct sfp *sfp)
1377 cancel_delayed_work_sync(&sfp->hwmon_probe);
1380 static int sfp_hwmon_insert(struct sfp *sfp)
1385 static void sfp_hwmon_remove(struct sfp *sfp)
1389 static int sfp_hwmon_init(struct sfp *sfp)
1394 static void sfp_hwmon_exit(struct sfp *sfp)
1400 static void sfp_module_tx_disable(struct sfp *sfp)
1402 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404 sfp->state |= SFP_F_TX_DISABLE;
1405 sfp_set_state(sfp, sfp->state);
1408 static void sfp_module_tx_enable(struct sfp *sfp)
1410 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412 sfp->state &= ~SFP_F_TX_DISABLE;
1413 sfp_set_state(sfp, sfp->state);
1416 #if IS_ENABLED(CONFIG_DEBUG_FS)
1417 static int sfp_debug_state_show(struct seq_file *s, void *data)
1419 struct sfp *sfp = s->private;
1421 seq_printf(s, "Module state: %s\n",
1422 mod_state_to_str(sfp->sm_mod_state));
1423 seq_printf(s, "Module probe attempts: %d %d\n",
1424 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426 seq_printf(s, "Device state: %s\n",
1427 dev_state_to_str(sfp->sm_dev_state));
1428 seq_printf(s, "Main state: %s\n",
1429 sm_state_to_str(sfp->sm_state));
1430 seq_printf(s, "Fault recovery remaining retries: %d\n",
1431 sfp->sm_fault_retries);
1432 seq_printf(s, "PHY probe remaining retries: %d\n",
1433 sfp->sm_phy_retries);
1434 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1440 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1442 static void sfp_debugfs_init(struct sfp *sfp)
1444 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1446 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447 &sfp_debug_state_fops);
1450 static void sfp_debugfs_exit(struct sfp *sfp)
1452 debugfs_remove_recursive(sfp->debugfs_dir);
1455 static void sfp_debugfs_init(struct sfp *sfp)
1459 static void sfp_debugfs_exit(struct sfp *sfp)
1464 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1466 unsigned int state = sfp->state;
1468 if (state & SFP_F_TX_DISABLE)
1471 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1475 sfp_set_state(sfp, state);
1478 /* SFP state machine */
1479 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1482 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1485 cancel_delayed_work(&sfp->timeout);
1488 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489 unsigned int timeout)
1491 sfp->sm_state = state;
1492 sfp_sm_set_timer(sfp, timeout);
1495 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496 unsigned int timeout)
1498 sfp->sm_mod_state = state;
1499 sfp_sm_set_timer(sfp, timeout);
1502 static void sfp_sm_phy_detach(struct sfp *sfp)
1504 sfp_remove_phy(sfp->sfp_bus);
1505 phy_device_remove(sfp->mod_phy);
1506 phy_device_free(sfp->mod_phy);
1507 sfp->mod_phy = NULL;
1510 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1512 struct phy_device *phy;
1515 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516 if (phy == ERR_PTR(-ENODEV))
1517 return PTR_ERR(phy);
1519 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520 return PTR_ERR(phy);
1523 err = phy_device_register(phy);
1525 phy_device_free(phy);
1526 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1530 err = sfp_add_phy(sfp->sfp_bus, phy);
1532 phy_device_remove(phy);
1533 phy_device_free(phy);
1534 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1543 static void sfp_sm_link_up(struct sfp *sfp)
1545 sfp_link_up(sfp->sfp_bus);
1546 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1549 static void sfp_sm_link_down(struct sfp *sfp)
1551 sfp_link_down(sfp->sfp_bus);
1554 static void sfp_sm_link_check_los(struct sfp *sfp)
1556 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1561 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562 * are set, we assume that no LOS signal is available. If both are
1563 * set, we assume LOS is not implemented (and is meaningless.)
1565 if (los_options == los_inverted)
1566 los = !(sfp->state & SFP_F_LOS);
1567 else if (los_options == los_normal)
1568 los = !!(sfp->state & SFP_F_LOS);
1571 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1573 sfp_sm_link_up(sfp);
1576 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1578 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1582 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1586 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1588 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1592 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593 (los_options == los_normal && event == SFP_E_LOS_LOW);
1596 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1598 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1600 "module persistently indicates fault, disabling\n");
1601 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1604 dev_err(sfp->dev, "module transmit fault indicated\n");
1606 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1610 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1611 * normally sits at I2C bus address 0x56, and may either be a clause 22
1614 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615 * negotiation enabled, but some may be in 1000base-X - which is for the
1616 * PHY driver to determine.
1618 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619 * mode according to the negotiated line speed.
1621 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1625 switch (sfp->id.base.extended_cc) {
1626 case SFF8024_ECC_10GBASE_T_SFI:
1627 case SFF8024_ECC_10GBASE_T_SR:
1628 case SFF8024_ECC_5GBASE_T:
1629 case SFF8024_ECC_2_5GBASE_T:
1630 err = sfp_sm_probe_phy(sfp, true);
1634 if (sfp->id.base.e1000_base_t)
1635 err = sfp_sm_probe_phy(sfp, false);
1641 static int sfp_module_parse_power(struct sfp *sfp)
1643 u32 power_mW = 1000;
1645 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1647 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1650 if (power_mW > sfp->max_power_mW) {
1651 /* Module power specification exceeds the allowed maximum. */
1652 if (sfp->id.ext.sff8472_compliance ==
1653 SFP_SFF8472_COMPLIANCE_NONE &&
1654 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655 /* The module appears not to implement bus address
1656 * 0xa2, so assume that the module powers up in the
1660 "Host does not support %u.%uW modules\n",
1661 power_mW / 1000, (power_mW / 100) % 10);
1665 "Host does not support %u.%uW modules, module left in power mode 1\n",
1666 power_mW / 1000, (power_mW / 100) % 10);
1671 /* If the module requires a higher power mode, but also requires
1672 * an address change sequence, warn the user that the module may
1673 * not be functional.
1675 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1677 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678 power_mW / 1000, (power_mW / 100) % 10);
1682 sfp->module_power_mW = power_mW;
1687 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1692 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693 if (err != sizeof(val)) {
1694 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1698 /* DM7052 reports as a high power module, responds to reads (with
1699 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1700 * if the bit is already set, we're already in high power mode.
1702 if (!!(val & BIT(0)) == enable)
1710 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711 if (err != sizeof(val)) {
1712 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1717 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718 sfp->module_power_mW / 1000,
1719 (sfp->module_power_mW / 100) % 10);
1724 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726 * not support multibyte reads from the EEPROM. Each multi-byte read
1727 * operation returns just one byte of EEPROM followed by zeros. There is
1728 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730 * name and vendor id into EEPROM, so there is even no way to detect if
1731 * module is V-SOL V2801F. Therefore check for those zeros in the read
1732 * data and then based on check switch to reading EEPROM to one byte
1735 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1737 size_t i, block_size = sfp->i2c_block_size;
1739 /* Already using byte IO */
1740 if (block_size == 1)
1743 for (i = 1; i < len; i += block_size) {
1744 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1750 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1755 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757 id->base.connector != SFF8024_CONNECTOR_LC) {
1758 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759 id->base.phys_id = SFF8024_ID_SFF_8472;
1760 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761 id->base.connector = SFF8024_CONNECTOR_LC;
1762 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1764 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1768 /* Cotsworks modules have been found to require a delay between write operations. */
1771 /* Update base structure checksum */
1772 check = sfp_check(&id->base, sizeof(id->base) - 1);
1773 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1775 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1782 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1784 /* SFP module inserted - read I2C data */
1785 struct sfp_eeprom_id id;
1786 bool cotsworks_sfbg;
1791 /* Some SFP modules and also some Linux I2C drivers do not like reads
1792 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1795 sfp->i2c_block_size = 16;
1797 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1800 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1804 if (ret != sizeof(id.base)) {
1805 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1809 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811 * that EEPROM supports atomic 16bit read operation for diagnostic
1812 * fields, so do not switch to one byte reading at a time unless it
1813 * is really required and we have no other option.
1815 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1817 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1819 "Switching to reading EEPROM to one byte at a time\n");
1820 sfp->i2c_block_size = 1;
1822 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1825 dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1830 if (ret != sizeof(id.base)) {
1831 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1836 /* Cotsworks do not seem to update the checksums when they
1837 * do the final programming with the final module part number,
1838 * serial number and date code.
1840 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1841 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1843 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1845 * Cotsworks PN matches and bytes are not correct.
1847 if (cotsworks && cotsworks_sfbg) {
1848 ret = sfp_cotsworks_fixup_check(sfp, &id);
1853 /* Validate the checksum over the base structure */
1854 check = sfp_check(&id.base, sizeof(id.base) - 1);
1855 if (check != id.base.cc_base) {
1858 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859 check, id.base.cc_base);
1862 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863 check, id.base.cc_base);
1864 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865 16, 1, &id, sizeof(id), true);
1870 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1873 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1877 if (ret != sizeof(id.ext)) {
1878 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1882 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883 if (check != id.ext.cc_ext) {
1886 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887 check, id.ext.cc_ext);
1890 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891 check, id.ext.cc_ext);
1892 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893 16, 1, &id, sizeof(id), true);
1894 memset(&id.ext, 0, sizeof(id.ext));
1900 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905 (int)sizeof(id.ext.datecode), id.ext.datecode);
1907 /* Check whether we support this module */
1908 if (!sfp->type->module_supported(&id)) {
1910 "module is not supported - phys id 0x%02x 0x%02x\n",
1911 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1915 /* If the module requires address swap mode, warn about it */
1916 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1918 "module address swap to access page 0xA2 is not supported.\n");
1920 /* Parse the module power requirement */
1921 ret = sfp_module_parse_power(sfp);
1925 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1926 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1927 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1929 sfp->module_t_start_up = T_START_UP;
1934 static void sfp_sm_mod_remove(struct sfp *sfp)
1936 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937 sfp_module_remove(sfp->sfp_bus);
1939 sfp_hwmon_remove(sfp);
1941 memset(&sfp->id, 0, sizeof(sfp->id));
1942 sfp->module_power_mW = 0;
1944 dev_info(sfp->dev, "module removed\n");
1947 /* This state machine tracks the upstream's state */
1948 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1950 switch (sfp->sm_dev_state) {
1952 if (event == SFP_E_DEV_ATTACH)
1953 sfp->sm_dev_state = SFP_DEV_DOWN;
1957 if (event == SFP_E_DEV_DETACH)
1958 sfp->sm_dev_state = SFP_DEV_DETACHED;
1959 else if (event == SFP_E_DEV_UP)
1960 sfp->sm_dev_state = SFP_DEV_UP;
1964 if (event == SFP_E_DEV_DETACH)
1965 sfp->sm_dev_state = SFP_DEV_DETACHED;
1966 else if (event == SFP_E_DEV_DOWN)
1967 sfp->sm_dev_state = SFP_DEV_DOWN;
1972 /* This state machine tracks the insert/remove state of the module, probes
1973 * the on-board EEPROM, and sets up the power level.
1975 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1979 /* Handle remove event globally, it resets this state machine */
1980 if (event == SFP_E_REMOVE) {
1981 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982 sfp_sm_mod_remove(sfp);
1983 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1987 /* Handle device detach globally */
1988 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990 if (sfp->module_power_mW > 1000 &&
1991 sfp->sm_mod_state > SFP_MOD_HPOWER)
1992 sfp_sm_mod_hpower(sfp, false);
1993 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1997 switch (sfp->sm_mod_state) {
1999 if (event == SFP_E_INSERT) {
2000 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2007 /* Wait for T_PROBE_INIT to time out */
2008 if (event != SFP_E_TIMEOUT)
2011 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012 if (err == -EAGAIN) {
2013 if (sfp->sm_mod_tries_init &&
2014 --sfp->sm_mod_tries_init) {
2015 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2017 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2020 "please wait, module slow to respond\n");
2021 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2026 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2030 err = sfp_hwmon_insert(sfp);
2032 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2034 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2036 case SFP_MOD_WAITDEV:
2037 /* Ensure that the device is attached before proceeding */
2038 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2041 /* Report the module insertion to the upstream device */
2042 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2044 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2048 /* If this is a power level 1 module, we are done */
2049 if (sfp->module_power_mW <= 1000)
2052 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2054 case SFP_MOD_HPOWER:
2055 /* Enable high power mode */
2056 err = sfp_sm_mod_hpower(sfp, true);
2058 if (err != -EAGAIN) {
2059 sfp_module_remove(sfp->sfp_bus);
2060 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2062 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2067 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2070 case SFP_MOD_WAITPWR:
2071 /* Wait for T_HPOWER_LEVEL to time out */
2072 if (event != SFP_E_TIMEOUT)
2076 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2079 case SFP_MOD_PRESENT:
2085 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2087 unsigned long timeout;
2090 /* Some events are global */
2091 if (sfp->sm_state != SFP_S_DOWN &&
2092 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093 sfp->sm_dev_state != SFP_DEV_UP)) {
2094 if (sfp->sm_state == SFP_S_LINK_UP &&
2095 sfp->sm_dev_state == SFP_DEV_UP)
2096 sfp_sm_link_down(sfp);
2097 if (sfp->sm_state > SFP_S_INIT)
2098 sfp_module_stop(sfp->sfp_bus);
2100 sfp_sm_phy_detach(sfp);
2101 sfp_module_tx_disable(sfp);
2102 sfp_soft_stop_poll(sfp);
2103 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2107 /* The main state machine */
2108 switch (sfp->sm_state) {
2110 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111 sfp->sm_dev_state != SFP_DEV_UP)
2114 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2115 sfp_soft_start_poll(sfp);
2117 sfp_module_tx_enable(sfp);
2119 /* Initialise the fault clearance retries */
2120 sfp->sm_fault_retries = N_FAULT_INIT;
2122 /* We need to check the TX_FAULT state, which is not defined
2123 * while TX_DISABLE is asserted. The earliest we want to do
2124 * anything (such as probe for a PHY) is 50ms.
2126 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2130 if (event != SFP_E_TIMEOUT)
2133 if (sfp->state & SFP_F_TX_FAULT) {
2134 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135 * from the TX_DISABLE deassertion for the module to
2136 * initialise, which is indicated by TX_FAULT
2139 timeout = sfp->module_t_start_up;
2140 if (timeout > T_WAIT)
2145 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2147 /* TX_FAULT is not asserted, assume the module has
2148 * finished initialising.
2155 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156 /* TX_FAULT is still asserted after t_init
2157 * or t_start_up, so assume there is a fault.
2159 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160 sfp->sm_fault_retries == N_FAULT_INIT);
2161 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2163 sfp->sm_phy_retries = R_PHY_RETRY;
2168 case SFP_S_INIT_PHY:
2169 if (event != SFP_E_TIMEOUT)
2172 /* TX_FAULT deasserted or we timed out with TX_FAULT
2173 * clear. Probe for the PHY and check the LOS state.
2175 ret = sfp_sm_probe_for_phy(sfp);
2176 if (ret == -ENODEV) {
2177 if (--sfp->sm_phy_retries) {
2178 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2181 dev_info(sfp->dev, "no PHY detected\n");
2184 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2187 if (sfp_module_start(sfp->sfp_bus)) {
2188 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2191 sfp_sm_link_check_los(sfp);
2193 /* Reset the fault retry count */
2194 sfp->sm_fault_retries = N_FAULT;
2197 case SFP_S_INIT_TX_FAULT:
2198 if (event == SFP_E_TIMEOUT) {
2199 sfp_module_tx_fault_reset(sfp);
2200 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2204 case SFP_S_WAIT_LOS:
2205 if (event == SFP_E_TX_FAULT)
2206 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207 else if (sfp_los_event_inactive(sfp, event))
2208 sfp_sm_link_up(sfp);
2212 if (event == SFP_E_TX_FAULT) {
2213 sfp_sm_link_down(sfp);
2214 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215 } else if (sfp_los_event_active(sfp, event)) {
2216 sfp_sm_link_down(sfp);
2217 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2221 case SFP_S_TX_FAULT:
2222 if (event == SFP_E_TIMEOUT) {
2223 sfp_module_tx_fault_reset(sfp);
2224 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2229 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232 dev_info(sfp->dev, "module transmit fault recovered\n");
2233 sfp_sm_link_check_los(sfp);
2237 case SFP_S_TX_DISABLE:
2242 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2244 mutex_lock(&sfp->sm_mutex);
2246 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247 mod_state_to_str(sfp->sm_mod_state),
2248 dev_state_to_str(sfp->sm_dev_state),
2249 sm_state_to_str(sfp->sm_state),
2250 event_to_str(event));
2252 sfp_sm_device(sfp, event);
2253 sfp_sm_module(sfp, event);
2254 sfp_sm_main(sfp, event);
2256 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257 mod_state_to_str(sfp->sm_mod_state),
2258 dev_state_to_str(sfp->sm_dev_state),
2259 sm_state_to_str(sfp->sm_state));
2261 mutex_unlock(&sfp->sm_mutex);
2264 static void sfp_attach(struct sfp *sfp)
2266 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2269 static void sfp_detach(struct sfp *sfp)
2271 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2274 static void sfp_start(struct sfp *sfp)
2276 sfp_sm_event(sfp, SFP_E_DEV_UP);
2279 static void sfp_stop(struct sfp *sfp)
2281 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2284 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2286 /* locking... and check module is present */
2288 if (sfp->id.ext.sff8472_compliance &&
2289 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290 modinfo->type = ETH_MODULE_SFF_8472;
2291 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2293 modinfo->type = ETH_MODULE_SFF_8079;
2294 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2299 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2302 unsigned int first, last, len;
2309 last = ee->offset + ee->len;
2310 if (first < ETH_MODULE_SFF_8079_LEN) {
2311 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2314 ret = sfp_read(sfp, false, first, data, len);
2321 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2324 first -= ETH_MODULE_SFF_8079_LEN;
2326 ret = sfp_read(sfp, true, first, data, len);
2333 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334 const struct ethtool_module_eeprom *page,
2335 struct netlink_ext_ack *extack)
2338 NL_SET_ERR_MSG(extack, "Banks not supported");
2343 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2347 if (page->i2c_address != 0x50 &&
2348 page->i2c_address != 0x51) {
2349 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2353 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354 page->data, page->length);
2357 static const struct sfp_socket_ops sfp_module_ops = {
2358 .attach = sfp_attach,
2359 .detach = sfp_detach,
2362 .module_info = sfp_module_info,
2363 .module_eeprom = sfp_module_eeprom,
2364 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2367 static void sfp_timeout(struct work_struct *work)
2369 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2372 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2376 static void sfp_check_state(struct sfp *sfp)
2378 unsigned int state, i, changed;
2380 mutex_lock(&sfp->st_mutex);
2381 state = sfp_get_state(sfp);
2382 changed = state ^ sfp->state;
2383 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2385 for (i = 0; i < GPIO_MAX; i++)
2386 if (changed & BIT(i))
2387 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2390 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2394 if (changed & SFP_F_PRESENT)
2395 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396 SFP_E_INSERT : SFP_E_REMOVE);
2398 if (changed & SFP_F_TX_FAULT)
2399 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2402 if (changed & SFP_F_LOS)
2403 sfp_sm_event(sfp, state & SFP_F_LOS ?
2404 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2406 mutex_unlock(&sfp->st_mutex);
2409 static irqreturn_t sfp_irq(int irq, void *data)
2411 struct sfp *sfp = data;
2413 sfp_check_state(sfp);
2418 static void sfp_poll(struct work_struct *work)
2420 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2422 sfp_check_state(sfp);
2424 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2426 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2429 static struct sfp *sfp_alloc(struct device *dev)
2433 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2435 return ERR_PTR(-ENOMEM);
2439 mutex_init(&sfp->sm_mutex);
2440 mutex_init(&sfp->st_mutex);
2441 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2444 sfp_hwmon_init(sfp);
2449 static void sfp_cleanup(void *data)
2451 struct sfp *sfp = data;
2453 sfp_hwmon_exit(sfp);
2455 cancel_delayed_work_sync(&sfp->poll);
2456 cancel_delayed_work_sync(&sfp->timeout);
2458 mdiobus_unregister(sfp->i2c_mii);
2459 mdiobus_free(sfp->i2c_mii);
2462 i2c_put_adapter(sfp->i2c);
2466 static int sfp_probe(struct platform_device *pdev)
2468 const struct sff_data *sff;
2469 struct i2c_adapter *i2c;
2474 sfp = sfp_alloc(&pdev->dev);
2476 return PTR_ERR(sfp);
2478 platform_set_drvdata(pdev, sfp);
2480 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2484 sff = sfp->type = &sfp_data;
2486 if (pdev->dev.of_node) {
2487 struct device_node *node = pdev->dev.of_node;
2488 const struct of_device_id *id;
2489 struct device_node *np;
2491 id = of_match_node(sfp_of_match, node);
2495 sff = sfp->type = id->data;
2497 np = of_parse_phandle(node, "i2c-bus", 0);
2499 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2503 i2c = of_find_i2c_adapter_by_node(np);
2505 } else if (has_acpi_companion(&pdev->dev)) {
2506 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508 struct fwnode_reference_args args;
2509 struct acpi_handle *acpi_handle;
2512 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513 if (ret || !is_acpi_device_node(args.fwnode)) {
2514 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2518 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2525 return -EPROBE_DEFER;
2527 err = sfp_i2c_configure(sfp, i2c);
2529 i2c_put_adapter(i2c);
2533 for (i = 0; i < GPIO_MAX; i++)
2534 if (sff->gpios & BIT(i)) {
2535 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536 gpio_of_names[i], gpio_flags[i]);
2537 if (IS_ERR(sfp->gpio[i]))
2538 return PTR_ERR(sfp->gpio[i]);
2541 sfp->get_state = sfp_gpio_get_state;
2542 sfp->set_state = sfp_gpio_set_state;
2544 /* Modules that have no detect signal are always present */
2545 if (!(sfp->gpio[GPIO_MODDEF0]))
2546 sfp->get_state = sff_gpio_get_state;
2548 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549 &sfp->max_power_mW);
2550 if (!sfp->max_power_mW)
2551 sfp->max_power_mW = 1000;
2553 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2556 /* Get the initial state, and always signal TX disable,
2557 * since the network interface will not be up.
2559 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2561 if (sfp->gpio[GPIO_RATE_SELECT] &&
2562 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563 sfp->state |= SFP_F_RATE_SELECT;
2564 sfp_set_state(sfp, sfp->state);
2565 sfp_module_tx_disable(sfp);
2566 if (sfp->state & SFP_F_PRESENT) {
2568 sfp_sm_event(sfp, SFP_E_INSERT);
2572 for (i = 0; i < GPIO_MAX; i++) {
2573 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2576 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577 if (sfp->gpio_irq[i] < 0) {
2578 sfp->gpio_irq[i] = 0;
2579 sfp->need_poll = true;
2583 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584 "%s-%s", dev_name(sfp->dev),
2590 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2593 IRQF_TRIGGER_RISING |
2594 IRQF_TRIGGER_FALLING,
2597 sfp->gpio_irq[i] = 0;
2598 sfp->need_poll = true;
2603 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2605 /* We could have an issue in cases no Tx disable pin is available or
2606 * wired as modules using a laser as their light source will continue to
2607 * be active when the fiber is removed. This could be a safety issue and
2608 * we should at least warn the user about that.
2610 if (!sfp->gpio[GPIO_TX_DISABLE])
2612 "No tx_disable pin: SFP modules will always be emitting.\n");
2614 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2618 sfp_debugfs_init(sfp);
2623 static int sfp_remove(struct platform_device *pdev)
2625 struct sfp *sfp = platform_get_drvdata(pdev);
2627 sfp_debugfs_exit(sfp);
2628 sfp_unregister_socket(sfp->sfp_bus);
2631 sfp_sm_event(sfp, SFP_E_REMOVE);
2637 static void sfp_shutdown(struct platform_device *pdev)
2639 struct sfp *sfp = platform_get_drvdata(pdev);
2642 for (i = 0; i < GPIO_MAX; i++) {
2643 if (!sfp->gpio_irq[i])
2646 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2649 cancel_delayed_work_sync(&sfp->poll);
2650 cancel_delayed_work_sync(&sfp->timeout);
2653 static struct platform_driver sfp_driver = {
2655 .remove = sfp_remove,
2656 .shutdown = sfp_shutdown,
2659 .of_match_table = sfp_of_match,
2663 static int sfp_init(void)
2665 poll_jiffies = msecs_to_jiffies(100);
2667 return platform_driver_register(&sfp_driver);
2669 module_init(sfp_init);
2671 static void sfp_exit(void)
2673 platform_driver_unregister(&sfp_driver);
2675 module_exit(sfp_exit);
2677 MODULE_ALIAS("platform:sfp");
2678 MODULE_AUTHOR("Russell King");
2679 MODULE_LICENSE("GPL v2");