MAINTAINERS: update the LSM maintainer info
[platform/kernel/linux-starfive.git] / drivers / net / phy / sfp.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20
21 #include "sfp.h"
22 #include "swphy.h"
23
24 enum {
25         GPIO_MODDEF0,
26         GPIO_LOS,
27         GPIO_TX_FAULT,
28         GPIO_TX_DISABLE,
29         GPIO_RATE_SELECT,
30         GPIO_MAX,
31
32         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33         SFP_F_LOS = BIT(GPIO_LOS),
34         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38         SFP_E_INSERT = 0,
39         SFP_E_REMOVE,
40         SFP_E_DEV_ATTACH,
41         SFP_E_DEV_DETACH,
42         SFP_E_DEV_DOWN,
43         SFP_E_DEV_UP,
44         SFP_E_TX_FAULT,
45         SFP_E_TX_CLEAR,
46         SFP_E_LOS_HIGH,
47         SFP_E_LOS_LOW,
48         SFP_E_TIMEOUT,
49
50         SFP_MOD_EMPTY = 0,
51         SFP_MOD_ERROR,
52         SFP_MOD_PROBE,
53         SFP_MOD_WAITDEV,
54         SFP_MOD_HPOWER,
55         SFP_MOD_WAITPWR,
56         SFP_MOD_PRESENT,
57
58         SFP_DEV_DETACHED = 0,
59         SFP_DEV_DOWN,
60         SFP_DEV_UP,
61
62         SFP_S_DOWN = 0,
63         SFP_S_FAIL,
64         SFP_S_WAIT,
65         SFP_S_INIT,
66         SFP_S_INIT_PHY,
67         SFP_S_INIT_TX_FAULT,
68         SFP_S_WAIT_LOS,
69         SFP_S_LINK_UP,
70         SFP_S_TX_FAULT,
71         SFP_S_REINIT,
72         SFP_S_TX_DISABLE,
73 };
74
75 static const char  * const mod_state_strings[] = {
76         [SFP_MOD_EMPTY] = "empty",
77         [SFP_MOD_ERROR] = "error",
78         [SFP_MOD_PROBE] = "probe",
79         [SFP_MOD_WAITDEV] = "waitdev",
80         [SFP_MOD_HPOWER] = "hpower",
81         [SFP_MOD_WAITPWR] = "waitpwr",
82         [SFP_MOD_PRESENT] = "present",
83 };
84
85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87         if (mod_state >= ARRAY_SIZE(mod_state_strings))
88                 return "Unknown module state";
89         return mod_state_strings[mod_state];
90 }
91
92 static const char * const dev_state_strings[] = {
93         [SFP_DEV_DETACHED] = "detached",
94         [SFP_DEV_DOWN] = "down",
95         [SFP_DEV_UP] = "up",
96 };
97
98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100         if (dev_state >= ARRAY_SIZE(dev_state_strings))
101                 return "Unknown device state";
102         return dev_state_strings[dev_state];
103 }
104
105 static const char * const event_strings[] = {
106         [SFP_E_INSERT] = "insert",
107         [SFP_E_REMOVE] = "remove",
108         [SFP_E_DEV_ATTACH] = "dev_attach",
109         [SFP_E_DEV_DETACH] = "dev_detach",
110         [SFP_E_DEV_DOWN] = "dev_down",
111         [SFP_E_DEV_UP] = "dev_up",
112         [SFP_E_TX_FAULT] = "tx_fault",
113         [SFP_E_TX_CLEAR] = "tx_clear",
114         [SFP_E_LOS_HIGH] = "los_high",
115         [SFP_E_LOS_LOW] = "los_low",
116         [SFP_E_TIMEOUT] = "timeout",
117 };
118
119 static const char *event_to_str(unsigned short event)
120 {
121         if (event >= ARRAY_SIZE(event_strings))
122                 return "Unknown event";
123         return event_strings[event];
124 }
125
126 static const char * const sm_state_strings[] = {
127         [SFP_S_DOWN] = "down",
128         [SFP_S_FAIL] = "fail",
129         [SFP_S_WAIT] = "wait",
130         [SFP_S_INIT] = "init",
131         [SFP_S_INIT_PHY] = "init_phy",
132         [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133         [SFP_S_WAIT_LOS] = "wait_los",
134         [SFP_S_LINK_UP] = "link_up",
135         [SFP_S_TX_FAULT] = "tx_fault",
136         [SFP_S_REINIT] = "reinit",
137         [SFP_S_TX_DISABLE] = "tx_disable",
138 };
139
140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142         if (sm_state >= ARRAY_SIZE(sm_state_strings))
143                 return "Unknown state";
144         return sm_state_strings[sm_state];
145 }
146
147 static const char *gpio_of_names[] = {
148         "mod-def0",
149         "los",
150         "tx-fault",
151         "tx-disable",
152         "rate-select0",
153 };
154
155 static const enum gpiod_flags gpio_flags[] = {
156         GPIOD_IN,
157         GPIOD_IN,
158         GPIOD_IN,
159         GPIOD_ASIS,
160         GPIOD_ASIS,
161 };
162
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164  * non-cooled module to initialise its laser safety circuitry. We wait
165  * an initial T_WAIT period before we check the tx fault to give any PHY
166  * on board (for a copper SFP) time to initialise.
167  */
168 #define T_WAIT                  msecs_to_jiffies(50)
169 #define T_START_UP              msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
171
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US              10
176 #define T_FAULT_RECOVER         msecs_to_jiffies(1000)
177
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT            5
184 #define N_FAULT                 5
185
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY             msecs_to_jiffies(50)
190 #define R_PHY_RETRY             12
191
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL                msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL          msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT      10
203 #define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW      12
205
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  */
209 #define SFP_PHY_ADDR    22
210
211 struct sff_data {
212         unsigned int gpios;
213         bool (*module_supported)(const struct sfp_eeprom_id *id);
214 };
215
216 struct sfp {
217         struct device *dev;
218         struct i2c_adapter *i2c;
219         struct mii_bus *i2c_mii;
220         struct sfp_bus *sfp_bus;
221         struct phy_device *mod_phy;
222         const struct sff_data *type;
223         size_t i2c_block_size;
224         u32 max_power_mW;
225
226         unsigned int (*get_state)(struct sfp *);
227         void (*set_state)(struct sfp *, unsigned int);
228         int (*read)(struct sfp *, bool, u8, void *, size_t);
229         int (*write)(struct sfp *, bool, u8, void *, size_t);
230
231         struct gpio_desc *gpio[GPIO_MAX];
232         int gpio_irq[GPIO_MAX];
233
234         bool need_poll;
235
236         struct mutex st_mutex;                  /* Protects state */
237         unsigned int state_soft_mask;
238         unsigned int state;
239         struct delayed_work poll;
240         struct delayed_work timeout;
241         struct mutex sm_mutex;                  /* Protects state machine */
242         unsigned char sm_mod_state;
243         unsigned char sm_mod_tries_init;
244         unsigned char sm_mod_tries;
245         unsigned char sm_dev_state;
246         unsigned short sm_state;
247         unsigned char sm_fault_retries;
248         unsigned char sm_phy_retries;
249
250         struct sfp_eeprom_id id;
251         unsigned int module_power_mW;
252         unsigned int module_t_start_up;
253         bool tx_fault_ignore;
254
255 #if IS_ENABLED(CONFIG_HWMON)
256         struct sfp_diag diag;
257         struct delayed_work hwmon_probe;
258         unsigned int hwmon_tries;
259         struct device *hwmon_dev;
260         char *hwmon_name;
261 #endif
262
263 #if IS_ENABLED(CONFIG_DEBUG_FS)
264         struct dentry *debugfs_dir;
265 #endif
266 };
267
268 static bool sff_module_supported(const struct sfp_eeprom_id *id)
269 {
270         return id->base.phys_id == SFF8024_ID_SFF_8472 &&
271                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
272 }
273
274 static const struct sff_data sff_data = {
275         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
276         .module_supported = sff_module_supported,
277 };
278
279 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
280 {
281         if (id->base.phys_id == SFF8024_ID_SFP &&
282             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
283                 return true;
284
285         /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
286          * phys id SFF instead of SFP. Therefore mark this module explicitly
287          * as supported based on vendor name and pn match.
288          */
289         if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
290             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
291             !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
292             !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
293                 return true;
294
295         return false;
296 }
297
298 static const struct sff_data sfp_data = {
299         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
300                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
301         .module_supported = sfp_module_supported,
302 };
303
304 static const struct of_device_id sfp_of_match[] = {
305         { .compatible = "sff,sff", .data = &sff_data, },
306         { .compatible = "sff,sfp", .data = &sfp_data, },
307         { },
308 };
309 MODULE_DEVICE_TABLE(of, sfp_of_match);
310
311 static unsigned long poll_jiffies;
312
313 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
314 {
315         unsigned int i, state, v;
316
317         for (i = state = 0; i < GPIO_MAX; i++) {
318                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
319                         continue;
320
321                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
322                 if (v)
323                         state |= BIT(i);
324         }
325
326         return state;
327 }
328
329 static unsigned int sff_gpio_get_state(struct sfp *sfp)
330 {
331         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
332 }
333
334 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
335 {
336         if (state & SFP_F_PRESENT) {
337                 /* If the module is present, drive the signals */
338                 if (sfp->gpio[GPIO_TX_DISABLE])
339                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
340                                                state & SFP_F_TX_DISABLE);
341                 if (state & SFP_F_RATE_SELECT)
342                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
343                                                state & SFP_F_RATE_SELECT);
344         } else {
345                 /* Otherwise, let them float to the pull-ups */
346                 if (sfp->gpio[GPIO_TX_DISABLE])
347                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
348                 if (state & SFP_F_RATE_SELECT)
349                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
350         }
351 }
352
353 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
354                         size_t len)
355 {
356         struct i2c_msg msgs[2];
357         u8 bus_addr = a2 ? 0x51 : 0x50;
358         size_t block_size = sfp->i2c_block_size;
359         size_t this_len;
360         int ret;
361
362         msgs[0].addr = bus_addr;
363         msgs[0].flags = 0;
364         msgs[0].len = 1;
365         msgs[0].buf = &dev_addr;
366         msgs[1].addr = bus_addr;
367         msgs[1].flags = I2C_M_RD;
368         msgs[1].len = len;
369         msgs[1].buf = buf;
370
371         while (len) {
372                 this_len = len;
373                 if (this_len > block_size)
374                         this_len = block_size;
375
376                 msgs[1].len = this_len;
377
378                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
379                 if (ret < 0)
380                         return ret;
381
382                 if (ret != ARRAY_SIZE(msgs))
383                         break;
384
385                 msgs[1].buf += this_len;
386                 dev_addr += this_len;
387                 len -= this_len;
388         }
389
390         return msgs[1].buf - (u8 *)buf;
391 }
392
393 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
394         size_t len)
395 {
396         struct i2c_msg msgs[1];
397         u8 bus_addr = a2 ? 0x51 : 0x50;
398         int ret;
399
400         msgs[0].addr = bus_addr;
401         msgs[0].flags = 0;
402         msgs[0].len = 1 + len;
403         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
404         if (!msgs[0].buf)
405                 return -ENOMEM;
406
407         msgs[0].buf[0] = dev_addr;
408         memcpy(&msgs[0].buf[1], buf, len);
409
410         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
411
412         kfree(msgs[0].buf);
413
414         if (ret < 0)
415                 return ret;
416
417         return ret == ARRAY_SIZE(msgs) ? len : 0;
418 }
419
420 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
421 {
422         struct mii_bus *i2c_mii;
423         int ret;
424
425         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
426                 return -EINVAL;
427
428         sfp->i2c = i2c;
429         sfp->read = sfp_i2c_read;
430         sfp->write = sfp_i2c_write;
431
432         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
433         if (IS_ERR(i2c_mii))
434                 return PTR_ERR(i2c_mii);
435
436         i2c_mii->name = "SFP I2C Bus";
437         i2c_mii->phy_mask = ~0;
438
439         ret = mdiobus_register(i2c_mii);
440         if (ret < 0) {
441                 mdiobus_free(i2c_mii);
442                 return ret;
443         }
444
445         sfp->i2c_mii = i2c_mii;
446
447         return 0;
448 }
449
450 /* Interface */
451 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
452 {
453         return sfp->read(sfp, a2, addr, buf, len);
454 }
455
456 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
457 {
458         return sfp->write(sfp, a2, addr, buf, len);
459 }
460
461 static unsigned int sfp_soft_get_state(struct sfp *sfp)
462 {
463         unsigned int state = 0;
464         u8 status;
465         int ret;
466
467         ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
468         if (ret == sizeof(status)) {
469                 if (status & SFP_STATUS_RX_LOS)
470                         state |= SFP_F_LOS;
471                 if (status & SFP_STATUS_TX_FAULT)
472                         state |= SFP_F_TX_FAULT;
473         } else {
474                 dev_err_ratelimited(sfp->dev,
475                                     "failed to read SFP soft status: %pe\n",
476                                     ERR_PTR(ret));
477                 /* Preserve the current state */
478                 state = sfp->state;
479         }
480
481         return state & sfp->state_soft_mask;
482 }
483
484 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
485 {
486         u8 status;
487
488         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
489                      sizeof(status)) {
490                 if (state & SFP_F_TX_DISABLE)
491                         status |= SFP_STATUS_TX_DISABLE_FORCE;
492                 else
493                         status &= ~SFP_STATUS_TX_DISABLE_FORCE;
494
495                 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
496         }
497 }
498
499 static void sfp_soft_start_poll(struct sfp *sfp)
500 {
501         const struct sfp_eeprom_id *id = &sfp->id;
502
503         sfp->state_soft_mask = 0;
504         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
505             !sfp->gpio[GPIO_TX_DISABLE])
506                 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
507         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
508             !sfp->gpio[GPIO_TX_FAULT])
509                 sfp->state_soft_mask |= SFP_F_TX_FAULT;
510         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
511             !sfp->gpio[GPIO_LOS])
512                 sfp->state_soft_mask |= SFP_F_LOS;
513
514         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
515             !sfp->need_poll)
516                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
517 }
518
519 static void sfp_soft_stop_poll(struct sfp *sfp)
520 {
521         sfp->state_soft_mask = 0;
522 }
523
524 static unsigned int sfp_get_state(struct sfp *sfp)
525 {
526         unsigned int state = sfp->get_state(sfp);
527
528         if (state & SFP_F_PRESENT &&
529             sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
530                 state |= sfp_soft_get_state(sfp);
531
532         return state;
533 }
534
535 static void sfp_set_state(struct sfp *sfp, unsigned int state)
536 {
537         sfp->set_state(sfp, state);
538
539         if (state & SFP_F_PRESENT &&
540             sfp->state_soft_mask & SFP_F_TX_DISABLE)
541                 sfp_soft_set_state(sfp, state);
542 }
543
544 static unsigned int sfp_check(void *buf, size_t len)
545 {
546         u8 *p, check;
547
548         for (p = buf, check = 0; len; p++, len--)
549                 check += *p;
550
551         return check;
552 }
553
554 /* hwmon */
555 #if IS_ENABLED(CONFIG_HWMON)
556 static umode_t sfp_hwmon_is_visible(const void *data,
557                                     enum hwmon_sensor_types type,
558                                     u32 attr, int channel)
559 {
560         const struct sfp *sfp = data;
561
562         switch (type) {
563         case hwmon_temp:
564                 switch (attr) {
565                 case hwmon_temp_min_alarm:
566                 case hwmon_temp_max_alarm:
567                 case hwmon_temp_lcrit_alarm:
568                 case hwmon_temp_crit_alarm:
569                 case hwmon_temp_min:
570                 case hwmon_temp_max:
571                 case hwmon_temp_lcrit:
572                 case hwmon_temp_crit:
573                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
574                                 return 0;
575                         fallthrough;
576                 case hwmon_temp_input:
577                 case hwmon_temp_label:
578                         return 0444;
579                 default:
580                         return 0;
581                 }
582         case hwmon_in:
583                 switch (attr) {
584                 case hwmon_in_min_alarm:
585                 case hwmon_in_max_alarm:
586                 case hwmon_in_lcrit_alarm:
587                 case hwmon_in_crit_alarm:
588                 case hwmon_in_min:
589                 case hwmon_in_max:
590                 case hwmon_in_lcrit:
591                 case hwmon_in_crit:
592                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
593                                 return 0;
594                         fallthrough;
595                 case hwmon_in_input:
596                 case hwmon_in_label:
597                         return 0444;
598                 default:
599                         return 0;
600                 }
601         case hwmon_curr:
602                 switch (attr) {
603                 case hwmon_curr_min_alarm:
604                 case hwmon_curr_max_alarm:
605                 case hwmon_curr_lcrit_alarm:
606                 case hwmon_curr_crit_alarm:
607                 case hwmon_curr_min:
608                 case hwmon_curr_max:
609                 case hwmon_curr_lcrit:
610                 case hwmon_curr_crit:
611                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
612                                 return 0;
613                         fallthrough;
614                 case hwmon_curr_input:
615                 case hwmon_curr_label:
616                         return 0444;
617                 default:
618                         return 0;
619                 }
620         case hwmon_power:
621                 /* External calibration of receive power requires
622                  * floating point arithmetic. Doing that in the kernel
623                  * is not easy, so just skip it. If the module does
624                  * not require external calibration, we can however
625                  * show receiver power, since FP is then not needed.
626                  */
627                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
628                     channel == 1)
629                         return 0;
630                 switch (attr) {
631                 case hwmon_power_min_alarm:
632                 case hwmon_power_max_alarm:
633                 case hwmon_power_lcrit_alarm:
634                 case hwmon_power_crit_alarm:
635                 case hwmon_power_min:
636                 case hwmon_power_max:
637                 case hwmon_power_lcrit:
638                 case hwmon_power_crit:
639                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
640                                 return 0;
641                         fallthrough;
642                 case hwmon_power_input:
643                 case hwmon_power_label:
644                         return 0444;
645                 default:
646                         return 0;
647                 }
648         default:
649                 return 0;
650         }
651 }
652
653 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
654 {
655         __be16 val;
656         int err;
657
658         err = sfp_read(sfp, true, reg, &val, sizeof(val));
659         if (err < 0)
660                 return err;
661
662         *value = be16_to_cpu(val);
663
664         return 0;
665 }
666
667 static void sfp_hwmon_to_rx_power(long *value)
668 {
669         *value = DIV_ROUND_CLOSEST(*value, 10);
670 }
671
672 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
673                                 long *value)
674 {
675         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
676                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
677 }
678
679 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
680 {
681         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
682                             be16_to_cpu(sfp->diag.cal_t_offset), value);
683
684         if (*value >= 0x8000)
685                 *value -= 0x10000;
686
687         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
688 }
689
690 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
691 {
692         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
693                             be16_to_cpu(sfp->diag.cal_v_offset), value);
694
695         *value = DIV_ROUND_CLOSEST(*value, 10);
696 }
697
698 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
699 {
700         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
701                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
702
703         *value = DIV_ROUND_CLOSEST(*value, 500);
704 }
705
706 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
707 {
708         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
709                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
710
711         *value = DIV_ROUND_CLOSEST(*value, 10);
712 }
713
714 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
715 {
716         int err;
717
718         err = sfp_hwmon_read_sensor(sfp, reg, value);
719         if (err < 0)
720                 return err;
721
722         sfp_hwmon_calibrate_temp(sfp, value);
723
724         return 0;
725 }
726
727 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
728 {
729         int err;
730
731         err = sfp_hwmon_read_sensor(sfp, reg, value);
732         if (err < 0)
733                 return err;
734
735         sfp_hwmon_calibrate_vcc(sfp, value);
736
737         return 0;
738 }
739
740 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
741 {
742         int err;
743
744         err = sfp_hwmon_read_sensor(sfp, reg, value);
745         if (err < 0)
746                 return err;
747
748         sfp_hwmon_calibrate_bias(sfp, value);
749
750         return 0;
751 }
752
753 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
754 {
755         int err;
756
757         err = sfp_hwmon_read_sensor(sfp, reg, value);
758         if (err < 0)
759                 return err;
760
761         sfp_hwmon_calibrate_tx_power(sfp, value);
762
763         return 0;
764 }
765
766 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
767 {
768         int err;
769
770         err = sfp_hwmon_read_sensor(sfp, reg, value);
771         if (err < 0)
772                 return err;
773
774         sfp_hwmon_to_rx_power(value);
775
776         return 0;
777 }
778
779 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
780 {
781         u8 status;
782         int err;
783
784         switch (attr) {
785         case hwmon_temp_input:
786                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
787
788         case hwmon_temp_lcrit:
789                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
790                 sfp_hwmon_calibrate_temp(sfp, value);
791                 return 0;
792
793         case hwmon_temp_min:
794                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
795                 sfp_hwmon_calibrate_temp(sfp, value);
796                 return 0;
797         case hwmon_temp_max:
798                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
799                 sfp_hwmon_calibrate_temp(sfp, value);
800                 return 0;
801
802         case hwmon_temp_crit:
803                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
804                 sfp_hwmon_calibrate_temp(sfp, value);
805                 return 0;
806
807         case hwmon_temp_lcrit_alarm:
808                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
809                 if (err < 0)
810                         return err;
811
812                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
813                 return 0;
814
815         case hwmon_temp_min_alarm:
816                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
817                 if (err < 0)
818                         return err;
819
820                 *value = !!(status & SFP_WARN0_TEMP_LOW);
821                 return 0;
822
823         case hwmon_temp_max_alarm:
824                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
825                 if (err < 0)
826                         return err;
827
828                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
829                 return 0;
830
831         case hwmon_temp_crit_alarm:
832                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
833                 if (err < 0)
834                         return err;
835
836                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
837                 return 0;
838         default:
839                 return -EOPNOTSUPP;
840         }
841
842         return -EOPNOTSUPP;
843 }
844
845 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
846 {
847         u8 status;
848         int err;
849
850         switch (attr) {
851         case hwmon_in_input:
852                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
853
854         case hwmon_in_lcrit:
855                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
856                 sfp_hwmon_calibrate_vcc(sfp, value);
857                 return 0;
858
859         case hwmon_in_min:
860                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
861                 sfp_hwmon_calibrate_vcc(sfp, value);
862                 return 0;
863
864         case hwmon_in_max:
865                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
866                 sfp_hwmon_calibrate_vcc(sfp, value);
867                 return 0;
868
869         case hwmon_in_crit:
870                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
871                 sfp_hwmon_calibrate_vcc(sfp, value);
872                 return 0;
873
874         case hwmon_in_lcrit_alarm:
875                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
876                 if (err < 0)
877                         return err;
878
879                 *value = !!(status & SFP_ALARM0_VCC_LOW);
880                 return 0;
881
882         case hwmon_in_min_alarm:
883                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
884                 if (err < 0)
885                         return err;
886
887                 *value = !!(status & SFP_WARN0_VCC_LOW);
888                 return 0;
889
890         case hwmon_in_max_alarm:
891                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
892                 if (err < 0)
893                         return err;
894
895                 *value = !!(status & SFP_WARN0_VCC_HIGH);
896                 return 0;
897
898         case hwmon_in_crit_alarm:
899                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
900                 if (err < 0)
901                         return err;
902
903                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
904                 return 0;
905         default:
906                 return -EOPNOTSUPP;
907         }
908
909         return -EOPNOTSUPP;
910 }
911
912 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
913 {
914         u8 status;
915         int err;
916
917         switch (attr) {
918         case hwmon_curr_input:
919                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
920
921         case hwmon_curr_lcrit:
922                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
923                 sfp_hwmon_calibrate_bias(sfp, value);
924                 return 0;
925
926         case hwmon_curr_min:
927                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
928                 sfp_hwmon_calibrate_bias(sfp, value);
929                 return 0;
930
931         case hwmon_curr_max:
932                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
933                 sfp_hwmon_calibrate_bias(sfp, value);
934                 return 0;
935
936         case hwmon_curr_crit:
937                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
938                 sfp_hwmon_calibrate_bias(sfp, value);
939                 return 0;
940
941         case hwmon_curr_lcrit_alarm:
942                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
943                 if (err < 0)
944                         return err;
945
946                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
947                 return 0;
948
949         case hwmon_curr_min_alarm:
950                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
951                 if (err < 0)
952                         return err;
953
954                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
955                 return 0;
956
957         case hwmon_curr_max_alarm:
958                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
959                 if (err < 0)
960                         return err;
961
962                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
963                 return 0;
964
965         case hwmon_curr_crit_alarm:
966                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
967                 if (err < 0)
968                         return err;
969
970                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
971                 return 0;
972         default:
973                 return -EOPNOTSUPP;
974         }
975
976         return -EOPNOTSUPP;
977 }
978
979 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
980 {
981         u8 status;
982         int err;
983
984         switch (attr) {
985         case hwmon_power_input:
986                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
987
988         case hwmon_power_lcrit:
989                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
990                 sfp_hwmon_calibrate_tx_power(sfp, value);
991                 return 0;
992
993         case hwmon_power_min:
994                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
995                 sfp_hwmon_calibrate_tx_power(sfp, value);
996                 return 0;
997
998         case hwmon_power_max:
999                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1000                 sfp_hwmon_calibrate_tx_power(sfp, value);
1001                 return 0;
1002
1003         case hwmon_power_crit:
1004                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1005                 sfp_hwmon_calibrate_tx_power(sfp, value);
1006                 return 0;
1007
1008         case hwmon_power_lcrit_alarm:
1009                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1010                 if (err < 0)
1011                         return err;
1012
1013                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1014                 return 0;
1015
1016         case hwmon_power_min_alarm:
1017                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1018                 if (err < 0)
1019                         return err;
1020
1021                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1022                 return 0;
1023
1024         case hwmon_power_max_alarm:
1025                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1026                 if (err < 0)
1027                         return err;
1028
1029                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1030                 return 0;
1031
1032         case hwmon_power_crit_alarm:
1033                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1034                 if (err < 0)
1035                         return err;
1036
1037                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1038                 return 0;
1039         default:
1040                 return -EOPNOTSUPP;
1041         }
1042
1043         return -EOPNOTSUPP;
1044 }
1045
1046 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1047 {
1048         u8 status;
1049         int err;
1050
1051         switch (attr) {
1052         case hwmon_power_input:
1053                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1054
1055         case hwmon_power_lcrit:
1056                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1057                 sfp_hwmon_to_rx_power(value);
1058                 return 0;
1059
1060         case hwmon_power_min:
1061                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1062                 sfp_hwmon_to_rx_power(value);
1063                 return 0;
1064
1065         case hwmon_power_max:
1066                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1067                 sfp_hwmon_to_rx_power(value);
1068                 return 0;
1069
1070         case hwmon_power_crit:
1071                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1072                 sfp_hwmon_to_rx_power(value);
1073                 return 0;
1074
1075         case hwmon_power_lcrit_alarm:
1076                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1077                 if (err < 0)
1078                         return err;
1079
1080                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1081                 return 0;
1082
1083         case hwmon_power_min_alarm:
1084                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1085                 if (err < 0)
1086                         return err;
1087
1088                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1089                 return 0;
1090
1091         case hwmon_power_max_alarm:
1092                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1093                 if (err < 0)
1094                         return err;
1095
1096                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1097                 return 0;
1098
1099         case hwmon_power_crit_alarm:
1100                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1101                 if (err < 0)
1102                         return err;
1103
1104                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1105                 return 0;
1106         default:
1107                 return -EOPNOTSUPP;
1108         }
1109
1110         return -EOPNOTSUPP;
1111 }
1112
1113 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1114                           u32 attr, int channel, long *value)
1115 {
1116         struct sfp *sfp = dev_get_drvdata(dev);
1117
1118         switch (type) {
1119         case hwmon_temp:
1120                 return sfp_hwmon_temp(sfp, attr, value);
1121         case hwmon_in:
1122                 return sfp_hwmon_vcc(sfp, attr, value);
1123         case hwmon_curr:
1124                 return sfp_hwmon_bias(sfp, attr, value);
1125         case hwmon_power:
1126                 switch (channel) {
1127                 case 0:
1128                         return sfp_hwmon_tx_power(sfp, attr, value);
1129                 case 1:
1130                         return sfp_hwmon_rx_power(sfp, attr, value);
1131                 default:
1132                         return -EOPNOTSUPP;
1133                 }
1134         default:
1135                 return -EOPNOTSUPP;
1136         }
1137 }
1138
1139 static const char *const sfp_hwmon_power_labels[] = {
1140         "TX_power",
1141         "RX_power",
1142 };
1143
1144 static int sfp_hwmon_read_string(struct device *dev,
1145                                  enum hwmon_sensor_types type,
1146                                  u32 attr, int channel, const char **str)
1147 {
1148         switch (type) {
1149         case hwmon_curr:
1150                 switch (attr) {
1151                 case hwmon_curr_label:
1152                         *str = "bias";
1153                         return 0;
1154                 default:
1155                         return -EOPNOTSUPP;
1156                 }
1157                 break;
1158         case hwmon_temp:
1159                 switch (attr) {
1160                 case hwmon_temp_label:
1161                         *str = "temperature";
1162                         return 0;
1163                 default:
1164                         return -EOPNOTSUPP;
1165                 }
1166                 break;
1167         case hwmon_in:
1168                 switch (attr) {
1169                 case hwmon_in_label:
1170                         *str = "VCC";
1171                         return 0;
1172                 default:
1173                         return -EOPNOTSUPP;
1174                 }
1175                 break;
1176         case hwmon_power:
1177                 switch (attr) {
1178                 case hwmon_power_label:
1179                         *str = sfp_hwmon_power_labels[channel];
1180                         return 0;
1181                 default:
1182                         return -EOPNOTSUPP;
1183                 }
1184                 break;
1185         default:
1186                 return -EOPNOTSUPP;
1187         }
1188
1189         return -EOPNOTSUPP;
1190 }
1191
1192 static const struct hwmon_ops sfp_hwmon_ops = {
1193         .is_visible = sfp_hwmon_is_visible,
1194         .read = sfp_hwmon_read,
1195         .read_string = sfp_hwmon_read_string,
1196 };
1197
1198 static u32 sfp_hwmon_chip_config[] = {
1199         HWMON_C_REGISTER_TZ,
1200         0,
1201 };
1202
1203 static const struct hwmon_channel_info sfp_hwmon_chip = {
1204         .type = hwmon_chip,
1205         .config = sfp_hwmon_chip_config,
1206 };
1207
1208 static u32 sfp_hwmon_temp_config[] = {
1209         HWMON_T_INPUT |
1210         HWMON_T_MAX | HWMON_T_MIN |
1211         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1212         HWMON_T_CRIT | HWMON_T_LCRIT |
1213         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1214         HWMON_T_LABEL,
1215         0,
1216 };
1217
1218 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1219         .type = hwmon_temp,
1220         .config = sfp_hwmon_temp_config,
1221 };
1222
1223 static u32 sfp_hwmon_vcc_config[] = {
1224         HWMON_I_INPUT |
1225         HWMON_I_MAX | HWMON_I_MIN |
1226         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1227         HWMON_I_CRIT | HWMON_I_LCRIT |
1228         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1229         HWMON_I_LABEL,
1230         0,
1231 };
1232
1233 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1234         .type = hwmon_in,
1235         .config = sfp_hwmon_vcc_config,
1236 };
1237
1238 static u32 sfp_hwmon_bias_config[] = {
1239         HWMON_C_INPUT |
1240         HWMON_C_MAX | HWMON_C_MIN |
1241         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1242         HWMON_C_CRIT | HWMON_C_LCRIT |
1243         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1244         HWMON_C_LABEL,
1245         0,
1246 };
1247
1248 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1249         .type = hwmon_curr,
1250         .config = sfp_hwmon_bias_config,
1251 };
1252
1253 static u32 sfp_hwmon_power_config[] = {
1254         /* Transmit power */
1255         HWMON_P_INPUT |
1256         HWMON_P_MAX | HWMON_P_MIN |
1257         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1258         HWMON_P_CRIT | HWMON_P_LCRIT |
1259         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1260         HWMON_P_LABEL,
1261         /* Receive power */
1262         HWMON_P_INPUT |
1263         HWMON_P_MAX | HWMON_P_MIN |
1264         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1265         HWMON_P_CRIT | HWMON_P_LCRIT |
1266         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1267         HWMON_P_LABEL,
1268         0,
1269 };
1270
1271 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1272         .type = hwmon_power,
1273         .config = sfp_hwmon_power_config,
1274 };
1275
1276 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1277         &sfp_hwmon_chip,
1278         &sfp_hwmon_vcc_channel_info,
1279         &sfp_hwmon_temp_channel_info,
1280         &sfp_hwmon_bias_channel_info,
1281         &sfp_hwmon_power_channel_info,
1282         NULL,
1283 };
1284
1285 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1286         .ops = &sfp_hwmon_ops,
1287         .info = sfp_hwmon_info,
1288 };
1289
1290 static void sfp_hwmon_probe(struct work_struct *work)
1291 {
1292         struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1293         int err, i;
1294
1295         /* hwmon interface needs to access 16bit registers in atomic way to
1296          * guarantee coherency of the diagnostic monitoring data. If it is not
1297          * possible to guarantee coherency because EEPROM is broken in such way
1298          * that does not support atomic 16bit read operation then we have to
1299          * skip registration of hwmon device.
1300          */
1301         if (sfp->i2c_block_size < 2) {
1302                 dev_info(sfp->dev,
1303                          "skipping hwmon device registration due to broken EEPROM\n");
1304                 dev_info(sfp->dev,
1305                          "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1306                 return;
1307         }
1308
1309         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1310         if (err < 0) {
1311                 if (sfp->hwmon_tries--) {
1312                         mod_delayed_work(system_wq, &sfp->hwmon_probe,
1313                                          T_PROBE_RETRY_SLOW);
1314                 } else {
1315                         dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1316                                  ERR_PTR(err));
1317                 }
1318                 return;
1319         }
1320
1321         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1322         if (!sfp->hwmon_name) {
1323                 dev_err(sfp->dev, "out of memory for hwmon name\n");
1324                 return;
1325         }
1326
1327         for (i = 0; sfp->hwmon_name[i]; i++)
1328                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1329                         sfp->hwmon_name[i] = '_';
1330
1331         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1332                                                          sfp->hwmon_name, sfp,
1333                                                          &sfp_hwmon_chip_info,
1334                                                          NULL);
1335         if (IS_ERR(sfp->hwmon_dev))
1336                 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1337                         PTR_ERR(sfp->hwmon_dev));
1338 }
1339
1340 static int sfp_hwmon_insert(struct sfp *sfp)
1341 {
1342         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1343                 return 0;
1344
1345         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1346                 return 0;
1347
1348         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1349                 /* This driver in general does not support address
1350                  * change.
1351                  */
1352                 return 0;
1353
1354         mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1355         sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1356
1357         return 0;
1358 }
1359
1360 static void sfp_hwmon_remove(struct sfp *sfp)
1361 {
1362         cancel_delayed_work_sync(&sfp->hwmon_probe);
1363         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1364                 hwmon_device_unregister(sfp->hwmon_dev);
1365                 sfp->hwmon_dev = NULL;
1366                 kfree(sfp->hwmon_name);
1367         }
1368 }
1369
1370 static int sfp_hwmon_init(struct sfp *sfp)
1371 {
1372         INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1373
1374         return 0;
1375 }
1376
1377 static void sfp_hwmon_exit(struct sfp *sfp)
1378 {
1379         cancel_delayed_work_sync(&sfp->hwmon_probe);
1380 }
1381 #else
1382 static int sfp_hwmon_insert(struct sfp *sfp)
1383 {
1384         return 0;
1385 }
1386
1387 static void sfp_hwmon_remove(struct sfp *sfp)
1388 {
1389 }
1390
1391 static int sfp_hwmon_init(struct sfp *sfp)
1392 {
1393         return 0;
1394 }
1395
1396 static void sfp_hwmon_exit(struct sfp *sfp)
1397 {
1398 }
1399 #endif
1400
1401 /* Helpers */
1402 static void sfp_module_tx_disable(struct sfp *sfp)
1403 {
1404         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1405                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1406         sfp->state |= SFP_F_TX_DISABLE;
1407         sfp_set_state(sfp, sfp->state);
1408 }
1409
1410 static void sfp_module_tx_enable(struct sfp *sfp)
1411 {
1412         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1413                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1414         sfp->state &= ~SFP_F_TX_DISABLE;
1415         sfp_set_state(sfp, sfp->state);
1416 }
1417
1418 #if IS_ENABLED(CONFIG_DEBUG_FS)
1419 static int sfp_debug_state_show(struct seq_file *s, void *data)
1420 {
1421         struct sfp *sfp = s->private;
1422
1423         seq_printf(s, "Module state: %s\n",
1424                    mod_state_to_str(sfp->sm_mod_state));
1425         seq_printf(s, "Module probe attempts: %d %d\n",
1426                    R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1427                    R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1428         seq_printf(s, "Device state: %s\n",
1429                    dev_state_to_str(sfp->sm_dev_state));
1430         seq_printf(s, "Main state: %s\n",
1431                    sm_state_to_str(sfp->sm_state));
1432         seq_printf(s, "Fault recovery remaining retries: %d\n",
1433                    sfp->sm_fault_retries);
1434         seq_printf(s, "PHY probe remaining retries: %d\n",
1435                    sfp->sm_phy_retries);
1436         seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1437         seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1438         seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1439         seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1440         return 0;
1441 }
1442 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1443
1444 static void sfp_debugfs_init(struct sfp *sfp)
1445 {
1446         sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1447
1448         debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1449                             &sfp_debug_state_fops);
1450 }
1451
1452 static void sfp_debugfs_exit(struct sfp *sfp)
1453 {
1454         debugfs_remove_recursive(sfp->debugfs_dir);
1455 }
1456 #else
1457 static void sfp_debugfs_init(struct sfp *sfp)
1458 {
1459 }
1460
1461 static void sfp_debugfs_exit(struct sfp *sfp)
1462 {
1463 }
1464 #endif
1465
1466 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1467 {
1468         unsigned int state = sfp->state;
1469
1470         if (state & SFP_F_TX_DISABLE)
1471                 return;
1472
1473         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1474
1475         udelay(T_RESET_US);
1476
1477         sfp_set_state(sfp, state);
1478 }
1479
1480 /* SFP state machine */
1481 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1482 {
1483         if (timeout)
1484                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1485                                  timeout);
1486         else
1487                 cancel_delayed_work(&sfp->timeout);
1488 }
1489
1490 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1491                         unsigned int timeout)
1492 {
1493         sfp->sm_state = state;
1494         sfp_sm_set_timer(sfp, timeout);
1495 }
1496
1497 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1498                             unsigned int timeout)
1499 {
1500         sfp->sm_mod_state = state;
1501         sfp_sm_set_timer(sfp, timeout);
1502 }
1503
1504 static void sfp_sm_phy_detach(struct sfp *sfp)
1505 {
1506         sfp_remove_phy(sfp->sfp_bus);
1507         phy_device_remove(sfp->mod_phy);
1508         phy_device_free(sfp->mod_phy);
1509         sfp->mod_phy = NULL;
1510 }
1511
1512 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1513 {
1514         struct phy_device *phy;
1515         int err;
1516
1517         phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1518         if (phy == ERR_PTR(-ENODEV))
1519                 return PTR_ERR(phy);
1520         if (IS_ERR(phy)) {
1521                 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1522                 return PTR_ERR(phy);
1523         }
1524
1525         err = phy_device_register(phy);
1526         if (err) {
1527                 phy_device_free(phy);
1528                 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1529                         ERR_PTR(err));
1530                 return err;
1531         }
1532
1533         err = sfp_add_phy(sfp->sfp_bus, phy);
1534         if (err) {
1535                 phy_device_remove(phy);
1536                 phy_device_free(phy);
1537                 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1538                 return err;
1539         }
1540
1541         sfp->mod_phy = phy;
1542
1543         return 0;
1544 }
1545
1546 static void sfp_sm_link_up(struct sfp *sfp)
1547 {
1548         sfp_link_up(sfp->sfp_bus);
1549         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1550 }
1551
1552 static void sfp_sm_link_down(struct sfp *sfp)
1553 {
1554         sfp_link_down(sfp->sfp_bus);
1555 }
1556
1557 static void sfp_sm_link_check_los(struct sfp *sfp)
1558 {
1559         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1560         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1561         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1562         bool los = false;
1563
1564         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1565          * are set, we assume that no LOS signal is available. If both are
1566          * set, we assume LOS is not implemented (and is meaningless.)
1567          */
1568         if (los_options == los_inverted)
1569                 los = !(sfp->state & SFP_F_LOS);
1570         else if (los_options == los_normal)
1571                 los = !!(sfp->state & SFP_F_LOS);
1572
1573         if (los)
1574                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1575         else
1576                 sfp_sm_link_up(sfp);
1577 }
1578
1579 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1580 {
1581         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1582         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1583         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1584
1585         return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1586                (los_options == los_normal && event == SFP_E_LOS_HIGH);
1587 }
1588
1589 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1590 {
1591         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1592         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1593         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1594
1595         return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1596                (los_options == los_normal && event == SFP_E_LOS_LOW);
1597 }
1598
1599 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1600 {
1601         if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1602                 dev_err(sfp->dev,
1603                         "module persistently indicates fault, disabling\n");
1604                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1605         } else {
1606                 if (warn)
1607                         dev_err(sfp->dev, "module transmit fault indicated\n");
1608
1609                 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1610         }
1611 }
1612
1613 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1614  * normally sits at I2C bus address 0x56, and may either be a clause 22
1615  * or clause 45 PHY.
1616  *
1617  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1618  * negotiation enabled, but some may be in 1000base-X - which is for the
1619  * PHY driver to determine.
1620  *
1621  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1622  * mode according to the negotiated line speed.
1623  */
1624 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1625 {
1626         int err = 0;
1627
1628         switch (sfp->id.base.extended_cc) {
1629         case SFF8024_ECC_10GBASE_T_SFI:
1630         case SFF8024_ECC_10GBASE_T_SR:
1631         case SFF8024_ECC_5GBASE_T:
1632         case SFF8024_ECC_2_5GBASE_T:
1633                 err = sfp_sm_probe_phy(sfp, true);
1634                 break;
1635
1636         default:
1637                 if (sfp->id.base.e1000_base_t)
1638                         err = sfp_sm_probe_phy(sfp, false);
1639                 break;
1640         }
1641         return err;
1642 }
1643
1644 static int sfp_module_parse_power(struct sfp *sfp)
1645 {
1646         u32 power_mW = 1000;
1647         bool supports_a2;
1648
1649         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1650                 power_mW = 1500;
1651         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1652                 power_mW = 2000;
1653
1654         supports_a2 = sfp->id.ext.sff8472_compliance !=
1655                                 SFP_SFF8472_COMPLIANCE_NONE ||
1656                       sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1657
1658         if (power_mW > sfp->max_power_mW) {
1659                 /* Module power specification exceeds the allowed maximum. */
1660                 if (!supports_a2) {
1661                         /* The module appears not to implement bus address
1662                          * 0xa2, so assume that the module powers up in the
1663                          * indicated mode.
1664                          */
1665                         dev_err(sfp->dev,
1666                                 "Host does not support %u.%uW modules\n",
1667                                 power_mW / 1000, (power_mW / 100) % 10);
1668                         return -EINVAL;
1669                 } else {
1670                         dev_warn(sfp->dev,
1671                                  "Host does not support %u.%uW modules, module left in power mode 1\n",
1672                                  power_mW / 1000, (power_mW / 100) % 10);
1673                         return 0;
1674                 }
1675         }
1676
1677         if (power_mW <= 1000) {
1678                 /* Modules below 1W do not require a power change sequence */
1679                 sfp->module_power_mW = power_mW;
1680                 return 0;
1681         }
1682
1683         if (!supports_a2) {
1684                 /* The module power level is below the host maximum and the
1685                  * module appears not to implement bus address 0xa2, so assume
1686                  * that the module powers up in the indicated mode.
1687                  */
1688                 return 0;
1689         }
1690
1691         /* If the module requires a higher power mode, but also requires
1692          * an address change sequence, warn the user that the module may
1693          * not be functional.
1694          */
1695         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1696                 dev_warn(sfp->dev,
1697                          "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1698                          power_mW / 1000, (power_mW / 100) % 10);
1699                 return 0;
1700         }
1701
1702         sfp->module_power_mW = power_mW;
1703
1704         return 0;
1705 }
1706
1707 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1708 {
1709         u8 val;
1710         int err;
1711
1712         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1713         if (err != sizeof(val)) {
1714                 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1715                 return -EAGAIN;
1716         }
1717
1718         /* DM7052 reports as a high power module, responds to reads (with
1719          * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1720          * if the bit is already set, we're already in high power mode.
1721          */
1722         if (!!(val & BIT(0)) == enable)
1723                 return 0;
1724
1725         if (enable)
1726                 val |= BIT(0);
1727         else
1728                 val &= ~BIT(0);
1729
1730         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1731         if (err != sizeof(val)) {
1732                 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1733                         ERR_PTR(err));
1734                 return -EAGAIN;
1735         }
1736
1737         if (enable)
1738                 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1739                          sfp->module_power_mW / 1000,
1740                          (sfp->module_power_mW / 100) % 10);
1741
1742         return 0;
1743 }
1744
1745 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1746  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1747  * not support multibyte reads from the EEPROM. Each multi-byte read
1748  * operation returns just one byte of EEPROM followed by zeros. There is
1749  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1750  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1751  * name and vendor id into EEPROM, so there is even no way to detect if
1752  * module is V-SOL V2801F. Therefore check for those zeros in the read
1753  * data and then based on check switch to reading EEPROM to one byte
1754  * at a time.
1755  */
1756 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1757 {
1758         size_t i, block_size = sfp->i2c_block_size;
1759
1760         /* Already using byte IO */
1761         if (block_size == 1)
1762                 return false;
1763
1764         for (i = 1; i < len; i += block_size) {
1765                 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1766                         return false;
1767         }
1768         return true;
1769 }
1770
1771 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1772 {
1773         u8 check;
1774         int err;
1775
1776         if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1777             id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1778             id->base.connector != SFF8024_CONNECTOR_LC) {
1779                 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1780                 id->base.phys_id = SFF8024_ID_SFF_8472;
1781                 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1782                 id->base.connector = SFF8024_CONNECTOR_LC;
1783                 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1784                 if (err != 3) {
1785                         dev_err(sfp->dev,
1786                                 "Failed to rewrite module EEPROM: %pe\n",
1787                                 ERR_PTR(err));
1788                         return err;
1789                 }
1790
1791                 /* Cotsworks modules have been found to require a delay between write operations. */
1792                 mdelay(50);
1793
1794                 /* Update base structure checksum */
1795                 check = sfp_check(&id->base, sizeof(id->base) - 1);
1796                 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1797                 if (err != 1) {
1798                         dev_err(sfp->dev,
1799                                 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1800                                 ERR_PTR(err));
1801                         return err;
1802                 }
1803         }
1804         return 0;
1805 }
1806
1807 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1808 {
1809         /* SFP module inserted - read I2C data */
1810         struct sfp_eeprom_id id;
1811         bool cotsworks_sfbg;
1812         bool cotsworks;
1813         u8 check;
1814         int ret;
1815
1816         /* Some SFP modules and also some Linux I2C drivers do not like reads
1817          * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1818          * a time.
1819          */
1820         sfp->i2c_block_size = 16;
1821
1822         ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823         if (ret < 0) {
1824                 if (report)
1825                         dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1826                                 ERR_PTR(ret));
1827                 return -EAGAIN;
1828         }
1829
1830         if (ret != sizeof(id.base)) {
1831                 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1832                 return -EAGAIN;
1833         }
1834
1835         /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1836          * address 0x51 is just one byte at a time. Also SFF-8472 requires
1837          * that EEPROM supports atomic 16bit read operation for diagnostic
1838          * fields, so do not switch to one byte reading at a time unless it
1839          * is really required and we have no other option.
1840          */
1841         if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1842                 dev_info(sfp->dev,
1843                          "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1844                 dev_info(sfp->dev,
1845                          "Switching to reading EEPROM to one byte at a time\n");
1846                 sfp->i2c_block_size = 1;
1847
1848                 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1849                 if (ret < 0) {
1850                         if (report)
1851                                 dev_err(sfp->dev,
1852                                         "failed to read EEPROM: %pe\n",
1853                                         ERR_PTR(ret));
1854                         return -EAGAIN;
1855                 }
1856
1857                 if (ret != sizeof(id.base)) {
1858                         dev_err(sfp->dev, "EEPROM short read: %pe\n",
1859                                 ERR_PTR(ret));
1860                         return -EAGAIN;
1861                 }
1862         }
1863
1864         /* Cotsworks do not seem to update the checksums when they
1865          * do the final programming with the final module part number,
1866          * serial number and date code.
1867          */
1868         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1869         cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1870
1871         /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1872          * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1873          * Cotsworks PN matches and bytes are not correct.
1874          */
1875         if (cotsworks && cotsworks_sfbg) {
1876                 ret = sfp_cotsworks_fixup_check(sfp, &id);
1877                 if (ret < 0)
1878                         return ret;
1879         }
1880
1881         /* Validate the checksum over the base structure */
1882         check = sfp_check(&id.base, sizeof(id.base) - 1);
1883         if (check != id.base.cc_base) {
1884                 if (cotsworks) {
1885                         dev_warn(sfp->dev,
1886                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1887                                  check, id.base.cc_base);
1888                 } else {
1889                         dev_err(sfp->dev,
1890                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1891                                 check, id.base.cc_base);
1892                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893                                        16, 1, &id, sizeof(id), true);
1894                         return -EINVAL;
1895                 }
1896         }
1897
1898         ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1899         if (ret < 0) {
1900                 if (report)
1901                         dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1902                                 ERR_PTR(ret));
1903                 return -EAGAIN;
1904         }
1905
1906         if (ret != sizeof(id.ext)) {
1907                 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1908                 return -EAGAIN;
1909         }
1910
1911         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1912         if (check != id.ext.cc_ext) {
1913                 if (cotsworks) {
1914                         dev_warn(sfp->dev,
1915                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1916                                  check, id.ext.cc_ext);
1917                 } else {
1918                         dev_err(sfp->dev,
1919                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1920                                 check, id.ext.cc_ext);
1921                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1922                                        16, 1, &id, sizeof(id), true);
1923                         memset(&id.ext, 0, sizeof(id.ext));
1924                 }
1925         }
1926
1927         sfp->id = id;
1928
1929         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1930                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1931                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1932                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1933                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1934                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1935
1936         /* Check whether we support this module */
1937         if (!sfp->type->module_supported(&id)) {
1938                 dev_err(sfp->dev,
1939                         "module is not supported - phys id 0x%02x 0x%02x\n",
1940                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1941                 return -EINVAL;
1942         }
1943
1944         /* If the module requires address swap mode, warn about it */
1945         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1946                 dev_warn(sfp->dev,
1947                          "module address swap to access page 0xA2 is not supported.\n");
1948
1949         /* Parse the module power requirement */
1950         ret = sfp_module_parse_power(sfp);
1951         if (ret < 0)
1952                 return ret;
1953
1954         if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1955             !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1956                 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1957         else
1958                 sfp->module_t_start_up = T_START_UP;
1959
1960         if (!memcmp(id.base.vendor_name, "HUAWEI          ", 16) &&
1961             !memcmp(id.base.vendor_pn, "MA5671A         ", 16))
1962                 sfp->tx_fault_ignore = true;
1963         else
1964                 sfp->tx_fault_ignore = false;
1965
1966         return 0;
1967 }
1968
1969 static void sfp_sm_mod_remove(struct sfp *sfp)
1970 {
1971         if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1972                 sfp_module_remove(sfp->sfp_bus);
1973
1974         sfp_hwmon_remove(sfp);
1975
1976         memset(&sfp->id, 0, sizeof(sfp->id));
1977         sfp->module_power_mW = 0;
1978
1979         dev_info(sfp->dev, "module removed\n");
1980 }
1981
1982 /* This state machine tracks the upstream's state */
1983 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1984 {
1985         switch (sfp->sm_dev_state) {
1986         default:
1987                 if (event == SFP_E_DEV_ATTACH)
1988                         sfp->sm_dev_state = SFP_DEV_DOWN;
1989                 break;
1990
1991         case SFP_DEV_DOWN:
1992                 if (event == SFP_E_DEV_DETACH)
1993                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1994                 else if (event == SFP_E_DEV_UP)
1995                         sfp->sm_dev_state = SFP_DEV_UP;
1996                 break;
1997
1998         case SFP_DEV_UP:
1999                 if (event == SFP_E_DEV_DETACH)
2000                         sfp->sm_dev_state = SFP_DEV_DETACHED;
2001                 else if (event == SFP_E_DEV_DOWN)
2002                         sfp->sm_dev_state = SFP_DEV_DOWN;
2003                 break;
2004         }
2005 }
2006
2007 /* This state machine tracks the insert/remove state of the module, probes
2008  * the on-board EEPROM, and sets up the power level.
2009  */
2010 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2011 {
2012         int err;
2013
2014         /* Handle remove event globally, it resets this state machine */
2015         if (event == SFP_E_REMOVE) {
2016                 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2017                         sfp_sm_mod_remove(sfp);
2018                 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2019                 return;
2020         }
2021
2022         /* Handle device detach globally */
2023         if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2024             sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2025                 if (sfp->module_power_mW > 1000 &&
2026                     sfp->sm_mod_state > SFP_MOD_HPOWER)
2027                         sfp_sm_mod_hpower(sfp, false);
2028                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2029                 return;
2030         }
2031
2032         switch (sfp->sm_mod_state) {
2033         default:
2034                 if (event == SFP_E_INSERT) {
2035                         sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2036                         sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2037                         sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2038                 }
2039                 break;
2040
2041         case SFP_MOD_PROBE:
2042                 /* Wait for T_PROBE_INIT to time out */
2043                 if (event != SFP_E_TIMEOUT)
2044                         break;
2045
2046                 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2047                 if (err == -EAGAIN) {
2048                         if (sfp->sm_mod_tries_init &&
2049                            --sfp->sm_mod_tries_init) {
2050                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2051                                 break;
2052                         } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2053                                 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2054                                         dev_warn(sfp->dev,
2055                                                  "please wait, module slow to respond\n");
2056                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2057                                 break;
2058                         }
2059                 }
2060                 if (err < 0) {
2061                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2062                         break;
2063                 }
2064
2065                 err = sfp_hwmon_insert(sfp);
2066                 if (err)
2067                         dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2068                                  ERR_PTR(err));
2069
2070                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2071                 fallthrough;
2072         case SFP_MOD_WAITDEV:
2073                 /* Ensure that the device is attached before proceeding */
2074                 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2075                         break;
2076
2077                 /* Report the module insertion to the upstream device */
2078                 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2079                 if (err < 0) {
2080                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2081                         break;
2082                 }
2083
2084                 /* If this is a power level 1 module, we are done */
2085                 if (sfp->module_power_mW <= 1000)
2086                         goto insert;
2087
2088                 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2089                 fallthrough;
2090         case SFP_MOD_HPOWER:
2091                 /* Enable high power mode */
2092                 err = sfp_sm_mod_hpower(sfp, true);
2093                 if (err < 0) {
2094                         if (err != -EAGAIN) {
2095                                 sfp_module_remove(sfp->sfp_bus);
2096                                 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2097                         } else {
2098                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2099                         }
2100                         break;
2101                 }
2102
2103                 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2104                 break;
2105
2106         case SFP_MOD_WAITPWR:
2107                 /* Wait for T_HPOWER_LEVEL to time out */
2108                 if (event != SFP_E_TIMEOUT)
2109                         break;
2110
2111         insert:
2112                 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2113                 break;
2114
2115         case SFP_MOD_PRESENT:
2116         case SFP_MOD_ERROR:
2117                 break;
2118         }
2119 }
2120
2121 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2122 {
2123         unsigned long timeout;
2124         int ret;
2125
2126         /* Some events are global */
2127         if (sfp->sm_state != SFP_S_DOWN &&
2128             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2129              sfp->sm_dev_state != SFP_DEV_UP)) {
2130                 if (sfp->sm_state == SFP_S_LINK_UP &&
2131                     sfp->sm_dev_state == SFP_DEV_UP)
2132                         sfp_sm_link_down(sfp);
2133                 if (sfp->sm_state > SFP_S_INIT)
2134                         sfp_module_stop(sfp->sfp_bus);
2135                 if (sfp->mod_phy)
2136                         sfp_sm_phy_detach(sfp);
2137                 sfp_module_tx_disable(sfp);
2138                 sfp_soft_stop_poll(sfp);
2139                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2140                 return;
2141         }
2142
2143         /* The main state machine */
2144         switch (sfp->sm_state) {
2145         case SFP_S_DOWN:
2146                 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2147                     sfp->sm_dev_state != SFP_DEV_UP)
2148                         break;
2149
2150                 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2151                         sfp_soft_start_poll(sfp);
2152
2153                 sfp_module_tx_enable(sfp);
2154
2155                 /* Initialise the fault clearance retries */
2156                 sfp->sm_fault_retries = N_FAULT_INIT;
2157
2158                 /* We need to check the TX_FAULT state, which is not defined
2159                  * while TX_DISABLE is asserted. The earliest we want to do
2160                  * anything (such as probe for a PHY) is 50ms.
2161                  */
2162                 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2163                 break;
2164
2165         case SFP_S_WAIT:
2166                 if (event != SFP_E_TIMEOUT)
2167                         break;
2168
2169                 if (sfp->state & SFP_F_TX_FAULT) {
2170                         /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2171                          * from the TX_DISABLE deassertion for the module to
2172                          * initialise, which is indicated by TX_FAULT
2173                          * deasserting.
2174                          */
2175                         timeout = sfp->module_t_start_up;
2176                         if (timeout > T_WAIT)
2177                                 timeout -= T_WAIT;
2178                         else
2179                                 timeout = 1;
2180
2181                         sfp_sm_next(sfp, SFP_S_INIT, timeout);
2182                 } else {
2183                         /* TX_FAULT is not asserted, assume the module has
2184                          * finished initialising.
2185                          */
2186                         goto init_done;
2187                 }
2188                 break;
2189
2190         case SFP_S_INIT:
2191                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2192                         /* TX_FAULT is still asserted after t_init
2193                          * or t_start_up, so assume there is a fault.
2194                          */
2195                         sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2196                                      sfp->sm_fault_retries == N_FAULT_INIT);
2197                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2198         init_done:
2199                         sfp->sm_phy_retries = R_PHY_RETRY;
2200                         goto phy_probe;
2201                 }
2202                 break;
2203
2204         case SFP_S_INIT_PHY:
2205                 if (event != SFP_E_TIMEOUT)
2206                         break;
2207         phy_probe:
2208                 /* TX_FAULT deasserted or we timed out with TX_FAULT
2209                  * clear.  Probe for the PHY and check the LOS state.
2210                  */
2211                 ret = sfp_sm_probe_for_phy(sfp);
2212                 if (ret == -ENODEV) {
2213                         if (--sfp->sm_phy_retries) {
2214                                 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2215                                 break;
2216                         } else {
2217                                 dev_info(sfp->dev, "no PHY detected\n");
2218                         }
2219                 } else if (ret) {
2220                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2221                         break;
2222                 }
2223                 if (sfp_module_start(sfp->sfp_bus)) {
2224                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2225                         break;
2226                 }
2227                 sfp_sm_link_check_los(sfp);
2228
2229                 /* Reset the fault retry count */
2230                 sfp->sm_fault_retries = N_FAULT;
2231                 break;
2232
2233         case SFP_S_INIT_TX_FAULT:
2234                 if (event == SFP_E_TIMEOUT) {
2235                         sfp_module_tx_fault_reset(sfp);
2236                         sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2237                 }
2238                 break;
2239
2240         case SFP_S_WAIT_LOS:
2241                 if (event == SFP_E_TX_FAULT)
2242                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2243                 else if (sfp_los_event_inactive(sfp, event))
2244                         sfp_sm_link_up(sfp);
2245                 break;
2246
2247         case SFP_S_LINK_UP:
2248                 if (event == SFP_E_TX_FAULT) {
2249                         sfp_sm_link_down(sfp);
2250                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2251                 } else if (sfp_los_event_active(sfp, event)) {
2252                         sfp_sm_link_down(sfp);
2253                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2254                 }
2255                 break;
2256
2257         case SFP_S_TX_FAULT:
2258                 if (event == SFP_E_TIMEOUT) {
2259                         sfp_module_tx_fault_reset(sfp);
2260                         sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2261                 }
2262                 break;
2263
2264         case SFP_S_REINIT:
2265                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2266                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2267                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2268                         dev_info(sfp->dev, "module transmit fault recovered\n");
2269                         sfp_sm_link_check_los(sfp);
2270                 }
2271                 break;
2272
2273         case SFP_S_TX_DISABLE:
2274                 break;
2275         }
2276 }
2277
2278 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2279 {
2280         mutex_lock(&sfp->sm_mutex);
2281
2282         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2283                 mod_state_to_str(sfp->sm_mod_state),
2284                 dev_state_to_str(sfp->sm_dev_state),
2285                 sm_state_to_str(sfp->sm_state),
2286                 event_to_str(event));
2287
2288         sfp_sm_device(sfp, event);
2289         sfp_sm_module(sfp, event);
2290         sfp_sm_main(sfp, event);
2291
2292         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2293                 mod_state_to_str(sfp->sm_mod_state),
2294                 dev_state_to_str(sfp->sm_dev_state),
2295                 sm_state_to_str(sfp->sm_state));
2296
2297         mutex_unlock(&sfp->sm_mutex);
2298 }
2299
2300 static void sfp_attach(struct sfp *sfp)
2301 {
2302         sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2303 }
2304
2305 static void sfp_detach(struct sfp *sfp)
2306 {
2307         sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2308 }
2309
2310 static void sfp_start(struct sfp *sfp)
2311 {
2312         sfp_sm_event(sfp, SFP_E_DEV_UP);
2313 }
2314
2315 static void sfp_stop(struct sfp *sfp)
2316 {
2317         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2318 }
2319
2320 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2321 {
2322         /* locking... and check module is present */
2323
2324         if (sfp->id.ext.sff8472_compliance &&
2325             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2326                 modinfo->type = ETH_MODULE_SFF_8472;
2327                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2328         } else {
2329                 modinfo->type = ETH_MODULE_SFF_8079;
2330                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2331         }
2332         return 0;
2333 }
2334
2335 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2336                              u8 *data)
2337 {
2338         unsigned int first, last, len;
2339         int ret;
2340
2341         if (ee->len == 0)
2342                 return -EINVAL;
2343
2344         first = ee->offset;
2345         last = ee->offset + ee->len;
2346         if (first < ETH_MODULE_SFF_8079_LEN) {
2347                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2348                 len -= first;
2349
2350                 ret = sfp_read(sfp, false, first, data, len);
2351                 if (ret < 0)
2352                         return ret;
2353
2354                 first += len;
2355                 data += len;
2356         }
2357         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2358                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2359                 len -= first;
2360                 first -= ETH_MODULE_SFF_8079_LEN;
2361
2362                 ret = sfp_read(sfp, true, first, data, len);
2363                 if (ret < 0)
2364                         return ret;
2365         }
2366         return 0;
2367 }
2368
2369 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2370                                      const struct ethtool_module_eeprom *page,
2371                                      struct netlink_ext_ack *extack)
2372 {
2373         if (page->bank) {
2374                 NL_SET_ERR_MSG(extack, "Banks not supported");
2375                 return -EOPNOTSUPP;
2376         }
2377
2378         if (page->page) {
2379                 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2380                 return -EOPNOTSUPP;
2381         }
2382
2383         if (page->i2c_address != 0x50 &&
2384             page->i2c_address != 0x51) {
2385                 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2386                 return -EOPNOTSUPP;
2387         }
2388
2389         return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2390                         page->data, page->length);
2391 };
2392
2393 static const struct sfp_socket_ops sfp_module_ops = {
2394         .attach = sfp_attach,
2395         .detach = sfp_detach,
2396         .start = sfp_start,
2397         .stop = sfp_stop,
2398         .module_info = sfp_module_info,
2399         .module_eeprom = sfp_module_eeprom,
2400         .module_eeprom_by_page = sfp_module_eeprom_by_page,
2401 };
2402
2403 static void sfp_timeout(struct work_struct *work)
2404 {
2405         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2406
2407         rtnl_lock();
2408         sfp_sm_event(sfp, SFP_E_TIMEOUT);
2409         rtnl_unlock();
2410 }
2411
2412 static void sfp_check_state(struct sfp *sfp)
2413 {
2414         unsigned int state, i, changed;
2415
2416         mutex_lock(&sfp->st_mutex);
2417         state = sfp_get_state(sfp);
2418         changed = state ^ sfp->state;
2419         if (sfp->tx_fault_ignore)
2420                 changed &= SFP_F_PRESENT | SFP_F_LOS;
2421         else
2422                 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2423
2424         for (i = 0; i < GPIO_MAX; i++)
2425                 if (changed & BIT(i))
2426                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2427                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2428
2429         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2430         sfp->state = state;
2431
2432         rtnl_lock();
2433         if (changed & SFP_F_PRESENT)
2434                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2435                                 SFP_E_INSERT : SFP_E_REMOVE);
2436
2437         if (changed & SFP_F_TX_FAULT)
2438                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2439                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2440
2441         if (changed & SFP_F_LOS)
2442                 sfp_sm_event(sfp, state & SFP_F_LOS ?
2443                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2444         rtnl_unlock();
2445         mutex_unlock(&sfp->st_mutex);
2446 }
2447
2448 static irqreturn_t sfp_irq(int irq, void *data)
2449 {
2450         struct sfp *sfp = data;
2451
2452         sfp_check_state(sfp);
2453
2454         return IRQ_HANDLED;
2455 }
2456
2457 static void sfp_poll(struct work_struct *work)
2458 {
2459         struct sfp *sfp = container_of(work, struct sfp, poll.work);
2460
2461         sfp_check_state(sfp);
2462
2463         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2464             sfp->need_poll)
2465                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2466 }
2467
2468 static struct sfp *sfp_alloc(struct device *dev)
2469 {
2470         struct sfp *sfp;
2471
2472         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2473         if (!sfp)
2474                 return ERR_PTR(-ENOMEM);
2475
2476         sfp->dev = dev;
2477
2478         mutex_init(&sfp->sm_mutex);
2479         mutex_init(&sfp->st_mutex);
2480         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2481         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2482
2483         sfp_hwmon_init(sfp);
2484
2485         return sfp;
2486 }
2487
2488 static void sfp_cleanup(void *data)
2489 {
2490         struct sfp *sfp = data;
2491
2492         sfp_hwmon_exit(sfp);
2493
2494         cancel_delayed_work_sync(&sfp->poll);
2495         cancel_delayed_work_sync(&sfp->timeout);
2496         if (sfp->i2c_mii) {
2497                 mdiobus_unregister(sfp->i2c_mii);
2498                 mdiobus_free(sfp->i2c_mii);
2499         }
2500         if (sfp->i2c)
2501                 i2c_put_adapter(sfp->i2c);
2502         kfree(sfp);
2503 }
2504
2505 static int sfp_probe(struct platform_device *pdev)
2506 {
2507         const struct sff_data *sff;
2508         struct i2c_adapter *i2c;
2509         char *sfp_irq_name;
2510         struct sfp *sfp;
2511         int err, i;
2512
2513         sfp = sfp_alloc(&pdev->dev);
2514         if (IS_ERR(sfp))
2515                 return PTR_ERR(sfp);
2516
2517         platform_set_drvdata(pdev, sfp);
2518
2519         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2520         if (err < 0)
2521                 return err;
2522
2523         sff = sfp->type = &sfp_data;
2524
2525         if (pdev->dev.of_node) {
2526                 struct device_node *node = pdev->dev.of_node;
2527                 const struct of_device_id *id;
2528                 struct device_node *np;
2529
2530                 id = of_match_node(sfp_of_match, node);
2531                 if (WARN_ON(!id))
2532                         return -EINVAL;
2533
2534                 sff = sfp->type = id->data;
2535
2536                 np = of_parse_phandle(node, "i2c-bus", 0);
2537                 if (!np) {
2538                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2539                         return -ENODEV;
2540                 }
2541
2542                 i2c = of_find_i2c_adapter_by_node(np);
2543                 of_node_put(np);
2544         } else if (has_acpi_companion(&pdev->dev)) {
2545                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2546                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2547                 struct fwnode_reference_args args;
2548                 struct acpi_handle *acpi_handle;
2549                 int ret;
2550
2551                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2552                 if (ret || !is_acpi_device_node(args.fwnode)) {
2553                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2554                         return -ENODEV;
2555                 }
2556
2557                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2558                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2559         } else {
2560                 return -EINVAL;
2561         }
2562
2563         if (!i2c)
2564                 return -EPROBE_DEFER;
2565
2566         err = sfp_i2c_configure(sfp, i2c);
2567         if (err < 0) {
2568                 i2c_put_adapter(i2c);
2569                 return err;
2570         }
2571
2572         for (i = 0; i < GPIO_MAX; i++)
2573                 if (sff->gpios & BIT(i)) {
2574                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2575                                            gpio_of_names[i], gpio_flags[i]);
2576                         if (IS_ERR(sfp->gpio[i]))
2577                                 return PTR_ERR(sfp->gpio[i]);
2578                 }
2579
2580         sfp->get_state = sfp_gpio_get_state;
2581         sfp->set_state = sfp_gpio_set_state;
2582
2583         /* Modules that have no detect signal are always present */
2584         if (!(sfp->gpio[GPIO_MODDEF0]))
2585                 sfp->get_state = sff_gpio_get_state;
2586
2587         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2588                                  &sfp->max_power_mW);
2589         if (!sfp->max_power_mW)
2590                 sfp->max_power_mW = 1000;
2591
2592         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2593                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2594
2595         /* Get the initial state, and always signal TX disable,
2596          * since the network interface will not be up.
2597          */
2598         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2599
2600         if (sfp->gpio[GPIO_RATE_SELECT] &&
2601             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2602                 sfp->state |= SFP_F_RATE_SELECT;
2603         sfp_set_state(sfp, sfp->state);
2604         sfp_module_tx_disable(sfp);
2605         if (sfp->state & SFP_F_PRESENT) {
2606                 rtnl_lock();
2607                 sfp_sm_event(sfp, SFP_E_INSERT);
2608                 rtnl_unlock();
2609         }
2610
2611         for (i = 0; i < GPIO_MAX; i++) {
2612                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2613                         continue;
2614
2615                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2616                 if (sfp->gpio_irq[i] < 0) {
2617                         sfp->gpio_irq[i] = 0;
2618                         sfp->need_poll = true;
2619                         continue;
2620                 }
2621
2622                 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2623                                               "%s-%s", dev_name(sfp->dev),
2624                                               gpio_of_names[i]);
2625
2626                 if (!sfp_irq_name)
2627                         return -ENOMEM;
2628
2629                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2630                                                 NULL, sfp_irq,
2631                                                 IRQF_ONESHOT |
2632                                                 IRQF_TRIGGER_RISING |
2633                                                 IRQF_TRIGGER_FALLING,
2634                                                 sfp_irq_name, sfp);
2635                 if (err) {
2636                         sfp->gpio_irq[i] = 0;
2637                         sfp->need_poll = true;
2638                 }
2639         }
2640
2641         if (sfp->need_poll)
2642                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2643
2644         /* We could have an issue in cases no Tx disable pin is available or
2645          * wired as modules using a laser as their light source will continue to
2646          * be active when the fiber is removed. This could be a safety issue and
2647          * we should at least warn the user about that.
2648          */
2649         if (!sfp->gpio[GPIO_TX_DISABLE])
2650                 dev_warn(sfp->dev,
2651                          "No tx_disable pin: SFP modules will always be emitting.\n");
2652
2653         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2654         if (!sfp->sfp_bus)
2655                 return -ENOMEM;
2656
2657         sfp_debugfs_init(sfp);
2658
2659         return 0;
2660 }
2661
2662 static int sfp_remove(struct platform_device *pdev)
2663 {
2664         struct sfp *sfp = platform_get_drvdata(pdev);
2665
2666         sfp_debugfs_exit(sfp);
2667         sfp_unregister_socket(sfp->sfp_bus);
2668
2669         rtnl_lock();
2670         sfp_sm_event(sfp, SFP_E_REMOVE);
2671         rtnl_unlock();
2672
2673         return 0;
2674 }
2675
2676 static void sfp_shutdown(struct platform_device *pdev)
2677 {
2678         struct sfp *sfp = platform_get_drvdata(pdev);
2679         int i;
2680
2681         for (i = 0; i < GPIO_MAX; i++) {
2682                 if (!sfp->gpio_irq[i])
2683                         continue;
2684
2685                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2686         }
2687
2688         cancel_delayed_work_sync(&sfp->poll);
2689         cancel_delayed_work_sync(&sfp->timeout);
2690 }
2691
2692 static struct platform_driver sfp_driver = {
2693         .probe = sfp_probe,
2694         .remove = sfp_remove,
2695         .shutdown = sfp_shutdown,
2696         .driver = {
2697                 .name = "sfp",
2698                 .of_match_table = sfp_of_match,
2699         },
2700 };
2701
2702 static int sfp_init(void)
2703 {
2704         poll_jiffies = msecs_to_jiffies(100);
2705
2706         return platform_driver_register(&sfp_driver);
2707 }
2708 module_init(sfp_init);
2709
2710 static void sfp_exit(void)
2711 {
2712         platform_driver_unregister(&sfp_driver);
2713 }
2714 module_exit(sfp_exit);
2715
2716 MODULE_ALIAS("platform:sfp");
2717 MODULE_AUTHOR("Russell King");
2718 MODULE_LICENSE("GPL v2");