1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
75 static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
85 static const char *mod_state_to_str(unsigned short mod_state)
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
92 static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
98 static const char *dev_state_to_str(unsigned short dev_state)
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
105 static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
119 static const char *event_to_str(unsigned short event)
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
126 static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
140 static const char *sm_state_to_str(unsigned short sm_state)
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
147 static const char *gpio_of_names[] = {
155 static const enum gpiod_flags gpio_flags[] = {
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
168 #define T_WAIT msecs_to_jiffies(50)
169 #define T_START_UP msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173 * an indicated TX_FAULT.
175 #define T_RESET_US 10
176 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179 * time. If the TX_FAULT signal is not deasserted after this number of
180 * attempts at clearing it, we decide that the module is faulty.
181 * N_FAULT is the same but after the module has initialised.
183 #define N_FAULT_INIT 5
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187 * R_PHY_RETRY is the number of attempts.
189 #define T_PHY_RETRY msecs_to_jiffies(50)
190 #define R_PHY_RETRY 12
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
194 * connect before the I2C bus on MOD DEF 1/2.
196 * The SFF-8472 specifies t_serial ("Time from power on until module is
197 * ready for data transmission over the two wire serial bus.") as 300ms.
199 #define T_SERIAL msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT 10
203 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW 12
206 /* SFP modules appear to always have their PHY configured for bus address
207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
209 #define SFP_PHY_ADDR 22
213 bool (*module_supported)(const struct sfp_eeprom_id *id);
218 struct i2c_adapter *i2c;
219 struct mii_bus *i2c_mii;
220 struct sfp_bus *sfp_bus;
221 struct phy_device *mod_phy;
222 const struct sff_data *type;
223 size_t i2c_block_size;
226 unsigned int (*get_state)(struct sfp *);
227 void (*set_state)(struct sfp *, unsigned int);
228 int (*read)(struct sfp *, bool, u8, void *, size_t);
229 int (*write)(struct sfp *, bool, u8, void *, size_t);
231 struct gpio_desc *gpio[GPIO_MAX];
232 int gpio_irq[GPIO_MAX];
236 struct mutex st_mutex; /* Protects state */
237 unsigned int state_soft_mask;
239 struct delayed_work poll;
240 struct delayed_work timeout;
241 struct mutex sm_mutex; /* Protects state machine */
242 unsigned char sm_mod_state;
243 unsigned char sm_mod_tries_init;
244 unsigned char sm_mod_tries;
245 unsigned char sm_dev_state;
246 unsigned short sm_state;
247 unsigned char sm_fault_retries;
248 unsigned char sm_phy_retries;
250 struct sfp_eeprom_id id;
251 unsigned int module_power_mW;
252 unsigned int module_t_start_up;
253 bool tx_fault_ignore;
255 #if IS_ENABLED(CONFIG_HWMON)
256 struct sfp_diag diag;
257 struct delayed_work hwmon_probe;
258 unsigned int hwmon_tries;
259 struct device *hwmon_dev;
263 #if IS_ENABLED(CONFIG_DEBUG_FS)
264 struct dentry *debugfs_dir;
268 static bool sff_module_supported(const struct sfp_eeprom_id *id)
270 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
271 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
274 static const struct sff_data sff_data = {
275 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
276 .module_supported = sff_module_supported,
279 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
281 if (id->base.phys_id == SFF8024_ID_SFP &&
282 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
285 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
286 * phys id SFF instead of SFP. Therefore mark this module explicitly
287 * as supported based on vendor name and pn match.
289 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
290 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
291 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
292 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
298 static const struct sff_data sfp_data = {
299 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
300 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
301 .module_supported = sfp_module_supported,
304 static const struct of_device_id sfp_of_match[] = {
305 { .compatible = "sff,sff", .data = &sff_data, },
306 { .compatible = "sff,sfp", .data = &sfp_data, },
309 MODULE_DEVICE_TABLE(of, sfp_of_match);
311 static unsigned long poll_jiffies;
313 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
315 unsigned int i, state, v;
317 for (i = state = 0; i < GPIO_MAX; i++) {
318 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
321 v = gpiod_get_value_cansleep(sfp->gpio[i]);
329 static unsigned int sff_gpio_get_state(struct sfp *sfp)
331 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
334 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
336 if (state & SFP_F_PRESENT) {
337 /* If the module is present, drive the signals */
338 if (sfp->gpio[GPIO_TX_DISABLE])
339 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
340 state & SFP_F_TX_DISABLE);
341 if (state & SFP_F_RATE_SELECT)
342 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
343 state & SFP_F_RATE_SELECT);
345 /* Otherwise, let them float to the pull-ups */
346 if (sfp->gpio[GPIO_TX_DISABLE])
347 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
348 if (state & SFP_F_RATE_SELECT)
349 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
353 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
356 struct i2c_msg msgs[2];
357 u8 bus_addr = a2 ? 0x51 : 0x50;
358 size_t block_size = sfp->i2c_block_size;
362 msgs[0].addr = bus_addr;
365 msgs[0].buf = &dev_addr;
366 msgs[1].addr = bus_addr;
367 msgs[1].flags = I2C_M_RD;
373 if (this_len > block_size)
374 this_len = block_size;
376 msgs[1].len = this_len;
378 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
382 if (ret != ARRAY_SIZE(msgs))
385 msgs[1].buf += this_len;
386 dev_addr += this_len;
390 return msgs[1].buf - (u8 *)buf;
393 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
396 struct i2c_msg msgs[1];
397 u8 bus_addr = a2 ? 0x51 : 0x50;
400 msgs[0].addr = bus_addr;
402 msgs[0].len = 1 + len;
403 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
407 msgs[0].buf[0] = dev_addr;
408 memcpy(&msgs[0].buf[1], buf, len);
410 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
417 return ret == ARRAY_SIZE(msgs) ? len : 0;
420 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
422 struct mii_bus *i2c_mii;
425 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
429 sfp->read = sfp_i2c_read;
430 sfp->write = sfp_i2c_write;
432 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
434 return PTR_ERR(i2c_mii);
436 i2c_mii->name = "SFP I2C Bus";
437 i2c_mii->phy_mask = ~0;
439 ret = mdiobus_register(i2c_mii);
441 mdiobus_free(i2c_mii);
445 sfp->i2c_mii = i2c_mii;
451 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
453 return sfp->read(sfp, a2, addr, buf, len);
456 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
458 return sfp->write(sfp, a2, addr, buf, len);
461 static unsigned int sfp_soft_get_state(struct sfp *sfp)
463 unsigned int state = 0;
467 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
468 if (ret == sizeof(status)) {
469 if (status & SFP_STATUS_RX_LOS)
471 if (status & SFP_STATUS_TX_FAULT)
472 state |= SFP_F_TX_FAULT;
474 dev_err_ratelimited(sfp->dev,
475 "failed to read SFP soft status: %pe\n",
477 /* Preserve the current state */
481 return state & sfp->state_soft_mask;
484 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
488 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
490 if (state & SFP_F_TX_DISABLE)
491 status |= SFP_STATUS_TX_DISABLE_FORCE;
493 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
495 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
499 static void sfp_soft_start_poll(struct sfp *sfp)
501 const struct sfp_eeprom_id *id = &sfp->id;
503 sfp->state_soft_mask = 0;
504 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
505 !sfp->gpio[GPIO_TX_DISABLE])
506 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
507 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
508 !sfp->gpio[GPIO_TX_FAULT])
509 sfp->state_soft_mask |= SFP_F_TX_FAULT;
510 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
511 !sfp->gpio[GPIO_LOS])
512 sfp->state_soft_mask |= SFP_F_LOS;
514 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
516 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
519 static void sfp_soft_stop_poll(struct sfp *sfp)
521 sfp->state_soft_mask = 0;
524 static unsigned int sfp_get_state(struct sfp *sfp)
526 unsigned int state = sfp->get_state(sfp);
528 if (state & SFP_F_PRESENT &&
529 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
530 state |= sfp_soft_get_state(sfp);
535 static void sfp_set_state(struct sfp *sfp, unsigned int state)
537 sfp->set_state(sfp, state);
539 if (state & SFP_F_PRESENT &&
540 sfp->state_soft_mask & SFP_F_TX_DISABLE)
541 sfp_soft_set_state(sfp, state);
544 static unsigned int sfp_check(void *buf, size_t len)
548 for (p = buf, check = 0; len; p++, len--)
555 #if IS_ENABLED(CONFIG_HWMON)
556 static umode_t sfp_hwmon_is_visible(const void *data,
557 enum hwmon_sensor_types type,
558 u32 attr, int channel)
560 const struct sfp *sfp = data;
565 case hwmon_temp_min_alarm:
566 case hwmon_temp_max_alarm:
567 case hwmon_temp_lcrit_alarm:
568 case hwmon_temp_crit_alarm:
571 case hwmon_temp_lcrit:
572 case hwmon_temp_crit:
573 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
576 case hwmon_temp_input:
577 case hwmon_temp_label:
584 case hwmon_in_min_alarm:
585 case hwmon_in_max_alarm:
586 case hwmon_in_lcrit_alarm:
587 case hwmon_in_crit_alarm:
592 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
603 case hwmon_curr_min_alarm:
604 case hwmon_curr_max_alarm:
605 case hwmon_curr_lcrit_alarm:
606 case hwmon_curr_crit_alarm:
609 case hwmon_curr_lcrit:
610 case hwmon_curr_crit:
611 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
614 case hwmon_curr_input:
615 case hwmon_curr_label:
621 /* External calibration of receive power requires
622 * floating point arithmetic. Doing that in the kernel
623 * is not easy, so just skip it. If the module does
624 * not require external calibration, we can however
625 * show receiver power, since FP is then not needed.
627 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
631 case hwmon_power_min_alarm:
632 case hwmon_power_max_alarm:
633 case hwmon_power_lcrit_alarm:
634 case hwmon_power_crit_alarm:
635 case hwmon_power_min:
636 case hwmon_power_max:
637 case hwmon_power_lcrit:
638 case hwmon_power_crit:
639 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
642 case hwmon_power_input:
643 case hwmon_power_label:
653 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
658 err = sfp_read(sfp, true, reg, &val, sizeof(val));
662 *value = be16_to_cpu(val);
667 static void sfp_hwmon_to_rx_power(long *value)
669 *value = DIV_ROUND_CLOSEST(*value, 10);
672 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
675 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
676 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
679 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
681 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
682 be16_to_cpu(sfp->diag.cal_t_offset), value);
684 if (*value >= 0x8000)
687 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
690 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
692 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
693 be16_to_cpu(sfp->diag.cal_v_offset), value);
695 *value = DIV_ROUND_CLOSEST(*value, 10);
698 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
700 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
701 be16_to_cpu(sfp->diag.cal_txi_offset), value);
703 *value = DIV_ROUND_CLOSEST(*value, 500);
706 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
708 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
709 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
711 *value = DIV_ROUND_CLOSEST(*value, 10);
714 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
718 err = sfp_hwmon_read_sensor(sfp, reg, value);
722 sfp_hwmon_calibrate_temp(sfp, value);
727 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
731 err = sfp_hwmon_read_sensor(sfp, reg, value);
735 sfp_hwmon_calibrate_vcc(sfp, value);
740 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
744 err = sfp_hwmon_read_sensor(sfp, reg, value);
748 sfp_hwmon_calibrate_bias(sfp, value);
753 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
757 err = sfp_hwmon_read_sensor(sfp, reg, value);
761 sfp_hwmon_calibrate_tx_power(sfp, value);
766 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
770 err = sfp_hwmon_read_sensor(sfp, reg, value);
774 sfp_hwmon_to_rx_power(value);
779 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
785 case hwmon_temp_input:
786 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
788 case hwmon_temp_lcrit:
789 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
790 sfp_hwmon_calibrate_temp(sfp, value);
794 *value = be16_to_cpu(sfp->diag.temp_low_warn);
795 sfp_hwmon_calibrate_temp(sfp, value);
798 *value = be16_to_cpu(sfp->diag.temp_high_warn);
799 sfp_hwmon_calibrate_temp(sfp, value);
802 case hwmon_temp_crit:
803 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
804 sfp_hwmon_calibrate_temp(sfp, value);
807 case hwmon_temp_lcrit_alarm:
808 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
812 *value = !!(status & SFP_ALARM0_TEMP_LOW);
815 case hwmon_temp_min_alarm:
816 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
820 *value = !!(status & SFP_WARN0_TEMP_LOW);
823 case hwmon_temp_max_alarm:
824 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
828 *value = !!(status & SFP_WARN0_TEMP_HIGH);
831 case hwmon_temp_crit_alarm:
832 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
836 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
845 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
852 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
855 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
856 sfp_hwmon_calibrate_vcc(sfp, value);
860 *value = be16_to_cpu(sfp->diag.volt_low_warn);
861 sfp_hwmon_calibrate_vcc(sfp, value);
865 *value = be16_to_cpu(sfp->diag.volt_high_warn);
866 sfp_hwmon_calibrate_vcc(sfp, value);
870 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
871 sfp_hwmon_calibrate_vcc(sfp, value);
874 case hwmon_in_lcrit_alarm:
875 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
879 *value = !!(status & SFP_ALARM0_VCC_LOW);
882 case hwmon_in_min_alarm:
883 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
887 *value = !!(status & SFP_WARN0_VCC_LOW);
890 case hwmon_in_max_alarm:
891 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
895 *value = !!(status & SFP_WARN0_VCC_HIGH);
898 case hwmon_in_crit_alarm:
899 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
903 *value = !!(status & SFP_ALARM0_VCC_HIGH);
912 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
918 case hwmon_curr_input:
919 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
921 case hwmon_curr_lcrit:
922 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
923 sfp_hwmon_calibrate_bias(sfp, value);
927 *value = be16_to_cpu(sfp->diag.bias_low_warn);
928 sfp_hwmon_calibrate_bias(sfp, value);
932 *value = be16_to_cpu(sfp->diag.bias_high_warn);
933 sfp_hwmon_calibrate_bias(sfp, value);
936 case hwmon_curr_crit:
937 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
938 sfp_hwmon_calibrate_bias(sfp, value);
941 case hwmon_curr_lcrit_alarm:
942 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
946 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
949 case hwmon_curr_min_alarm:
950 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
954 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
957 case hwmon_curr_max_alarm:
958 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
962 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
965 case hwmon_curr_crit_alarm:
966 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
970 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
979 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
985 case hwmon_power_input:
986 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
988 case hwmon_power_lcrit:
989 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
990 sfp_hwmon_calibrate_tx_power(sfp, value);
993 case hwmon_power_min:
994 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
995 sfp_hwmon_calibrate_tx_power(sfp, value);
998 case hwmon_power_max:
999 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1000 sfp_hwmon_calibrate_tx_power(sfp, value);
1003 case hwmon_power_crit:
1004 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1005 sfp_hwmon_calibrate_tx_power(sfp, value);
1008 case hwmon_power_lcrit_alarm:
1009 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1013 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1016 case hwmon_power_min_alarm:
1017 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1021 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1024 case hwmon_power_max_alarm:
1025 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1029 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1032 case hwmon_power_crit_alarm:
1033 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1037 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1046 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1052 case hwmon_power_input:
1053 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1055 case hwmon_power_lcrit:
1056 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1057 sfp_hwmon_to_rx_power(value);
1060 case hwmon_power_min:
1061 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1062 sfp_hwmon_to_rx_power(value);
1065 case hwmon_power_max:
1066 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1067 sfp_hwmon_to_rx_power(value);
1070 case hwmon_power_crit:
1071 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1072 sfp_hwmon_to_rx_power(value);
1075 case hwmon_power_lcrit_alarm:
1076 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1080 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1083 case hwmon_power_min_alarm:
1084 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1088 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1091 case hwmon_power_max_alarm:
1092 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1096 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1099 case hwmon_power_crit_alarm:
1100 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1104 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1113 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1114 u32 attr, int channel, long *value)
1116 struct sfp *sfp = dev_get_drvdata(dev);
1120 return sfp_hwmon_temp(sfp, attr, value);
1122 return sfp_hwmon_vcc(sfp, attr, value);
1124 return sfp_hwmon_bias(sfp, attr, value);
1128 return sfp_hwmon_tx_power(sfp, attr, value);
1130 return sfp_hwmon_rx_power(sfp, attr, value);
1139 static const char *const sfp_hwmon_power_labels[] = {
1144 static int sfp_hwmon_read_string(struct device *dev,
1145 enum hwmon_sensor_types type,
1146 u32 attr, int channel, const char **str)
1151 case hwmon_curr_label:
1160 case hwmon_temp_label:
1161 *str = "temperature";
1169 case hwmon_in_label:
1178 case hwmon_power_label:
1179 *str = sfp_hwmon_power_labels[channel];
1192 static const struct hwmon_ops sfp_hwmon_ops = {
1193 .is_visible = sfp_hwmon_is_visible,
1194 .read = sfp_hwmon_read,
1195 .read_string = sfp_hwmon_read_string,
1198 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1199 HWMON_CHANNEL_INFO(chip,
1200 HWMON_C_REGISTER_TZ),
1201 HWMON_CHANNEL_INFO(in,
1203 HWMON_I_MAX | HWMON_I_MIN |
1204 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1205 HWMON_I_CRIT | HWMON_I_LCRIT |
1206 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1208 HWMON_CHANNEL_INFO(temp,
1210 HWMON_T_MAX | HWMON_T_MIN |
1211 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1212 HWMON_T_CRIT | HWMON_T_LCRIT |
1213 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1215 HWMON_CHANNEL_INFO(curr,
1217 HWMON_C_MAX | HWMON_C_MIN |
1218 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1219 HWMON_C_CRIT | HWMON_C_LCRIT |
1220 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1222 HWMON_CHANNEL_INFO(power,
1223 /* Transmit power */
1225 HWMON_P_MAX | HWMON_P_MIN |
1226 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1227 HWMON_P_CRIT | HWMON_P_LCRIT |
1228 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1232 HWMON_P_MAX | HWMON_P_MIN |
1233 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1234 HWMON_P_CRIT | HWMON_P_LCRIT |
1235 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1240 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1241 .ops = &sfp_hwmon_ops,
1242 .info = sfp_hwmon_info,
1245 static void sfp_hwmon_probe(struct work_struct *work)
1247 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1250 /* hwmon interface needs to access 16bit registers in atomic way to
1251 * guarantee coherency of the diagnostic monitoring data. If it is not
1252 * possible to guarantee coherency because EEPROM is broken in such way
1253 * that does not support atomic 16bit read operation then we have to
1254 * skip registration of hwmon device.
1256 if (sfp->i2c_block_size < 2) {
1258 "skipping hwmon device registration due to broken EEPROM\n");
1260 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1264 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1266 if (sfp->hwmon_tries--) {
1267 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1268 T_PROBE_RETRY_SLOW);
1270 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1276 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1277 if (IS_ERR(sfp->hwmon_name)) {
1278 dev_err(sfp->dev, "out of memory for hwmon name\n");
1282 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1283 sfp->hwmon_name, sfp,
1284 &sfp_hwmon_chip_info,
1286 if (IS_ERR(sfp->hwmon_dev))
1287 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1288 PTR_ERR(sfp->hwmon_dev));
1291 static int sfp_hwmon_insert(struct sfp *sfp)
1293 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1296 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1299 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1300 /* This driver in general does not support address
1305 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1306 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1311 static void sfp_hwmon_remove(struct sfp *sfp)
1313 cancel_delayed_work_sync(&sfp->hwmon_probe);
1314 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1315 hwmon_device_unregister(sfp->hwmon_dev);
1316 sfp->hwmon_dev = NULL;
1317 kfree(sfp->hwmon_name);
1321 static int sfp_hwmon_init(struct sfp *sfp)
1323 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1328 static void sfp_hwmon_exit(struct sfp *sfp)
1330 cancel_delayed_work_sync(&sfp->hwmon_probe);
1333 static int sfp_hwmon_insert(struct sfp *sfp)
1338 static void sfp_hwmon_remove(struct sfp *sfp)
1342 static int sfp_hwmon_init(struct sfp *sfp)
1347 static void sfp_hwmon_exit(struct sfp *sfp)
1353 static void sfp_module_tx_disable(struct sfp *sfp)
1355 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1356 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1357 sfp->state |= SFP_F_TX_DISABLE;
1358 sfp_set_state(sfp, sfp->state);
1361 static void sfp_module_tx_enable(struct sfp *sfp)
1363 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1364 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1365 sfp->state &= ~SFP_F_TX_DISABLE;
1366 sfp_set_state(sfp, sfp->state);
1369 #if IS_ENABLED(CONFIG_DEBUG_FS)
1370 static int sfp_debug_state_show(struct seq_file *s, void *data)
1372 struct sfp *sfp = s->private;
1374 seq_printf(s, "Module state: %s\n",
1375 mod_state_to_str(sfp->sm_mod_state));
1376 seq_printf(s, "Module probe attempts: %d %d\n",
1377 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1378 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1379 seq_printf(s, "Device state: %s\n",
1380 dev_state_to_str(sfp->sm_dev_state));
1381 seq_printf(s, "Main state: %s\n",
1382 sm_state_to_str(sfp->sm_state));
1383 seq_printf(s, "Fault recovery remaining retries: %d\n",
1384 sfp->sm_fault_retries);
1385 seq_printf(s, "PHY probe remaining retries: %d\n",
1386 sfp->sm_phy_retries);
1387 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1388 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1389 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1390 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1393 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1395 static void sfp_debugfs_init(struct sfp *sfp)
1397 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1399 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1400 &sfp_debug_state_fops);
1403 static void sfp_debugfs_exit(struct sfp *sfp)
1405 debugfs_remove_recursive(sfp->debugfs_dir);
1408 static void sfp_debugfs_init(struct sfp *sfp)
1412 static void sfp_debugfs_exit(struct sfp *sfp)
1417 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1419 unsigned int state = sfp->state;
1421 if (state & SFP_F_TX_DISABLE)
1424 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1428 sfp_set_state(sfp, state);
1431 /* SFP state machine */
1432 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1435 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1438 cancel_delayed_work(&sfp->timeout);
1441 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1442 unsigned int timeout)
1444 sfp->sm_state = state;
1445 sfp_sm_set_timer(sfp, timeout);
1448 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1449 unsigned int timeout)
1451 sfp->sm_mod_state = state;
1452 sfp_sm_set_timer(sfp, timeout);
1455 static void sfp_sm_phy_detach(struct sfp *sfp)
1457 sfp_remove_phy(sfp->sfp_bus);
1458 phy_device_remove(sfp->mod_phy);
1459 phy_device_free(sfp->mod_phy);
1460 sfp->mod_phy = NULL;
1463 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1465 struct phy_device *phy;
1468 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1469 if (phy == ERR_PTR(-ENODEV))
1470 return PTR_ERR(phy);
1472 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1473 return PTR_ERR(phy);
1476 err = phy_device_register(phy);
1478 phy_device_free(phy);
1479 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1484 err = sfp_add_phy(sfp->sfp_bus, phy);
1486 phy_device_remove(phy);
1487 phy_device_free(phy);
1488 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1497 static void sfp_sm_link_up(struct sfp *sfp)
1499 sfp_link_up(sfp->sfp_bus);
1500 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1503 static void sfp_sm_link_down(struct sfp *sfp)
1505 sfp_link_down(sfp->sfp_bus);
1508 static void sfp_sm_link_check_los(struct sfp *sfp)
1510 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1511 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1512 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1515 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1516 * are set, we assume that no LOS signal is available. If both are
1517 * set, we assume LOS is not implemented (and is meaningless.)
1519 if (los_options == los_inverted)
1520 los = !(sfp->state & SFP_F_LOS);
1521 else if (los_options == los_normal)
1522 los = !!(sfp->state & SFP_F_LOS);
1525 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1527 sfp_sm_link_up(sfp);
1530 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1532 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1533 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1534 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1536 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1537 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1540 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1542 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1543 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1544 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1546 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1547 (los_options == los_normal && event == SFP_E_LOS_LOW);
1550 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1552 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1554 "module persistently indicates fault, disabling\n");
1555 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1558 dev_err(sfp->dev, "module transmit fault indicated\n");
1560 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1564 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1565 * normally sits at I2C bus address 0x56, and may either be a clause 22
1568 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1569 * negotiation enabled, but some may be in 1000base-X - which is for the
1570 * PHY driver to determine.
1572 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1573 * mode according to the negotiated line speed.
1575 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1579 switch (sfp->id.base.extended_cc) {
1580 case SFF8024_ECC_10GBASE_T_SFI:
1581 case SFF8024_ECC_10GBASE_T_SR:
1582 case SFF8024_ECC_5GBASE_T:
1583 case SFF8024_ECC_2_5GBASE_T:
1584 err = sfp_sm_probe_phy(sfp, true);
1588 if (sfp->id.base.e1000_base_t)
1589 err = sfp_sm_probe_phy(sfp, false);
1595 static int sfp_module_parse_power(struct sfp *sfp)
1597 u32 power_mW = 1000;
1600 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1602 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1605 supports_a2 = sfp->id.ext.sff8472_compliance !=
1606 SFP_SFF8472_COMPLIANCE_NONE ||
1607 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1609 if (power_mW > sfp->max_power_mW) {
1610 /* Module power specification exceeds the allowed maximum. */
1612 /* The module appears not to implement bus address
1613 * 0xa2, so assume that the module powers up in the
1617 "Host does not support %u.%uW modules\n",
1618 power_mW / 1000, (power_mW / 100) % 10);
1622 "Host does not support %u.%uW modules, module left in power mode 1\n",
1623 power_mW / 1000, (power_mW / 100) % 10);
1628 if (power_mW <= 1000) {
1629 /* Modules below 1W do not require a power change sequence */
1630 sfp->module_power_mW = power_mW;
1635 /* The module power level is below the host maximum and the
1636 * module appears not to implement bus address 0xa2, so assume
1637 * that the module powers up in the indicated mode.
1642 /* If the module requires a higher power mode, but also requires
1643 * an address change sequence, warn the user that the module may
1644 * not be functional.
1646 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1648 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1649 power_mW / 1000, (power_mW / 100) % 10);
1653 sfp->module_power_mW = power_mW;
1658 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1663 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1664 if (err != sizeof(val)) {
1665 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1669 /* DM7052 reports as a high power module, responds to reads (with
1670 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1671 * if the bit is already set, we're already in high power mode.
1673 if (!!(val & BIT(0)) == enable)
1681 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1682 if (err != sizeof(val)) {
1683 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1689 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1690 sfp->module_power_mW / 1000,
1691 (sfp->module_power_mW / 100) % 10);
1696 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1697 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1698 * not support multibyte reads from the EEPROM. Each multi-byte read
1699 * operation returns just one byte of EEPROM followed by zeros. There is
1700 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1701 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1702 * name and vendor id into EEPROM, so there is even no way to detect if
1703 * module is V-SOL V2801F. Therefore check for those zeros in the read
1704 * data and then based on check switch to reading EEPROM to one byte
1707 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1709 size_t i, block_size = sfp->i2c_block_size;
1711 /* Already using byte IO */
1712 if (block_size == 1)
1715 for (i = 1; i < len; i += block_size) {
1716 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1722 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1727 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1728 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1729 id->base.connector != SFF8024_CONNECTOR_LC) {
1730 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1731 id->base.phys_id = SFF8024_ID_SFF_8472;
1732 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1733 id->base.connector = SFF8024_CONNECTOR_LC;
1734 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1737 "Failed to rewrite module EEPROM: %pe\n",
1742 /* Cotsworks modules have been found to require a delay between write operations. */
1745 /* Update base structure checksum */
1746 check = sfp_check(&id->base, sizeof(id->base) - 1);
1747 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1750 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1758 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1760 /* SFP module inserted - read I2C data */
1761 struct sfp_eeprom_id id;
1762 bool cotsworks_sfbg;
1767 /* Some SFP modules and also some Linux I2C drivers do not like reads
1768 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1771 sfp->i2c_block_size = 16;
1773 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1776 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1781 if (ret != sizeof(id.base)) {
1782 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1786 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1787 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1788 * that EEPROM supports atomic 16bit read operation for diagnostic
1789 * fields, so do not switch to one byte reading at a time unless it
1790 * is really required and we have no other option.
1792 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1794 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1796 "Switching to reading EEPROM to one byte at a time\n");
1797 sfp->i2c_block_size = 1;
1799 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1803 "failed to read EEPROM: %pe\n",
1808 if (ret != sizeof(id.base)) {
1809 dev_err(sfp->dev, "EEPROM short read: %pe\n",
1815 /* Cotsworks do not seem to update the checksums when they
1816 * do the final programming with the final module part number,
1817 * serial number and date code.
1819 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1820 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1822 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1823 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1824 * Cotsworks PN matches and bytes are not correct.
1826 if (cotsworks && cotsworks_sfbg) {
1827 ret = sfp_cotsworks_fixup_check(sfp, &id);
1832 /* Validate the checksum over the base structure */
1833 check = sfp_check(&id.base, sizeof(id.base) - 1);
1834 if (check != id.base.cc_base) {
1837 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1838 check, id.base.cc_base);
1841 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1842 check, id.base.cc_base);
1843 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1844 16, 1, &id, sizeof(id), true);
1849 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1852 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1857 if (ret != sizeof(id.ext)) {
1858 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1862 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1863 if (check != id.ext.cc_ext) {
1866 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1867 check, id.ext.cc_ext);
1870 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1871 check, id.ext.cc_ext);
1872 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1873 16, 1, &id, sizeof(id), true);
1874 memset(&id.ext, 0, sizeof(id.ext));
1880 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1881 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1882 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1883 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1884 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1885 (int)sizeof(id.ext.datecode), id.ext.datecode);
1887 /* Check whether we support this module */
1888 if (!sfp->type->module_supported(&id)) {
1890 "module is not supported - phys id 0x%02x 0x%02x\n",
1891 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1895 /* If the module requires address swap mode, warn about it */
1896 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1898 "module address swap to access page 0xA2 is not supported.\n");
1900 /* Parse the module power requirement */
1901 ret = sfp_module_parse_power(sfp);
1905 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1906 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1907 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1909 sfp->module_t_start_up = T_START_UP;
1911 if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) &&
1912 !memcmp(id.base.vendor_pn, "MA5671A ", 16))
1913 sfp->tx_fault_ignore = true;
1915 sfp->tx_fault_ignore = false;
1920 static void sfp_sm_mod_remove(struct sfp *sfp)
1922 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1923 sfp_module_remove(sfp->sfp_bus);
1925 sfp_hwmon_remove(sfp);
1927 memset(&sfp->id, 0, sizeof(sfp->id));
1928 sfp->module_power_mW = 0;
1930 dev_info(sfp->dev, "module removed\n");
1933 /* This state machine tracks the upstream's state */
1934 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1936 switch (sfp->sm_dev_state) {
1938 if (event == SFP_E_DEV_ATTACH)
1939 sfp->sm_dev_state = SFP_DEV_DOWN;
1943 if (event == SFP_E_DEV_DETACH)
1944 sfp->sm_dev_state = SFP_DEV_DETACHED;
1945 else if (event == SFP_E_DEV_UP)
1946 sfp->sm_dev_state = SFP_DEV_UP;
1950 if (event == SFP_E_DEV_DETACH)
1951 sfp->sm_dev_state = SFP_DEV_DETACHED;
1952 else if (event == SFP_E_DEV_DOWN)
1953 sfp->sm_dev_state = SFP_DEV_DOWN;
1958 /* This state machine tracks the insert/remove state of the module, probes
1959 * the on-board EEPROM, and sets up the power level.
1961 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1965 /* Handle remove event globally, it resets this state machine */
1966 if (event == SFP_E_REMOVE) {
1967 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1968 sfp_sm_mod_remove(sfp);
1969 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1973 /* Handle device detach globally */
1974 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1975 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1976 if (sfp->module_power_mW > 1000 &&
1977 sfp->sm_mod_state > SFP_MOD_HPOWER)
1978 sfp_sm_mod_hpower(sfp, false);
1979 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1983 switch (sfp->sm_mod_state) {
1985 if (event == SFP_E_INSERT) {
1986 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1987 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1988 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1993 /* Wait for T_PROBE_INIT to time out */
1994 if (event != SFP_E_TIMEOUT)
1997 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1998 if (err == -EAGAIN) {
1999 if (sfp->sm_mod_tries_init &&
2000 --sfp->sm_mod_tries_init) {
2001 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2003 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2004 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2006 "please wait, module slow to respond\n");
2007 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2012 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2016 err = sfp_hwmon_insert(sfp);
2018 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2021 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2023 case SFP_MOD_WAITDEV:
2024 /* Ensure that the device is attached before proceeding */
2025 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2028 /* Report the module insertion to the upstream device */
2029 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2031 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2035 /* If this is a power level 1 module, we are done */
2036 if (sfp->module_power_mW <= 1000)
2039 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2041 case SFP_MOD_HPOWER:
2042 /* Enable high power mode */
2043 err = sfp_sm_mod_hpower(sfp, true);
2045 if (err != -EAGAIN) {
2046 sfp_module_remove(sfp->sfp_bus);
2047 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2049 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2054 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2057 case SFP_MOD_WAITPWR:
2058 /* Wait for T_HPOWER_LEVEL to time out */
2059 if (event != SFP_E_TIMEOUT)
2063 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2066 case SFP_MOD_PRESENT:
2072 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2074 unsigned long timeout;
2077 /* Some events are global */
2078 if (sfp->sm_state != SFP_S_DOWN &&
2079 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2080 sfp->sm_dev_state != SFP_DEV_UP)) {
2081 if (sfp->sm_state == SFP_S_LINK_UP &&
2082 sfp->sm_dev_state == SFP_DEV_UP)
2083 sfp_sm_link_down(sfp);
2084 if (sfp->sm_state > SFP_S_INIT)
2085 sfp_module_stop(sfp->sfp_bus);
2087 sfp_sm_phy_detach(sfp);
2088 sfp_module_tx_disable(sfp);
2089 sfp_soft_stop_poll(sfp);
2090 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2094 /* The main state machine */
2095 switch (sfp->sm_state) {
2097 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2098 sfp->sm_dev_state != SFP_DEV_UP)
2101 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2102 sfp_soft_start_poll(sfp);
2104 sfp_module_tx_enable(sfp);
2106 /* Initialise the fault clearance retries */
2107 sfp->sm_fault_retries = N_FAULT_INIT;
2109 /* We need to check the TX_FAULT state, which is not defined
2110 * while TX_DISABLE is asserted. The earliest we want to do
2111 * anything (such as probe for a PHY) is 50ms.
2113 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2117 if (event != SFP_E_TIMEOUT)
2120 if (sfp->state & SFP_F_TX_FAULT) {
2121 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2122 * from the TX_DISABLE deassertion for the module to
2123 * initialise, which is indicated by TX_FAULT
2126 timeout = sfp->module_t_start_up;
2127 if (timeout > T_WAIT)
2132 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2134 /* TX_FAULT is not asserted, assume the module has
2135 * finished initialising.
2142 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2143 /* TX_FAULT is still asserted after t_init
2144 * or t_start_up, so assume there is a fault.
2146 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2147 sfp->sm_fault_retries == N_FAULT_INIT);
2148 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2150 sfp->sm_phy_retries = R_PHY_RETRY;
2155 case SFP_S_INIT_PHY:
2156 if (event != SFP_E_TIMEOUT)
2159 /* TX_FAULT deasserted or we timed out with TX_FAULT
2160 * clear. Probe for the PHY and check the LOS state.
2162 ret = sfp_sm_probe_for_phy(sfp);
2163 if (ret == -ENODEV) {
2164 if (--sfp->sm_phy_retries) {
2165 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2168 dev_info(sfp->dev, "no PHY detected\n");
2171 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2174 if (sfp_module_start(sfp->sfp_bus)) {
2175 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2178 sfp_sm_link_check_los(sfp);
2180 /* Reset the fault retry count */
2181 sfp->sm_fault_retries = N_FAULT;
2184 case SFP_S_INIT_TX_FAULT:
2185 if (event == SFP_E_TIMEOUT) {
2186 sfp_module_tx_fault_reset(sfp);
2187 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2191 case SFP_S_WAIT_LOS:
2192 if (event == SFP_E_TX_FAULT)
2193 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2194 else if (sfp_los_event_inactive(sfp, event))
2195 sfp_sm_link_up(sfp);
2199 if (event == SFP_E_TX_FAULT) {
2200 sfp_sm_link_down(sfp);
2201 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2202 } else if (sfp_los_event_active(sfp, event)) {
2203 sfp_sm_link_down(sfp);
2204 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2208 case SFP_S_TX_FAULT:
2209 if (event == SFP_E_TIMEOUT) {
2210 sfp_module_tx_fault_reset(sfp);
2211 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2216 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2217 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2218 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2219 dev_info(sfp->dev, "module transmit fault recovered\n");
2220 sfp_sm_link_check_los(sfp);
2224 case SFP_S_TX_DISABLE:
2229 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2231 mutex_lock(&sfp->sm_mutex);
2233 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2234 mod_state_to_str(sfp->sm_mod_state),
2235 dev_state_to_str(sfp->sm_dev_state),
2236 sm_state_to_str(sfp->sm_state),
2237 event_to_str(event));
2239 sfp_sm_device(sfp, event);
2240 sfp_sm_module(sfp, event);
2241 sfp_sm_main(sfp, event);
2243 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2244 mod_state_to_str(sfp->sm_mod_state),
2245 dev_state_to_str(sfp->sm_dev_state),
2246 sm_state_to_str(sfp->sm_state));
2248 mutex_unlock(&sfp->sm_mutex);
2251 static void sfp_attach(struct sfp *sfp)
2253 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2256 static void sfp_detach(struct sfp *sfp)
2258 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2261 static void sfp_start(struct sfp *sfp)
2263 sfp_sm_event(sfp, SFP_E_DEV_UP);
2266 static void sfp_stop(struct sfp *sfp)
2268 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2271 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2273 /* locking... and check module is present */
2275 if (sfp->id.ext.sff8472_compliance &&
2276 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2277 modinfo->type = ETH_MODULE_SFF_8472;
2278 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2280 modinfo->type = ETH_MODULE_SFF_8079;
2281 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2286 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2289 unsigned int first, last, len;
2296 last = ee->offset + ee->len;
2297 if (first < ETH_MODULE_SFF_8079_LEN) {
2298 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2301 ret = sfp_read(sfp, false, first, data, len);
2308 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2309 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2311 first -= ETH_MODULE_SFF_8079_LEN;
2313 ret = sfp_read(sfp, true, first, data, len);
2320 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2321 const struct ethtool_module_eeprom *page,
2322 struct netlink_ext_ack *extack)
2325 NL_SET_ERR_MSG(extack, "Banks not supported");
2330 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2334 if (page->i2c_address != 0x50 &&
2335 page->i2c_address != 0x51) {
2336 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2340 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2341 page->data, page->length);
2344 static const struct sfp_socket_ops sfp_module_ops = {
2345 .attach = sfp_attach,
2346 .detach = sfp_detach,
2349 .module_info = sfp_module_info,
2350 .module_eeprom = sfp_module_eeprom,
2351 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2354 static void sfp_timeout(struct work_struct *work)
2356 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2359 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2363 static void sfp_check_state(struct sfp *sfp)
2365 unsigned int state, i, changed;
2367 mutex_lock(&sfp->st_mutex);
2368 state = sfp_get_state(sfp);
2369 changed = state ^ sfp->state;
2370 if (sfp->tx_fault_ignore)
2371 changed &= SFP_F_PRESENT | SFP_F_LOS;
2373 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2375 for (i = 0; i < GPIO_MAX; i++)
2376 if (changed & BIT(i))
2377 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2378 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2380 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2384 if (changed & SFP_F_PRESENT)
2385 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2386 SFP_E_INSERT : SFP_E_REMOVE);
2388 if (changed & SFP_F_TX_FAULT)
2389 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2390 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2392 if (changed & SFP_F_LOS)
2393 sfp_sm_event(sfp, state & SFP_F_LOS ?
2394 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2396 mutex_unlock(&sfp->st_mutex);
2399 static irqreturn_t sfp_irq(int irq, void *data)
2401 struct sfp *sfp = data;
2403 sfp_check_state(sfp);
2408 static void sfp_poll(struct work_struct *work)
2410 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2412 sfp_check_state(sfp);
2414 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2416 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2419 static struct sfp *sfp_alloc(struct device *dev)
2423 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2425 return ERR_PTR(-ENOMEM);
2429 mutex_init(&sfp->sm_mutex);
2430 mutex_init(&sfp->st_mutex);
2431 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2432 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2434 sfp_hwmon_init(sfp);
2439 static void sfp_cleanup(void *data)
2441 struct sfp *sfp = data;
2443 sfp_hwmon_exit(sfp);
2445 cancel_delayed_work_sync(&sfp->poll);
2446 cancel_delayed_work_sync(&sfp->timeout);
2448 mdiobus_unregister(sfp->i2c_mii);
2449 mdiobus_free(sfp->i2c_mii);
2452 i2c_put_adapter(sfp->i2c);
2456 static int sfp_probe(struct platform_device *pdev)
2458 const struct sff_data *sff;
2459 struct i2c_adapter *i2c;
2464 sfp = sfp_alloc(&pdev->dev);
2466 return PTR_ERR(sfp);
2468 platform_set_drvdata(pdev, sfp);
2470 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2474 sff = sfp->type = &sfp_data;
2476 if (pdev->dev.of_node) {
2477 struct device_node *node = pdev->dev.of_node;
2478 const struct of_device_id *id;
2479 struct device_node *np;
2481 id = of_match_node(sfp_of_match, node);
2485 sff = sfp->type = id->data;
2487 np = of_parse_phandle(node, "i2c-bus", 0);
2489 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2493 i2c = of_find_i2c_adapter_by_node(np);
2495 } else if (has_acpi_companion(&pdev->dev)) {
2496 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2497 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2498 struct fwnode_reference_args args;
2499 struct acpi_handle *acpi_handle;
2502 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2503 if (ret || !is_acpi_device_node(args.fwnode)) {
2504 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2508 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2509 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2515 return -EPROBE_DEFER;
2517 err = sfp_i2c_configure(sfp, i2c);
2519 i2c_put_adapter(i2c);
2523 for (i = 0; i < GPIO_MAX; i++)
2524 if (sff->gpios & BIT(i)) {
2525 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2526 gpio_of_names[i], gpio_flags[i]);
2527 if (IS_ERR(sfp->gpio[i]))
2528 return PTR_ERR(sfp->gpio[i]);
2531 sfp->get_state = sfp_gpio_get_state;
2532 sfp->set_state = sfp_gpio_set_state;
2534 /* Modules that have no detect signal are always present */
2535 if (!(sfp->gpio[GPIO_MODDEF0]))
2536 sfp->get_state = sff_gpio_get_state;
2538 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2539 &sfp->max_power_mW);
2540 if (!sfp->max_power_mW)
2541 sfp->max_power_mW = 1000;
2543 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2544 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2546 /* Get the initial state, and always signal TX disable,
2547 * since the network interface will not be up.
2549 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2551 if (sfp->gpio[GPIO_RATE_SELECT] &&
2552 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2553 sfp->state |= SFP_F_RATE_SELECT;
2554 sfp_set_state(sfp, sfp->state);
2555 sfp_module_tx_disable(sfp);
2556 if (sfp->state & SFP_F_PRESENT) {
2558 sfp_sm_event(sfp, SFP_E_INSERT);
2562 for (i = 0; i < GPIO_MAX; i++) {
2563 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2566 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2567 if (sfp->gpio_irq[i] < 0) {
2568 sfp->gpio_irq[i] = 0;
2569 sfp->need_poll = true;
2573 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2574 "%s-%s", dev_name(sfp->dev),
2580 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2583 IRQF_TRIGGER_RISING |
2584 IRQF_TRIGGER_FALLING,
2587 sfp->gpio_irq[i] = 0;
2588 sfp->need_poll = true;
2593 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2595 /* We could have an issue in cases no Tx disable pin is available or
2596 * wired as modules using a laser as their light source will continue to
2597 * be active when the fiber is removed. This could be a safety issue and
2598 * we should at least warn the user about that.
2600 if (!sfp->gpio[GPIO_TX_DISABLE])
2602 "No tx_disable pin: SFP modules will always be emitting.\n");
2604 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2608 sfp_debugfs_init(sfp);
2613 static int sfp_remove(struct platform_device *pdev)
2615 struct sfp *sfp = platform_get_drvdata(pdev);
2617 sfp_debugfs_exit(sfp);
2618 sfp_unregister_socket(sfp->sfp_bus);
2621 sfp_sm_event(sfp, SFP_E_REMOVE);
2627 static void sfp_shutdown(struct platform_device *pdev)
2629 struct sfp *sfp = platform_get_drvdata(pdev);
2632 for (i = 0; i < GPIO_MAX; i++) {
2633 if (!sfp->gpio_irq[i])
2636 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2639 cancel_delayed_work_sync(&sfp->poll);
2640 cancel_delayed_work_sync(&sfp->timeout);
2643 static struct platform_driver sfp_driver = {
2645 .remove = sfp_remove,
2646 .shutdown = sfp_shutdown,
2649 .of_match_table = sfp_of_match,
2653 static int sfp_init(void)
2655 poll_jiffies = msecs_to_jiffies(100);
2657 return platform_driver_register(&sfp_driver);
2659 module_init(sfp_init);
2661 static void sfp_exit(void)
2663 platform_driver_unregister(&sfp_driver);
2665 module_exit(sfp_exit);
2667 MODULE_ALIAS("platform:sfp");
2668 MODULE_AUTHOR("Russell King");
2669 MODULE_LICENSE("GPL v2");