1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
75 static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
85 static const char *mod_state_to_str(unsigned short mod_state)
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
92 static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
98 static const char *dev_state_to_str(unsigned short dev_state)
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
105 static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
119 static const char *event_to_str(unsigned short event)
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
126 static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
140 static const char *sm_state_to_str(unsigned short sm_state)
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
147 static const char *gpio_of_names[] = {
155 static const enum gpiod_flags gpio_flags[] = {
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
168 #define T_WAIT msecs_to_jiffies(50)
169 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000)
170 #define T_START_UP msecs_to_jiffies(300)
171 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
173 /* t_reset is the time required to assert the TX_DISABLE signal to reset
174 * an indicated TX_FAULT.
176 #define T_RESET_US 10
177 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
179 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
180 * time. If the TX_FAULT signal is not deasserted after this number of
181 * attempts at clearing it, we decide that the module is faulty.
182 * N_FAULT is the same but after the module has initialised.
184 #define N_FAULT_INIT 5
187 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
188 * R_PHY_RETRY is the number of attempts.
190 #define T_PHY_RETRY msecs_to_jiffies(50)
191 #define R_PHY_RETRY 12
193 /* SFP module presence detection is poor: the three MOD DEF signals are
194 * the same length on the PCB, which means it's possible for MOD DEF 0 to
195 * connect before the I2C bus on MOD DEF 1/2.
197 * The SFF-8472 specifies t_serial ("Time from power on until module is
198 * ready for data transmission over the two wire serial bus.") as 300ms.
200 #define T_SERIAL msecs_to_jiffies(300)
201 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
202 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
203 #define R_PROBE_RETRY_INIT 10
204 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
205 #define R_PROBE_RETRY_SLOW 12
207 /* SFP modules appear to always have their PHY configured for bus address
208 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
209 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
210 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
212 #define SFP_PHY_ADDR 22
213 #define SFP_PHY_ADDR_ROLLBALL 17
215 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
216 * at a time. Some SFP modules and also some Linux I2C drivers do not like
217 * reads longer than 16 bytes.
219 #define SFP_EEPROM_BLOCK_SIZE 16
223 bool (*module_supported)(const struct sfp_eeprom_id *id);
228 struct i2c_adapter *i2c;
229 struct mii_bus *i2c_mii;
230 struct sfp_bus *sfp_bus;
231 enum mdio_i2c_proto mdio_protocol;
232 struct phy_device *mod_phy;
233 const struct sff_data *type;
234 size_t i2c_block_size;
237 unsigned int (*get_state)(struct sfp *);
238 void (*set_state)(struct sfp *, unsigned int);
239 int (*read)(struct sfp *, bool, u8, void *, size_t);
240 int (*write)(struct sfp *, bool, u8, void *, size_t);
242 struct gpio_desc *gpio[GPIO_MAX];
243 int gpio_irq[GPIO_MAX];
247 struct mutex st_mutex; /* Protects state */
248 unsigned int state_hw_mask;
249 unsigned int state_soft_mask;
251 struct delayed_work poll;
252 struct delayed_work timeout;
253 struct mutex sm_mutex; /* Protects state machine */
254 unsigned char sm_mod_state;
255 unsigned char sm_mod_tries_init;
256 unsigned char sm_mod_tries;
257 unsigned char sm_dev_state;
258 unsigned short sm_state;
259 unsigned char sm_fault_retries;
260 unsigned char sm_phy_retries;
262 struct sfp_eeprom_id id;
263 unsigned int module_power_mW;
264 unsigned int module_t_start_up;
265 unsigned int module_t_wait;
266 bool tx_fault_ignore;
268 const struct sfp_quirk *quirk;
270 #if IS_ENABLED(CONFIG_HWMON)
271 struct sfp_diag diag;
272 struct delayed_work hwmon_probe;
273 unsigned int hwmon_tries;
274 struct device *hwmon_dev;
278 #if IS_ENABLED(CONFIG_DEBUG_FS)
279 struct dentry *debugfs_dir;
283 static bool sff_module_supported(const struct sfp_eeprom_id *id)
285 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
286 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
289 static const struct sff_data sff_data = {
290 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
291 .module_supported = sff_module_supported,
294 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
296 if (id->base.phys_id == SFF8024_ID_SFP &&
297 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
300 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
301 * phys id SFF instead of SFP. Therefore mark this module explicitly
302 * as supported based on vendor name and pn match.
304 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
305 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
306 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
307 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
313 static const struct sff_data sfp_data = {
314 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
315 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
316 .module_supported = sfp_module_supported,
319 static const struct of_device_id sfp_of_match[] = {
320 { .compatible = "sff,sff", .data = &sff_data, },
321 { .compatible = "sff,sfp", .data = &sfp_data, },
324 MODULE_DEVICE_TABLE(of, sfp_of_match);
326 static void sfp_fixup_long_startup(struct sfp *sfp)
328 sfp->module_t_start_up = T_START_UP_BAD_GPON;
331 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
333 sfp->tx_fault_ignore = true;
336 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
338 /* Ignore the TX_FAULT and LOS signals on this module.
339 * these are possibly used for other purposes on this
340 * module, e.g. a serial port.
342 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
345 static void sfp_fixup_rollball(struct sfp *sfp)
347 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
348 sfp->module_t_wait = T_WAIT_ROLLBALL;
351 static void sfp_fixup_rollball_cc(struct sfp *sfp)
353 sfp_fixup_rollball(sfp);
355 /* Some RollBall SFPs may have wrong (zero) extended compliance code
356 * burned in EEPROM. For PHY probing we need the correct one.
358 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
361 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
362 unsigned long *modes,
363 unsigned long *interfaces)
365 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
366 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
369 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
370 unsigned long *modes,
371 unsigned long *interfaces)
373 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
374 * types including 10G Ethernet which is not truth. So clear all claimed
375 * modes and set only one mode which module supports: 1000baseX_Full.
377 linkmode_zero(modes);
378 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
381 #define SFP_QUIRK(_v, _p, _m, _f) \
382 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
383 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
384 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
386 static const struct sfp_quirk sfp_quirks[] = {
387 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
388 // report 2500MBd NRZ in their EEPROM
389 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
391 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
392 // NRZ in their EEPROM
393 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
394 sfp_fixup_long_startup),
396 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
398 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
400 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
401 sfp_fixup_ignore_tx_fault),
403 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
404 // 2500MBd NRZ in their EEPROM
405 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
407 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
409 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
410 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
411 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
412 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
413 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
416 static size_t sfp_strlen(const char *str, size_t maxlen)
420 /* Trailing characters should be filled with space chars, but
421 * some manufacturers can't read SFF-8472 and use NUL.
423 for (i = 0, size = 0; i < maxlen; i++)
424 if (str[i] != ' ' && str[i] != '\0')
430 static bool sfp_match(const char *qs, const char *str, size_t len)
434 if (strlen(qs) != len)
436 return !strncmp(qs, str, len);
439 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
441 const struct sfp_quirk *q;
445 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
446 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
448 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
449 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
450 sfp_match(q->part, id->base.vendor_pn, ps))
456 static unsigned long poll_jiffies;
458 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
460 unsigned int i, state, v;
462 for (i = state = 0; i < GPIO_MAX; i++) {
463 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
466 v = gpiod_get_value_cansleep(sfp->gpio[i]);
474 static unsigned int sff_gpio_get_state(struct sfp *sfp)
476 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
479 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
481 if (state & SFP_F_PRESENT) {
482 /* If the module is present, drive the signals */
483 if (sfp->gpio[GPIO_TX_DISABLE])
484 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
485 state & SFP_F_TX_DISABLE);
486 if (state & SFP_F_RATE_SELECT)
487 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
488 state & SFP_F_RATE_SELECT);
490 /* Otherwise, let them float to the pull-ups */
491 if (sfp->gpio[GPIO_TX_DISABLE])
492 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
493 if (state & SFP_F_RATE_SELECT)
494 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
498 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
501 struct i2c_msg msgs[2];
502 u8 bus_addr = a2 ? 0x51 : 0x50;
503 size_t block_size = sfp->i2c_block_size;
507 msgs[0].addr = bus_addr;
510 msgs[0].buf = &dev_addr;
511 msgs[1].addr = bus_addr;
512 msgs[1].flags = I2C_M_RD;
518 if (this_len > block_size)
519 this_len = block_size;
521 msgs[1].len = this_len;
523 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
527 if (ret != ARRAY_SIZE(msgs))
530 msgs[1].buf += this_len;
531 dev_addr += this_len;
535 return msgs[1].buf - (u8 *)buf;
538 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
541 struct i2c_msg msgs[1];
542 u8 bus_addr = a2 ? 0x51 : 0x50;
545 msgs[0].addr = bus_addr;
547 msgs[0].len = 1 + len;
548 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
552 msgs[0].buf[0] = dev_addr;
553 memcpy(&msgs[0].buf[1], buf, len);
555 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
562 return ret == ARRAY_SIZE(msgs) ? len : 0;
565 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
567 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
571 sfp->read = sfp_i2c_read;
572 sfp->write = sfp_i2c_write;
577 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
579 struct mii_bus *i2c_mii;
582 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
584 return PTR_ERR(i2c_mii);
586 i2c_mii->name = "SFP I2C Bus";
587 i2c_mii->phy_mask = ~0;
589 ret = mdiobus_register(i2c_mii);
591 mdiobus_free(i2c_mii);
595 sfp->i2c_mii = i2c_mii;
600 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
602 mdiobus_unregister(sfp->i2c_mii);
607 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
609 return sfp->read(sfp, a2, addr, buf, len);
612 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
614 return sfp->write(sfp, a2, addr, buf, len);
617 static unsigned int sfp_soft_get_state(struct sfp *sfp)
619 unsigned int state = 0;
623 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
624 if (ret == sizeof(status)) {
625 if (status & SFP_STATUS_RX_LOS)
627 if (status & SFP_STATUS_TX_FAULT)
628 state |= SFP_F_TX_FAULT;
630 dev_err_ratelimited(sfp->dev,
631 "failed to read SFP soft status: %pe\n",
633 /* Preserve the current state */
637 return state & sfp->state_soft_mask;
640 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
644 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
646 if (state & SFP_F_TX_DISABLE)
647 status |= SFP_STATUS_TX_DISABLE_FORCE;
649 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
651 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
655 static void sfp_soft_start_poll(struct sfp *sfp)
657 const struct sfp_eeprom_id *id = &sfp->id;
658 unsigned int mask = 0;
660 sfp->state_soft_mask = 0;
661 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
662 mask |= SFP_F_TX_DISABLE;
663 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
664 mask |= SFP_F_TX_FAULT;
665 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
668 // Poll the soft state for hardware pins we want to ignore
669 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
671 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
673 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
676 static void sfp_soft_stop_poll(struct sfp *sfp)
678 sfp->state_soft_mask = 0;
681 static unsigned int sfp_get_state(struct sfp *sfp)
683 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
686 state = sfp->get_state(sfp) & sfp->state_hw_mask;
687 if (state & SFP_F_PRESENT && soft)
688 state |= sfp_soft_get_state(sfp);
693 static void sfp_set_state(struct sfp *sfp, unsigned int state)
695 sfp->set_state(sfp, state);
697 if (state & SFP_F_PRESENT &&
698 sfp->state_soft_mask & SFP_F_TX_DISABLE)
699 sfp_soft_set_state(sfp, state);
702 static unsigned int sfp_check(void *buf, size_t len)
706 for (p = buf, check = 0; len; p++, len--)
713 #if IS_ENABLED(CONFIG_HWMON)
714 static umode_t sfp_hwmon_is_visible(const void *data,
715 enum hwmon_sensor_types type,
716 u32 attr, int channel)
718 const struct sfp *sfp = data;
723 case hwmon_temp_min_alarm:
724 case hwmon_temp_max_alarm:
725 case hwmon_temp_lcrit_alarm:
726 case hwmon_temp_crit_alarm:
729 case hwmon_temp_lcrit:
730 case hwmon_temp_crit:
731 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
734 case hwmon_temp_input:
735 case hwmon_temp_label:
742 case hwmon_in_min_alarm:
743 case hwmon_in_max_alarm:
744 case hwmon_in_lcrit_alarm:
745 case hwmon_in_crit_alarm:
750 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
761 case hwmon_curr_min_alarm:
762 case hwmon_curr_max_alarm:
763 case hwmon_curr_lcrit_alarm:
764 case hwmon_curr_crit_alarm:
767 case hwmon_curr_lcrit:
768 case hwmon_curr_crit:
769 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
772 case hwmon_curr_input:
773 case hwmon_curr_label:
779 /* External calibration of receive power requires
780 * floating point arithmetic. Doing that in the kernel
781 * is not easy, so just skip it. If the module does
782 * not require external calibration, we can however
783 * show receiver power, since FP is then not needed.
785 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
789 case hwmon_power_min_alarm:
790 case hwmon_power_max_alarm:
791 case hwmon_power_lcrit_alarm:
792 case hwmon_power_crit_alarm:
793 case hwmon_power_min:
794 case hwmon_power_max:
795 case hwmon_power_lcrit:
796 case hwmon_power_crit:
797 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
800 case hwmon_power_input:
801 case hwmon_power_label:
811 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
816 err = sfp_read(sfp, true, reg, &val, sizeof(val));
820 *value = be16_to_cpu(val);
825 static void sfp_hwmon_to_rx_power(long *value)
827 *value = DIV_ROUND_CLOSEST(*value, 10);
830 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
833 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
834 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
837 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
839 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
840 be16_to_cpu(sfp->diag.cal_t_offset), value);
842 if (*value >= 0x8000)
845 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
848 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
850 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
851 be16_to_cpu(sfp->diag.cal_v_offset), value);
853 *value = DIV_ROUND_CLOSEST(*value, 10);
856 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
858 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
859 be16_to_cpu(sfp->diag.cal_txi_offset), value);
861 *value = DIV_ROUND_CLOSEST(*value, 500);
864 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
866 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
867 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
869 *value = DIV_ROUND_CLOSEST(*value, 10);
872 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
876 err = sfp_hwmon_read_sensor(sfp, reg, value);
880 sfp_hwmon_calibrate_temp(sfp, value);
885 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
889 err = sfp_hwmon_read_sensor(sfp, reg, value);
893 sfp_hwmon_calibrate_vcc(sfp, value);
898 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
902 err = sfp_hwmon_read_sensor(sfp, reg, value);
906 sfp_hwmon_calibrate_bias(sfp, value);
911 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
915 err = sfp_hwmon_read_sensor(sfp, reg, value);
919 sfp_hwmon_calibrate_tx_power(sfp, value);
924 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
928 err = sfp_hwmon_read_sensor(sfp, reg, value);
932 sfp_hwmon_to_rx_power(value);
937 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
943 case hwmon_temp_input:
944 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
946 case hwmon_temp_lcrit:
947 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
948 sfp_hwmon_calibrate_temp(sfp, value);
952 *value = be16_to_cpu(sfp->diag.temp_low_warn);
953 sfp_hwmon_calibrate_temp(sfp, value);
956 *value = be16_to_cpu(sfp->diag.temp_high_warn);
957 sfp_hwmon_calibrate_temp(sfp, value);
960 case hwmon_temp_crit:
961 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
962 sfp_hwmon_calibrate_temp(sfp, value);
965 case hwmon_temp_lcrit_alarm:
966 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
970 *value = !!(status & SFP_ALARM0_TEMP_LOW);
973 case hwmon_temp_min_alarm:
974 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
978 *value = !!(status & SFP_WARN0_TEMP_LOW);
981 case hwmon_temp_max_alarm:
982 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
986 *value = !!(status & SFP_WARN0_TEMP_HIGH);
989 case hwmon_temp_crit_alarm:
990 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
994 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1003 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1009 case hwmon_in_input:
1010 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1012 case hwmon_in_lcrit:
1013 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1014 sfp_hwmon_calibrate_vcc(sfp, value);
1018 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1019 sfp_hwmon_calibrate_vcc(sfp, value);
1023 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1024 sfp_hwmon_calibrate_vcc(sfp, value);
1028 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1029 sfp_hwmon_calibrate_vcc(sfp, value);
1032 case hwmon_in_lcrit_alarm:
1033 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1037 *value = !!(status & SFP_ALARM0_VCC_LOW);
1040 case hwmon_in_min_alarm:
1041 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1045 *value = !!(status & SFP_WARN0_VCC_LOW);
1048 case hwmon_in_max_alarm:
1049 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1053 *value = !!(status & SFP_WARN0_VCC_HIGH);
1056 case hwmon_in_crit_alarm:
1057 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1061 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1070 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1076 case hwmon_curr_input:
1077 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1079 case hwmon_curr_lcrit:
1080 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1081 sfp_hwmon_calibrate_bias(sfp, value);
1084 case hwmon_curr_min:
1085 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1086 sfp_hwmon_calibrate_bias(sfp, value);
1089 case hwmon_curr_max:
1090 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1091 sfp_hwmon_calibrate_bias(sfp, value);
1094 case hwmon_curr_crit:
1095 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1096 sfp_hwmon_calibrate_bias(sfp, value);
1099 case hwmon_curr_lcrit_alarm:
1100 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1104 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1107 case hwmon_curr_min_alarm:
1108 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1112 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1115 case hwmon_curr_max_alarm:
1116 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1120 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1123 case hwmon_curr_crit_alarm:
1124 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1128 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1137 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1143 case hwmon_power_input:
1144 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1146 case hwmon_power_lcrit:
1147 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1148 sfp_hwmon_calibrate_tx_power(sfp, value);
1151 case hwmon_power_min:
1152 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1153 sfp_hwmon_calibrate_tx_power(sfp, value);
1156 case hwmon_power_max:
1157 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1158 sfp_hwmon_calibrate_tx_power(sfp, value);
1161 case hwmon_power_crit:
1162 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1163 sfp_hwmon_calibrate_tx_power(sfp, value);
1166 case hwmon_power_lcrit_alarm:
1167 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1171 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1174 case hwmon_power_min_alarm:
1175 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1179 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1182 case hwmon_power_max_alarm:
1183 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1187 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1190 case hwmon_power_crit_alarm:
1191 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1195 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1204 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1210 case hwmon_power_input:
1211 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1213 case hwmon_power_lcrit:
1214 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1215 sfp_hwmon_to_rx_power(value);
1218 case hwmon_power_min:
1219 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1220 sfp_hwmon_to_rx_power(value);
1223 case hwmon_power_max:
1224 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1225 sfp_hwmon_to_rx_power(value);
1228 case hwmon_power_crit:
1229 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1230 sfp_hwmon_to_rx_power(value);
1233 case hwmon_power_lcrit_alarm:
1234 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1238 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1241 case hwmon_power_min_alarm:
1242 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1246 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1249 case hwmon_power_max_alarm:
1250 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1254 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1257 case hwmon_power_crit_alarm:
1258 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1262 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1271 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1272 u32 attr, int channel, long *value)
1274 struct sfp *sfp = dev_get_drvdata(dev);
1278 return sfp_hwmon_temp(sfp, attr, value);
1280 return sfp_hwmon_vcc(sfp, attr, value);
1282 return sfp_hwmon_bias(sfp, attr, value);
1286 return sfp_hwmon_tx_power(sfp, attr, value);
1288 return sfp_hwmon_rx_power(sfp, attr, value);
1297 static const char *const sfp_hwmon_power_labels[] = {
1302 static int sfp_hwmon_read_string(struct device *dev,
1303 enum hwmon_sensor_types type,
1304 u32 attr, int channel, const char **str)
1309 case hwmon_curr_label:
1318 case hwmon_temp_label:
1319 *str = "temperature";
1327 case hwmon_in_label:
1336 case hwmon_power_label:
1337 *str = sfp_hwmon_power_labels[channel];
1350 static const struct hwmon_ops sfp_hwmon_ops = {
1351 .is_visible = sfp_hwmon_is_visible,
1352 .read = sfp_hwmon_read,
1353 .read_string = sfp_hwmon_read_string,
1356 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1357 HWMON_CHANNEL_INFO(chip,
1358 HWMON_C_REGISTER_TZ),
1359 HWMON_CHANNEL_INFO(in,
1361 HWMON_I_MAX | HWMON_I_MIN |
1362 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1363 HWMON_I_CRIT | HWMON_I_LCRIT |
1364 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1366 HWMON_CHANNEL_INFO(temp,
1368 HWMON_T_MAX | HWMON_T_MIN |
1369 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1370 HWMON_T_CRIT | HWMON_T_LCRIT |
1371 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1373 HWMON_CHANNEL_INFO(curr,
1375 HWMON_C_MAX | HWMON_C_MIN |
1376 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1377 HWMON_C_CRIT | HWMON_C_LCRIT |
1378 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1380 HWMON_CHANNEL_INFO(power,
1381 /* Transmit power */
1383 HWMON_P_MAX | HWMON_P_MIN |
1384 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1385 HWMON_P_CRIT | HWMON_P_LCRIT |
1386 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1390 HWMON_P_MAX | HWMON_P_MIN |
1391 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1392 HWMON_P_CRIT | HWMON_P_LCRIT |
1393 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1398 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1399 .ops = &sfp_hwmon_ops,
1400 .info = sfp_hwmon_info,
1403 static void sfp_hwmon_probe(struct work_struct *work)
1405 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1408 /* hwmon interface needs to access 16bit registers in atomic way to
1409 * guarantee coherency of the diagnostic monitoring data. If it is not
1410 * possible to guarantee coherency because EEPROM is broken in such way
1411 * that does not support atomic 16bit read operation then we have to
1412 * skip registration of hwmon device.
1414 if (sfp->i2c_block_size < 2) {
1416 "skipping hwmon device registration due to broken EEPROM\n");
1418 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1422 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1424 if (sfp->hwmon_tries--) {
1425 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1426 T_PROBE_RETRY_SLOW);
1428 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1434 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1435 if (IS_ERR(sfp->hwmon_name)) {
1436 dev_err(sfp->dev, "out of memory for hwmon name\n");
1440 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1441 sfp->hwmon_name, sfp,
1442 &sfp_hwmon_chip_info,
1444 if (IS_ERR(sfp->hwmon_dev))
1445 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1446 PTR_ERR(sfp->hwmon_dev));
1449 static int sfp_hwmon_insert(struct sfp *sfp)
1451 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1454 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1457 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1458 /* This driver in general does not support address
1463 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1464 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1469 static void sfp_hwmon_remove(struct sfp *sfp)
1471 cancel_delayed_work_sync(&sfp->hwmon_probe);
1472 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1473 hwmon_device_unregister(sfp->hwmon_dev);
1474 sfp->hwmon_dev = NULL;
1475 kfree(sfp->hwmon_name);
1479 static int sfp_hwmon_init(struct sfp *sfp)
1481 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1486 static void sfp_hwmon_exit(struct sfp *sfp)
1488 cancel_delayed_work_sync(&sfp->hwmon_probe);
1491 static int sfp_hwmon_insert(struct sfp *sfp)
1496 static void sfp_hwmon_remove(struct sfp *sfp)
1500 static int sfp_hwmon_init(struct sfp *sfp)
1505 static void sfp_hwmon_exit(struct sfp *sfp)
1511 static void sfp_module_tx_disable(struct sfp *sfp)
1513 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1514 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1515 sfp->state |= SFP_F_TX_DISABLE;
1516 sfp_set_state(sfp, sfp->state);
1519 static void sfp_module_tx_enable(struct sfp *sfp)
1521 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1522 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1523 sfp->state &= ~SFP_F_TX_DISABLE;
1524 sfp_set_state(sfp, sfp->state);
1527 #if IS_ENABLED(CONFIG_DEBUG_FS)
1528 static int sfp_debug_state_show(struct seq_file *s, void *data)
1530 struct sfp *sfp = s->private;
1532 seq_printf(s, "Module state: %s\n",
1533 mod_state_to_str(sfp->sm_mod_state));
1534 seq_printf(s, "Module probe attempts: %d %d\n",
1535 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1536 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1537 seq_printf(s, "Device state: %s\n",
1538 dev_state_to_str(sfp->sm_dev_state));
1539 seq_printf(s, "Main state: %s\n",
1540 sm_state_to_str(sfp->sm_state));
1541 seq_printf(s, "Fault recovery remaining retries: %d\n",
1542 sfp->sm_fault_retries);
1543 seq_printf(s, "PHY probe remaining retries: %d\n",
1544 sfp->sm_phy_retries);
1545 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1546 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1547 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1548 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1551 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1553 static void sfp_debugfs_init(struct sfp *sfp)
1555 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1557 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1558 &sfp_debug_state_fops);
1561 static void sfp_debugfs_exit(struct sfp *sfp)
1563 debugfs_remove_recursive(sfp->debugfs_dir);
1566 static void sfp_debugfs_init(struct sfp *sfp)
1570 static void sfp_debugfs_exit(struct sfp *sfp)
1575 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1577 unsigned int state = sfp->state;
1579 if (state & SFP_F_TX_DISABLE)
1582 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1586 sfp_set_state(sfp, state);
1589 /* SFP state machine */
1590 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1593 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1596 cancel_delayed_work(&sfp->timeout);
1599 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1600 unsigned int timeout)
1602 sfp->sm_state = state;
1603 sfp_sm_set_timer(sfp, timeout);
1606 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1607 unsigned int timeout)
1609 sfp->sm_mod_state = state;
1610 sfp_sm_set_timer(sfp, timeout);
1613 static void sfp_sm_phy_detach(struct sfp *sfp)
1615 sfp_remove_phy(sfp->sfp_bus);
1616 phy_device_remove(sfp->mod_phy);
1617 phy_device_free(sfp->mod_phy);
1618 sfp->mod_phy = NULL;
1621 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1623 struct phy_device *phy;
1626 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1627 if (phy == ERR_PTR(-ENODEV))
1628 return PTR_ERR(phy);
1630 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1631 return PTR_ERR(phy);
1634 err = phy_device_register(phy);
1636 phy_device_free(phy);
1637 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1642 err = sfp_add_phy(sfp->sfp_bus, phy);
1644 phy_device_remove(phy);
1645 phy_device_free(phy);
1646 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1655 static void sfp_sm_link_up(struct sfp *sfp)
1657 sfp_link_up(sfp->sfp_bus);
1658 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1661 static void sfp_sm_link_down(struct sfp *sfp)
1663 sfp_link_down(sfp->sfp_bus);
1666 static void sfp_sm_link_check_los(struct sfp *sfp)
1668 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1669 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1670 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1673 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1674 * are set, we assume that no LOS signal is available. If both are
1675 * set, we assume LOS is not implemented (and is meaningless.)
1677 if (los_options == los_inverted)
1678 los = !(sfp->state & SFP_F_LOS);
1679 else if (los_options == los_normal)
1680 los = !!(sfp->state & SFP_F_LOS);
1683 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1685 sfp_sm_link_up(sfp);
1688 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1690 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1691 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1692 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1694 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1695 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1698 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1700 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1701 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1702 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1704 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1705 (los_options == los_normal && event == SFP_E_LOS_LOW);
1708 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1710 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1712 "module persistently indicates fault, disabling\n");
1713 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1716 dev_err(sfp->dev, "module transmit fault indicated\n");
1718 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1722 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1724 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1725 return sfp_i2c_mdiobus_create(sfp);
1730 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1731 * normally sits at I2C bus address 0x56, and may either be a clause 22
1734 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1735 * negotiation enabled, but some may be in 1000base-X - which is for the
1736 * PHY driver to determine.
1738 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1739 * mode according to the negotiated line speed.
1741 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1745 switch (sfp->mdio_protocol) {
1749 case MDIO_I2C_MARVELL_C22:
1750 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1754 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1757 case MDIO_I2C_ROLLBALL:
1758 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1765 static int sfp_module_parse_power(struct sfp *sfp)
1767 u32 power_mW = 1000;
1770 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1772 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1775 supports_a2 = sfp->id.ext.sff8472_compliance !=
1776 SFP_SFF8472_COMPLIANCE_NONE ||
1777 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1779 if (power_mW > sfp->max_power_mW) {
1780 /* Module power specification exceeds the allowed maximum. */
1782 /* The module appears not to implement bus address
1783 * 0xa2, so assume that the module powers up in the
1787 "Host does not support %u.%uW modules\n",
1788 power_mW / 1000, (power_mW / 100) % 10);
1792 "Host does not support %u.%uW modules, module left in power mode 1\n",
1793 power_mW / 1000, (power_mW / 100) % 10);
1798 if (power_mW <= 1000) {
1799 /* Modules below 1W do not require a power change sequence */
1800 sfp->module_power_mW = power_mW;
1805 /* The module power level is below the host maximum and the
1806 * module appears not to implement bus address 0xa2, so assume
1807 * that the module powers up in the indicated mode.
1812 /* If the module requires a higher power mode, but also requires
1813 * an address change sequence, warn the user that the module may
1814 * not be functional.
1816 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1818 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1819 power_mW / 1000, (power_mW / 100) % 10);
1823 sfp->module_power_mW = power_mW;
1828 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1833 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1834 if (err != sizeof(val)) {
1835 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1839 /* DM7052 reports as a high power module, responds to reads (with
1840 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1841 * if the bit is already set, we're already in high power mode.
1843 if (!!(val & BIT(0)) == enable)
1851 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1852 if (err != sizeof(val)) {
1853 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1859 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1860 sfp->module_power_mW / 1000,
1861 (sfp->module_power_mW / 100) % 10);
1866 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1867 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1868 * not support multibyte reads from the EEPROM. Each multi-byte read
1869 * operation returns just one byte of EEPROM followed by zeros. There is
1870 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1871 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1872 * name and vendor id into EEPROM, so there is even no way to detect if
1873 * module is V-SOL V2801F. Therefore check for those zeros in the read
1874 * data and then based on check switch to reading EEPROM to one byte
1877 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1879 size_t i, block_size = sfp->i2c_block_size;
1881 /* Already using byte IO */
1882 if (block_size == 1)
1885 for (i = 1; i < len; i += block_size) {
1886 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1892 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1897 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1898 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1899 id->base.connector != SFF8024_CONNECTOR_LC) {
1900 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1901 id->base.phys_id = SFF8024_ID_SFF_8472;
1902 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1903 id->base.connector = SFF8024_CONNECTOR_LC;
1904 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1907 "Failed to rewrite module EEPROM: %pe\n",
1912 /* Cotsworks modules have been found to require a delay between write operations. */
1915 /* Update base structure checksum */
1916 check = sfp_check(&id->base, sizeof(id->base) - 1);
1917 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1920 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1928 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1930 /* SFP module inserted - read I2C data */
1931 struct sfp_eeprom_id id;
1932 bool cotsworks_sfbg;
1937 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
1939 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1942 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1947 if (ret != sizeof(id.base)) {
1948 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1952 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1953 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1954 * that EEPROM supports atomic 16bit read operation for diagnostic
1955 * fields, so do not switch to one byte reading at a time unless it
1956 * is really required and we have no other option.
1958 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1960 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1962 "Switching to reading EEPROM to one byte at a time\n");
1963 sfp->i2c_block_size = 1;
1965 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1969 "failed to read EEPROM: %pe\n",
1974 if (ret != sizeof(id.base)) {
1975 dev_err(sfp->dev, "EEPROM short read: %pe\n",
1981 /* Cotsworks do not seem to update the checksums when they
1982 * do the final programming with the final module part number,
1983 * serial number and date code.
1985 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1986 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1988 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1989 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1990 * Cotsworks PN matches and bytes are not correct.
1992 if (cotsworks && cotsworks_sfbg) {
1993 ret = sfp_cotsworks_fixup_check(sfp, &id);
1998 /* Validate the checksum over the base structure */
1999 check = sfp_check(&id.base, sizeof(id.base) - 1);
2000 if (check != id.base.cc_base) {
2003 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2004 check, id.base.cc_base);
2007 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2008 check, id.base.cc_base);
2009 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2010 16, 1, &id, sizeof(id), true);
2015 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2018 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2023 if (ret != sizeof(id.ext)) {
2024 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2028 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2029 if (check != id.ext.cc_ext) {
2032 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2033 check, id.ext.cc_ext);
2036 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2037 check, id.ext.cc_ext);
2038 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2039 16, 1, &id, sizeof(id), true);
2040 memset(&id.ext, 0, sizeof(id.ext));
2046 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2047 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2048 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2049 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2050 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2051 (int)sizeof(id.ext.datecode), id.ext.datecode);
2053 /* Check whether we support this module */
2054 if (!sfp->type->module_supported(&id)) {
2056 "module is not supported - phys id 0x%02x 0x%02x\n",
2057 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2061 /* If the module requires address swap mode, warn about it */
2062 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2064 "module address swap to access page 0xA2 is not supported.\n");
2066 /* Parse the module power requirement */
2067 ret = sfp_module_parse_power(sfp);
2071 /* Initialise state bits to use from hardware */
2072 sfp->state_hw_mask = SFP_F_PRESENT;
2073 if (sfp->gpio[GPIO_TX_DISABLE])
2074 sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2075 if (sfp->gpio[GPIO_TX_FAULT])
2076 sfp->state_hw_mask |= SFP_F_TX_FAULT;
2077 if (sfp->gpio[GPIO_LOS])
2078 sfp->state_hw_mask |= SFP_F_LOS;
2080 sfp->module_t_start_up = T_START_UP;
2081 sfp->module_t_wait = T_WAIT;
2083 sfp->tx_fault_ignore = false;
2085 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2086 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2087 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2088 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2089 sfp->mdio_protocol = MDIO_I2C_C45;
2090 else if (sfp->id.base.e1000_base_t)
2091 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2093 sfp->mdio_protocol = MDIO_I2C_NONE;
2095 sfp->quirk = sfp_lookup_quirk(&id);
2096 if (sfp->quirk && sfp->quirk->fixup)
2097 sfp->quirk->fixup(sfp);
2102 static void sfp_sm_mod_remove(struct sfp *sfp)
2104 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2105 sfp_module_remove(sfp->sfp_bus);
2107 sfp_hwmon_remove(sfp);
2109 memset(&sfp->id, 0, sizeof(sfp->id));
2110 sfp->module_power_mW = 0;
2112 dev_info(sfp->dev, "module removed\n");
2115 /* This state machine tracks the upstream's state */
2116 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2118 switch (sfp->sm_dev_state) {
2120 if (event == SFP_E_DEV_ATTACH)
2121 sfp->sm_dev_state = SFP_DEV_DOWN;
2125 if (event == SFP_E_DEV_DETACH)
2126 sfp->sm_dev_state = SFP_DEV_DETACHED;
2127 else if (event == SFP_E_DEV_UP)
2128 sfp->sm_dev_state = SFP_DEV_UP;
2132 if (event == SFP_E_DEV_DETACH)
2133 sfp->sm_dev_state = SFP_DEV_DETACHED;
2134 else if (event == SFP_E_DEV_DOWN)
2135 sfp->sm_dev_state = SFP_DEV_DOWN;
2140 /* This state machine tracks the insert/remove state of the module, probes
2141 * the on-board EEPROM, and sets up the power level.
2143 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2147 /* Handle remove event globally, it resets this state machine */
2148 if (event == SFP_E_REMOVE) {
2149 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2150 sfp_sm_mod_remove(sfp);
2151 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2155 /* Handle device detach globally */
2156 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2157 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2158 if (sfp->module_power_mW > 1000 &&
2159 sfp->sm_mod_state > SFP_MOD_HPOWER)
2160 sfp_sm_mod_hpower(sfp, false);
2161 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2165 switch (sfp->sm_mod_state) {
2167 if (event == SFP_E_INSERT) {
2168 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2169 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2170 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2175 /* Wait for T_PROBE_INIT to time out */
2176 if (event != SFP_E_TIMEOUT)
2179 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2180 if (err == -EAGAIN) {
2181 if (sfp->sm_mod_tries_init &&
2182 --sfp->sm_mod_tries_init) {
2183 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2185 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2186 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2188 "please wait, module slow to respond\n");
2189 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2194 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2198 err = sfp_hwmon_insert(sfp);
2200 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2203 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2205 case SFP_MOD_WAITDEV:
2206 /* Ensure that the device is attached before proceeding */
2207 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2210 /* Report the module insertion to the upstream device */
2211 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2214 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2218 /* If this is a power level 1 module, we are done */
2219 if (sfp->module_power_mW <= 1000)
2222 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2224 case SFP_MOD_HPOWER:
2225 /* Enable high power mode */
2226 err = sfp_sm_mod_hpower(sfp, true);
2228 if (err != -EAGAIN) {
2229 sfp_module_remove(sfp->sfp_bus);
2230 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2232 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2237 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2240 case SFP_MOD_WAITPWR:
2241 /* Wait for T_HPOWER_LEVEL to time out */
2242 if (event != SFP_E_TIMEOUT)
2246 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2249 case SFP_MOD_PRESENT:
2255 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2257 unsigned long timeout;
2260 /* Some events are global */
2261 if (sfp->sm_state != SFP_S_DOWN &&
2262 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2263 sfp->sm_dev_state != SFP_DEV_UP)) {
2264 if (sfp->sm_state == SFP_S_LINK_UP &&
2265 sfp->sm_dev_state == SFP_DEV_UP)
2266 sfp_sm_link_down(sfp);
2267 if (sfp->sm_state > SFP_S_INIT)
2268 sfp_module_stop(sfp->sfp_bus);
2270 sfp_sm_phy_detach(sfp);
2272 sfp_i2c_mdiobus_destroy(sfp);
2273 sfp_module_tx_disable(sfp);
2274 sfp_soft_stop_poll(sfp);
2275 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2279 /* The main state machine */
2280 switch (sfp->sm_state) {
2282 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2283 sfp->sm_dev_state != SFP_DEV_UP)
2286 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2287 sfp_soft_start_poll(sfp);
2289 sfp_module_tx_enable(sfp);
2291 /* Initialise the fault clearance retries */
2292 sfp->sm_fault_retries = N_FAULT_INIT;
2294 /* We need to check the TX_FAULT state, which is not defined
2295 * while TX_DISABLE is asserted. The earliest we want to do
2296 * anything (such as probe for a PHY) is 50ms (or more on
2297 * specific modules).
2299 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2303 if (event != SFP_E_TIMEOUT)
2306 if (sfp->state & SFP_F_TX_FAULT) {
2307 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2308 * from the TX_DISABLE deassertion for the module to
2309 * initialise, which is indicated by TX_FAULT
2312 timeout = sfp->module_t_start_up;
2313 if (timeout > sfp->module_t_wait)
2314 timeout -= sfp->module_t_wait;
2318 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2320 /* TX_FAULT is not asserted, assume the module has
2321 * finished initialising.
2328 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2329 /* TX_FAULT is still asserted after t_init
2330 * or t_start_up, so assume there is a fault.
2332 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2333 sfp->sm_fault_retries == N_FAULT_INIT);
2334 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2336 /* Create mdiobus and start trying for PHY */
2337 ret = sfp_sm_add_mdio_bus(sfp);
2339 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2342 sfp->sm_phy_retries = R_PHY_RETRY;
2347 case SFP_S_INIT_PHY:
2348 if (event != SFP_E_TIMEOUT)
2351 /* TX_FAULT deasserted or we timed out with TX_FAULT
2352 * clear. Probe for the PHY and check the LOS state.
2354 ret = sfp_sm_probe_for_phy(sfp);
2355 if (ret == -ENODEV) {
2356 if (--sfp->sm_phy_retries) {
2357 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2360 dev_info(sfp->dev, "no PHY detected\n");
2363 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2366 if (sfp_module_start(sfp->sfp_bus)) {
2367 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2370 sfp_sm_link_check_los(sfp);
2372 /* Reset the fault retry count */
2373 sfp->sm_fault_retries = N_FAULT;
2376 case SFP_S_INIT_TX_FAULT:
2377 if (event == SFP_E_TIMEOUT) {
2378 sfp_module_tx_fault_reset(sfp);
2379 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2383 case SFP_S_WAIT_LOS:
2384 if (event == SFP_E_TX_FAULT)
2385 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2386 else if (sfp_los_event_inactive(sfp, event))
2387 sfp_sm_link_up(sfp);
2391 if (event == SFP_E_TX_FAULT) {
2392 sfp_sm_link_down(sfp);
2393 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2394 } else if (sfp_los_event_active(sfp, event)) {
2395 sfp_sm_link_down(sfp);
2396 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2400 case SFP_S_TX_FAULT:
2401 if (event == SFP_E_TIMEOUT) {
2402 sfp_module_tx_fault_reset(sfp);
2403 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2408 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2409 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2410 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2411 dev_info(sfp->dev, "module transmit fault recovered\n");
2412 sfp_sm_link_check_los(sfp);
2416 case SFP_S_TX_DISABLE:
2421 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2423 mutex_lock(&sfp->sm_mutex);
2425 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2426 mod_state_to_str(sfp->sm_mod_state),
2427 dev_state_to_str(sfp->sm_dev_state),
2428 sm_state_to_str(sfp->sm_state),
2429 event_to_str(event));
2431 sfp_sm_device(sfp, event);
2432 sfp_sm_module(sfp, event);
2433 sfp_sm_main(sfp, event);
2435 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2436 mod_state_to_str(sfp->sm_mod_state),
2437 dev_state_to_str(sfp->sm_dev_state),
2438 sm_state_to_str(sfp->sm_state));
2440 mutex_unlock(&sfp->sm_mutex);
2443 static void sfp_attach(struct sfp *sfp)
2445 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2448 static void sfp_detach(struct sfp *sfp)
2450 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2453 static void sfp_start(struct sfp *sfp)
2455 sfp_sm_event(sfp, SFP_E_DEV_UP);
2458 static void sfp_stop(struct sfp *sfp)
2460 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2463 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2465 /* locking... and check module is present */
2467 if (sfp->id.ext.sff8472_compliance &&
2468 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2469 modinfo->type = ETH_MODULE_SFF_8472;
2470 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2472 modinfo->type = ETH_MODULE_SFF_8079;
2473 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2478 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2481 unsigned int first, last, len;
2488 last = ee->offset + ee->len;
2489 if (first < ETH_MODULE_SFF_8079_LEN) {
2490 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2493 ret = sfp_read(sfp, false, first, data, len);
2500 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2501 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2503 first -= ETH_MODULE_SFF_8079_LEN;
2505 ret = sfp_read(sfp, true, first, data, len);
2512 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2513 const struct ethtool_module_eeprom *page,
2514 struct netlink_ext_ack *extack)
2517 NL_SET_ERR_MSG(extack, "Banks not supported");
2522 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2526 if (page->i2c_address != 0x50 &&
2527 page->i2c_address != 0x51) {
2528 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2532 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2533 page->data, page->length);
2536 static const struct sfp_socket_ops sfp_module_ops = {
2537 .attach = sfp_attach,
2538 .detach = sfp_detach,
2541 .module_info = sfp_module_info,
2542 .module_eeprom = sfp_module_eeprom,
2543 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2546 static void sfp_timeout(struct work_struct *work)
2548 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2551 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2555 static void sfp_check_state(struct sfp *sfp)
2557 unsigned int state, i, changed;
2559 mutex_lock(&sfp->st_mutex);
2560 state = sfp_get_state(sfp);
2561 changed = state ^ sfp->state;
2562 if (sfp->tx_fault_ignore)
2563 changed &= SFP_F_PRESENT | SFP_F_LOS;
2565 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2567 for (i = 0; i < GPIO_MAX; i++)
2568 if (changed & BIT(i))
2569 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2570 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2572 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2576 if (changed & SFP_F_PRESENT)
2577 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2578 SFP_E_INSERT : SFP_E_REMOVE);
2580 if (changed & SFP_F_TX_FAULT)
2581 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2582 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2584 if (changed & SFP_F_LOS)
2585 sfp_sm_event(sfp, state & SFP_F_LOS ?
2586 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2588 mutex_unlock(&sfp->st_mutex);
2591 static irqreturn_t sfp_irq(int irq, void *data)
2593 struct sfp *sfp = data;
2595 sfp_check_state(sfp);
2600 static void sfp_poll(struct work_struct *work)
2602 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2604 sfp_check_state(sfp);
2606 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2608 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2611 static struct sfp *sfp_alloc(struct device *dev)
2615 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2617 return ERR_PTR(-ENOMEM);
2620 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2622 mutex_init(&sfp->sm_mutex);
2623 mutex_init(&sfp->st_mutex);
2624 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2625 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2627 sfp_hwmon_init(sfp);
2632 static void sfp_cleanup(void *data)
2634 struct sfp *sfp = data;
2636 sfp_hwmon_exit(sfp);
2638 cancel_delayed_work_sync(&sfp->poll);
2639 cancel_delayed_work_sync(&sfp->timeout);
2641 mdiobus_unregister(sfp->i2c_mii);
2642 mdiobus_free(sfp->i2c_mii);
2645 i2c_put_adapter(sfp->i2c);
2649 static int sfp_probe(struct platform_device *pdev)
2651 const struct sff_data *sff;
2652 struct i2c_adapter *i2c;
2657 sfp = sfp_alloc(&pdev->dev);
2659 return PTR_ERR(sfp);
2661 platform_set_drvdata(pdev, sfp);
2663 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2667 sff = sfp->type = &sfp_data;
2669 if (pdev->dev.of_node) {
2670 struct device_node *node = pdev->dev.of_node;
2671 const struct of_device_id *id;
2672 struct device_node *np;
2674 id = of_match_node(sfp_of_match, node);
2678 sff = sfp->type = id->data;
2680 np = of_parse_phandle(node, "i2c-bus", 0);
2682 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2686 i2c = of_find_i2c_adapter_by_node(np);
2688 } else if (has_acpi_companion(&pdev->dev)) {
2689 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2690 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2691 struct fwnode_reference_args args;
2692 struct acpi_handle *acpi_handle;
2695 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2696 if (ret || !is_acpi_device_node(args.fwnode)) {
2697 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2701 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2702 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2708 return -EPROBE_DEFER;
2710 err = sfp_i2c_configure(sfp, i2c);
2712 i2c_put_adapter(i2c);
2716 for (i = 0; i < GPIO_MAX; i++)
2717 if (sff->gpios & BIT(i)) {
2718 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2719 gpio_of_names[i], gpio_flags[i]);
2720 if (IS_ERR(sfp->gpio[i]))
2721 return PTR_ERR(sfp->gpio[i]);
2724 sfp->state_hw_mask = SFP_F_PRESENT;
2726 sfp->get_state = sfp_gpio_get_state;
2727 sfp->set_state = sfp_gpio_set_state;
2729 /* Modules that have no detect signal are always present */
2730 if (!(sfp->gpio[GPIO_MODDEF0]))
2731 sfp->get_state = sff_gpio_get_state;
2733 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2734 &sfp->max_power_mW);
2735 if (!sfp->max_power_mW)
2736 sfp->max_power_mW = 1000;
2738 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2739 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2741 /* Get the initial state, and always signal TX disable,
2742 * since the network interface will not be up.
2744 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2746 if (sfp->gpio[GPIO_RATE_SELECT] &&
2747 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2748 sfp->state |= SFP_F_RATE_SELECT;
2749 sfp_set_state(sfp, sfp->state);
2750 sfp_module_tx_disable(sfp);
2751 if (sfp->state & SFP_F_PRESENT) {
2753 sfp_sm_event(sfp, SFP_E_INSERT);
2757 for (i = 0; i < GPIO_MAX; i++) {
2758 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2761 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2762 if (sfp->gpio_irq[i] < 0) {
2763 sfp->gpio_irq[i] = 0;
2764 sfp->need_poll = true;
2768 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2769 "%s-%s", dev_name(sfp->dev),
2775 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2778 IRQF_TRIGGER_RISING |
2779 IRQF_TRIGGER_FALLING,
2782 sfp->gpio_irq[i] = 0;
2783 sfp->need_poll = true;
2788 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2790 /* We could have an issue in cases no Tx disable pin is available or
2791 * wired as modules using a laser as their light source will continue to
2792 * be active when the fiber is removed. This could be a safety issue and
2793 * we should at least warn the user about that.
2795 if (!sfp->gpio[GPIO_TX_DISABLE])
2797 "No tx_disable pin: SFP modules will always be emitting.\n");
2799 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2803 sfp_debugfs_init(sfp);
2808 static int sfp_remove(struct platform_device *pdev)
2810 struct sfp *sfp = platform_get_drvdata(pdev);
2812 sfp_debugfs_exit(sfp);
2813 sfp_unregister_socket(sfp->sfp_bus);
2816 sfp_sm_event(sfp, SFP_E_REMOVE);
2822 static void sfp_shutdown(struct platform_device *pdev)
2824 struct sfp *sfp = platform_get_drvdata(pdev);
2827 for (i = 0; i < GPIO_MAX; i++) {
2828 if (!sfp->gpio_irq[i])
2831 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2834 cancel_delayed_work_sync(&sfp->poll);
2835 cancel_delayed_work_sync(&sfp->timeout);
2838 static struct platform_driver sfp_driver = {
2840 .remove = sfp_remove,
2841 .shutdown = sfp_shutdown,
2844 .of_match_table = sfp_of_match,
2848 static int sfp_init(void)
2850 poll_jiffies = msecs_to_jiffies(100);
2852 return platform_driver_register(&sfp_driver);
2854 module_init(sfp_init);
2856 static void sfp_exit(void)
2858 platform_driver_unregister(&sfp_driver);
2860 module_exit(sfp_exit);
2862 MODULE_ALIAS("platform:sfp");
2863 MODULE_AUTHOR("Russell King");
2864 MODULE_LICENSE("GPL v2");