common: Drop linux/bitops.h from common header
[platform/kernel/u-boot.git] / drivers / net / pfe_eth / pfe_hw.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2015-2016 Freescale Semiconductor, Inc.
4  * Copyright 2017 NXP
5  */
6 #include <log.h>
7 #include <linux/bitops.h>
8 #include <net/pfe_eth/pfe_eth.h>
9 #include <net/pfe_eth/pfe/pfe_hw.h>
10
11 static struct pe_info pe[MAX_PE];
12
13 /*
14  * Initializes the PFE library.
15  * Must be called before using any of the library functions.
16  */
17 void pfe_lib_init(void)
18 {
19         int pfe_pe_id;
20
21         for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
22                 pe[pfe_pe_id].dmem_base_addr =
23                         (u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id);
24                 pe[pfe_pe_id].pmem_base_addr =
25                         (u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id);
26                 pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE;
27                 pe[pfe_pe_id].mem_access_wdata =
28                         (void *)CLASS_MEM_ACCESS_WDATA;
29                 pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
30                 pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
31         }
32
33         for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
34                 if (pfe_pe_id == TMU2_ID)
35                         continue;
36                 pe[pfe_pe_id].dmem_base_addr =
37                         (u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
38                 pe[pfe_pe_id].pmem_base_addr =
39                         (u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
40                 pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE;
41                 pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
42                 pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
43                 pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
44         }
45 }
46
47 /*
48  * Writes a buffer to PE internal memory from the host
49  * through indirect access registers.
50  *
51  * @param[in] id               PE identification (CLASS0_ID, ..., TMU0_ID,
52  *                              ..., UTIL_ID)
53  * @param[in] mem_access_addr   DMEM destination address (must be 32bit
54  *                              aligned)
55  * @param[in] src               Buffer source address
56  * @param[in] len               Number of bytes to copy
57  */
58 static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src,
59                                unsigned int len)
60 {
61         u32 offset = 0, val, addr;
62         unsigned int len32 = len >> 2;
63         int i;
64
65         addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
66                 PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
67
68         for (i = 0; i < len32; i++, offset += 4, src += 4) {
69                 val = *(u32 *)src;
70                 writel(cpu_to_be32(val), pe[id].mem_access_wdata);
71                 writel(addr + offset, pe[id].mem_access_addr);
72         }
73
74         len = (len & 0x3);
75         if (len) {
76                 val = 0;
77
78                 addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
79                         PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
80
81                 for (i = 0; i < len; i++, src++)
82                         val |= (*(u8 *)src) << (8 * i);
83
84                 writel(cpu_to_be32(val), pe[id].mem_access_wdata);
85                 writel(addr, pe[id].mem_access_addr);
86         }
87 }
88
89 /*
90  * Writes a buffer to PE internal data memory (DMEM) from the host
91  * through indirect access registers.
92  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
93  *                      ..., UTIL_ID)
94  * @param[in] dst       DMEM destination address (must be 32bit
95  *                      aligned)
96  * @param[in] src       Buffer source address
97  * @param[in] len       Number of bytes to copy
98  */
99 static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src,
100                                 unsigned int len)
101 {
102         pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
103                            src, len);
104 }
105
106 /*
107  * Writes a buffer to PE internal program memory (PMEM) from the host
108  * through indirect access registers.
109  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
110  *                      ..., TMU3_ID)
111  * @param[in] dst       PMEM destination address (must be 32bit
112  *                      aligned)
113  * @param[in] src       Buffer source address
114  * @param[in] len       Number of bytes to copy
115  */
116 static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src,
117                                 unsigned int len)
118 {
119         pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
120                                 - 1)) | PE_MEM_ACCESS_IMEM, src, len);
121 }
122
123 /*
124  * Reads PE internal program memory (IMEM) from the host
125  * through indirect access registers.
126  * @param[in] id                PE identification (CLASS0_ID, ..., TMU0_ID,
127  *                              ..., TMU3_ID)
128  * @param[in] addr              PMEM read address (must be aligned on size)
129  * @param[in] size              Number of bytes to read (maximum 4, must not
130  *                              cross 32bit boundaries)
131  * @return                      the data read (in PE endianness, i.e BE).
132  */
133 u32 pe_pmem_read(int id, u32 addr, u8 size)
134 {
135         u32 offset = addr & 0x3;
136         u32 mask = 0xffffffff >> ((4 - size) << 3);
137         u32 val;
138
139         addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
140                 | PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
141                 PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
142
143         writel(addr, pe[id].mem_access_addr);
144         val = be32_to_cpu(readl(pe[id].mem_access_rdata));
145
146         return (val >> (offset << 3)) & mask;
147 }
148
149 /*
150  * Writes PE internal data memory (DMEM) from the host
151  * through indirect access registers.
152  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
153  *                      ..., UTIL_ID)
154  * @param[in] val       Value to write (in PE endianness, i.e BE)
155  * @param[in] addr      DMEM write address (must be aligned on size)
156  * @param[in] size      Number of bytes to write (maximum 4, must not
157  *                      cross 32bit boundaries)
158  */
159 void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
160 {
161         u32 offset = addr & 0x3;
162
163         addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
164                 PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
165
166         /* Indirect access interface is byte swapping data being written */
167         writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
168         writel(addr, pe[id].mem_access_addr);
169 }
170
171 /*
172  * Reads PE internal data memory (DMEM) from the host
173  * through indirect access registers.
174  * @param[in] id                PE identification (CLASS0_ID, ..., TMU0_ID,
175  *                              ..., UTIL_ID)
176  * @param[in] addr              DMEM read address (must be aligned on size)
177  * @param[in] size              Number of bytes to read (maximum 4, must not
178  *                              cross 32bit boundaries)
179  * @return                      the data read (in PE endianness, i.e BE).
180  */
181 u32 pe_dmem_read(int id, u32 addr, u8 size)
182 {
183         u32 offset = addr & 0x3;
184         u32 mask = 0xffffffff >> ((4 - size) << 3);
185         u32 val;
186
187         addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
188                 PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
189
190         writel(addr, pe[id].mem_access_addr);
191
192         /* Indirect access interface is byte swapping data being read */
193         val = be32_to_cpu(readl(pe[id].mem_access_rdata));
194
195         return (val >> (offset << 3)) & mask;
196 }
197
198 /*
199  * This function is used to write to CLASS internal bus peripherals (ccu,
200  * pe-lem) from the host
201  * through indirect access registers.
202  * @param[in]   val     value to write
203  * @param[in]   addr    Address to write to (must be aligned on size)
204  * @param[in]   size    Number of bytes to write (1, 2 or 4)
205  *
206  */
207 static void class_bus_write(u32 val, u32 addr, u8 size)
208 {
209         u32 offset = addr & 0x3;
210
211         writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
212
213         addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
214                 (size << 24);
215
216         writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
217         writel(addr, CLASS_BUS_ACCESS_ADDR);
218 }
219
220 /*
221  * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
222  * through indirect access registers.
223  * @param[in] addr      Address to read from (must be aligned on size)
224  * @param[in] size      Number of bytes to read (1, 2 or 4)
225  * @return              the read data
226  */
227 static u32 class_bus_read(u32 addr, u8 size)
228 {
229         u32 offset = addr & 0x3;
230         u32 mask = 0xffffffff >> ((4 - size) << 3);
231         u32 val;
232
233         writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
234
235         addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
236
237         writel(addr, CLASS_BUS_ACCESS_ADDR);
238         val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
239
240         return (val >> (offset << 3)) & mask;
241 }
242
243 /*
244  * Writes data to the cluster memory (PE_LMEM)
245  * @param[in] dst       PE LMEM destination address (must be 32bit aligned)
246  * @param[in] src       Buffer source address
247  * @param[in] len       Number of bytes to copy
248  */
249 static void class_pe_lmem_memcpy_to32(u32 dst, const void *src,
250                                       unsigned int len)
251 {
252         u32 len32 = len >> 2;
253         int i;
254
255         for (i = 0; i < len32; i++, src += 4, dst += 4)
256                 class_bus_write(*(u32 *)src, dst, 4);
257
258         if (len & 0x2) {
259                 class_bus_write(*(u16 *)src, dst, 2);
260                 src += 2;
261                 dst += 2;
262         }
263
264         if (len & 0x1) {
265                 class_bus_write(*(u8 *)src, dst, 1);
266                 src++;
267                 dst++;
268         }
269 }
270
271 /*
272  * Writes value to the cluster memory (PE_LMEM)
273  * @param[in] dst       PE LMEM destination address (must be 32bit aligned)
274  * @param[in] val       Value to write
275  * @param[in] len       Number of bytes to write
276  */
277 static void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
278 {
279         u32 len32 = len >> 2;
280         int i;
281
282         val = val | (val << 8) | (val << 16) | (val << 24);
283
284         for (i = 0; i < len32; i++, dst += 4)
285                 class_bus_write(val, dst, 4);
286
287         if (len & 0x2) {
288                 class_bus_write(val, dst, 2);
289                 dst += 2;
290         }
291
292         if (len & 0x1) {
293                 class_bus_write(val, dst, 1);
294                 dst++;
295         }
296 }
297
298 /*
299  * Reads data from the cluster memory (PE_LMEM)
300  * @param[out] dst      pointer to the source buffer data are copied to
301  * @param[in] len       length in bytes of the amount of data to read
302  *                      from cluster memory
303  * @param[in] offset    offset in bytes in the cluster memory where data are
304  *                      read from
305  */
306 void pe_lmem_read(u32 *dst, u32 len, u32 offset)
307 {
308         u32 len32 = len >> 2;
309         int i = 0;
310
311         for (i = 0; i < len32; dst++, i++, offset += 4)
312                 *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);
313
314         if (len & 0x03)
315                 *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
316 }
317
318 /*
319  * Writes data to the cluster memory (PE_LMEM)
320  * @param[in] src       pointer to the source buffer data are copied from
321  * @param[in] len       length in bytes of the amount of data to write to the
322  *                              cluster memory
323  * @param[in] offset    offset in bytes in the cluster memory where data are
324  *                              written to
325  */
326 void pe_lmem_write(u32 *src, u32 len, u32 offset)
327 {
328         u32 len32 = len >> 2;
329         int i = 0;
330
331         for (i = 0; i < len32; src++, i++, offset += 4)
332                 class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);
333
334         if (len & 0x03)
335                 class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
336                                         0x03));
337 }
338
339 /*
340  * Loads an elf section into pmem
341  * Code needs to be at least 16bit aligned and only PROGBITS sections are
342  * supported
343  *
344  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID, ...,
345  *                                      TMU3_ID)
346  * @param[in] data      pointer to the elf firmware
347  * @param[in] shdr      pointer to the elf section header
348  */
349 static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
350 {
351         u32 offset = be32_to_cpu(shdr->sh_offset);
352         u32 addr = be32_to_cpu(shdr->sh_addr);
353         u32 size = be32_to_cpu(shdr->sh_size);
354         u32 type = be32_to_cpu(shdr->sh_type);
355
356         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
357                 printf(
358                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
359                         __func__, addr, (unsigned long)data + offset);
360
361                 return -1;
362         }
363
364         if (addr & 0x1) {
365                 printf("%s: load address(%x) is not 16bit aligned\n",
366                        __func__, addr);
367                 return -1;
368         }
369
370         if (size & 0x1) {
371                 printf("%s: load size(%x) is not 16bit aligned\n", __func__,
372                        size);
373                 return -1;
374         }
375
376                 debug("pmem pe%d @%x len %d\n", id, addr, size);
377         switch (type) {
378         case SHT_PROGBITS:
379                 pe_pmem_memcpy_to32(id, addr, data + offset, size);
380                 break;
381
382         default:
383                 printf("%s: unsupported section type(%x)\n", __func__, type);
384                 return -1;
385         }
386
387         return 0;
388 }
389
390 /*
391  * Loads an elf section into dmem
392  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
393  * initialized to 0
394  *
395  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
396  *                      ..., UTIL_ID)
397  * @param[in] data      pointer to the elf firmware
398  * @param[in] shdr      pointer to the elf section header
399  */
400 static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
401 {
402         u32 offset = be32_to_cpu(shdr->sh_offset);
403         u32 addr = be32_to_cpu(shdr->sh_addr);
404         u32 size = be32_to_cpu(shdr->sh_size);
405         u32 type = be32_to_cpu(shdr->sh_type);
406         u32 size32 = size >> 2;
407         int i;
408
409         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
410                 printf(
411                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
412                         __func__, addr, (unsigned long)data + offset);
413
414                 return -1;
415         }
416
417         if (addr & 0x3) {
418                 printf("%s: load address(%x) is not 32bit aligned\n",
419                        __func__, addr);
420                 return -1;
421         }
422
423         switch (type) {
424         case SHT_PROGBITS:
425                 debug("dmem pe%d @%x len %d\n", id, addr, size);
426                 pe_dmem_memcpy_to32(id, addr, data + offset, size);
427                 break;
428
429         case SHT_NOBITS:
430                 debug("dmem zero pe%d @%x len %d\n", id, addr, size);
431                 for (i = 0; i < size32; i++, addr += 4)
432                         pe_dmem_write(id, 0, addr, 4);
433
434                 if (size & 0x3)
435                         pe_dmem_write(id, 0, addr, size & 0x3);
436
437                 break;
438
439         default:
440                 printf("%s: unsupported section type(%x)\n", __func__, type);
441                 return -1;
442         }
443
444         return 0;
445 }
446
447 /*
448  * Loads an elf section into DDR
449  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
450  *              initialized to 0
451  *
452  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
453  *                      ..., UTIL_ID)
454  * @param[in] data      pointer to the elf firmware
455  * @param[in] shdr      pointer to the elf section header
456  */
457 static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
458 {
459         u32 offset = be32_to_cpu(shdr->sh_offset);
460         u32 addr = be32_to_cpu(shdr->sh_addr);
461         u32 size = be32_to_cpu(shdr->sh_size);
462         u32 type = be32_to_cpu(shdr->sh_type);
463         u32 flags = be32_to_cpu(shdr->sh_flags);
464
465         switch (type) {
466         case SHT_PROGBITS:
467                 debug("ddr  pe%d @%x len %d\n", id, addr, size);
468                 if (flags & SHF_EXECINSTR) {
469                         if (id <= CLASS_MAX_ID) {
470                                 /* DO the loading only once in DDR */
471                                 if (id == CLASS0_ID) {
472                                         debug(
473                                                 "%s: load address(%x) and elf file address(%lx) rcvd\n"
474                                                 , __func__, addr,
475                                                 (unsigned long)data + offset);
476                                         if (((unsigned long)(data + offset)
477                                                 & 0x3) != (addr & 0x3)) {
478                                                 printf(
479                                                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
480                                                         __func__, addr,
481                                                         (unsigned long)data +
482                                                         offset);
483
484                                                 return -1;
485                                         }
486
487                                         if (addr & 0x1) {
488                                                 printf(
489                                                         "%s: load address(%x) is not 16bit aligned\n"
490                                                         , __func__, addr);
491                                                 return -1;
492                                         }
493
494                                         if (size & 0x1) {
495                                                 printf(
496                                                         "%s: load length(%x) is not 16bit aligned\n"
497                                                         , __func__, size);
498                                                 return -1;
499                                         }
500
501                                         memcpy((void *)DDR_PFE_TO_VIRT(addr),
502                                                data + offset, size);
503                                 }
504                         } else {
505                                 printf(
506                                         "%s: unsupported ddr section type(%x) for PE(%d)\n"
507                                         , __func__, type, id);
508                                 return -1;
509                         }
510
511                 } else {
512                         memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
513                                size);
514                 }
515
516                 break;
517
518         case SHT_NOBITS:
519                 debug("ddr zero pe%d @%x len %d\n", id, addr, size);
520                 memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);
521
522                 break;
523
524         default:
525                 printf("%s: unsupported section type(%x)\n", __func__, type);
526                 return -1;
527         }
528
529         return 0;
530 }
531
532 /*
533  * Loads an elf section into pe lmem
534  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
535  * initialized to 0
536  *
537  * @param[in] id        PE identification (CLASS0_ID,..., CLASS5_ID)
538  * @param[in] data      pointer to the elf firmware
539  * @param[in] shdr      pointer to the elf section header
540  */
541 static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
542 {
543         u32 offset = be32_to_cpu(shdr->sh_offset);
544         u32 addr = be32_to_cpu(shdr->sh_addr);
545         u32 size = be32_to_cpu(shdr->sh_size);
546         u32 type = be32_to_cpu(shdr->sh_type);
547
548         if (id > CLASS_MAX_ID) {
549                 printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
550                        __func__, type, id);
551                 return -1;
552         }
553
554         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
555                 printf(
556                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
557                         __func__, addr, (unsigned long)data + offset);
558
559                 return -1;
560         }
561
562         if (addr & 0x3) {
563                 printf("%s: load address(%x) is not 32bit aligned\n",
564                        __func__, addr);
565                 return -1;
566         }
567
568         debug("lmem  pe%d @%x len %d\n", id, addr, size);
569
570         switch (type) {
571         case SHT_PROGBITS:
572                 class_pe_lmem_memcpy_to32(addr, data + offset, size);
573                 break;
574
575         case SHT_NOBITS:
576                 class_pe_lmem_memset(addr, 0, size);
577                 break;
578
579         default:
580                 printf("%s: unsupported section type(%x)\n", __func__, type);
581                 return -1;
582         }
583
584         return 0;
585 }
586
587 /*
588  * Loads an elf section into a PE
589  * For now only supports loading a section to dmem (all PE's), pmem (class and
590  * tmu PE's), DDDR (util PE code)
591  * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
592  * ..., UTIL_ID)
593  * @param[in] data      pointer to the elf firmware
594  * @param[in] shdr      pointer to the elf section header
595  */
596 int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
597 {
598         u32 addr = be32_to_cpu(shdr->sh_addr);
599         u32 size = be32_to_cpu(shdr->sh_size);
600
601         if (IS_DMEM(addr, size))
602                 return pe_load_dmem_section(id, data, shdr);
603         else if (IS_PMEM(addr, size))
604                 return pe_load_pmem_section(id, data, shdr);
605         else if (IS_PFE_LMEM(addr, size))
606                 return 0;
607         else if (IS_PHYS_DDR(addr, size))
608                 return pe_load_ddr_section(id, data, shdr);
609         else if (IS_PE_LMEM(addr, size))
610                 return pe_load_pe_lmem_section(id, data, shdr);
611
612         printf("%s: unsupported memory range(%x)\n", __func__, addr);
613
614         return 0;
615 }
616
617 /**************************** BMU ***************************/
618 /*
619  * Resets a BMU block.
620  * @param[in] base      BMU block base address
621  */
622 static inline void bmu_reset(void *base)
623 {
624         writel(CORE_SW_RESET, base + BMU_CTRL);
625
626         /* Wait for self clear */
627         while (readl(base + BMU_CTRL) & CORE_SW_RESET)
628                 ;
629 }
630
631 /*
632  * Enabled a BMU block.
633  * @param[in] base      BMU block base address
634  */
635 void bmu_enable(void *base)
636 {
637         writel(CORE_ENABLE, base + BMU_CTRL);
638 }
639
640 /*
641  * Disables a BMU block.
642  * @param[in] base      BMU block base address
643  */
644 static inline void bmu_disable(void *base)
645 {
646         writel(CORE_DISABLE, base + BMU_CTRL);
647 }
648
649 /*
650  * Sets the configuration of a BMU block.
651  * @param[in] base      BMU block base address
652  * @param[in] cfg       BMU configuration
653  */
654 static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
655 {
656         writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
657         writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
658         writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
659
660         /* Interrupts are never used */
661         writel(0x0, base + BMU_INT_ENABLE);
662 }
663
664 /*
665  * Initializes a BMU block.
666  * @param[in] base      BMU block base address
667  * @param[in] cfg       BMU configuration
668  */
669 void bmu_init(void *base, struct bmu_cfg *cfg)
670 {
671         bmu_disable(base);
672
673         bmu_set_config(base, cfg);
674
675         bmu_reset(base);
676 }
677
678 /**************************** GPI ***************************/
679 /*
680  * Resets a GPI block.
681  * @param[in] base      GPI base address
682  */
683 static inline void gpi_reset(void *base)
684 {
685         writel(CORE_SW_RESET, base + GPI_CTRL);
686 }
687
688 /*
689  * Enables a GPI block.
690  * @param[in] base      GPI base address
691  */
692 void gpi_enable(void *base)
693 {
694         writel(CORE_ENABLE, base + GPI_CTRL);
695 }
696
697 /*
698  * Disables a GPI block.
699  * @param[in] base      GPI base address
700  */
701 void gpi_disable(void *base)
702 {
703         writel(CORE_DISABLE, base + GPI_CTRL);
704 }
705
706 /*
707  * Sets the configuration of a GPI block.
708  * @param[in] base      GPI base address
709  * @param[in] cfg       GPI configuration
710  */
711 static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
712 {
713         writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
714                + GPI_LMEM_ALLOC_ADDR);
715         writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
716                + GPI_LMEM_FREE_ADDR);
717         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
718                + GPI_DDR_ALLOC_ADDR);
719         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
720                + GPI_DDR_FREE_ADDR);
721         writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
722         writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
723         writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
724         writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
725         writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
726         writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
727         writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
728
729         writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
730                 GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
731         writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
732         writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
733
734         /*Make GPI AXI transactions non-bufferable */
735         writel(0x1, base + GPI_AXI_CTRL);
736 }
737
738 /*
739  * Initializes a GPI block.
740  * @param[in] base      GPI base address
741  * @param[in] cfg       GPI configuration
742  */
743 void gpi_init(void *base, struct gpi_cfg *cfg)
744 {
745         gpi_reset(base);
746
747         gpi_disable(base);
748
749         gpi_set_config(base, cfg);
750 }
751
752 /**************************** CLASSIFIER ***************************/
753 /*
754  * Resets CLASSIFIER block.
755  */
756 static inline void class_reset(void)
757 {
758         writel(CORE_SW_RESET, CLASS_TX_CTRL);
759 }
760
761 /*
762  * Enables all CLASS-PE's cores.
763  */
764 void class_enable(void)
765 {
766         writel(CORE_ENABLE, CLASS_TX_CTRL);
767 }
768
769 /*
770  * Disables all CLASS-PE's cores.
771  */
772 void class_disable(void)
773 {
774         writel(CORE_DISABLE, CLASS_TX_CTRL);
775 }
776
777 /*
778  * Sets the configuration of the CLASSIFIER block.
779  * @param[in] cfg       CLASSIFIER configuration
780  */
781 static inline void class_set_config(struct class_cfg *cfg)
782 {
783         if (PLL_CLK_EN == 0) {
784                 /* Clock ratio: for 1:1 the value is 0 */
785                 writel(0x0, CLASS_PE_SYS_CLK_RATIO);
786         } else {
787                 /* Clock ratio: for 1:2 the value is 1 */
788                 writel(0x1, CLASS_PE_SYS_CLK_RATIO);
789         }
790         writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
791         writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
792         writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
793                 CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
794                 CLASS_ROUTE_HASH_ENTRY_SIZE);
795         writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);
796
797         writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
798         memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
799                ROUTE_TABLE_SIZE);
800
801         writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
802         writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
803         writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
804         writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
805         writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
806
807         writel(23, CLASS_AFULL_THRES);
808         writel(23, CLASS_TSQ_FIFO_THRES);
809
810         writel(24, CLASS_MAX_BUF_CNT);
811         writel(24, CLASS_TSQ_MAX_CNT);
812
813         /*Make Class AXI transactions non-bufferable */
814         writel(0x1, CLASS_AXI_CTRL);
815
816         /*Make Util AXI transactions non-bufferable */
817         /*Util is disabled in U-boot, do it from here */
818         writel(0x1, UTIL_AXI_CTRL);
819 }
820
821 /*
822  * Initializes CLASSIFIER block.
823  * @param[in] cfg       CLASSIFIER configuration
824  */
825 void class_init(struct class_cfg *cfg)
826 {
827         class_reset();
828
829         class_disable();
830
831         class_set_config(cfg);
832 }
833
834 /**************************** TMU ***************************/
835 /*
836  * Enables TMU-PE cores.
837  * @param[in] pe_mask   TMU PE mask
838  */
839 void tmu_enable(u32 pe_mask)
840 {
841         writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
842 }
843
844 /*
845  * Disables TMU cores.
846  * @param[in] pe_mask   TMU PE mask
847  */
848 void tmu_disable(u32 pe_mask)
849 {
850         writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
851 }
852
853 /*
854  * Initializes TMU block.
855  * @param[in] cfg       TMU configuration
856  */
857 void tmu_init(struct tmu_cfg *cfg)
858 {
859         int q, phyno;
860
861         /* keep in soft reset */
862         writel(SW_RESET, TMU_CTRL);
863
864         /*Make Class AXI transactions non-bufferable */
865         writel(0x1, TMU_AXI_CTRL);
866
867         /* enable EMAC PHY ports */
868         writel(0x3, TMU_SYS_GENERIC_CONTROL);
869
870         writel(750, TMU_INQ_WATERMARK);
871
872         writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
873                TMU_PHY0_INQ_ADDR);
874         writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
875                TMU_PHY1_INQ_ADDR);
876
877         writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
878                TMU_PHY3_INQ_ADDR);
879         writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
880         writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
881         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
882                TMU_BMU_INQ_ADDR);
883
884         /* enabling all 10 schedulers [9:0] of each TDQ  */
885         writel(0x3FF, TMU_TDQ0_SCH_CTRL);
886         writel(0x3FF, TMU_TDQ1_SCH_CTRL);
887         writel(0x3FF, TMU_TDQ3_SCH_CTRL);
888
889         if (PLL_CLK_EN == 0) {
890                 /* Clock ratio: for 1:1 the value is 0 */
891                 writel(0x0, TMU_PE_SYS_CLK_RATIO);
892         } else {
893                 /* Clock ratio: for 1:2 the value is 1 */
894                 writel(0x1, TMU_PE_SYS_CLK_RATIO);
895         }
896
897         /* Extra packet pointers will be stored from this address onwards */
898         debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
899         writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);
900
901         debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
902         writel(cfg->llm_queue_len,      TMU_LLM_QUE_LEN);
903
904         writel(5, TMU_TDQ_IIFG_CFG);
905         writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
906
907         writel(0x0, TMU_CTRL);
908
909         /* MEM init */
910         writel(MEM_INIT, TMU_CTRL);
911
912         while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
913                 ;
914
915         /* LLM init */
916         writel(LLM_INIT, TMU_CTRL);
917
918         while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
919                 ;
920
921         /* set up each queue for tail drop */
922         for (phyno = 0; phyno < 4; phyno++) {
923                 if (phyno == 2)
924                         continue;
925                 for (q = 0; q < 16; q++) {
926                         u32 qmax;
927
928                         writel((phyno << 8) | q, TMU_TEQ_CTRL);
929                         writel(BIT(22), TMU_TEQ_QCFG);
930
931                         if (phyno == 3)
932                                 qmax = DEFAULT_TMU3_QDEPTH;
933                         else
934                                 qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
935                                         DEFAULT_MAX_QDEPTH;
936
937                         writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
938                         writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
939                 }
940         }
941         writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
942         writel(0, TMU_CTRL);
943 }
944
945 /**************************** HIF ***************************/
946 /*
947  * Enable hif tx DMA and interrupt
948  */
949 void hif_tx_enable(void)
950 {
951         writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
952 }
953
954 /*
955  * Disable hif tx DMA and interrupt
956  */
957 void hif_tx_disable(void)
958 {
959         u32 hif_int;
960
961         writel(0, HIF_TX_CTRL);
962
963         hif_int = readl(HIF_INT_ENABLE);
964         hif_int &= HIF_TXPKT_INT_EN;
965         writel(hif_int, HIF_INT_ENABLE);
966 }
967
968 /*
969  * Enable hif rx DMA and interrupt
970  */
971 void hif_rx_enable(void)
972 {
973         writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
974 }
975
976 /*
977  * Disable hif rx DMA and interrupt
978  */
979 void hif_rx_disable(void)
980 {
981         u32 hif_int;
982
983         writel(0, HIF_RX_CTRL);
984
985         hif_int = readl(HIF_INT_ENABLE);
986         hif_int &= HIF_RXPKT_INT_EN;
987         writel(hif_int, HIF_INT_ENABLE);
988 }
989
990 /*
991  * Initializes HIF copy block.
992  */
993 void hif_init(void)
994 {
995         /* Initialize HIF registers */
996         writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE,
997                HIF_POLL_CTRL);
998         /* Make HIF AXI transactions non-bufferable */
999         writel(0x1, HIF_AXI_CTRL);
1000 }