1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
75 static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
85 static const char *mod_state_to_str(unsigned short mod_state)
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
92 static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
98 static const char *dev_state_to_str(unsigned short dev_state)
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
105 static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
119 static const char *event_to_str(unsigned short event)
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
126 static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
140 static const char *sm_state_to_str(unsigned short sm_state)
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
147 static const char *gpio_of_names[] = {
155 static const enum gpiod_flags gpio_flags[] = {
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
168 #define T_WAIT msecs_to_jiffies(50)
169 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000)
170 #define T_START_UP msecs_to_jiffies(300)
171 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
173 /* t_reset is the time required to assert the TX_DISABLE signal to reset
174 * an indicated TX_FAULT.
176 #define T_RESET_US 10
177 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
179 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
180 * time. If the TX_FAULT signal is not deasserted after this number of
181 * attempts at clearing it, we decide that the module is faulty.
182 * N_FAULT is the same but after the module has initialised.
184 #define N_FAULT_INIT 5
187 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
188 * R_PHY_RETRY is the number of attempts.
190 #define T_PHY_RETRY msecs_to_jiffies(50)
191 #define R_PHY_RETRY 12
193 /* SFP module presence detection is poor: the three MOD DEF signals are
194 * the same length on the PCB, which means it's possible for MOD DEF 0 to
195 * connect before the I2C bus on MOD DEF 1/2.
197 * The SFF-8472 specifies t_serial ("Time from power on until module is
198 * ready for data transmission over the two wire serial bus.") as 300ms.
200 #define T_SERIAL msecs_to_jiffies(300)
201 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
202 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
203 #define R_PROBE_RETRY_INIT 10
204 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
205 #define R_PROBE_RETRY_SLOW 12
207 /* SFP modules appear to always have their PHY configured for bus address
208 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
209 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
210 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
212 #define SFP_PHY_ADDR 22
213 #define SFP_PHY_ADDR_ROLLBALL 17
217 bool (*module_supported)(const struct sfp_eeprom_id *id);
222 struct i2c_adapter *i2c;
223 struct mii_bus *i2c_mii;
224 struct sfp_bus *sfp_bus;
225 enum mdio_i2c_proto mdio_protocol;
226 struct phy_device *mod_phy;
227 const struct sff_data *type;
228 size_t i2c_block_size;
231 unsigned int (*get_state)(struct sfp *);
232 void (*set_state)(struct sfp *, unsigned int);
233 int (*read)(struct sfp *, bool, u8, void *, size_t);
234 int (*write)(struct sfp *, bool, u8, void *, size_t);
236 struct gpio_desc *gpio[GPIO_MAX];
237 int gpio_irq[GPIO_MAX];
241 struct mutex st_mutex; /* Protects state */
242 unsigned int state_hw_mask;
243 unsigned int state_soft_mask;
245 struct delayed_work poll;
246 struct delayed_work timeout;
247 struct mutex sm_mutex; /* Protects state machine */
248 unsigned char sm_mod_state;
249 unsigned char sm_mod_tries_init;
250 unsigned char sm_mod_tries;
251 unsigned char sm_dev_state;
252 unsigned short sm_state;
253 unsigned char sm_fault_retries;
254 unsigned char sm_phy_retries;
256 struct sfp_eeprom_id id;
257 unsigned int module_power_mW;
258 unsigned int module_t_start_up;
259 unsigned int module_t_wait;
260 bool tx_fault_ignore;
262 const struct sfp_quirk *quirk;
264 #if IS_ENABLED(CONFIG_HWMON)
265 struct sfp_diag diag;
266 struct delayed_work hwmon_probe;
267 unsigned int hwmon_tries;
268 struct device *hwmon_dev;
272 #if IS_ENABLED(CONFIG_DEBUG_FS)
273 struct dentry *debugfs_dir;
277 static bool sff_module_supported(const struct sfp_eeprom_id *id)
279 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
280 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
283 static const struct sff_data sff_data = {
284 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
285 .module_supported = sff_module_supported,
288 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
290 if (id->base.phys_id == SFF8024_ID_SFP &&
291 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
294 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
295 * phys id SFF instead of SFP. Therefore mark this module explicitly
296 * as supported based on vendor name and pn match.
298 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
299 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
300 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
301 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
307 static const struct sff_data sfp_data = {
308 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
309 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
310 .module_supported = sfp_module_supported,
313 static const struct of_device_id sfp_of_match[] = {
314 { .compatible = "sff,sff", .data = &sff_data, },
315 { .compatible = "sff,sfp", .data = &sfp_data, },
318 MODULE_DEVICE_TABLE(of, sfp_of_match);
320 static void sfp_fixup_long_startup(struct sfp *sfp)
322 sfp->module_t_start_up = T_START_UP_BAD_GPON;
325 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
327 sfp->tx_fault_ignore = true;
330 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
332 /* Ignore the TX_FAULT and LOS signals on this module.
333 * these are possibly used for other purposes on this
334 * module, e.g. a serial port.
336 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
339 static void sfp_fixup_rollball(struct sfp *sfp)
341 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
342 sfp->module_t_wait = T_WAIT_ROLLBALL;
345 static void sfp_fixup_rollball_cc(struct sfp *sfp)
347 sfp_fixup_rollball(sfp);
349 /* Some RollBall SFPs may have wrong (zero) extended compliance code
350 * burned in EEPROM. For PHY probing we need the correct one.
352 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
355 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
356 unsigned long *modes,
357 unsigned long *interfaces)
359 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
360 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
363 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
364 unsigned long *modes,
365 unsigned long *interfaces)
367 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
368 * types including 10G Ethernet which is not truth. So clear all claimed
369 * modes and set only one mode which module supports: 1000baseX_Full.
371 linkmode_zero(modes);
372 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
375 #define SFP_QUIRK(_v, _p, _m, _f) \
376 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
377 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
378 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
380 static const struct sfp_quirk sfp_quirks[] = {
381 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
382 // report 2500MBd NRZ in their EEPROM
383 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
385 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
386 // NRZ in their EEPROM
387 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
388 sfp_fixup_long_startup),
390 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
392 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
394 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
395 sfp_fixup_ignore_tx_fault),
397 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
398 // 2500MBd NRZ in their EEPROM
399 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
401 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
403 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
404 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
405 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
406 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
407 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
410 static size_t sfp_strlen(const char *str, size_t maxlen)
414 /* Trailing characters should be filled with space chars, but
415 * some manufacturers can't read SFF-8472 and use NUL.
417 for (i = 0, size = 0; i < maxlen; i++)
418 if (str[i] != ' ' && str[i] != '\0')
424 static bool sfp_match(const char *qs, const char *str, size_t len)
428 if (strlen(qs) != len)
430 return !strncmp(qs, str, len);
433 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
435 const struct sfp_quirk *q;
439 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
440 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
442 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
443 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
444 sfp_match(q->part, id->base.vendor_pn, ps))
450 static unsigned long poll_jiffies;
452 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
454 unsigned int i, state, v;
456 for (i = state = 0; i < GPIO_MAX; i++) {
457 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
460 v = gpiod_get_value_cansleep(sfp->gpio[i]);
468 static unsigned int sff_gpio_get_state(struct sfp *sfp)
470 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
473 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
475 if (state & SFP_F_PRESENT) {
476 /* If the module is present, drive the signals */
477 if (sfp->gpio[GPIO_TX_DISABLE])
478 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
479 state & SFP_F_TX_DISABLE);
480 if (state & SFP_F_RATE_SELECT)
481 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
482 state & SFP_F_RATE_SELECT);
484 /* Otherwise, let them float to the pull-ups */
485 if (sfp->gpio[GPIO_TX_DISABLE])
486 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
487 if (state & SFP_F_RATE_SELECT)
488 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
492 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
495 struct i2c_msg msgs[2];
496 u8 bus_addr = a2 ? 0x51 : 0x50;
497 size_t block_size = sfp->i2c_block_size;
501 msgs[0].addr = bus_addr;
504 msgs[0].buf = &dev_addr;
505 msgs[1].addr = bus_addr;
506 msgs[1].flags = I2C_M_RD;
512 if (this_len > block_size)
513 this_len = block_size;
515 msgs[1].len = this_len;
517 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
521 if (ret != ARRAY_SIZE(msgs))
524 msgs[1].buf += this_len;
525 dev_addr += this_len;
529 return msgs[1].buf - (u8 *)buf;
532 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
535 struct i2c_msg msgs[1];
536 u8 bus_addr = a2 ? 0x51 : 0x50;
539 msgs[0].addr = bus_addr;
541 msgs[0].len = 1 + len;
542 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
546 msgs[0].buf[0] = dev_addr;
547 memcpy(&msgs[0].buf[1], buf, len);
549 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
556 return ret == ARRAY_SIZE(msgs) ? len : 0;
559 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
561 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
565 sfp->read = sfp_i2c_read;
566 sfp->write = sfp_i2c_write;
571 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
573 struct mii_bus *i2c_mii;
576 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
578 return PTR_ERR(i2c_mii);
580 i2c_mii->name = "SFP I2C Bus";
581 i2c_mii->phy_mask = ~0;
583 ret = mdiobus_register(i2c_mii);
585 mdiobus_free(i2c_mii);
589 sfp->i2c_mii = i2c_mii;
594 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
596 mdiobus_unregister(sfp->i2c_mii);
601 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
603 return sfp->read(sfp, a2, addr, buf, len);
606 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
608 return sfp->write(sfp, a2, addr, buf, len);
611 static unsigned int sfp_soft_get_state(struct sfp *sfp)
613 unsigned int state = 0;
617 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
618 if (ret == sizeof(status)) {
619 if (status & SFP_STATUS_RX_LOS)
621 if (status & SFP_STATUS_TX_FAULT)
622 state |= SFP_F_TX_FAULT;
624 dev_err_ratelimited(sfp->dev,
625 "failed to read SFP soft status: %pe\n",
627 /* Preserve the current state */
631 return state & sfp->state_soft_mask;
634 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
638 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
640 if (state & SFP_F_TX_DISABLE)
641 status |= SFP_STATUS_TX_DISABLE_FORCE;
643 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
645 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
649 static void sfp_soft_start_poll(struct sfp *sfp)
651 const struct sfp_eeprom_id *id = &sfp->id;
652 unsigned int mask = 0;
654 sfp->state_soft_mask = 0;
655 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
656 mask |= SFP_F_TX_DISABLE;
657 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
658 mask |= SFP_F_TX_FAULT;
659 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
662 // Poll the soft state for hardware pins we want to ignore
663 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
665 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
667 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
670 static void sfp_soft_stop_poll(struct sfp *sfp)
672 sfp->state_soft_mask = 0;
675 static unsigned int sfp_get_state(struct sfp *sfp)
677 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
680 state = sfp->get_state(sfp) & sfp->state_hw_mask;
681 if (state & SFP_F_PRESENT && soft)
682 state |= sfp_soft_get_state(sfp);
687 static void sfp_set_state(struct sfp *sfp, unsigned int state)
689 sfp->set_state(sfp, state);
691 if (state & SFP_F_PRESENT &&
692 sfp->state_soft_mask & SFP_F_TX_DISABLE)
693 sfp_soft_set_state(sfp, state);
696 static unsigned int sfp_check(void *buf, size_t len)
700 for (p = buf, check = 0; len; p++, len--)
707 #if IS_ENABLED(CONFIG_HWMON)
708 static umode_t sfp_hwmon_is_visible(const void *data,
709 enum hwmon_sensor_types type,
710 u32 attr, int channel)
712 const struct sfp *sfp = data;
717 case hwmon_temp_min_alarm:
718 case hwmon_temp_max_alarm:
719 case hwmon_temp_lcrit_alarm:
720 case hwmon_temp_crit_alarm:
723 case hwmon_temp_lcrit:
724 case hwmon_temp_crit:
725 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
728 case hwmon_temp_input:
729 case hwmon_temp_label:
736 case hwmon_in_min_alarm:
737 case hwmon_in_max_alarm:
738 case hwmon_in_lcrit_alarm:
739 case hwmon_in_crit_alarm:
744 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
755 case hwmon_curr_min_alarm:
756 case hwmon_curr_max_alarm:
757 case hwmon_curr_lcrit_alarm:
758 case hwmon_curr_crit_alarm:
761 case hwmon_curr_lcrit:
762 case hwmon_curr_crit:
763 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
766 case hwmon_curr_input:
767 case hwmon_curr_label:
773 /* External calibration of receive power requires
774 * floating point arithmetic. Doing that in the kernel
775 * is not easy, so just skip it. If the module does
776 * not require external calibration, we can however
777 * show receiver power, since FP is then not needed.
779 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
783 case hwmon_power_min_alarm:
784 case hwmon_power_max_alarm:
785 case hwmon_power_lcrit_alarm:
786 case hwmon_power_crit_alarm:
787 case hwmon_power_min:
788 case hwmon_power_max:
789 case hwmon_power_lcrit:
790 case hwmon_power_crit:
791 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
794 case hwmon_power_input:
795 case hwmon_power_label:
805 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
810 err = sfp_read(sfp, true, reg, &val, sizeof(val));
814 *value = be16_to_cpu(val);
819 static void sfp_hwmon_to_rx_power(long *value)
821 *value = DIV_ROUND_CLOSEST(*value, 10);
824 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
827 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
828 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
831 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
833 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
834 be16_to_cpu(sfp->diag.cal_t_offset), value);
836 if (*value >= 0x8000)
839 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
842 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
844 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
845 be16_to_cpu(sfp->diag.cal_v_offset), value);
847 *value = DIV_ROUND_CLOSEST(*value, 10);
850 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
852 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
853 be16_to_cpu(sfp->diag.cal_txi_offset), value);
855 *value = DIV_ROUND_CLOSEST(*value, 500);
858 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
860 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
861 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
863 *value = DIV_ROUND_CLOSEST(*value, 10);
866 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
870 err = sfp_hwmon_read_sensor(sfp, reg, value);
874 sfp_hwmon_calibrate_temp(sfp, value);
879 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
883 err = sfp_hwmon_read_sensor(sfp, reg, value);
887 sfp_hwmon_calibrate_vcc(sfp, value);
892 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
896 err = sfp_hwmon_read_sensor(sfp, reg, value);
900 sfp_hwmon_calibrate_bias(sfp, value);
905 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
909 err = sfp_hwmon_read_sensor(sfp, reg, value);
913 sfp_hwmon_calibrate_tx_power(sfp, value);
918 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
922 err = sfp_hwmon_read_sensor(sfp, reg, value);
926 sfp_hwmon_to_rx_power(value);
931 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
937 case hwmon_temp_input:
938 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
940 case hwmon_temp_lcrit:
941 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
942 sfp_hwmon_calibrate_temp(sfp, value);
946 *value = be16_to_cpu(sfp->diag.temp_low_warn);
947 sfp_hwmon_calibrate_temp(sfp, value);
950 *value = be16_to_cpu(sfp->diag.temp_high_warn);
951 sfp_hwmon_calibrate_temp(sfp, value);
954 case hwmon_temp_crit:
955 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
956 sfp_hwmon_calibrate_temp(sfp, value);
959 case hwmon_temp_lcrit_alarm:
960 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
964 *value = !!(status & SFP_ALARM0_TEMP_LOW);
967 case hwmon_temp_min_alarm:
968 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
972 *value = !!(status & SFP_WARN0_TEMP_LOW);
975 case hwmon_temp_max_alarm:
976 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
980 *value = !!(status & SFP_WARN0_TEMP_HIGH);
983 case hwmon_temp_crit_alarm:
984 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
988 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
997 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1003 case hwmon_in_input:
1004 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1006 case hwmon_in_lcrit:
1007 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1008 sfp_hwmon_calibrate_vcc(sfp, value);
1012 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1013 sfp_hwmon_calibrate_vcc(sfp, value);
1017 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1018 sfp_hwmon_calibrate_vcc(sfp, value);
1022 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1023 sfp_hwmon_calibrate_vcc(sfp, value);
1026 case hwmon_in_lcrit_alarm:
1027 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1031 *value = !!(status & SFP_ALARM0_VCC_LOW);
1034 case hwmon_in_min_alarm:
1035 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1039 *value = !!(status & SFP_WARN0_VCC_LOW);
1042 case hwmon_in_max_alarm:
1043 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1047 *value = !!(status & SFP_WARN0_VCC_HIGH);
1050 case hwmon_in_crit_alarm:
1051 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1055 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1064 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1070 case hwmon_curr_input:
1071 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1073 case hwmon_curr_lcrit:
1074 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1075 sfp_hwmon_calibrate_bias(sfp, value);
1078 case hwmon_curr_min:
1079 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1080 sfp_hwmon_calibrate_bias(sfp, value);
1083 case hwmon_curr_max:
1084 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1085 sfp_hwmon_calibrate_bias(sfp, value);
1088 case hwmon_curr_crit:
1089 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1090 sfp_hwmon_calibrate_bias(sfp, value);
1093 case hwmon_curr_lcrit_alarm:
1094 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1098 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1101 case hwmon_curr_min_alarm:
1102 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1106 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1109 case hwmon_curr_max_alarm:
1110 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1114 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1117 case hwmon_curr_crit_alarm:
1118 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1122 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1131 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1137 case hwmon_power_input:
1138 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1140 case hwmon_power_lcrit:
1141 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1142 sfp_hwmon_calibrate_tx_power(sfp, value);
1145 case hwmon_power_min:
1146 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1147 sfp_hwmon_calibrate_tx_power(sfp, value);
1150 case hwmon_power_max:
1151 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1152 sfp_hwmon_calibrate_tx_power(sfp, value);
1155 case hwmon_power_crit:
1156 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1157 sfp_hwmon_calibrate_tx_power(sfp, value);
1160 case hwmon_power_lcrit_alarm:
1161 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1165 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1168 case hwmon_power_min_alarm:
1169 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1173 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1176 case hwmon_power_max_alarm:
1177 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1181 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1184 case hwmon_power_crit_alarm:
1185 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1189 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1198 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1204 case hwmon_power_input:
1205 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1207 case hwmon_power_lcrit:
1208 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1209 sfp_hwmon_to_rx_power(value);
1212 case hwmon_power_min:
1213 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1214 sfp_hwmon_to_rx_power(value);
1217 case hwmon_power_max:
1218 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1219 sfp_hwmon_to_rx_power(value);
1222 case hwmon_power_crit:
1223 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1224 sfp_hwmon_to_rx_power(value);
1227 case hwmon_power_lcrit_alarm:
1228 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1232 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1235 case hwmon_power_min_alarm:
1236 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1240 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1243 case hwmon_power_max_alarm:
1244 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1248 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1251 case hwmon_power_crit_alarm:
1252 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1256 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1265 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1266 u32 attr, int channel, long *value)
1268 struct sfp *sfp = dev_get_drvdata(dev);
1272 return sfp_hwmon_temp(sfp, attr, value);
1274 return sfp_hwmon_vcc(sfp, attr, value);
1276 return sfp_hwmon_bias(sfp, attr, value);
1280 return sfp_hwmon_tx_power(sfp, attr, value);
1282 return sfp_hwmon_rx_power(sfp, attr, value);
1291 static const char *const sfp_hwmon_power_labels[] = {
1296 static int sfp_hwmon_read_string(struct device *dev,
1297 enum hwmon_sensor_types type,
1298 u32 attr, int channel, const char **str)
1303 case hwmon_curr_label:
1312 case hwmon_temp_label:
1313 *str = "temperature";
1321 case hwmon_in_label:
1330 case hwmon_power_label:
1331 *str = sfp_hwmon_power_labels[channel];
1344 static const struct hwmon_ops sfp_hwmon_ops = {
1345 .is_visible = sfp_hwmon_is_visible,
1346 .read = sfp_hwmon_read,
1347 .read_string = sfp_hwmon_read_string,
1350 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1351 HWMON_CHANNEL_INFO(chip,
1352 HWMON_C_REGISTER_TZ),
1353 HWMON_CHANNEL_INFO(in,
1355 HWMON_I_MAX | HWMON_I_MIN |
1356 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1357 HWMON_I_CRIT | HWMON_I_LCRIT |
1358 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1360 HWMON_CHANNEL_INFO(temp,
1362 HWMON_T_MAX | HWMON_T_MIN |
1363 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1364 HWMON_T_CRIT | HWMON_T_LCRIT |
1365 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1367 HWMON_CHANNEL_INFO(curr,
1369 HWMON_C_MAX | HWMON_C_MIN |
1370 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1371 HWMON_C_CRIT | HWMON_C_LCRIT |
1372 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1374 HWMON_CHANNEL_INFO(power,
1375 /* Transmit power */
1377 HWMON_P_MAX | HWMON_P_MIN |
1378 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1379 HWMON_P_CRIT | HWMON_P_LCRIT |
1380 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1384 HWMON_P_MAX | HWMON_P_MIN |
1385 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1386 HWMON_P_CRIT | HWMON_P_LCRIT |
1387 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1392 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1393 .ops = &sfp_hwmon_ops,
1394 .info = sfp_hwmon_info,
1397 static void sfp_hwmon_probe(struct work_struct *work)
1399 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1402 /* hwmon interface needs to access 16bit registers in atomic way to
1403 * guarantee coherency of the diagnostic monitoring data. If it is not
1404 * possible to guarantee coherency because EEPROM is broken in such way
1405 * that does not support atomic 16bit read operation then we have to
1406 * skip registration of hwmon device.
1408 if (sfp->i2c_block_size < 2) {
1410 "skipping hwmon device registration due to broken EEPROM\n");
1412 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1416 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1418 if (sfp->hwmon_tries--) {
1419 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1420 T_PROBE_RETRY_SLOW);
1422 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1428 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1429 if (IS_ERR(sfp->hwmon_name)) {
1430 dev_err(sfp->dev, "out of memory for hwmon name\n");
1434 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1435 sfp->hwmon_name, sfp,
1436 &sfp_hwmon_chip_info,
1438 if (IS_ERR(sfp->hwmon_dev))
1439 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1440 PTR_ERR(sfp->hwmon_dev));
1443 static int sfp_hwmon_insert(struct sfp *sfp)
1445 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1448 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1451 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1452 /* This driver in general does not support address
1457 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1458 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1463 static void sfp_hwmon_remove(struct sfp *sfp)
1465 cancel_delayed_work_sync(&sfp->hwmon_probe);
1466 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1467 hwmon_device_unregister(sfp->hwmon_dev);
1468 sfp->hwmon_dev = NULL;
1469 kfree(sfp->hwmon_name);
1473 static int sfp_hwmon_init(struct sfp *sfp)
1475 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1480 static void sfp_hwmon_exit(struct sfp *sfp)
1482 cancel_delayed_work_sync(&sfp->hwmon_probe);
1485 static int sfp_hwmon_insert(struct sfp *sfp)
1490 static void sfp_hwmon_remove(struct sfp *sfp)
1494 static int sfp_hwmon_init(struct sfp *sfp)
1499 static void sfp_hwmon_exit(struct sfp *sfp)
1505 static void sfp_module_tx_disable(struct sfp *sfp)
1507 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1508 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1509 sfp->state |= SFP_F_TX_DISABLE;
1510 sfp_set_state(sfp, sfp->state);
1513 static void sfp_module_tx_enable(struct sfp *sfp)
1515 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1516 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1517 sfp->state &= ~SFP_F_TX_DISABLE;
1518 sfp_set_state(sfp, sfp->state);
1521 #if IS_ENABLED(CONFIG_DEBUG_FS)
1522 static int sfp_debug_state_show(struct seq_file *s, void *data)
1524 struct sfp *sfp = s->private;
1526 seq_printf(s, "Module state: %s\n",
1527 mod_state_to_str(sfp->sm_mod_state));
1528 seq_printf(s, "Module probe attempts: %d %d\n",
1529 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1530 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1531 seq_printf(s, "Device state: %s\n",
1532 dev_state_to_str(sfp->sm_dev_state));
1533 seq_printf(s, "Main state: %s\n",
1534 sm_state_to_str(sfp->sm_state));
1535 seq_printf(s, "Fault recovery remaining retries: %d\n",
1536 sfp->sm_fault_retries);
1537 seq_printf(s, "PHY probe remaining retries: %d\n",
1538 sfp->sm_phy_retries);
1539 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1540 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1541 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1542 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1545 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1547 static void sfp_debugfs_init(struct sfp *sfp)
1549 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1551 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1552 &sfp_debug_state_fops);
1555 static void sfp_debugfs_exit(struct sfp *sfp)
1557 debugfs_remove_recursive(sfp->debugfs_dir);
1560 static void sfp_debugfs_init(struct sfp *sfp)
1564 static void sfp_debugfs_exit(struct sfp *sfp)
1569 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1571 unsigned int state = sfp->state;
1573 if (state & SFP_F_TX_DISABLE)
1576 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1580 sfp_set_state(sfp, state);
1583 /* SFP state machine */
1584 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1587 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1590 cancel_delayed_work(&sfp->timeout);
1593 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1594 unsigned int timeout)
1596 sfp->sm_state = state;
1597 sfp_sm_set_timer(sfp, timeout);
1600 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1601 unsigned int timeout)
1603 sfp->sm_mod_state = state;
1604 sfp_sm_set_timer(sfp, timeout);
1607 static void sfp_sm_phy_detach(struct sfp *sfp)
1609 sfp_remove_phy(sfp->sfp_bus);
1610 phy_device_remove(sfp->mod_phy);
1611 phy_device_free(sfp->mod_phy);
1612 sfp->mod_phy = NULL;
1615 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1617 struct phy_device *phy;
1620 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1621 if (phy == ERR_PTR(-ENODEV))
1622 return PTR_ERR(phy);
1624 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1625 return PTR_ERR(phy);
1628 err = phy_device_register(phy);
1630 phy_device_free(phy);
1631 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1636 err = sfp_add_phy(sfp->sfp_bus, phy);
1638 phy_device_remove(phy);
1639 phy_device_free(phy);
1640 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1649 static void sfp_sm_link_up(struct sfp *sfp)
1651 sfp_link_up(sfp->sfp_bus);
1652 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1655 static void sfp_sm_link_down(struct sfp *sfp)
1657 sfp_link_down(sfp->sfp_bus);
1660 static void sfp_sm_link_check_los(struct sfp *sfp)
1662 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1663 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1664 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1667 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1668 * are set, we assume that no LOS signal is available. If both are
1669 * set, we assume LOS is not implemented (and is meaningless.)
1671 if (los_options == los_inverted)
1672 los = !(sfp->state & SFP_F_LOS);
1673 else if (los_options == los_normal)
1674 los = !!(sfp->state & SFP_F_LOS);
1677 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1679 sfp_sm_link_up(sfp);
1682 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1684 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1685 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1686 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1688 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1689 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1692 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1694 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1695 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1696 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1698 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1699 (los_options == los_normal && event == SFP_E_LOS_LOW);
1702 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1704 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1706 "module persistently indicates fault, disabling\n");
1707 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1710 dev_err(sfp->dev, "module transmit fault indicated\n");
1712 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1716 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1718 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1719 return sfp_i2c_mdiobus_create(sfp);
1724 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1725 * normally sits at I2C bus address 0x56, and may either be a clause 22
1728 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1729 * negotiation enabled, but some may be in 1000base-X - which is for the
1730 * PHY driver to determine.
1732 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1733 * mode according to the negotiated line speed.
1735 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1739 switch (sfp->mdio_protocol) {
1743 case MDIO_I2C_MARVELL_C22:
1744 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1748 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1751 case MDIO_I2C_ROLLBALL:
1752 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1759 static int sfp_module_parse_power(struct sfp *sfp)
1761 u32 power_mW = 1000;
1764 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1766 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1769 supports_a2 = sfp->id.ext.sff8472_compliance !=
1770 SFP_SFF8472_COMPLIANCE_NONE ||
1771 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1773 if (power_mW > sfp->max_power_mW) {
1774 /* Module power specification exceeds the allowed maximum. */
1776 /* The module appears not to implement bus address
1777 * 0xa2, so assume that the module powers up in the
1781 "Host does not support %u.%uW modules\n",
1782 power_mW / 1000, (power_mW / 100) % 10);
1786 "Host does not support %u.%uW modules, module left in power mode 1\n",
1787 power_mW / 1000, (power_mW / 100) % 10);
1792 if (power_mW <= 1000) {
1793 /* Modules below 1W do not require a power change sequence */
1794 sfp->module_power_mW = power_mW;
1799 /* The module power level is below the host maximum and the
1800 * module appears not to implement bus address 0xa2, so assume
1801 * that the module powers up in the indicated mode.
1806 /* If the module requires a higher power mode, but also requires
1807 * an address change sequence, warn the user that the module may
1808 * not be functional.
1810 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1812 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1813 power_mW / 1000, (power_mW / 100) % 10);
1817 sfp->module_power_mW = power_mW;
1822 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1827 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1828 if (err != sizeof(val)) {
1829 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1833 /* DM7052 reports as a high power module, responds to reads (with
1834 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1835 * if the bit is already set, we're already in high power mode.
1837 if (!!(val & BIT(0)) == enable)
1845 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1846 if (err != sizeof(val)) {
1847 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1853 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1854 sfp->module_power_mW / 1000,
1855 (sfp->module_power_mW / 100) % 10);
1860 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1861 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1862 * not support multibyte reads from the EEPROM. Each multi-byte read
1863 * operation returns just one byte of EEPROM followed by zeros. There is
1864 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1865 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1866 * name and vendor id into EEPROM, so there is even no way to detect if
1867 * module is V-SOL V2801F. Therefore check for those zeros in the read
1868 * data and then based on check switch to reading EEPROM to one byte
1871 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1873 size_t i, block_size = sfp->i2c_block_size;
1875 /* Already using byte IO */
1876 if (block_size == 1)
1879 for (i = 1; i < len; i += block_size) {
1880 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1886 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1891 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1892 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1893 id->base.connector != SFF8024_CONNECTOR_LC) {
1894 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1895 id->base.phys_id = SFF8024_ID_SFF_8472;
1896 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1897 id->base.connector = SFF8024_CONNECTOR_LC;
1898 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1901 "Failed to rewrite module EEPROM: %pe\n",
1906 /* Cotsworks modules have been found to require a delay between write operations. */
1909 /* Update base structure checksum */
1910 check = sfp_check(&id->base, sizeof(id->base) - 1);
1911 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1914 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1922 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1924 /* SFP module inserted - read I2C data */
1925 struct sfp_eeprom_id id;
1926 bool cotsworks_sfbg;
1931 /* Some SFP modules and also some Linux I2C drivers do not like reads
1932 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1935 sfp->i2c_block_size = 16;
1937 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1940 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1945 if (ret != sizeof(id.base)) {
1946 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1950 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1951 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1952 * that EEPROM supports atomic 16bit read operation for diagnostic
1953 * fields, so do not switch to one byte reading at a time unless it
1954 * is really required and we have no other option.
1956 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1958 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1960 "Switching to reading EEPROM to one byte at a time\n");
1961 sfp->i2c_block_size = 1;
1963 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1967 "failed to read EEPROM: %pe\n",
1972 if (ret != sizeof(id.base)) {
1973 dev_err(sfp->dev, "EEPROM short read: %pe\n",
1979 /* Cotsworks do not seem to update the checksums when they
1980 * do the final programming with the final module part number,
1981 * serial number and date code.
1983 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1984 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1986 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1987 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1988 * Cotsworks PN matches and bytes are not correct.
1990 if (cotsworks && cotsworks_sfbg) {
1991 ret = sfp_cotsworks_fixup_check(sfp, &id);
1996 /* Validate the checksum over the base structure */
1997 check = sfp_check(&id.base, sizeof(id.base) - 1);
1998 if (check != id.base.cc_base) {
2001 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2002 check, id.base.cc_base);
2005 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2006 check, id.base.cc_base);
2007 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2008 16, 1, &id, sizeof(id), true);
2013 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2016 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2021 if (ret != sizeof(id.ext)) {
2022 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2026 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2027 if (check != id.ext.cc_ext) {
2030 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2031 check, id.ext.cc_ext);
2034 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2035 check, id.ext.cc_ext);
2036 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2037 16, 1, &id, sizeof(id), true);
2038 memset(&id.ext, 0, sizeof(id.ext));
2044 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2045 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2046 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2047 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2048 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2049 (int)sizeof(id.ext.datecode), id.ext.datecode);
2051 /* Check whether we support this module */
2052 if (!sfp->type->module_supported(&id)) {
2054 "module is not supported - phys id 0x%02x 0x%02x\n",
2055 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2059 /* If the module requires address swap mode, warn about it */
2060 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2062 "module address swap to access page 0xA2 is not supported.\n");
2064 /* Parse the module power requirement */
2065 ret = sfp_module_parse_power(sfp);
2069 /* Initialise state bits to use from hardware */
2070 sfp->state_hw_mask = SFP_F_PRESENT;
2071 if (sfp->gpio[GPIO_TX_DISABLE])
2072 sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2073 if (sfp->gpio[GPIO_TX_FAULT])
2074 sfp->state_hw_mask |= SFP_F_TX_FAULT;
2075 if (sfp->gpio[GPIO_LOS])
2076 sfp->state_hw_mask |= SFP_F_LOS;
2078 sfp->module_t_start_up = T_START_UP;
2079 sfp->module_t_wait = T_WAIT;
2081 sfp->tx_fault_ignore = false;
2083 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2084 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2085 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2086 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2087 sfp->mdio_protocol = MDIO_I2C_C45;
2088 else if (sfp->id.base.e1000_base_t)
2089 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2091 sfp->mdio_protocol = MDIO_I2C_NONE;
2093 sfp->quirk = sfp_lookup_quirk(&id);
2094 if (sfp->quirk && sfp->quirk->fixup)
2095 sfp->quirk->fixup(sfp);
2100 static void sfp_sm_mod_remove(struct sfp *sfp)
2102 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2103 sfp_module_remove(sfp->sfp_bus);
2105 sfp_hwmon_remove(sfp);
2107 memset(&sfp->id, 0, sizeof(sfp->id));
2108 sfp->module_power_mW = 0;
2110 dev_info(sfp->dev, "module removed\n");
2113 /* This state machine tracks the upstream's state */
2114 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2116 switch (sfp->sm_dev_state) {
2118 if (event == SFP_E_DEV_ATTACH)
2119 sfp->sm_dev_state = SFP_DEV_DOWN;
2123 if (event == SFP_E_DEV_DETACH)
2124 sfp->sm_dev_state = SFP_DEV_DETACHED;
2125 else if (event == SFP_E_DEV_UP)
2126 sfp->sm_dev_state = SFP_DEV_UP;
2130 if (event == SFP_E_DEV_DETACH)
2131 sfp->sm_dev_state = SFP_DEV_DETACHED;
2132 else if (event == SFP_E_DEV_DOWN)
2133 sfp->sm_dev_state = SFP_DEV_DOWN;
2138 /* This state machine tracks the insert/remove state of the module, probes
2139 * the on-board EEPROM, and sets up the power level.
2141 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2145 /* Handle remove event globally, it resets this state machine */
2146 if (event == SFP_E_REMOVE) {
2147 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2148 sfp_sm_mod_remove(sfp);
2149 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2153 /* Handle device detach globally */
2154 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2155 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2156 if (sfp->module_power_mW > 1000 &&
2157 sfp->sm_mod_state > SFP_MOD_HPOWER)
2158 sfp_sm_mod_hpower(sfp, false);
2159 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2163 switch (sfp->sm_mod_state) {
2165 if (event == SFP_E_INSERT) {
2166 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2167 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2168 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2173 /* Wait for T_PROBE_INIT to time out */
2174 if (event != SFP_E_TIMEOUT)
2177 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2178 if (err == -EAGAIN) {
2179 if (sfp->sm_mod_tries_init &&
2180 --sfp->sm_mod_tries_init) {
2181 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2183 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2184 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2186 "please wait, module slow to respond\n");
2187 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2192 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2196 err = sfp_hwmon_insert(sfp);
2198 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2201 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2203 case SFP_MOD_WAITDEV:
2204 /* Ensure that the device is attached before proceeding */
2205 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2208 /* Report the module insertion to the upstream device */
2209 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2212 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2216 /* If this is a power level 1 module, we are done */
2217 if (sfp->module_power_mW <= 1000)
2220 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2222 case SFP_MOD_HPOWER:
2223 /* Enable high power mode */
2224 err = sfp_sm_mod_hpower(sfp, true);
2226 if (err != -EAGAIN) {
2227 sfp_module_remove(sfp->sfp_bus);
2228 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2230 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2235 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2238 case SFP_MOD_WAITPWR:
2239 /* Wait for T_HPOWER_LEVEL to time out */
2240 if (event != SFP_E_TIMEOUT)
2244 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2247 case SFP_MOD_PRESENT:
2253 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2255 unsigned long timeout;
2258 /* Some events are global */
2259 if (sfp->sm_state != SFP_S_DOWN &&
2260 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2261 sfp->sm_dev_state != SFP_DEV_UP)) {
2262 if (sfp->sm_state == SFP_S_LINK_UP &&
2263 sfp->sm_dev_state == SFP_DEV_UP)
2264 sfp_sm_link_down(sfp);
2265 if (sfp->sm_state > SFP_S_INIT)
2266 sfp_module_stop(sfp->sfp_bus);
2268 sfp_sm_phy_detach(sfp);
2270 sfp_i2c_mdiobus_destroy(sfp);
2271 sfp_module_tx_disable(sfp);
2272 sfp_soft_stop_poll(sfp);
2273 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2277 /* The main state machine */
2278 switch (sfp->sm_state) {
2280 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2281 sfp->sm_dev_state != SFP_DEV_UP)
2284 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2285 sfp_soft_start_poll(sfp);
2287 sfp_module_tx_enable(sfp);
2289 /* Initialise the fault clearance retries */
2290 sfp->sm_fault_retries = N_FAULT_INIT;
2292 /* We need to check the TX_FAULT state, which is not defined
2293 * while TX_DISABLE is asserted. The earliest we want to do
2294 * anything (such as probe for a PHY) is 50ms (or more on
2295 * specific modules).
2297 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2301 if (event != SFP_E_TIMEOUT)
2304 if (sfp->state & SFP_F_TX_FAULT) {
2305 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2306 * from the TX_DISABLE deassertion for the module to
2307 * initialise, which is indicated by TX_FAULT
2310 timeout = sfp->module_t_start_up;
2311 if (timeout > sfp->module_t_wait)
2312 timeout -= sfp->module_t_wait;
2316 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2318 /* TX_FAULT is not asserted, assume the module has
2319 * finished initialising.
2326 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2327 /* TX_FAULT is still asserted after t_init
2328 * or t_start_up, so assume there is a fault.
2330 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2331 sfp->sm_fault_retries == N_FAULT_INIT);
2332 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2334 /* Create mdiobus and start trying for PHY */
2335 ret = sfp_sm_add_mdio_bus(sfp);
2337 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2340 sfp->sm_phy_retries = R_PHY_RETRY;
2345 case SFP_S_INIT_PHY:
2346 if (event != SFP_E_TIMEOUT)
2349 /* TX_FAULT deasserted or we timed out with TX_FAULT
2350 * clear. Probe for the PHY and check the LOS state.
2352 ret = sfp_sm_probe_for_phy(sfp);
2353 if (ret == -ENODEV) {
2354 if (--sfp->sm_phy_retries) {
2355 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2358 dev_info(sfp->dev, "no PHY detected\n");
2361 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2364 if (sfp_module_start(sfp->sfp_bus)) {
2365 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2368 sfp_sm_link_check_los(sfp);
2370 /* Reset the fault retry count */
2371 sfp->sm_fault_retries = N_FAULT;
2374 case SFP_S_INIT_TX_FAULT:
2375 if (event == SFP_E_TIMEOUT) {
2376 sfp_module_tx_fault_reset(sfp);
2377 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2381 case SFP_S_WAIT_LOS:
2382 if (event == SFP_E_TX_FAULT)
2383 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2384 else if (sfp_los_event_inactive(sfp, event))
2385 sfp_sm_link_up(sfp);
2389 if (event == SFP_E_TX_FAULT) {
2390 sfp_sm_link_down(sfp);
2391 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2392 } else if (sfp_los_event_active(sfp, event)) {
2393 sfp_sm_link_down(sfp);
2394 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2398 case SFP_S_TX_FAULT:
2399 if (event == SFP_E_TIMEOUT) {
2400 sfp_module_tx_fault_reset(sfp);
2401 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2406 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2407 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2408 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2409 dev_info(sfp->dev, "module transmit fault recovered\n");
2410 sfp_sm_link_check_los(sfp);
2414 case SFP_S_TX_DISABLE:
2419 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2421 mutex_lock(&sfp->sm_mutex);
2423 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2424 mod_state_to_str(sfp->sm_mod_state),
2425 dev_state_to_str(sfp->sm_dev_state),
2426 sm_state_to_str(sfp->sm_state),
2427 event_to_str(event));
2429 sfp_sm_device(sfp, event);
2430 sfp_sm_module(sfp, event);
2431 sfp_sm_main(sfp, event);
2433 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2434 mod_state_to_str(sfp->sm_mod_state),
2435 dev_state_to_str(sfp->sm_dev_state),
2436 sm_state_to_str(sfp->sm_state));
2438 mutex_unlock(&sfp->sm_mutex);
2441 static void sfp_attach(struct sfp *sfp)
2443 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2446 static void sfp_detach(struct sfp *sfp)
2448 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2451 static void sfp_start(struct sfp *sfp)
2453 sfp_sm_event(sfp, SFP_E_DEV_UP);
2456 static void sfp_stop(struct sfp *sfp)
2458 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2461 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2463 /* locking... and check module is present */
2465 if (sfp->id.ext.sff8472_compliance &&
2466 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2467 modinfo->type = ETH_MODULE_SFF_8472;
2468 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2470 modinfo->type = ETH_MODULE_SFF_8079;
2471 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2476 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2479 unsigned int first, last, len;
2486 last = ee->offset + ee->len;
2487 if (first < ETH_MODULE_SFF_8079_LEN) {
2488 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2491 ret = sfp_read(sfp, false, first, data, len);
2498 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2499 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2501 first -= ETH_MODULE_SFF_8079_LEN;
2503 ret = sfp_read(sfp, true, first, data, len);
2510 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2511 const struct ethtool_module_eeprom *page,
2512 struct netlink_ext_ack *extack)
2515 NL_SET_ERR_MSG(extack, "Banks not supported");
2520 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2524 if (page->i2c_address != 0x50 &&
2525 page->i2c_address != 0x51) {
2526 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2530 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2531 page->data, page->length);
2534 static const struct sfp_socket_ops sfp_module_ops = {
2535 .attach = sfp_attach,
2536 .detach = sfp_detach,
2539 .module_info = sfp_module_info,
2540 .module_eeprom = sfp_module_eeprom,
2541 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2544 static void sfp_timeout(struct work_struct *work)
2546 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2549 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2553 static void sfp_check_state(struct sfp *sfp)
2555 unsigned int state, i, changed;
2557 mutex_lock(&sfp->st_mutex);
2558 state = sfp_get_state(sfp);
2559 changed = state ^ sfp->state;
2560 if (sfp->tx_fault_ignore)
2561 changed &= SFP_F_PRESENT | SFP_F_LOS;
2563 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2565 for (i = 0; i < GPIO_MAX; i++)
2566 if (changed & BIT(i))
2567 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2568 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2570 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2574 if (changed & SFP_F_PRESENT)
2575 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2576 SFP_E_INSERT : SFP_E_REMOVE);
2578 if (changed & SFP_F_TX_FAULT)
2579 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2580 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2582 if (changed & SFP_F_LOS)
2583 sfp_sm_event(sfp, state & SFP_F_LOS ?
2584 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2586 mutex_unlock(&sfp->st_mutex);
2589 static irqreturn_t sfp_irq(int irq, void *data)
2591 struct sfp *sfp = data;
2593 sfp_check_state(sfp);
2598 static void sfp_poll(struct work_struct *work)
2600 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2602 sfp_check_state(sfp);
2604 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2606 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2609 static struct sfp *sfp_alloc(struct device *dev)
2613 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2615 return ERR_PTR(-ENOMEM);
2619 mutex_init(&sfp->sm_mutex);
2620 mutex_init(&sfp->st_mutex);
2621 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2622 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2624 sfp_hwmon_init(sfp);
2629 static void sfp_cleanup(void *data)
2631 struct sfp *sfp = data;
2633 sfp_hwmon_exit(sfp);
2635 cancel_delayed_work_sync(&sfp->poll);
2636 cancel_delayed_work_sync(&sfp->timeout);
2638 mdiobus_unregister(sfp->i2c_mii);
2639 mdiobus_free(sfp->i2c_mii);
2642 i2c_put_adapter(sfp->i2c);
2646 static int sfp_probe(struct platform_device *pdev)
2648 const struct sff_data *sff;
2649 struct i2c_adapter *i2c;
2654 sfp = sfp_alloc(&pdev->dev);
2656 return PTR_ERR(sfp);
2658 platform_set_drvdata(pdev, sfp);
2660 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2664 sff = sfp->type = &sfp_data;
2666 if (pdev->dev.of_node) {
2667 struct device_node *node = pdev->dev.of_node;
2668 const struct of_device_id *id;
2669 struct device_node *np;
2671 id = of_match_node(sfp_of_match, node);
2675 sff = sfp->type = id->data;
2677 np = of_parse_phandle(node, "i2c-bus", 0);
2679 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2683 i2c = of_find_i2c_adapter_by_node(np);
2685 } else if (has_acpi_companion(&pdev->dev)) {
2686 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2687 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2688 struct fwnode_reference_args args;
2689 struct acpi_handle *acpi_handle;
2692 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2693 if (ret || !is_acpi_device_node(args.fwnode)) {
2694 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2698 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2699 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2705 return -EPROBE_DEFER;
2707 err = sfp_i2c_configure(sfp, i2c);
2709 i2c_put_adapter(i2c);
2713 for (i = 0; i < GPIO_MAX; i++)
2714 if (sff->gpios & BIT(i)) {
2715 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2716 gpio_of_names[i], gpio_flags[i]);
2717 if (IS_ERR(sfp->gpio[i]))
2718 return PTR_ERR(sfp->gpio[i]);
2721 sfp->state_hw_mask = SFP_F_PRESENT;
2723 sfp->get_state = sfp_gpio_get_state;
2724 sfp->set_state = sfp_gpio_set_state;
2726 /* Modules that have no detect signal are always present */
2727 if (!(sfp->gpio[GPIO_MODDEF0]))
2728 sfp->get_state = sff_gpio_get_state;
2730 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2731 &sfp->max_power_mW);
2732 if (!sfp->max_power_mW)
2733 sfp->max_power_mW = 1000;
2735 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2736 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2738 /* Get the initial state, and always signal TX disable,
2739 * since the network interface will not be up.
2741 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2743 if (sfp->gpio[GPIO_RATE_SELECT] &&
2744 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2745 sfp->state |= SFP_F_RATE_SELECT;
2746 sfp_set_state(sfp, sfp->state);
2747 sfp_module_tx_disable(sfp);
2748 if (sfp->state & SFP_F_PRESENT) {
2750 sfp_sm_event(sfp, SFP_E_INSERT);
2754 for (i = 0; i < GPIO_MAX; i++) {
2755 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2758 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2759 if (sfp->gpio_irq[i] < 0) {
2760 sfp->gpio_irq[i] = 0;
2761 sfp->need_poll = true;
2765 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2766 "%s-%s", dev_name(sfp->dev),
2772 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2775 IRQF_TRIGGER_RISING |
2776 IRQF_TRIGGER_FALLING,
2779 sfp->gpio_irq[i] = 0;
2780 sfp->need_poll = true;
2785 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2787 /* We could have an issue in cases no Tx disable pin is available or
2788 * wired as modules using a laser as their light source will continue to
2789 * be active when the fiber is removed. This could be a safety issue and
2790 * we should at least warn the user about that.
2792 if (!sfp->gpio[GPIO_TX_DISABLE])
2794 "No tx_disable pin: SFP modules will always be emitting.\n");
2796 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2800 sfp_debugfs_init(sfp);
2805 static int sfp_remove(struct platform_device *pdev)
2807 struct sfp *sfp = platform_get_drvdata(pdev);
2809 sfp_debugfs_exit(sfp);
2810 sfp_unregister_socket(sfp->sfp_bus);
2813 sfp_sm_event(sfp, SFP_E_REMOVE);
2819 static void sfp_shutdown(struct platform_device *pdev)
2821 struct sfp *sfp = platform_get_drvdata(pdev);
2824 for (i = 0; i < GPIO_MAX; i++) {
2825 if (!sfp->gpio_irq[i])
2828 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2831 cancel_delayed_work_sync(&sfp->poll);
2832 cancel_delayed_work_sync(&sfp->timeout);
2835 static struct platform_driver sfp_driver = {
2837 .remove = sfp_remove,
2838 .shutdown = sfp_shutdown,
2841 .of_match_table = sfp_of_match,
2845 static int sfp_init(void)
2847 poll_jiffies = msecs_to_jiffies(100);
2849 return platform_driver_register(&sfp_driver);
2851 module_init(sfp_init);
2853 static void sfp_exit(void)
2855 platform_driver_unregister(&sfp_driver);
2857 module_exit(sfp_exit);
2859 MODULE_ALIAS("platform:sfp");
2860 MODULE_AUTHOR("Russell King");
2861 MODULE_LICENSE("GPL v2");