3901919e4a3f33f94cb617da53d0cf71af811f72
[platform/kernel/linux-starfive.git] / drivers / net / phy / sfp.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20
21 #include "sfp.h"
22 #include "swphy.h"
23
24 enum {
25         GPIO_MODDEF0,
26         GPIO_LOS,
27         GPIO_TX_FAULT,
28         GPIO_TX_DISABLE,
29         GPIO_RATE_SELECT,
30         GPIO_MAX,
31
32         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33         SFP_F_LOS = BIT(GPIO_LOS),
34         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38         SFP_E_INSERT = 0,
39         SFP_E_REMOVE,
40         SFP_E_DEV_ATTACH,
41         SFP_E_DEV_DETACH,
42         SFP_E_DEV_DOWN,
43         SFP_E_DEV_UP,
44         SFP_E_TX_FAULT,
45         SFP_E_TX_CLEAR,
46         SFP_E_LOS_HIGH,
47         SFP_E_LOS_LOW,
48         SFP_E_TIMEOUT,
49
50         SFP_MOD_EMPTY = 0,
51         SFP_MOD_ERROR,
52         SFP_MOD_PROBE,
53         SFP_MOD_WAITDEV,
54         SFP_MOD_HPOWER,
55         SFP_MOD_WAITPWR,
56         SFP_MOD_PRESENT,
57
58         SFP_DEV_DETACHED = 0,
59         SFP_DEV_DOWN,
60         SFP_DEV_UP,
61
62         SFP_S_DOWN = 0,
63         SFP_S_FAIL,
64         SFP_S_WAIT,
65         SFP_S_INIT,
66         SFP_S_INIT_PHY,
67         SFP_S_INIT_TX_FAULT,
68         SFP_S_WAIT_LOS,
69         SFP_S_LINK_UP,
70         SFP_S_TX_FAULT,
71         SFP_S_REINIT,
72         SFP_S_TX_DISABLE,
73 };
74
75 static const char  * const mod_state_strings[] = {
76         [SFP_MOD_EMPTY] = "empty",
77         [SFP_MOD_ERROR] = "error",
78         [SFP_MOD_PROBE] = "probe",
79         [SFP_MOD_WAITDEV] = "waitdev",
80         [SFP_MOD_HPOWER] = "hpower",
81         [SFP_MOD_WAITPWR] = "waitpwr",
82         [SFP_MOD_PRESENT] = "present",
83 };
84
85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87         if (mod_state >= ARRAY_SIZE(mod_state_strings))
88                 return "Unknown module state";
89         return mod_state_strings[mod_state];
90 }
91
92 static const char * const dev_state_strings[] = {
93         [SFP_DEV_DETACHED] = "detached",
94         [SFP_DEV_DOWN] = "down",
95         [SFP_DEV_UP] = "up",
96 };
97
98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100         if (dev_state >= ARRAY_SIZE(dev_state_strings))
101                 return "Unknown device state";
102         return dev_state_strings[dev_state];
103 }
104
105 static const char * const event_strings[] = {
106         [SFP_E_INSERT] = "insert",
107         [SFP_E_REMOVE] = "remove",
108         [SFP_E_DEV_ATTACH] = "dev_attach",
109         [SFP_E_DEV_DETACH] = "dev_detach",
110         [SFP_E_DEV_DOWN] = "dev_down",
111         [SFP_E_DEV_UP] = "dev_up",
112         [SFP_E_TX_FAULT] = "tx_fault",
113         [SFP_E_TX_CLEAR] = "tx_clear",
114         [SFP_E_LOS_HIGH] = "los_high",
115         [SFP_E_LOS_LOW] = "los_low",
116         [SFP_E_TIMEOUT] = "timeout",
117 };
118
119 static const char *event_to_str(unsigned short event)
120 {
121         if (event >= ARRAY_SIZE(event_strings))
122                 return "Unknown event";
123         return event_strings[event];
124 }
125
126 static const char * const sm_state_strings[] = {
127         [SFP_S_DOWN] = "down",
128         [SFP_S_FAIL] = "fail",
129         [SFP_S_WAIT] = "wait",
130         [SFP_S_INIT] = "init",
131         [SFP_S_INIT_PHY] = "init_phy",
132         [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133         [SFP_S_WAIT_LOS] = "wait_los",
134         [SFP_S_LINK_UP] = "link_up",
135         [SFP_S_TX_FAULT] = "tx_fault",
136         [SFP_S_REINIT] = "reinit",
137         [SFP_S_TX_DISABLE] = "tx_disable",
138 };
139
140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142         if (sm_state >= ARRAY_SIZE(sm_state_strings))
143                 return "Unknown state";
144         return sm_state_strings[sm_state];
145 }
146
147 static const char *gpio_of_names[] = {
148         "mod-def0",
149         "los",
150         "tx-fault",
151         "tx-disable",
152         "rate-select0",
153 };
154
155 static const enum gpiod_flags gpio_flags[] = {
156         GPIOD_IN,
157         GPIOD_IN,
158         GPIOD_IN,
159         GPIOD_ASIS,
160         GPIOD_ASIS,
161 };
162
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164  * non-cooled module to initialise its laser safety circuitry. We wait
165  * an initial T_WAIT period before we check the tx fault to give any PHY
166  * on board (for a copper SFP) time to initialise.
167  */
168 #define T_WAIT                  msecs_to_jiffies(50)
169 #define T_START_UP              msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
171
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US              10
176 #define T_FAULT_RECOVER         msecs_to_jiffies(1000)
177
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT            5
184 #define N_FAULT                 5
185
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY             msecs_to_jiffies(50)
190 #define R_PHY_RETRY             12
191
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL                msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL          msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT      10
203 #define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW      12
205
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  */
209 #define SFP_PHY_ADDR    22
210
211 struct sff_data {
212         unsigned int gpios;
213         bool (*module_supported)(const struct sfp_eeprom_id *id);
214 };
215
216 struct sfp {
217         struct device *dev;
218         struct i2c_adapter *i2c;
219         struct mii_bus *i2c_mii;
220         struct sfp_bus *sfp_bus;
221         struct phy_device *mod_phy;
222         const struct sff_data *type;
223         size_t i2c_block_size;
224         u32 max_power_mW;
225
226         unsigned int (*get_state)(struct sfp *);
227         void (*set_state)(struct sfp *, unsigned int);
228         int (*read)(struct sfp *, bool, u8, void *, size_t);
229         int (*write)(struct sfp *, bool, u8, void *, size_t);
230
231         struct gpio_desc *gpio[GPIO_MAX];
232         int gpio_irq[GPIO_MAX];
233
234         bool need_poll;
235
236         struct mutex st_mutex;                  /* Protects state */
237         unsigned int state_hw_mask;
238         unsigned int state_soft_mask;
239         unsigned int state;
240         struct delayed_work poll;
241         struct delayed_work timeout;
242         struct mutex sm_mutex;                  /* Protects state machine */
243         unsigned char sm_mod_state;
244         unsigned char sm_mod_tries_init;
245         unsigned char sm_mod_tries;
246         unsigned char sm_dev_state;
247         unsigned short sm_state;
248         unsigned char sm_fault_retries;
249         unsigned char sm_phy_retries;
250
251         struct sfp_eeprom_id id;
252         unsigned int module_power_mW;
253         unsigned int module_t_start_up;
254         bool tx_fault_ignore;
255
256         const struct sfp_quirk *quirk;
257
258 #if IS_ENABLED(CONFIG_HWMON)
259         struct sfp_diag diag;
260         struct delayed_work hwmon_probe;
261         unsigned int hwmon_tries;
262         struct device *hwmon_dev;
263         char *hwmon_name;
264 #endif
265
266 #if IS_ENABLED(CONFIG_DEBUG_FS)
267         struct dentry *debugfs_dir;
268 #endif
269 };
270
271 static bool sff_module_supported(const struct sfp_eeprom_id *id)
272 {
273         return id->base.phys_id == SFF8024_ID_SFF_8472 &&
274                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
275 }
276
277 static const struct sff_data sff_data = {
278         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
279         .module_supported = sff_module_supported,
280 };
281
282 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
283 {
284         if (id->base.phys_id == SFF8024_ID_SFP &&
285             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
286                 return true;
287
288         /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
289          * phys id SFF instead of SFP. Therefore mark this module explicitly
290          * as supported based on vendor name and pn match.
291          */
292         if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
293             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
294             !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
295             !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
296                 return true;
297
298         return false;
299 }
300
301 static const struct sff_data sfp_data = {
302         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
303                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
304         .module_supported = sfp_module_supported,
305 };
306
307 static const struct of_device_id sfp_of_match[] = {
308         { .compatible = "sff,sff", .data = &sff_data, },
309         { .compatible = "sff,sfp", .data = &sfp_data, },
310         { },
311 };
312 MODULE_DEVICE_TABLE(of, sfp_of_match);
313
314 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
315                                 unsigned long *modes)
316 {
317         linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
318 }
319
320 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
321                                       unsigned long *modes)
322 {
323         /* Ubiquiti U-Fiber Instant module claims that support all transceiver
324          * types including 10G Ethernet which is not truth. So clear all claimed
325          * modes and set only one mode which module supports: 1000baseX_Full.
326          */
327         linkmode_zero(modes);
328         linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
329 }
330
331 static const struct sfp_quirk sfp_quirks[] = {
332         {
333                 // Alcatel Lucent G-010S-P can operate at 2500base-X, but
334                 // incorrectly report 2500MBd NRZ in their EEPROM
335                 .vendor = "ALCATELLUCENT",
336                 .part = "G010SP",
337                 .modes = sfp_quirk_2500basex,
338         }, {
339                 // Alcatel Lucent G-010S-A can operate at 2500base-X, but
340                 // report 3.2GBd NRZ in their EEPROM
341                 .vendor = "ALCATELLUCENT",
342                 .part = "3FE46541AA",
343                 .modes = sfp_quirk_2500basex,
344         }, {
345                 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
346                 // NRZ in their EEPROM
347                 .vendor = "HUAWEI",
348                 .part = "MA5671A",
349                 .modes = sfp_quirk_2500basex,
350         }, {
351                 // Lantech 8330-262D-E can operate at 2500base-X, but
352                 // incorrectly report 2500MBd NRZ in their EEPROM
353                 .vendor = "Lantech",
354                 .part = "8330-262D-E",
355                 .modes = sfp_quirk_2500basex,
356         }, {
357                 .vendor = "UBNT",
358                 .part = "UF-INSTANT",
359                 .modes = sfp_quirk_ubnt_uf_instant,
360         },
361 };
362
363 static size_t sfp_strlen(const char *str, size_t maxlen)
364 {
365         size_t size, i;
366
367         /* Trailing characters should be filled with space chars */
368         for (i = 0, size = 0; i < maxlen; i++)
369                 if (str[i] != ' ')
370                         size = i + 1;
371
372         return size;
373 }
374
375 static bool sfp_match(const char *qs, const char *str, size_t len)
376 {
377         if (!qs)
378                 return true;
379         if (strlen(qs) != len)
380                 return false;
381         return !strncmp(qs, str, len);
382 }
383
384 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
385 {
386         const struct sfp_quirk *q;
387         unsigned int i;
388         size_t vs, ps;
389
390         vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
391         ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
392
393         for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
394                 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
395                     sfp_match(q->part, id->base.vendor_pn, ps))
396                         return q;
397
398         return NULL;
399 }
400
401 static unsigned long poll_jiffies;
402
403 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
404 {
405         unsigned int i, state, v;
406
407         for (i = state = 0; i < GPIO_MAX; i++) {
408                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
409                         continue;
410
411                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
412                 if (v)
413                         state |= BIT(i);
414         }
415
416         return state;
417 }
418
419 static unsigned int sff_gpio_get_state(struct sfp *sfp)
420 {
421         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
422 }
423
424 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
425 {
426         if (state & SFP_F_PRESENT) {
427                 /* If the module is present, drive the signals */
428                 if (sfp->gpio[GPIO_TX_DISABLE])
429                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
430                                                state & SFP_F_TX_DISABLE);
431                 if (state & SFP_F_RATE_SELECT)
432                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
433                                                state & SFP_F_RATE_SELECT);
434         } else {
435                 /* Otherwise, let them float to the pull-ups */
436                 if (sfp->gpio[GPIO_TX_DISABLE])
437                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
438                 if (state & SFP_F_RATE_SELECT)
439                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
440         }
441 }
442
443 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
444                         size_t len)
445 {
446         struct i2c_msg msgs[2];
447         u8 bus_addr = a2 ? 0x51 : 0x50;
448         size_t block_size = sfp->i2c_block_size;
449         size_t this_len;
450         int ret;
451
452         msgs[0].addr = bus_addr;
453         msgs[0].flags = 0;
454         msgs[0].len = 1;
455         msgs[0].buf = &dev_addr;
456         msgs[1].addr = bus_addr;
457         msgs[1].flags = I2C_M_RD;
458         msgs[1].len = len;
459         msgs[1].buf = buf;
460
461         while (len) {
462                 this_len = len;
463                 if (this_len > block_size)
464                         this_len = block_size;
465
466                 msgs[1].len = this_len;
467
468                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
469                 if (ret < 0)
470                         return ret;
471
472                 if (ret != ARRAY_SIZE(msgs))
473                         break;
474
475                 msgs[1].buf += this_len;
476                 dev_addr += this_len;
477                 len -= this_len;
478         }
479
480         return msgs[1].buf - (u8 *)buf;
481 }
482
483 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
484         size_t len)
485 {
486         struct i2c_msg msgs[1];
487         u8 bus_addr = a2 ? 0x51 : 0x50;
488         int ret;
489
490         msgs[0].addr = bus_addr;
491         msgs[0].flags = 0;
492         msgs[0].len = 1 + len;
493         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
494         if (!msgs[0].buf)
495                 return -ENOMEM;
496
497         msgs[0].buf[0] = dev_addr;
498         memcpy(&msgs[0].buf[1], buf, len);
499
500         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
501
502         kfree(msgs[0].buf);
503
504         if (ret < 0)
505                 return ret;
506
507         return ret == ARRAY_SIZE(msgs) ? len : 0;
508 }
509
510 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
511 {
512         struct mii_bus *i2c_mii;
513         int ret;
514
515         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
516                 return -EINVAL;
517
518         sfp->i2c = i2c;
519         sfp->read = sfp_i2c_read;
520         sfp->write = sfp_i2c_write;
521
522         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
523         if (IS_ERR(i2c_mii))
524                 return PTR_ERR(i2c_mii);
525
526         i2c_mii->name = "SFP I2C Bus";
527         i2c_mii->phy_mask = ~0;
528
529         ret = mdiobus_register(i2c_mii);
530         if (ret < 0) {
531                 mdiobus_free(i2c_mii);
532                 return ret;
533         }
534
535         sfp->i2c_mii = i2c_mii;
536
537         return 0;
538 }
539
540 /* Interface */
541 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
542 {
543         return sfp->read(sfp, a2, addr, buf, len);
544 }
545
546 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
547 {
548         return sfp->write(sfp, a2, addr, buf, len);
549 }
550
551 static unsigned int sfp_soft_get_state(struct sfp *sfp)
552 {
553         unsigned int state = 0;
554         u8 status;
555         int ret;
556
557         ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
558         if (ret == sizeof(status)) {
559                 if (status & SFP_STATUS_RX_LOS)
560                         state |= SFP_F_LOS;
561                 if (status & SFP_STATUS_TX_FAULT)
562                         state |= SFP_F_TX_FAULT;
563         } else {
564                 dev_err_ratelimited(sfp->dev,
565                                     "failed to read SFP soft status: %pe\n",
566                                     ERR_PTR(ret));
567                 /* Preserve the current state */
568                 state = sfp->state;
569         }
570
571         return state & sfp->state_soft_mask;
572 }
573
574 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
575 {
576         u8 status;
577
578         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
579                      sizeof(status)) {
580                 if (state & SFP_F_TX_DISABLE)
581                         status |= SFP_STATUS_TX_DISABLE_FORCE;
582                 else
583                         status &= ~SFP_STATUS_TX_DISABLE_FORCE;
584
585                 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
586         }
587 }
588
589 static void sfp_soft_start_poll(struct sfp *sfp)
590 {
591         const struct sfp_eeprom_id *id = &sfp->id;
592         unsigned int mask = 0;
593
594         sfp->state_soft_mask = 0;
595         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
596                 mask |= SFP_F_TX_DISABLE;
597         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
598                 mask |= SFP_F_TX_FAULT;
599         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
600                 mask |= SFP_F_LOS;
601
602         // Poll the soft state for hardware pins we want to ignore
603         sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
604
605         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
606             !sfp->need_poll)
607                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
608 }
609
610 static void sfp_soft_stop_poll(struct sfp *sfp)
611 {
612         sfp->state_soft_mask = 0;
613 }
614
615 static unsigned int sfp_get_state(struct sfp *sfp)
616 {
617         unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
618         unsigned int state;
619
620         state = sfp->get_state(sfp) & sfp->state_hw_mask;
621         if (state & SFP_F_PRESENT && soft)
622                 state |= sfp_soft_get_state(sfp);
623
624         return state;
625 }
626
627 static void sfp_set_state(struct sfp *sfp, unsigned int state)
628 {
629         sfp->set_state(sfp, state);
630
631         if (state & SFP_F_PRESENT &&
632             sfp->state_soft_mask & SFP_F_TX_DISABLE)
633                 sfp_soft_set_state(sfp, state);
634 }
635
636 static unsigned int sfp_check(void *buf, size_t len)
637 {
638         u8 *p, check;
639
640         for (p = buf, check = 0; len; p++, len--)
641                 check += *p;
642
643         return check;
644 }
645
646 /* hwmon */
647 #if IS_ENABLED(CONFIG_HWMON)
648 static umode_t sfp_hwmon_is_visible(const void *data,
649                                     enum hwmon_sensor_types type,
650                                     u32 attr, int channel)
651 {
652         const struct sfp *sfp = data;
653
654         switch (type) {
655         case hwmon_temp:
656                 switch (attr) {
657                 case hwmon_temp_min_alarm:
658                 case hwmon_temp_max_alarm:
659                 case hwmon_temp_lcrit_alarm:
660                 case hwmon_temp_crit_alarm:
661                 case hwmon_temp_min:
662                 case hwmon_temp_max:
663                 case hwmon_temp_lcrit:
664                 case hwmon_temp_crit:
665                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
666                                 return 0;
667                         fallthrough;
668                 case hwmon_temp_input:
669                 case hwmon_temp_label:
670                         return 0444;
671                 default:
672                         return 0;
673                 }
674         case hwmon_in:
675                 switch (attr) {
676                 case hwmon_in_min_alarm:
677                 case hwmon_in_max_alarm:
678                 case hwmon_in_lcrit_alarm:
679                 case hwmon_in_crit_alarm:
680                 case hwmon_in_min:
681                 case hwmon_in_max:
682                 case hwmon_in_lcrit:
683                 case hwmon_in_crit:
684                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
685                                 return 0;
686                         fallthrough;
687                 case hwmon_in_input:
688                 case hwmon_in_label:
689                         return 0444;
690                 default:
691                         return 0;
692                 }
693         case hwmon_curr:
694                 switch (attr) {
695                 case hwmon_curr_min_alarm:
696                 case hwmon_curr_max_alarm:
697                 case hwmon_curr_lcrit_alarm:
698                 case hwmon_curr_crit_alarm:
699                 case hwmon_curr_min:
700                 case hwmon_curr_max:
701                 case hwmon_curr_lcrit:
702                 case hwmon_curr_crit:
703                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
704                                 return 0;
705                         fallthrough;
706                 case hwmon_curr_input:
707                 case hwmon_curr_label:
708                         return 0444;
709                 default:
710                         return 0;
711                 }
712         case hwmon_power:
713                 /* External calibration of receive power requires
714                  * floating point arithmetic. Doing that in the kernel
715                  * is not easy, so just skip it. If the module does
716                  * not require external calibration, we can however
717                  * show receiver power, since FP is then not needed.
718                  */
719                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
720                     channel == 1)
721                         return 0;
722                 switch (attr) {
723                 case hwmon_power_min_alarm:
724                 case hwmon_power_max_alarm:
725                 case hwmon_power_lcrit_alarm:
726                 case hwmon_power_crit_alarm:
727                 case hwmon_power_min:
728                 case hwmon_power_max:
729                 case hwmon_power_lcrit:
730                 case hwmon_power_crit:
731                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
732                                 return 0;
733                         fallthrough;
734                 case hwmon_power_input:
735                 case hwmon_power_label:
736                         return 0444;
737                 default:
738                         return 0;
739                 }
740         default:
741                 return 0;
742         }
743 }
744
745 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
746 {
747         __be16 val;
748         int err;
749
750         err = sfp_read(sfp, true, reg, &val, sizeof(val));
751         if (err < 0)
752                 return err;
753
754         *value = be16_to_cpu(val);
755
756         return 0;
757 }
758
759 static void sfp_hwmon_to_rx_power(long *value)
760 {
761         *value = DIV_ROUND_CLOSEST(*value, 10);
762 }
763
764 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
765                                 long *value)
766 {
767         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
768                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
769 }
770
771 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
772 {
773         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
774                             be16_to_cpu(sfp->diag.cal_t_offset), value);
775
776         if (*value >= 0x8000)
777                 *value -= 0x10000;
778
779         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
780 }
781
782 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
783 {
784         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
785                             be16_to_cpu(sfp->diag.cal_v_offset), value);
786
787         *value = DIV_ROUND_CLOSEST(*value, 10);
788 }
789
790 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
791 {
792         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
793                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
794
795         *value = DIV_ROUND_CLOSEST(*value, 500);
796 }
797
798 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
799 {
800         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
801                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
802
803         *value = DIV_ROUND_CLOSEST(*value, 10);
804 }
805
806 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
807 {
808         int err;
809
810         err = sfp_hwmon_read_sensor(sfp, reg, value);
811         if (err < 0)
812                 return err;
813
814         sfp_hwmon_calibrate_temp(sfp, value);
815
816         return 0;
817 }
818
819 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
820 {
821         int err;
822
823         err = sfp_hwmon_read_sensor(sfp, reg, value);
824         if (err < 0)
825                 return err;
826
827         sfp_hwmon_calibrate_vcc(sfp, value);
828
829         return 0;
830 }
831
832 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
833 {
834         int err;
835
836         err = sfp_hwmon_read_sensor(sfp, reg, value);
837         if (err < 0)
838                 return err;
839
840         sfp_hwmon_calibrate_bias(sfp, value);
841
842         return 0;
843 }
844
845 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
846 {
847         int err;
848
849         err = sfp_hwmon_read_sensor(sfp, reg, value);
850         if (err < 0)
851                 return err;
852
853         sfp_hwmon_calibrate_tx_power(sfp, value);
854
855         return 0;
856 }
857
858 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
859 {
860         int err;
861
862         err = sfp_hwmon_read_sensor(sfp, reg, value);
863         if (err < 0)
864                 return err;
865
866         sfp_hwmon_to_rx_power(value);
867
868         return 0;
869 }
870
871 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
872 {
873         u8 status;
874         int err;
875
876         switch (attr) {
877         case hwmon_temp_input:
878                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
879
880         case hwmon_temp_lcrit:
881                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
882                 sfp_hwmon_calibrate_temp(sfp, value);
883                 return 0;
884
885         case hwmon_temp_min:
886                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
887                 sfp_hwmon_calibrate_temp(sfp, value);
888                 return 0;
889         case hwmon_temp_max:
890                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
891                 sfp_hwmon_calibrate_temp(sfp, value);
892                 return 0;
893
894         case hwmon_temp_crit:
895                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
896                 sfp_hwmon_calibrate_temp(sfp, value);
897                 return 0;
898
899         case hwmon_temp_lcrit_alarm:
900                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
901                 if (err < 0)
902                         return err;
903
904                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
905                 return 0;
906
907         case hwmon_temp_min_alarm:
908                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
909                 if (err < 0)
910                         return err;
911
912                 *value = !!(status & SFP_WARN0_TEMP_LOW);
913                 return 0;
914
915         case hwmon_temp_max_alarm:
916                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
917                 if (err < 0)
918                         return err;
919
920                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
921                 return 0;
922
923         case hwmon_temp_crit_alarm:
924                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
925                 if (err < 0)
926                         return err;
927
928                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
929                 return 0;
930         default:
931                 return -EOPNOTSUPP;
932         }
933
934         return -EOPNOTSUPP;
935 }
936
937 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
938 {
939         u8 status;
940         int err;
941
942         switch (attr) {
943         case hwmon_in_input:
944                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
945
946         case hwmon_in_lcrit:
947                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
948                 sfp_hwmon_calibrate_vcc(sfp, value);
949                 return 0;
950
951         case hwmon_in_min:
952                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
953                 sfp_hwmon_calibrate_vcc(sfp, value);
954                 return 0;
955
956         case hwmon_in_max:
957                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
958                 sfp_hwmon_calibrate_vcc(sfp, value);
959                 return 0;
960
961         case hwmon_in_crit:
962                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
963                 sfp_hwmon_calibrate_vcc(sfp, value);
964                 return 0;
965
966         case hwmon_in_lcrit_alarm:
967                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
968                 if (err < 0)
969                         return err;
970
971                 *value = !!(status & SFP_ALARM0_VCC_LOW);
972                 return 0;
973
974         case hwmon_in_min_alarm:
975                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
976                 if (err < 0)
977                         return err;
978
979                 *value = !!(status & SFP_WARN0_VCC_LOW);
980                 return 0;
981
982         case hwmon_in_max_alarm:
983                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
984                 if (err < 0)
985                         return err;
986
987                 *value = !!(status & SFP_WARN0_VCC_HIGH);
988                 return 0;
989
990         case hwmon_in_crit_alarm:
991                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
992                 if (err < 0)
993                         return err;
994
995                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
996                 return 0;
997         default:
998                 return -EOPNOTSUPP;
999         }
1000
1001         return -EOPNOTSUPP;
1002 }
1003
1004 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1005 {
1006         u8 status;
1007         int err;
1008
1009         switch (attr) {
1010         case hwmon_curr_input:
1011                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1012
1013         case hwmon_curr_lcrit:
1014                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1015                 sfp_hwmon_calibrate_bias(sfp, value);
1016                 return 0;
1017
1018         case hwmon_curr_min:
1019                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1020                 sfp_hwmon_calibrate_bias(sfp, value);
1021                 return 0;
1022
1023         case hwmon_curr_max:
1024                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1025                 sfp_hwmon_calibrate_bias(sfp, value);
1026                 return 0;
1027
1028         case hwmon_curr_crit:
1029                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1030                 sfp_hwmon_calibrate_bias(sfp, value);
1031                 return 0;
1032
1033         case hwmon_curr_lcrit_alarm:
1034                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1035                 if (err < 0)
1036                         return err;
1037
1038                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1039                 return 0;
1040
1041         case hwmon_curr_min_alarm:
1042                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1043                 if (err < 0)
1044                         return err;
1045
1046                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1047                 return 0;
1048
1049         case hwmon_curr_max_alarm:
1050                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1051                 if (err < 0)
1052                         return err;
1053
1054                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1055                 return 0;
1056
1057         case hwmon_curr_crit_alarm:
1058                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1059                 if (err < 0)
1060                         return err;
1061
1062                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1063                 return 0;
1064         default:
1065                 return -EOPNOTSUPP;
1066         }
1067
1068         return -EOPNOTSUPP;
1069 }
1070
1071 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1072 {
1073         u8 status;
1074         int err;
1075
1076         switch (attr) {
1077         case hwmon_power_input:
1078                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1079
1080         case hwmon_power_lcrit:
1081                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1082                 sfp_hwmon_calibrate_tx_power(sfp, value);
1083                 return 0;
1084
1085         case hwmon_power_min:
1086                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1087                 sfp_hwmon_calibrate_tx_power(sfp, value);
1088                 return 0;
1089
1090         case hwmon_power_max:
1091                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1092                 sfp_hwmon_calibrate_tx_power(sfp, value);
1093                 return 0;
1094
1095         case hwmon_power_crit:
1096                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1097                 sfp_hwmon_calibrate_tx_power(sfp, value);
1098                 return 0;
1099
1100         case hwmon_power_lcrit_alarm:
1101                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1102                 if (err < 0)
1103                         return err;
1104
1105                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1106                 return 0;
1107
1108         case hwmon_power_min_alarm:
1109                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1110                 if (err < 0)
1111                         return err;
1112
1113                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1114                 return 0;
1115
1116         case hwmon_power_max_alarm:
1117                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1118                 if (err < 0)
1119                         return err;
1120
1121                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1122                 return 0;
1123
1124         case hwmon_power_crit_alarm:
1125                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1126                 if (err < 0)
1127                         return err;
1128
1129                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1130                 return 0;
1131         default:
1132                 return -EOPNOTSUPP;
1133         }
1134
1135         return -EOPNOTSUPP;
1136 }
1137
1138 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1139 {
1140         u8 status;
1141         int err;
1142
1143         switch (attr) {
1144         case hwmon_power_input:
1145                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1146
1147         case hwmon_power_lcrit:
1148                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1149                 sfp_hwmon_to_rx_power(value);
1150                 return 0;
1151
1152         case hwmon_power_min:
1153                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1154                 sfp_hwmon_to_rx_power(value);
1155                 return 0;
1156
1157         case hwmon_power_max:
1158                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1159                 sfp_hwmon_to_rx_power(value);
1160                 return 0;
1161
1162         case hwmon_power_crit:
1163                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1164                 sfp_hwmon_to_rx_power(value);
1165                 return 0;
1166
1167         case hwmon_power_lcrit_alarm:
1168                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1169                 if (err < 0)
1170                         return err;
1171
1172                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1173                 return 0;
1174
1175         case hwmon_power_min_alarm:
1176                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1177                 if (err < 0)
1178                         return err;
1179
1180                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1181                 return 0;
1182
1183         case hwmon_power_max_alarm:
1184                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1185                 if (err < 0)
1186                         return err;
1187
1188                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1189                 return 0;
1190
1191         case hwmon_power_crit_alarm:
1192                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1193                 if (err < 0)
1194                         return err;
1195
1196                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1197                 return 0;
1198         default:
1199                 return -EOPNOTSUPP;
1200         }
1201
1202         return -EOPNOTSUPP;
1203 }
1204
1205 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1206                           u32 attr, int channel, long *value)
1207 {
1208         struct sfp *sfp = dev_get_drvdata(dev);
1209
1210         switch (type) {
1211         case hwmon_temp:
1212                 return sfp_hwmon_temp(sfp, attr, value);
1213         case hwmon_in:
1214                 return sfp_hwmon_vcc(sfp, attr, value);
1215         case hwmon_curr:
1216                 return sfp_hwmon_bias(sfp, attr, value);
1217         case hwmon_power:
1218                 switch (channel) {
1219                 case 0:
1220                         return sfp_hwmon_tx_power(sfp, attr, value);
1221                 case 1:
1222                         return sfp_hwmon_rx_power(sfp, attr, value);
1223                 default:
1224                         return -EOPNOTSUPP;
1225                 }
1226         default:
1227                 return -EOPNOTSUPP;
1228         }
1229 }
1230
1231 static const char *const sfp_hwmon_power_labels[] = {
1232         "TX_power",
1233         "RX_power",
1234 };
1235
1236 static int sfp_hwmon_read_string(struct device *dev,
1237                                  enum hwmon_sensor_types type,
1238                                  u32 attr, int channel, const char **str)
1239 {
1240         switch (type) {
1241         case hwmon_curr:
1242                 switch (attr) {
1243                 case hwmon_curr_label:
1244                         *str = "bias";
1245                         return 0;
1246                 default:
1247                         return -EOPNOTSUPP;
1248                 }
1249                 break;
1250         case hwmon_temp:
1251                 switch (attr) {
1252                 case hwmon_temp_label:
1253                         *str = "temperature";
1254                         return 0;
1255                 default:
1256                         return -EOPNOTSUPP;
1257                 }
1258                 break;
1259         case hwmon_in:
1260                 switch (attr) {
1261                 case hwmon_in_label:
1262                         *str = "VCC";
1263                         return 0;
1264                 default:
1265                         return -EOPNOTSUPP;
1266                 }
1267                 break;
1268         case hwmon_power:
1269                 switch (attr) {
1270                 case hwmon_power_label:
1271                         *str = sfp_hwmon_power_labels[channel];
1272                         return 0;
1273                 default:
1274                         return -EOPNOTSUPP;
1275                 }
1276                 break;
1277         default:
1278                 return -EOPNOTSUPP;
1279         }
1280
1281         return -EOPNOTSUPP;
1282 }
1283
1284 static const struct hwmon_ops sfp_hwmon_ops = {
1285         .is_visible = sfp_hwmon_is_visible,
1286         .read = sfp_hwmon_read,
1287         .read_string = sfp_hwmon_read_string,
1288 };
1289
1290 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1291         HWMON_CHANNEL_INFO(chip,
1292                            HWMON_C_REGISTER_TZ),
1293         HWMON_CHANNEL_INFO(in,
1294                            HWMON_I_INPUT |
1295                            HWMON_I_MAX | HWMON_I_MIN |
1296                            HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1297                            HWMON_I_CRIT | HWMON_I_LCRIT |
1298                            HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1299                            HWMON_I_LABEL),
1300         HWMON_CHANNEL_INFO(temp,
1301                            HWMON_T_INPUT |
1302                            HWMON_T_MAX | HWMON_T_MIN |
1303                            HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1304                            HWMON_T_CRIT | HWMON_T_LCRIT |
1305                            HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1306                            HWMON_T_LABEL),
1307         HWMON_CHANNEL_INFO(curr,
1308                            HWMON_C_INPUT |
1309                            HWMON_C_MAX | HWMON_C_MIN |
1310                            HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1311                            HWMON_C_CRIT | HWMON_C_LCRIT |
1312                            HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1313                            HWMON_C_LABEL),
1314         HWMON_CHANNEL_INFO(power,
1315                            /* Transmit power */
1316                            HWMON_P_INPUT |
1317                            HWMON_P_MAX | HWMON_P_MIN |
1318                            HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1319                            HWMON_P_CRIT | HWMON_P_LCRIT |
1320                            HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1321                            HWMON_P_LABEL,
1322                            /* Receive power */
1323                            HWMON_P_INPUT |
1324                            HWMON_P_MAX | HWMON_P_MIN |
1325                            HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1326                            HWMON_P_CRIT | HWMON_P_LCRIT |
1327                            HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1328                            HWMON_P_LABEL),
1329         NULL,
1330 };
1331
1332 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1333         .ops = &sfp_hwmon_ops,
1334         .info = sfp_hwmon_info,
1335 };
1336
1337 static void sfp_hwmon_probe(struct work_struct *work)
1338 {
1339         struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1340         int err;
1341
1342         /* hwmon interface needs to access 16bit registers in atomic way to
1343          * guarantee coherency of the diagnostic monitoring data. If it is not
1344          * possible to guarantee coherency because EEPROM is broken in such way
1345          * that does not support atomic 16bit read operation then we have to
1346          * skip registration of hwmon device.
1347          */
1348         if (sfp->i2c_block_size < 2) {
1349                 dev_info(sfp->dev,
1350                          "skipping hwmon device registration due to broken EEPROM\n");
1351                 dev_info(sfp->dev,
1352                          "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1353                 return;
1354         }
1355
1356         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1357         if (err < 0) {
1358                 if (sfp->hwmon_tries--) {
1359                         mod_delayed_work(system_wq, &sfp->hwmon_probe,
1360                                          T_PROBE_RETRY_SLOW);
1361                 } else {
1362                         dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1363                                  ERR_PTR(err));
1364                 }
1365                 return;
1366         }
1367
1368         sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1369         if (IS_ERR(sfp->hwmon_name)) {
1370                 dev_err(sfp->dev, "out of memory for hwmon name\n");
1371                 return;
1372         }
1373
1374         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1375                                                          sfp->hwmon_name, sfp,
1376                                                          &sfp_hwmon_chip_info,
1377                                                          NULL);
1378         if (IS_ERR(sfp->hwmon_dev))
1379                 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1380                         PTR_ERR(sfp->hwmon_dev));
1381 }
1382
1383 static int sfp_hwmon_insert(struct sfp *sfp)
1384 {
1385         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1386                 return 0;
1387
1388         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1389                 return 0;
1390
1391         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1392                 /* This driver in general does not support address
1393                  * change.
1394                  */
1395                 return 0;
1396
1397         mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1398         sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1399
1400         return 0;
1401 }
1402
1403 static void sfp_hwmon_remove(struct sfp *sfp)
1404 {
1405         cancel_delayed_work_sync(&sfp->hwmon_probe);
1406         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1407                 hwmon_device_unregister(sfp->hwmon_dev);
1408                 sfp->hwmon_dev = NULL;
1409                 kfree(sfp->hwmon_name);
1410         }
1411 }
1412
1413 static int sfp_hwmon_init(struct sfp *sfp)
1414 {
1415         INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1416
1417         return 0;
1418 }
1419
1420 static void sfp_hwmon_exit(struct sfp *sfp)
1421 {
1422         cancel_delayed_work_sync(&sfp->hwmon_probe);
1423 }
1424 #else
1425 static int sfp_hwmon_insert(struct sfp *sfp)
1426 {
1427         return 0;
1428 }
1429
1430 static void sfp_hwmon_remove(struct sfp *sfp)
1431 {
1432 }
1433
1434 static int sfp_hwmon_init(struct sfp *sfp)
1435 {
1436         return 0;
1437 }
1438
1439 static void sfp_hwmon_exit(struct sfp *sfp)
1440 {
1441 }
1442 #endif
1443
1444 /* Helpers */
1445 static void sfp_module_tx_disable(struct sfp *sfp)
1446 {
1447         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1448                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1449         sfp->state |= SFP_F_TX_DISABLE;
1450         sfp_set_state(sfp, sfp->state);
1451 }
1452
1453 static void sfp_module_tx_enable(struct sfp *sfp)
1454 {
1455         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1456                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1457         sfp->state &= ~SFP_F_TX_DISABLE;
1458         sfp_set_state(sfp, sfp->state);
1459 }
1460
1461 #if IS_ENABLED(CONFIG_DEBUG_FS)
1462 static int sfp_debug_state_show(struct seq_file *s, void *data)
1463 {
1464         struct sfp *sfp = s->private;
1465
1466         seq_printf(s, "Module state: %s\n",
1467                    mod_state_to_str(sfp->sm_mod_state));
1468         seq_printf(s, "Module probe attempts: %d %d\n",
1469                    R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1470                    R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1471         seq_printf(s, "Device state: %s\n",
1472                    dev_state_to_str(sfp->sm_dev_state));
1473         seq_printf(s, "Main state: %s\n",
1474                    sm_state_to_str(sfp->sm_state));
1475         seq_printf(s, "Fault recovery remaining retries: %d\n",
1476                    sfp->sm_fault_retries);
1477         seq_printf(s, "PHY probe remaining retries: %d\n",
1478                    sfp->sm_phy_retries);
1479         seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1480         seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1481         seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1482         seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1483         return 0;
1484 }
1485 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1486
1487 static void sfp_debugfs_init(struct sfp *sfp)
1488 {
1489         sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1490
1491         debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1492                             &sfp_debug_state_fops);
1493 }
1494
1495 static void sfp_debugfs_exit(struct sfp *sfp)
1496 {
1497         debugfs_remove_recursive(sfp->debugfs_dir);
1498 }
1499 #else
1500 static void sfp_debugfs_init(struct sfp *sfp)
1501 {
1502 }
1503
1504 static void sfp_debugfs_exit(struct sfp *sfp)
1505 {
1506 }
1507 #endif
1508
1509 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1510 {
1511         unsigned int state = sfp->state;
1512
1513         if (state & SFP_F_TX_DISABLE)
1514                 return;
1515
1516         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1517
1518         udelay(T_RESET_US);
1519
1520         sfp_set_state(sfp, state);
1521 }
1522
1523 /* SFP state machine */
1524 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1525 {
1526         if (timeout)
1527                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1528                                  timeout);
1529         else
1530                 cancel_delayed_work(&sfp->timeout);
1531 }
1532
1533 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1534                         unsigned int timeout)
1535 {
1536         sfp->sm_state = state;
1537         sfp_sm_set_timer(sfp, timeout);
1538 }
1539
1540 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1541                             unsigned int timeout)
1542 {
1543         sfp->sm_mod_state = state;
1544         sfp_sm_set_timer(sfp, timeout);
1545 }
1546
1547 static void sfp_sm_phy_detach(struct sfp *sfp)
1548 {
1549         sfp_remove_phy(sfp->sfp_bus);
1550         phy_device_remove(sfp->mod_phy);
1551         phy_device_free(sfp->mod_phy);
1552         sfp->mod_phy = NULL;
1553 }
1554
1555 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1556 {
1557         struct phy_device *phy;
1558         int err;
1559
1560         phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1561         if (phy == ERR_PTR(-ENODEV))
1562                 return PTR_ERR(phy);
1563         if (IS_ERR(phy)) {
1564                 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1565                 return PTR_ERR(phy);
1566         }
1567
1568         err = phy_device_register(phy);
1569         if (err) {
1570                 phy_device_free(phy);
1571                 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1572                         ERR_PTR(err));
1573                 return err;
1574         }
1575
1576         err = sfp_add_phy(sfp->sfp_bus, phy);
1577         if (err) {
1578                 phy_device_remove(phy);
1579                 phy_device_free(phy);
1580                 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1581                 return err;
1582         }
1583
1584         sfp->mod_phy = phy;
1585
1586         return 0;
1587 }
1588
1589 static void sfp_sm_link_up(struct sfp *sfp)
1590 {
1591         sfp_link_up(sfp->sfp_bus);
1592         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1593 }
1594
1595 static void sfp_sm_link_down(struct sfp *sfp)
1596 {
1597         sfp_link_down(sfp->sfp_bus);
1598 }
1599
1600 static void sfp_sm_link_check_los(struct sfp *sfp)
1601 {
1602         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1603         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1604         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1605         bool los = false;
1606
1607         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1608          * are set, we assume that no LOS signal is available. If both are
1609          * set, we assume LOS is not implemented (and is meaningless.)
1610          */
1611         if (los_options == los_inverted)
1612                 los = !(sfp->state & SFP_F_LOS);
1613         else if (los_options == los_normal)
1614                 los = !!(sfp->state & SFP_F_LOS);
1615
1616         if (los)
1617                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1618         else
1619                 sfp_sm_link_up(sfp);
1620 }
1621
1622 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1623 {
1624         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1625         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1626         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1627
1628         return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1629                (los_options == los_normal && event == SFP_E_LOS_HIGH);
1630 }
1631
1632 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1633 {
1634         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1635         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1636         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1637
1638         return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1639                (los_options == los_normal && event == SFP_E_LOS_LOW);
1640 }
1641
1642 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1643 {
1644         if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1645                 dev_err(sfp->dev,
1646                         "module persistently indicates fault, disabling\n");
1647                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1648         } else {
1649                 if (warn)
1650                         dev_err(sfp->dev, "module transmit fault indicated\n");
1651
1652                 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1653         }
1654 }
1655
1656 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1657  * normally sits at I2C bus address 0x56, and may either be a clause 22
1658  * or clause 45 PHY.
1659  *
1660  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1661  * negotiation enabled, but some may be in 1000base-X - which is for the
1662  * PHY driver to determine.
1663  *
1664  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1665  * mode according to the negotiated line speed.
1666  */
1667 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1668 {
1669         int err = 0;
1670
1671         switch (sfp->id.base.extended_cc) {
1672         case SFF8024_ECC_10GBASE_T_SFI:
1673         case SFF8024_ECC_10GBASE_T_SR:
1674         case SFF8024_ECC_5GBASE_T:
1675         case SFF8024_ECC_2_5GBASE_T:
1676                 err = sfp_sm_probe_phy(sfp, true);
1677                 break;
1678
1679         default:
1680                 if (sfp->id.base.e1000_base_t)
1681                         err = sfp_sm_probe_phy(sfp, false);
1682                 break;
1683         }
1684         return err;
1685 }
1686
1687 static int sfp_module_parse_power(struct sfp *sfp)
1688 {
1689         u32 power_mW = 1000;
1690         bool supports_a2;
1691
1692         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1693                 power_mW = 1500;
1694         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1695                 power_mW = 2000;
1696
1697         supports_a2 = sfp->id.ext.sff8472_compliance !=
1698                                 SFP_SFF8472_COMPLIANCE_NONE ||
1699                       sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1700
1701         if (power_mW > sfp->max_power_mW) {
1702                 /* Module power specification exceeds the allowed maximum. */
1703                 if (!supports_a2) {
1704                         /* The module appears not to implement bus address
1705                          * 0xa2, so assume that the module powers up in the
1706                          * indicated mode.
1707                          */
1708                         dev_err(sfp->dev,
1709                                 "Host does not support %u.%uW modules\n",
1710                                 power_mW / 1000, (power_mW / 100) % 10);
1711                         return -EINVAL;
1712                 } else {
1713                         dev_warn(sfp->dev,
1714                                  "Host does not support %u.%uW modules, module left in power mode 1\n",
1715                                  power_mW / 1000, (power_mW / 100) % 10);
1716                         return 0;
1717                 }
1718         }
1719
1720         if (power_mW <= 1000) {
1721                 /* Modules below 1W do not require a power change sequence */
1722                 sfp->module_power_mW = power_mW;
1723                 return 0;
1724         }
1725
1726         if (!supports_a2) {
1727                 /* The module power level is below the host maximum and the
1728                  * module appears not to implement bus address 0xa2, so assume
1729                  * that the module powers up in the indicated mode.
1730                  */
1731                 return 0;
1732         }
1733
1734         /* If the module requires a higher power mode, but also requires
1735          * an address change sequence, warn the user that the module may
1736          * not be functional.
1737          */
1738         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1739                 dev_warn(sfp->dev,
1740                          "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1741                          power_mW / 1000, (power_mW / 100) % 10);
1742                 return 0;
1743         }
1744
1745         sfp->module_power_mW = power_mW;
1746
1747         return 0;
1748 }
1749
1750 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1751 {
1752         u8 val;
1753         int err;
1754
1755         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1756         if (err != sizeof(val)) {
1757                 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1758                 return -EAGAIN;
1759         }
1760
1761         /* DM7052 reports as a high power module, responds to reads (with
1762          * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1763          * if the bit is already set, we're already in high power mode.
1764          */
1765         if (!!(val & BIT(0)) == enable)
1766                 return 0;
1767
1768         if (enable)
1769                 val |= BIT(0);
1770         else
1771                 val &= ~BIT(0);
1772
1773         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1774         if (err != sizeof(val)) {
1775                 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1776                         ERR_PTR(err));
1777                 return -EAGAIN;
1778         }
1779
1780         if (enable)
1781                 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1782                          sfp->module_power_mW / 1000,
1783                          (sfp->module_power_mW / 100) % 10);
1784
1785         return 0;
1786 }
1787
1788 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1789  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1790  * not support multibyte reads from the EEPROM. Each multi-byte read
1791  * operation returns just one byte of EEPROM followed by zeros. There is
1792  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1793  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1794  * name and vendor id into EEPROM, so there is even no way to detect if
1795  * module is V-SOL V2801F. Therefore check for those zeros in the read
1796  * data and then based on check switch to reading EEPROM to one byte
1797  * at a time.
1798  */
1799 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1800 {
1801         size_t i, block_size = sfp->i2c_block_size;
1802
1803         /* Already using byte IO */
1804         if (block_size == 1)
1805                 return false;
1806
1807         for (i = 1; i < len; i += block_size) {
1808                 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1809                         return false;
1810         }
1811         return true;
1812 }
1813
1814 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1815 {
1816         u8 check;
1817         int err;
1818
1819         if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1820             id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1821             id->base.connector != SFF8024_CONNECTOR_LC) {
1822                 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1823                 id->base.phys_id = SFF8024_ID_SFF_8472;
1824                 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1825                 id->base.connector = SFF8024_CONNECTOR_LC;
1826                 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1827                 if (err != 3) {
1828                         dev_err(sfp->dev,
1829                                 "Failed to rewrite module EEPROM: %pe\n",
1830                                 ERR_PTR(err));
1831                         return err;
1832                 }
1833
1834                 /* Cotsworks modules have been found to require a delay between write operations. */
1835                 mdelay(50);
1836
1837                 /* Update base structure checksum */
1838                 check = sfp_check(&id->base, sizeof(id->base) - 1);
1839                 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1840                 if (err != 1) {
1841                         dev_err(sfp->dev,
1842                                 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1843                                 ERR_PTR(err));
1844                         return err;
1845                 }
1846         }
1847         return 0;
1848 }
1849
1850 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1851 {
1852         /* SFP module inserted - read I2C data */
1853         struct sfp_eeprom_id id;
1854         bool cotsworks_sfbg;
1855         bool cotsworks;
1856         u8 check;
1857         int ret;
1858
1859         /* Some SFP modules and also some Linux I2C drivers do not like reads
1860          * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1861          * a time.
1862          */
1863         sfp->i2c_block_size = 16;
1864
1865         ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1866         if (ret < 0) {
1867                 if (report)
1868                         dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1869                                 ERR_PTR(ret));
1870                 return -EAGAIN;
1871         }
1872
1873         if (ret != sizeof(id.base)) {
1874                 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1875                 return -EAGAIN;
1876         }
1877
1878         /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1879          * address 0x51 is just one byte at a time. Also SFF-8472 requires
1880          * that EEPROM supports atomic 16bit read operation for diagnostic
1881          * fields, so do not switch to one byte reading at a time unless it
1882          * is really required and we have no other option.
1883          */
1884         if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1885                 dev_info(sfp->dev,
1886                          "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1887                 dev_info(sfp->dev,
1888                          "Switching to reading EEPROM to one byte at a time\n");
1889                 sfp->i2c_block_size = 1;
1890
1891                 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1892                 if (ret < 0) {
1893                         if (report)
1894                                 dev_err(sfp->dev,
1895                                         "failed to read EEPROM: %pe\n",
1896                                         ERR_PTR(ret));
1897                         return -EAGAIN;
1898                 }
1899
1900                 if (ret != sizeof(id.base)) {
1901                         dev_err(sfp->dev, "EEPROM short read: %pe\n",
1902                                 ERR_PTR(ret));
1903                         return -EAGAIN;
1904                 }
1905         }
1906
1907         /* Cotsworks do not seem to update the checksums when they
1908          * do the final programming with the final module part number,
1909          * serial number and date code.
1910          */
1911         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1912         cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1913
1914         /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1915          * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1916          * Cotsworks PN matches and bytes are not correct.
1917          */
1918         if (cotsworks && cotsworks_sfbg) {
1919                 ret = sfp_cotsworks_fixup_check(sfp, &id);
1920                 if (ret < 0)
1921                         return ret;
1922         }
1923
1924         /* Validate the checksum over the base structure */
1925         check = sfp_check(&id.base, sizeof(id.base) - 1);
1926         if (check != id.base.cc_base) {
1927                 if (cotsworks) {
1928                         dev_warn(sfp->dev,
1929                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1930                                  check, id.base.cc_base);
1931                 } else {
1932                         dev_err(sfp->dev,
1933                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1934                                 check, id.base.cc_base);
1935                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1936                                        16, 1, &id, sizeof(id), true);
1937                         return -EINVAL;
1938                 }
1939         }
1940
1941         ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1942         if (ret < 0) {
1943                 if (report)
1944                         dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1945                                 ERR_PTR(ret));
1946                 return -EAGAIN;
1947         }
1948
1949         if (ret != sizeof(id.ext)) {
1950                 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1951                 return -EAGAIN;
1952         }
1953
1954         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1955         if (check != id.ext.cc_ext) {
1956                 if (cotsworks) {
1957                         dev_warn(sfp->dev,
1958                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1959                                  check, id.ext.cc_ext);
1960                 } else {
1961                         dev_err(sfp->dev,
1962                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1963                                 check, id.ext.cc_ext);
1964                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1965                                        16, 1, &id, sizeof(id), true);
1966                         memset(&id.ext, 0, sizeof(id.ext));
1967                 }
1968         }
1969
1970         sfp->id = id;
1971
1972         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1973                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1974                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1975                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1976                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1977                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1978
1979         /* Check whether we support this module */
1980         if (!sfp->type->module_supported(&id)) {
1981                 dev_err(sfp->dev,
1982                         "module is not supported - phys id 0x%02x 0x%02x\n",
1983                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1984                 return -EINVAL;
1985         }
1986
1987         /* If the module requires address swap mode, warn about it */
1988         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1989                 dev_warn(sfp->dev,
1990                          "module address swap to access page 0xA2 is not supported.\n");
1991
1992         /* Parse the module power requirement */
1993         ret = sfp_module_parse_power(sfp);
1994         if (ret < 0)
1995                 return ret;
1996
1997         /* Initialise state bits to use from hardware */
1998         sfp->state_hw_mask = SFP_F_PRESENT;
1999         if (sfp->gpio[GPIO_TX_DISABLE])
2000                 sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2001         if (sfp->gpio[GPIO_TX_FAULT])
2002                 sfp->state_hw_mask |= SFP_F_TX_FAULT;
2003         if (sfp->gpio[GPIO_LOS])
2004                 sfp->state_hw_mask |= SFP_F_LOS;
2005
2006         if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
2007             !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
2008                 sfp->module_t_start_up = T_START_UP_BAD_GPON;
2009         else
2010                 sfp->module_t_start_up = T_START_UP;
2011
2012         if (!memcmp(id.base.vendor_name, "HUAWEI          ", 16) &&
2013             !memcmp(id.base.vendor_pn, "MA5671A         ", 16))
2014                 sfp->tx_fault_ignore = true;
2015         else
2016                 sfp->tx_fault_ignore = false;
2017
2018         sfp->quirk = sfp_lookup_quirk(&id);
2019
2020         return 0;
2021 }
2022
2023 static void sfp_sm_mod_remove(struct sfp *sfp)
2024 {
2025         if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2026                 sfp_module_remove(sfp->sfp_bus);
2027
2028         sfp_hwmon_remove(sfp);
2029
2030         memset(&sfp->id, 0, sizeof(sfp->id));
2031         sfp->module_power_mW = 0;
2032
2033         dev_info(sfp->dev, "module removed\n");
2034 }
2035
2036 /* This state machine tracks the upstream's state */
2037 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2038 {
2039         switch (sfp->sm_dev_state) {
2040         default:
2041                 if (event == SFP_E_DEV_ATTACH)
2042                         sfp->sm_dev_state = SFP_DEV_DOWN;
2043                 break;
2044
2045         case SFP_DEV_DOWN:
2046                 if (event == SFP_E_DEV_DETACH)
2047                         sfp->sm_dev_state = SFP_DEV_DETACHED;
2048                 else if (event == SFP_E_DEV_UP)
2049                         sfp->sm_dev_state = SFP_DEV_UP;
2050                 break;
2051
2052         case SFP_DEV_UP:
2053                 if (event == SFP_E_DEV_DETACH)
2054                         sfp->sm_dev_state = SFP_DEV_DETACHED;
2055                 else if (event == SFP_E_DEV_DOWN)
2056                         sfp->sm_dev_state = SFP_DEV_DOWN;
2057                 break;
2058         }
2059 }
2060
2061 /* This state machine tracks the insert/remove state of the module, probes
2062  * the on-board EEPROM, and sets up the power level.
2063  */
2064 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2065 {
2066         int err;
2067
2068         /* Handle remove event globally, it resets this state machine */
2069         if (event == SFP_E_REMOVE) {
2070                 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2071                         sfp_sm_mod_remove(sfp);
2072                 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2073                 return;
2074         }
2075
2076         /* Handle device detach globally */
2077         if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2078             sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2079                 if (sfp->module_power_mW > 1000 &&
2080                     sfp->sm_mod_state > SFP_MOD_HPOWER)
2081                         sfp_sm_mod_hpower(sfp, false);
2082                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2083                 return;
2084         }
2085
2086         switch (sfp->sm_mod_state) {
2087         default:
2088                 if (event == SFP_E_INSERT) {
2089                         sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2090                         sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2091                         sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2092                 }
2093                 break;
2094
2095         case SFP_MOD_PROBE:
2096                 /* Wait for T_PROBE_INIT to time out */
2097                 if (event != SFP_E_TIMEOUT)
2098                         break;
2099
2100                 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2101                 if (err == -EAGAIN) {
2102                         if (sfp->sm_mod_tries_init &&
2103                            --sfp->sm_mod_tries_init) {
2104                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2105                                 break;
2106                         } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2107                                 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2108                                         dev_warn(sfp->dev,
2109                                                  "please wait, module slow to respond\n");
2110                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2111                                 break;
2112                         }
2113                 }
2114                 if (err < 0) {
2115                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2116                         break;
2117                 }
2118
2119                 err = sfp_hwmon_insert(sfp);
2120                 if (err)
2121                         dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2122                                  ERR_PTR(err));
2123
2124                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2125                 fallthrough;
2126         case SFP_MOD_WAITDEV:
2127                 /* Ensure that the device is attached before proceeding */
2128                 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2129                         break;
2130
2131                 /* Report the module insertion to the upstream device */
2132                 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2133                                         sfp->quirk);
2134                 if (err < 0) {
2135                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2136                         break;
2137                 }
2138
2139                 /* If this is a power level 1 module, we are done */
2140                 if (sfp->module_power_mW <= 1000)
2141                         goto insert;
2142
2143                 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2144                 fallthrough;
2145         case SFP_MOD_HPOWER:
2146                 /* Enable high power mode */
2147                 err = sfp_sm_mod_hpower(sfp, true);
2148                 if (err < 0) {
2149                         if (err != -EAGAIN) {
2150                                 sfp_module_remove(sfp->sfp_bus);
2151                                 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2152                         } else {
2153                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2154                         }
2155                         break;
2156                 }
2157
2158                 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2159                 break;
2160
2161         case SFP_MOD_WAITPWR:
2162                 /* Wait for T_HPOWER_LEVEL to time out */
2163                 if (event != SFP_E_TIMEOUT)
2164                         break;
2165
2166         insert:
2167                 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2168                 break;
2169
2170         case SFP_MOD_PRESENT:
2171         case SFP_MOD_ERROR:
2172                 break;
2173         }
2174 }
2175
2176 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2177 {
2178         unsigned long timeout;
2179         int ret;
2180
2181         /* Some events are global */
2182         if (sfp->sm_state != SFP_S_DOWN &&
2183             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2184              sfp->sm_dev_state != SFP_DEV_UP)) {
2185                 if (sfp->sm_state == SFP_S_LINK_UP &&
2186                     sfp->sm_dev_state == SFP_DEV_UP)
2187                         sfp_sm_link_down(sfp);
2188                 if (sfp->sm_state > SFP_S_INIT)
2189                         sfp_module_stop(sfp->sfp_bus);
2190                 if (sfp->mod_phy)
2191                         sfp_sm_phy_detach(sfp);
2192                 sfp_module_tx_disable(sfp);
2193                 sfp_soft_stop_poll(sfp);
2194                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2195                 return;
2196         }
2197
2198         /* The main state machine */
2199         switch (sfp->sm_state) {
2200         case SFP_S_DOWN:
2201                 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2202                     sfp->sm_dev_state != SFP_DEV_UP)
2203                         break;
2204
2205                 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2206                         sfp_soft_start_poll(sfp);
2207
2208                 sfp_module_tx_enable(sfp);
2209
2210                 /* Initialise the fault clearance retries */
2211                 sfp->sm_fault_retries = N_FAULT_INIT;
2212
2213                 /* We need to check the TX_FAULT state, which is not defined
2214                  * while TX_DISABLE is asserted. The earliest we want to do
2215                  * anything (such as probe for a PHY) is 50ms.
2216                  */
2217                 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2218                 break;
2219
2220         case SFP_S_WAIT:
2221                 if (event != SFP_E_TIMEOUT)
2222                         break;
2223
2224                 if (sfp->state & SFP_F_TX_FAULT) {
2225                         /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2226                          * from the TX_DISABLE deassertion for the module to
2227                          * initialise, which is indicated by TX_FAULT
2228                          * deasserting.
2229                          */
2230                         timeout = sfp->module_t_start_up;
2231                         if (timeout > T_WAIT)
2232                                 timeout -= T_WAIT;
2233                         else
2234                                 timeout = 1;
2235
2236                         sfp_sm_next(sfp, SFP_S_INIT, timeout);
2237                 } else {
2238                         /* TX_FAULT is not asserted, assume the module has
2239                          * finished initialising.
2240                          */
2241                         goto init_done;
2242                 }
2243                 break;
2244
2245         case SFP_S_INIT:
2246                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2247                         /* TX_FAULT is still asserted after t_init
2248                          * or t_start_up, so assume there is a fault.
2249                          */
2250                         sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2251                                      sfp->sm_fault_retries == N_FAULT_INIT);
2252                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2253         init_done:
2254                         sfp->sm_phy_retries = R_PHY_RETRY;
2255                         goto phy_probe;
2256                 }
2257                 break;
2258
2259         case SFP_S_INIT_PHY:
2260                 if (event != SFP_E_TIMEOUT)
2261                         break;
2262         phy_probe:
2263                 /* TX_FAULT deasserted or we timed out with TX_FAULT
2264                  * clear.  Probe for the PHY and check the LOS state.
2265                  */
2266                 ret = sfp_sm_probe_for_phy(sfp);
2267                 if (ret == -ENODEV) {
2268                         if (--sfp->sm_phy_retries) {
2269                                 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2270                                 break;
2271                         } else {
2272                                 dev_info(sfp->dev, "no PHY detected\n");
2273                         }
2274                 } else if (ret) {
2275                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2276                         break;
2277                 }
2278                 if (sfp_module_start(sfp->sfp_bus)) {
2279                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2280                         break;
2281                 }
2282                 sfp_sm_link_check_los(sfp);
2283
2284                 /* Reset the fault retry count */
2285                 sfp->sm_fault_retries = N_FAULT;
2286                 break;
2287
2288         case SFP_S_INIT_TX_FAULT:
2289                 if (event == SFP_E_TIMEOUT) {
2290                         sfp_module_tx_fault_reset(sfp);
2291                         sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2292                 }
2293                 break;
2294
2295         case SFP_S_WAIT_LOS:
2296                 if (event == SFP_E_TX_FAULT)
2297                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2298                 else if (sfp_los_event_inactive(sfp, event))
2299                         sfp_sm_link_up(sfp);
2300                 break;
2301
2302         case SFP_S_LINK_UP:
2303                 if (event == SFP_E_TX_FAULT) {
2304                         sfp_sm_link_down(sfp);
2305                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2306                 } else if (sfp_los_event_active(sfp, event)) {
2307                         sfp_sm_link_down(sfp);
2308                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2309                 }
2310                 break;
2311
2312         case SFP_S_TX_FAULT:
2313                 if (event == SFP_E_TIMEOUT) {
2314                         sfp_module_tx_fault_reset(sfp);
2315                         sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2316                 }
2317                 break;
2318
2319         case SFP_S_REINIT:
2320                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2321                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2322                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2323                         dev_info(sfp->dev, "module transmit fault recovered\n");
2324                         sfp_sm_link_check_los(sfp);
2325                 }
2326                 break;
2327
2328         case SFP_S_TX_DISABLE:
2329                 break;
2330         }
2331 }
2332
2333 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2334 {
2335         mutex_lock(&sfp->sm_mutex);
2336
2337         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2338                 mod_state_to_str(sfp->sm_mod_state),
2339                 dev_state_to_str(sfp->sm_dev_state),
2340                 sm_state_to_str(sfp->sm_state),
2341                 event_to_str(event));
2342
2343         sfp_sm_device(sfp, event);
2344         sfp_sm_module(sfp, event);
2345         sfp_sm_main(sfp, event);
2346
2347         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2348                 mod_state_to_str(sfp->sm_mod_state),
2349                 dev_state_to_str(sfp->sm_dev_state),
2350                 sm_state_to_str(sfp->sm_state));
2351
2352         mutex_unlock(&sfp->sm_mutex);
2353 }
2354
2355 static void sfp_attach(struct sfp *sfp)
2356 {
2357         sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2358 }
2359
2360 static void sfp_detach(struct sfp *sfp)
2361 {
2362         sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2363 }
2364
2365 static void sfp_start(struct sfp *sfp)
2366 {
2367         sfp_sm_event(sfp, SFP_E_DEV_UP);
2368 }
2369
2370 static void sfp_stop(struct sfp *sfp)
2371 {
2372         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2373 }
2374
2375 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2376 {
2377         /* locking... and check module is present */
2378
2379         if (sfp->id.ext.sff8472_compliance &&
2380             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2381                 modinfo->type = ETH_MODULE_SFF_8472;
2382                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2383         } else {
2384                 modinfo->type = ETH_MODULE_SFF_8079;
2385                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2386         }
2387         return 0;
2388 }
2389
2390 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2391                              u8 *data)
2392 {
2393         unsigned int first, last, len;
2394         int ret;
2395
2396         if (ee->len == 0)
2397                 return -EINVAL;
2398
2399         first = ee->offset;
2400         last = ee->offset + ee->len;
2401         if (first < ETH_MODULE_SFF_8079_LEN) {
2402                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2403                 len -= first;
2404
2405                 ret = sfp_read(sfp, false, first, data, len);
2406                 if (ret < 0)
2407                         return ret;
2408
2409                 first += len;
2410                 data += len;
2411         }
2412         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2413                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2414                 len -= first;
2415                 first -= ETH_MODULE_SFF_8079_LEN;
2416
2417                 ret = sfp_read(sfp, true, first, data, len);
2418                 if (ret < 0)
2419                         return ret;
2420         }
2421         return 0;
2422 }
2423
2424 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2425                                      const struct ethtool_module_eeprom *page,
2426                                      struct netlink_ext_ack *extack)
2427 {
2428         if (page->bank) {
2429                 NL_SET_ERR_MSG(extack, "Banks not supported");
2430                 return -EOPNOTSUPP;
2431         }
2432
2433         if (page->page) {
2434                 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2435                 return -EOPNOTSUPP;
2436         }
2437
2438         if (page->i2c_address != 0x50 &&
2439             page->i2c_address != 0x51) {
2440                 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2441                 return -EOPNOTSUPP;
2442         }
2443
2444         return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2445                         page->data, page->length);
2446 };
2447
2448 static const struct sfp_socket_ops sfp_module_ops = {
2449         .attach = sfp_attach,
2450         .detach = sfp_detach,
2451         .start = sfp_start,
2452         .stop = sfp_stop,
2453         .module_info = sfp_module_info,
2454         .module_eeprom = sfp_module_eeprom,
2455         .module_eeprom_by_page = sfp_module_eeprom_by_page,
2456 };
2457
2458 static void sfp_timeout(struct work_struct *work)
2459 {
2460         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2461
2462         rtnl_lock();
2463         sfp_sm_event(sfp, SFP_E_TIMEOUT);
2464         rtnl_unlock();
2465 }
2466
2467 static void sfp_check_state(struct sfp *sfp)
2468 {
2469         unsigned int state, i, changed;
2470
2471         mutex_lock(&sfp->st_mutex);
2472         state = sfp_get_state(sfp);
2473         changed = state ^ sfp->state;
2474         if (sfp->tx_fault_ignore)
2475                 changed &= SFP_F_PRESENT | SFP_F_LOS;
2476         else
2477                 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2478
2479         for (i = 0; i < GPIO_MAX; i++)
2480                 if (changed & BIT(i))
2481                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2482                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2483
2484         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2485         sfp->state = state;
2486
2487         rtnl_lock();
2488         if (changed & SFP_F_PRESENT)
2489                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2490                                 SFP_E_INSERT : SFP_E_REMOVE);
2491
2492         if (changed & SFP_F_TX_FAULT)
2493                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2494                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2495
2496         if (changed & SFP_F_LOS)
2497                 sfp_sm_event(sfp, state & SFP_F_LOS ?
2498                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2499         rtnl_unlock();
2500         mutex_unlock(&sfp->st_mutex);
2501 }
2502
2503 static irqreturn_t sfp_irq(int irq, void *data)
2504 {
2505         struct sfp *sfp = data;
2506
2507         sfp_check_state(sfp);
2508
2509         return IRQ_HANDLED;
2510 }
2511
2512 static void sfp_poll(struct work_struct *work)
2513 {
2514         struct sfp *sfp = container_of(work, struct sfp, poll.work);
2515
2516         sfp_check_state(sfp);
2517
2518         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2519             sfp->need_poll)
2520                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2521 }
2522
2523 static struct sfp *sfp_alloc(struct device *dev)
2524 {
2525         struct sfp *sfp;
2526
2527         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2528         if (!sfp)
2529                 return ERR_PTR(-ENOMEM);
2530
2531         sfp->dev = dev;
2532
2533         mutex_init(&sfp->sm_mutex);
2534         mutex_init(&sfp->st_mutex);
2535         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2536         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2537
2538         sfp_hwmon_init(sfp);
2539
2540         return sfp;
2541 }
2542
2543 static void sfp_cleanup(void *data)
2544 {
2545         struct sfp *sfp = data;
2546
2547         sfp_hwmon_exit(sfp);
2548
2549         cancel_delayed_work_sync(&sfp->poll);
2550         cancel_delayed_work_sync(&sfp->timeout);
2551         if (sfp->i2c_mii) {
2552                 mdiobus_unregister(sfp->i2c_mii);
2553                 mdiobus_free(sfp->i2c_mii);
2554         }
2555         if (sfp->i2c)
2556                 i2c_put_adapter(sfp->i2c);
2557         kfree(sfp);
2558 }
2559
2560 static int sfp_probe(struct platform_device *pdev)
2561 {
2562         const struct sff_data *sff;
2563         struct i2c_adapter *i2c;
2564         char *sfp_irq_name;
2565         struct sfp *sfp;
2566         int err, i;
2567
2568         sfp = sfp_alloc(&pdev->dev);
2569         if (IS_ERR(sfp))
2570                 return PTR_ERR(sfp);
2571
2572         platform_set_drvdata(pdev, sfp);
2573
2574         err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2575         if (err < 0)
2576                 return err;
2577
2578         sff = sfp->type = &sfp_data;
2579
2580         if (pdev->dev.of_node) {
2581                 struct device_node *node = pdev->dev.of_node;
2582                 const struct of_device_id *id;
2583                 struct device_node *np;
2584
2585                 id = of_match_node(sfp_of_match, node);
2586                 if (WARN_ON(!id))
2587                         return -EINVAL;
2588
2589                 sff = sfp->type = id->data;
2590
2591                 np = of_parse_phandle(node, "i2c-bus", 0);
2592                 if (!np) {
2593                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2594                         return -ENODEV;
2595                 }
2596
2597                 i2c = of_find_i2c_adapter_by_node(np);
2598                 of_node_put(np);
2599         } else if (has_acpi_companion(&pdev->dev)) {
2600                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2601                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2602                 struct fwnode_reference_args args;
2603                 struct acpi_handle *acpi_handle;
2604                 int ret;
2605
2606                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2607                 if (ret || !is_acpi_device_node(args.fwnode)) {
2608                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2609                         return -ENODEV;
2610                 }
2611
2612                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2613                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2614         } else {
2615                 return -EINVAL;
2616         }
2617
2618         if (!i2c)
2619                 return -EPROBE_DEFER;
2620
2621         err = sfp_i2c_configure(sfp, i2c);
2622         if (err < 0) {
2623                 i2c_put_adapter(i2c);
2624                 return err;
2625         }
2626
2627         for (i = 0; i < GPIO_MAX; i++)
2628                 if (sff->gpios & BIT(i)) {
2629                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2630                                            gpio_of_names[i], gpio_flags[i]);
2631                         if (IS_ERR(sfp->gpio[i]))
2632                                 return PTR_ERR(sfp->gpio[i]);
2633                 }
2634
2635         sfp->state_hw_mask = SFP_F_PRESENT;
2636
2637         sfp->get_state = sfp_gpio_get_state;
2638         sfp->set_state = sfp_gpio_set_state;
2639
2640         /* Modules that have no detect signal are always present */
2641         if (!(sfp->gpio[GPIO_MODDEF0]))
2642                 sfp->get_state = sff_gpio_get_state;
2643
2644         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2645                                  &sfp->max_power_mW);
2646         if (!sfp->max_power_mW)
2647                 sfp->max_power_mW = 1000;
2648
2649         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2650                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2651
2652         /* Get the initial state, and always signal TX disable,
2653          * since the network interface will not be up.
2654          */
2655         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2656
2657         if (sfp->gpio[GPIO_RATE_SELECT] &&
2658             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2659                 sfp->state |= SFP_F_RATE_SELECT;
2660         sfp_set_state(sfp, sfp->state);
2661         sfp_module_tx_disable(sfp);
2662         if (sfp->state & SFP_F_PRESENT) {
2663                 rtnl_lock();
2664                 sfp_sm_event(sfp, SFP_E_INSERT);
2665                 rtnl_unlock();
2666         }
2667
2668         for (i = 0; i < GPIO_MAX; i++) {
2669                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2670                         continue;
2671
2672                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2673                 if (sfp->gpio_irq[i] < 0) {
2674                         sfp->gpio_irq[i] = 0;
2675                         sfp->need_poll = true;
2676                         continue;
2677                 }
2678
2679                 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2680                                               "%s-%s", dev_name(sfp->dev),
2681                                               gpio_of_names[i]);
2682
2683                 if (!sfp_irq_name)
2684                         return -ENOMEM;
2685
2686                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2687                                                 NULL, sfp_irq,
2688                                                 IRQF_ONESHOT |
2689                                                 IRQF_TRIGGER_RISING |
2690                                                 IRQF_TRIGGER_FALLING,
2691                                                 sfp_irq_name, sfp);
2692                 if (err) {
2693                         sfp->gpio_irq[i] = 0;
2694                         sfp->need_poll = true;
2695                 }
2696         }
2697
2698         if (sfp->need_poll)
2699                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2700
2701         /* We could have an issue in cases no Tx disable pin is available or
2702          * wired as modules using a laser as their light source will continue to
2703          * be active when the fiber is removed. This could be a safety issue and
2704          * we should at least warn the user about that.
2705          */
2706         if (!sfp->gpio[GPIO_TX_DISABLE])
2707                 dev_warn(sfp->dev,
2708                          "No tx_disable pin: SFP modules will always be emitting.\n");
2709
2710         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2711         if (!sfp->sfp_bus)
2712                 return -ENOMEM;
2713
2714         sfp_debugfs_init(sfp);
2715
2716         return 0;
2717 }
2718
2719 static int sfp_remove(struct platform_device *pdev)
2720 {
2721         struct sfp *sfp = platform_get_drvdata(pdev);
2722
2723         sfp_debugfs_exit(sfp);
2724         sfp_unregister_socket(sfp->sfp_bus);
2725
2726         rtnl_lock();
2727         sfp_sm_event(sfp, SFP_E_REMOVE);
2728         rtnl_unlock();
2729
2730         return 0;
2731 }
2732
2733 static void sfp_shutdown(struct platform_device *pdev)
2734 {
2735         struct sfp *sfp = platform_get_drvdata(pdev);
2736         int i;
2737
2738         for (i = 0; i < GPIO_MAX; i++) {
2739                 if (!sfp->gpio_irq[i])
2740                         continue;
2741
2742                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2743         }
2744
2745         cancel_delayed_work_sync(&sfp->poll);
2746         cancel_delayed_work_sync(&sfp->timeout);
2747 }
2748
2749 static struct platform_driver sfp_driver = {
2750         .probe = sfp_probe,
2751         .remove = sfp_remove,
2752         .shutdown = sfp_shutdown,
2753         .driver = {
2754                 .name = "sfp",
2755                 .of_match_table = sfp_of_match,
2756         },
2757 };
2758
2759 static int sfp_init(void)
2760 {
2761         poll_jiffies = msecs_to_jiffies(100);
2762
2763         return platform_driver_register(&sfp_driver);
2764 }
2765 module_init(sfp_init);
2766
2767 static void sfp_exit(void)
2768 {
2769         platform_driver_unregister(&sfp_driver);
2770 }
2771 module_exit(sfp_exit);
2772
2773 MODULE_ALIAS("platform:sfp");
2774 MODULE_AUTHOR("Russell King");
2775 MODULE_LICENSE("GPL v2");