Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[profile/ivi/kernel-x86-ivi.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52         "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.19-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] =
57         "Copyright (c) 2009 - 2010 Intel Corporation.";
58
59 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
60         [board_82599_vf] = &ixgbevf_82599_vf_info,
61         [board_X540_vf]  = &ixgbevf_X540_vf_info,
62 };
63
64 /* ixgbevf_pci_tbl - PCI Device ID Table
65  *
66  * Wildcard entries (PCI_ANY_ID) should come last
67  * Last entry must be all 0s
68  *
69  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
70  *   Class, Class Mask, private data (not used) }
71  */
72 static struct pci_device_id ixgbevf_pci_tbl[] = {
73         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
74         board_82599_vf},
75         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
76         board_X540_vf},
77
78         /* required last entry */
79         {0, }
80 };
81 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
82
83 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
84 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
85 MODULE_LICENSE("GPL");
86 MODULE_VERSION(DRV_VERSION);
87
88 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
89
90 /* forward decls */
91 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
92 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
93                                u32 itr_reg);
94
95 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
96                                            struct ixgbevf_ring *rx_ring,
97                                            u32 val)
98 {
99         /*
100          * Force memory writes to complete before letting h/w
101          * know there are new descriptors to fetch.  (Only
102          * applicable for weak-ordered memory model archs,
103          * such as IA-64).
104          */
105         wmb();
106         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
107 }
108
109 /*
110  * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
111  * @adapter: pointer to adapter struct
112  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
113  * @queue: queue to map the corresponding interrupt to
114  * @msix_vector: the vector to map to the corresponding queue
115  *
116  */
117 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
118                              u8 queue, u8 msix_vector)
119 {
120         u32 ivar, index;
121         struct ixgbe_hw *hw = &adapter->hw;
122         if (direction == -1) {
123                 /* other causes */
124                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
125                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
126                 ivar &= ~0xFF;
127                 ivar |= msix_vector;
128                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
129         } else {
130                 /* tx or rx causes */
131                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
132                 index = ((16 * (queue & 1)) + (8 * direction));
133                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
134                 ivar &= ~(0xFF << index);
135                 ivar |= (msix_vector << index);
136                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
137         }
138 }
139
140 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
141                                                struct ixgbevf_tx_buffer
142                                                *tx_buffer_info)
143 {
144         if (tx_buffer_info->dma) {
145                 if (tx_buffer_info->mapped_as_page)
146                         dma_unmap_page(&adapter->pdev->dev,
147                                        tx_buffer_info->dma,
148                                        tx_buffer_info->length,
149                                        DMA_TO_DEVICE);
150                 else
151                         dma_unmap_single(&adapter->pdev->dev,
152                                          tx_buffer_info->dma,
153                                          tx_buffer_info->length,
154                                          DMA_TO_DEVICE);
155                 tx_buffer_info->dma = 0;
156         }
157         if (tx_buffer_info->skb) {
158                 dev_kfree_skb_any(tx_buffer_info->skb);
159                 tx_buffer_info->skb = NULL;
160         }
161         tx_buffer_info->time_stamp = 0;
162         /* tx_buffer_info must be completely set up in the transmit path */
163 }
164
165 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
166                                          struct ixgbevf_ring *tx_ring,
167                                          unsigned int eop)
168 {
169         struct ixgbe_hw *hw = &adapter->hw;
170         u32 head, tail;
171
172         /* Detect a transmit hang in hardware, this serializes the
173          * check with the clearing of time_stamp and movement of eop */
174         head = readl(hw->hw_addr + tx_ring->head);
175         tail = readl(hw->hw_addr + tx_ring->tail);
176         adapter->detect_tx_hung = false;
177         if ((head != tail) &&
178             tx_ring->tx_buffer_info[eop].time_stamp &&
179             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
180                 /* detected Tx unit hang */
181                 union ixgbe_adv_tx_desc *tx_desc;
182                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
183                 printk(KERN_ERR "Detected Tx Unit Hang\n"
184                        "  Tx Queue             <%d>\n"
185                        "  TDH, TDT             <%x>, <%x>\n"
186                        "  next_to_use          <%x>\n"
187                        "  next_to_clean        <%x>\n"
188                        "tx_buffer_info[next_to_clean]\n"
189                        "  time_stamp           <%lx>\n"
190                        "  jiffies              <%lx>\n",
191                        tx_ring->queue_index,
192                        head, tail,
193                        tx_ring->next_to_use, eop,
194                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
195                 return true;
196         }
197
198         return false;
199 }
200
201 #define IXGBE_MAX_TXD_PWR       14
202 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
203
204 /* Tx Descriptors needed, worst case */
205 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
206                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
207 #ifdef MAX_SKB_FRAGS
208 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
209         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
210 #else
211 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
212 #endif
213
214 static void ixgbevf_tx_timeout(struct net_device *netdev);
215
216 /**
217  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
218  * @adapter: board private structure
219  * @tx_ring: tx ring to clean
220  **/
221 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
222                                  struct ixgbevf_ring *tx_ring)
223 {
224         struct net_device *netdev = adapter->netdev;
225         struct ixgbe_hw *hw = &adapter->hw;
226         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
227         struct ixgbevf_tx_buffer *tx_buffer_info;
228         unsigned int i, eop, count = 0;
229         unsigned int total_bytes = 0, total_packets = 0;
230
231         i = tx_ring->next_to_clean;
232         eop = tx_ring->tx_buffer_info[i].next_to_watch;
233         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
234
235         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
236                (count < tx_ring->work_limit)) {
237                 bool cleaned = false;
238                 rmb(); /* read buffer_info after eop_desc */
239                 for ( ; !cleaned; count++) {
240                         struct sk_buff *skb;
241                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
242                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
243                         cleaned = (i == eop);
244                         skb = tx_buffer_info->skb;
245
246                         if (cleaned && skb) {
247                                 unsigned int segs, bytecount;
248
249                                 /* gso_segs is currently only valid for tcp */
250                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
251                                 /* multiply data chunks by size of headers */
252                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
253                                             skb->len;
254                                 total_packets += segs;
255                                 total_bytes += bytecount;
256                         }
257
258                         ixgbevf_unmap_and_free_tx_resource(adapter,
259                                                            tx_buffer_info);
260
261                         tx_desc->wb.status = 0;
262
263                         i++;
264                         if (i == tx_ring->count)
265                                 i = 0;
266                 }
267
268                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
269                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
270         }
271
272         tx_ring->next_to_clean = i;
273
274 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
275         if (unlikely(count && netif_carrier_ok(netdev) &&
276                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
277                 /* Make sure that anybody stopping the queue after this
278                  * sees the new next_to_clean.
279                  */
280                 smp_mb();
281 #ifdef HAVE_TX_MQ
282                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
283                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
284                         netif_wake_subqueue(netdev, tx_ring->queue_index);
285                         ++adapter->restart_queue;
286                 }
287 #else
288                 if (netif_queue_stopped(netdev) &&
289                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
290                         netif_wake_queue(netdev);
291                         ++adapter->restart_queue;
292                 }
293 #endif
294         }
295
296         if (adapter->detect_tx_hung) {
297                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
298                         /* schedule immediate reset if we believe we hung */
299                         printk(KERN_INFO
300                                "tx hang %d detected, resetting adapter\n",
301                                adapter->tx_timeout_count + 1);
302                         ixgbevf_tx_timeout(adapter->netdev);
303                 }
304         }
305
306         /* re-arm the interrupt */
307         if ((count >= tx_ring->work_limit) &&
308             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
309                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
310         }
311
312         tx_ring->total_bytes += total_bytes;
313         tx_ring->total_packets += total_packets;
314
315         netdev->stats.tx_bytes += total_bytes;
316         netdev->stats.tx_packets += total_packets;
317
318         return count < tx_ring->work_limit;
319 }
320
321 /**
322  * ixgbevf_receive_skb - Send a completed packet up the stack
323  * @q_vector: structure containing interrupt and ring information
324  * @skb: packet to send up
325  * @status: hardware indication of status of receive
326  * @rx_ring: rx descriptor ring (for a specific queue) to setup
327  * @rx_desc: rx descriptor
328  **/
329 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
330                                 struct sk_buff *skb, u8 status,
331                                 struct ixgbevf_ring *ring,
332                                 union ixgbe_adv_rx_desc *rx_desc)
333 {
334         struct ixgbevf_adapter *adapter = q_vector->adapter;
335         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
336         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
337         int ret;
338
339         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
340                 if (adapter->vlgrp && is_vlan)
341                         vlan_gro_receive(&q_vector->napi,
342                                          adapter->vlgrp,
343                                          tag, skb);
344                 else
345                         napi_gro_receive(&q_vector->napi, skb);
346         } else {
347                 if (adapter->vlgrp && is_vlan)
348                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
349                 else
350                         ret = netif_rx(skb);
351         }
352 }
353
354 /**
355  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
356  * @adapter: address of board private structure
357  * @status_err: hardware indication of status of receive
358  * @skb: skb currently being received and modified
359  **/
360 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
361                                        u32 status_err, struct sk_buff *skb)
362 {
363         skb_checksum_none_assert(skb);
364
365         /* Rx csum disabled */
366         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
367                 return;
368
369         /* if IP and error */
370         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
371             (status_err & IXGBE_RXDADV_ERR_IPE)) {
372                 adapter->hw_csum_rx_error++;
373                 return;
374         }
375
376         if (!(status_err & IXGBE_RXD_STAT_L4CS))
377                 return;
378
379         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
380                 adapter->hw_csum_rx_error++;
381                 return;
382         }
383
384         /* It must be a TCP or UDP packet with a valid checksum */
385         skb->ip_summed = CHECKSUM_UNNECESSARY;
386         adapter->hw_csum_rx_good++;
387 }
388
389 /**
390  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
391  * @adapter: address of board private structure
392  **/
393 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
394                                      struct ixgbevf_ring *rx_ring,
395                                      int cleaned_count)
396 {
397         struct pci_dev *pdev = adapter->pdev;
398         union ixgbe_adv_rx_desc *rx_desc;
399         struct ixgbevf_rx_buffer *bi;
400         struct sk_buff *skb;
401         unsigned int i;
402         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
403
404         i = rx_ring->next_to_use;
405         bi = &rx_ring->rx_buffer_info[i];
406
407         while (cleaned_count--) {
408                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
409
410                 if (!bi->page_dma &&
411                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
412                         if (!bi->page) {
413                                 bi->page = netdev_alloc_page(adapter->netdev);
414                                 if (!bi->page) {
415                                         adapter->alloc_rx_page_failed++;
416                                         goto no_buffers;
417                                 }
418                                 bi->page_offset = 0;
419                         } else {
420                                 /* use a half page if we're re-using */
421                                 bi->page_offset ^= (PAGE_SIZE / 2);
422                         }
423
424                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
425                                                     bi->page_offset,
426                                                     (PAGE_SIZE / 2),
427                                                     DMA_FROM_DEVICE);
428                 }
429
430                 skb = bi->skb;
431                 if (!skb) {
432                         skb = netdev_alloc_skb(adapter->netdev,
433                                                                bufsz);
434
435                         if (!skb) {
436                                 adapter->alloc_rx_buff_failed++;
437                                 goto no_buffers;
438                         }
439
440                         /*
441                          * Make buffer alignment 2 beyond a 16 byte boundary
442                          * this will result in a 16 byte aligned IP header after
443                          * the 14 byte MAC header is removed
444                          */
445                         skb_reserve(skb, NET_IP_ALIGN);
446
447                         bi->skb = skb;
448                 }
449                 if (!bi->dma) {
450                         bi->dma = dma_map_single(&pdev->dev, skb->data,
451                                                  rx_ring->rx_buf_len,
452                                                  DMA_FROM_DEVICE);
453                 }
454                 /* Refresh the desc even if buffer_addrs didn't change because
455                  * each write-back erases this info. */
456                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
457                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
458                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
459                 } else {
460                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
461                 }
462
463                 i++;
464                 if (i == rx_ring->count)
465                         i = 0;
466                 bi = &rx_ring->rx_buffer_info[i];
467         }
468
469 no_buffers:
470         if (rx_ring->next_to_use != i) {
471                 rx_ring->next_to_use = i;
472                 if (i-- == 0)
473                         i = (rx_ring->count - 1);
474
475                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
476         }
477 }
478
479 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
480                                              u64 qmask)
481 {
482         u32 mask;
483         struct ixgbe_hw *hw = &adapter->hw;
484
485         mask = (qmask & 0xFFFFFFFF);
486         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
487 }
488
489 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
490 {
491         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
492 }
493
494 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
495 {
496         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
497 }
498
499 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
500                                  struct ixgbevf_ring *rx_ring,
501                                  int *work_done, int work_to_do)
502 {
503         struct ixgbevf_adapter *adapter = q_vector->adapter;
504         struct pci_dev *pdev = adapter->pdev;
505         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
506         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
507         struct sk_buff *skb;
508         unsigned int i;
509         u32 len, staterr;
510         u16 hdr_info;
511         bool cleaned = false;
512         int cleaned_count = 0;
513         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
514
515         i = rx_ring->next_to_clean;
516         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
517         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518         rx_buffer_info = &rx_ring->rx_buffer_info[i];
519
520         while (staterr & IXGBE_RXD_STAT_DD) {
521                 u32 upper_len = 0;
522                 if (*work_done >= work_to_do)
523                         break;
524                 (*work_done)++;
525
526                 rmb(); /* read descriptor and rx_buffer_info after status DD */
527                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
528                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
529                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
530                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
531                         if (hdr_info & IXGBE_RXDADV_SPH)
532                                 adapter->rx_hdr_split++;
533                         if (len > IXGBEVF_RX_HDR_SIZE)
534                                 len = IXGBEVF_RX_HDR_SIZE;
535                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
536                 } else {
537                         len = le16_to_cpu(rx_desc->wb.upper.length);
538                 }
539                 cleaned = true;
540                 skb = rx_buffer_info->skb;
541                 prefetch(skb->data - NET_IP_ALIGN);
542                 rx_buffer_info->skb = NULL;
543
544                 if (rx_buffer_info->dma) {
545                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
546                                          rx_ring->rx_buf_len,
547                                          DMA_FROM_DEVICE);
548                         rx_buffer_info->dma = 0;
549                         skb_put(skb, len);
550                 }
551
552                 if (upper_len) {
553                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
554                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
555                         rx_buffer_info->page_dma = 0;
556                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
557                                            rx_buffer_info->page,
558                                            rx_buffer_info->page_offset,
559                                            upper_len);
560
561                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
562                             (page_count(rx_buffer_info->page) != 1))
563                                 rx_buffer_info->page = NULL;
564                         else
565                                 get_page(rx_buffer_info->page);
566
567                         skb->len += upper_len;
568                         skb->data_len += upper_len;
569                         skb->truesize += upper_len;
570                 }
571
572                 i++;
573                 if (i == rx_ring->count)
574                         i = 0;
575
576                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
577                 prefetch(next_rxd);
578                 cleaned_count++;
579
580                 next_buffer = &rx_ring->rx_buffer_info[i];
581
582                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
583                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
584                                 rx_buffer_info->skb = next_buffer->skb;
585                                 rx_buffer_info->dma = next_buffer->dma;
586                                 next_buffer->skb = skb;
587                                 next_buffer->dma = 0;
588                         } else {
589                                 skb->next = next_buffer->skb;
590                                 skb->next->prev = skb;
591                         }
592                         adapter->non_eop_descs++;
593                         goto next_desc;
594                 }
595
596                 /* ERR_MASK will only have valid bits if EOP set */
597                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
598                         dev_kfree_skb_irq(skb);
599                         goto next_desc;
600                 }
601
602                 ixgbevf_rx_checksum(adapter, staterr, skb);
603
604                 /* probably a little skewed due to removing CRC */
605                 total_rx_bytes += skb->len;
606                 total_rx_packets++;
607
608                 /*
609                  * Work around issue of some types of VM to VM loop back
610                  * packets not getting split correctly
611                  */
612                 if (staterr & IXGBE_RXD_STAT_LB) {
613                         u32 header_fixup_len = skb_headlen(skb);
614                         if (header_fixup_len < 14)
615                                 skb_push(skb, header_fixup_len);
616                 }
617                 skb->protocol = eth_type_trans(skb, adapter->netdev);
618
619                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
620
621 next_desc:
622                 rx_desc->wb.upper.status_error = 0;
623
624                 /* return some buffers to hardware, one at a time is too slow */
625                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
626                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
627                                                  cleaned_count);
628                         cleaned_count = 0;
629                 }
630
631                 /* use prefetched values */
632                 rx_desc = next_rxd;
633                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
634
635                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
636         }
637
638         rx_ring->next_to_clean = i;
639         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
640
641         if (cleaned_count)
642                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
643
644         rx_ring->total_packets += total_rx_packets;
645         rx_ring->total_bytes += total_rx_bytes;
646         adapter->netdev->stats.rx_bytes += total_rx_bytes;
647         adapter->netdev->stats.rx_packets += total_rx_packets;
648
649         return cleaned;
650 }
651
652 /**
653  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
654  * @napi: napi struct with our devices info in it
655  * @budget: amount of work driver is allowed to do this pass, in packets
656  *
657  * This function is optimized for cleaning one queue only on a single
658  * q_vector!!!
659  **/
660 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
661 {
662         struct ixgbevf_q_vector *q_vector =
663                 container_of(napi, struct ixgbevf_q_vector, napi);
664         struct ixgbevf_adapter *adapter = q_vector->adapter;
665         struct ixgbevf_ring *rx_ring = NULL;
666         int work_done = 0;
667         long r_idx;
668
669         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
670         rx_ring = &(adapter->rx_ring[r_idx]);
671
672         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
673
674         /* If all Rx work done, exit the polling mode */
675         if (work_done < budget) {
676                 napi_complete(napi);
677                 if (adapter->itr_setting & 1)
678                         ixgbevf_set_itr_msix(q_vector);
679                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
680                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
681         }
682
683         return work_done;
684 }
685
686 /**
687  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
688  * @napi: napi struct with our devices info in it
689  * @budget: amount of work driver is allowed to do this pass, in packets
690  *
691  * This function will clean more than one rx queue associated with a
692  * q_vector.
693  **/
694 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
695 {
696         struct ixgbevf_q_vector *q_vector =
697                 container_of(napi, struct ixgbevf_q_vector, napi);
698         struct ixgbevf_adapter *adapter = q_vector->adapter;
699         struct ixgbevf_ring *rx_ring = NULL;
700         int work_done = 0, i;
701         long r_idx;
702         u64 enable_mask = 0;
703
704         /* attempt to distribute budget to each queue fairly, but don't allow
705          * the budget to go below 1 because we'll exit polling */
706         budget /= (q_vector->rxr_count ?: 1);
707         budget = max(budget, 1);
708         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
709         for (i = 0; i < q_vector->rxr_count; i++) {
710                 rx_ring = &(adapter->rx_ring[r_idx]);
711                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
712                 enable_mask |= rx_ring->v_idx;
713                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
714                                       r_idx + 1);
715         }
716
717 #ifndef HAVE_NETDEV_NAPI_LIST
718         if (!netif_running(adapter->netdev))
719                 work_done = 0;
720
721 #endif
722         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
723         rx_ring = &(adapter->rx_ring[r_idx]);
724
725         /* If all Rx work done, exit the polling mode */
726         if (work_done < budget) {
727                 napi_complete(napi);
728                 if (adapter->itr_setting & 1)
729                         ixgbevf_set_itr_msix(q_vector);
730                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
731                         ixgbevf_irq_enable_queues(adapter, enable_mask);
732         }
733
734         return work_done;
735 }
736
737
738 /**
739  * ixgbevf_configure_msix - Configure MSI-X hardware
740  * @adapter: board private structure
741  *
742  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
743  * interrupts.
744  **/
745 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
746 {
747         struct ixgbevf_q_vector *q_vector;
748         struct ixgbe_hw *hw = &adapter->hw;
749         int i, j, q_vectors, v_idx, r_idx;
750         u32 mask;
751
752         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
753
754         /*
755          * Populate the IVAR table and set the ITR values to the
756          * corresponding register.
757          */
758         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
759                 q_vector = adapter->q_vector[v_idx];
760                 /* XXX for_each_set_bit(...) */
761                 r_idx = find_first_bit(q_vector->rxr_idx,
762                                        adapter->num_rx_queues);
763
764                 for (i = 0; i < q_vector->rxr_count; i++) {
765                         j = adapter->rx_ring[r_idx].reg_idx;
766                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
767                         r_idx = find_next_bit(q_vector->rxr_idx,
768                                               adapter->num_rx_queues,
769                                               r_idx + 1);
770                 }
771                 r_idx = find_first_bit(q_vector->txr_idx,
772                                        adapter->num_tx_queues);
773
774                 for (i = 0; i < q_vector->txr_count; i++) {
775                         j = adapter->tx_ring[r_idx].reg_idx;
776                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
777                         r_idx = find_next_bit(q_vector->txr_idx,
778                                               adapter->num_tx_queues,
779                                               r_idx + 1);
780                 }
781
782                 /* if this is a tx only vector halve the interrupt rate */
783                 if (q_vector->txr_count && !q_vector->rxr_count)
784                         q_vector->eitr = (adapter->eitr_param >> 1);
785                 else if (q_vector->rxr_count)
786                         /* rx only */
787                         q_vector->eitr = adapter->eitr_param;
788
789                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
790         }
791
792         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
793
794         /* set up to autoclear timer, and the vectors */
795         mask = IXGBE_EIMS_ENABLE_MASK;
796         mask &= ~IXGBE_EIMS_OTHER;
797         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
798 }
799
800 enum latency_range {
801         lowest_latency = 0,
802         low_latency = 1,
803         bulk_latency = 2,
804         latency_invalid = 255
805 };
806
807 /**
808  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
809  * @adapter: pointer to adapter
810  * @eitr: eitr setting (ints per sec) to give last timeslice
811  * @itr_setting: current throttle rate in ints/second
812  * @packets: the number of packets during this measurement interval
813  * @bytes: the number of bytes during this measurement interval
814  *
815  *      Stores a new ITR value based on packets and byte
816  *      counts during the last interrupt.  The advantage of per interrupt
817  *      computation is faster updates and more accurate ITR for the current
818  *      traffic pattern.  Constants in this function were computed
819  *      based on theoretical maximum wire speed and thresholds were set based
820  *      on testing data as well as attempting to minimize response time
821  *      while increasing bulk throughput.
822  **/
823 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
824                              u32 eitr, u8 itr_setting,
825                              int packets, int bytes)
826 {
827         unsigned int retval = itr_setting;
828         u32 timepassed_us;
829         u64 bytes_perint;
830
831         if (packets == 0)
832                 goto update_itr_done;
833
834
835         /* simple throttlerate management
836          *    0-20MB/s lowest (100000 ints/s)
837          *   20-100MB/s low   (20000 ints/s)
838          *  100-1249MB/s bulk (8000 ints/s)
839          */
840         /* what was last interrupt timeslice? */
841         timepassed_us = 1000000/eitr;
842         bytes_perint = bytes / timepassed_us; /* bytes/usec */
843
844         switch (itr_setting) {
845         case lowest_latency:
846                 if (bytes_perint > adapter->eitr_low)
847                         retval = low_latency;
848                 break;
849         case low_latency:
850                 if (bytes_perint > adapter->eitr_high)
851                         retval = bulk_latency;
852                 else if (bytes_perint <= adapter->eitr_low)
853                         retval = lowest_latency;
854                 break;
855         case bulk_latency:
856                 if (bytes_perint <= adapter->eitr_high)
857                         retval = low_latency;
858                 break;
859         }
860
861 update_itr_done:
862         return retval;
863 }
864
865 /**
866  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
867  * @adapter: pointer to adapter struct
868  * @v_idx: vector index into q_vector array
869  * @itr_reg: new value to be written in *register* format, not ints/s
870  *
871  * This function is made to be called by ethtool and by the driver
872  * when it needs to update VTEITR registers at runtime.  Hardware
873  * specific quirks/differences are taken care of here.
874  */
875 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
876                                u32 itr_reg)
877 {
878         struct ixgbe_hw *hw = &adapter->hw;
879
880         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
881
882         /*
883          * set the WDIS bit to not clear the timer bits and cause an
884          * immediate assertion of the interrupt
885          */
886         itr_reg |= IXGBE_EITR_CNT_WDIS;
887
888         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
889 }
890
891 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
892 {
893         struct ixgbevf_adapter *adapter = q_vector->adapter;
894         u32 new_itr;
895         u8 current_itr, ret_itr;
896         int i, r_idx, v_idx = q_vector->v_idx;
897         struct ixgbevf_ring *rx_ring, *tx_ring;
898
899         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
900         for (i = 0; i < q_vector->txr_count; i++) {
901                 tx_ring = &(adapter->tx_ring[r_idx]);
902                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
903                                              q_vector->tx_itr,
904                                              tx_ring->total_packets,
905                                              tx_ring->total_bytes);
906                 /* if the result for this queue would decrease interrupt
907                  * rate for this vector then use that result */
908                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
909                                     q_vector->tx_itr - 1 : ret_itr);
910                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
911                                       r_idx + 1);
912         }
913
914         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
915         for (i = 0; i < q_vector->rxr_count; i++) {
916                 rx_ring = &(adapter->rx_ring[r_idx]);
917                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
918                                              q_vector->rx_itr,
919                                              rx_ring->total_packets,
920                                              rx_ring->total_bytes);
921                 /* if the result for this queue would decrease interrupt
922                  * rate for this vector then use that result */
923                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
924                                     q_vector->rx_itr - 1 : ret_itr);
925                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
926                                       r_idx + 1);
927         }
928
929         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
930
931         switch (current_itr) {
932         /* counts and packets in update_itr are dependent on these numbers */
933         case lowest_latency:
934                 new_itr = 100000;
935                 break;
936         case low_latency:
937                 new_itr = 20000; /* aka hwitr = ~200 */
938                 break;
939         case bulk_latency:
940         default:
941                 new_itr = 8000;
942                 break;
943         }
944
945         if (new_itr != q_vector->eitr) {
946                 u32 itr_reg;
947
948                 /* save the algorithm value here, not the smoothed one */
949                 q_vector->eitr = new_itr;
950                 /* do an exponential smoothing */
951                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
952                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
953                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
954         }
955 }
956
957 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
958 {
959         struct net_device *netdev = data;
960         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
961         struct ixgbe_hw *hw = &adapter->hw;
962         u32 eicr;
963         u32 msg;
964
965         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
966         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
967
968         if (!hw->mbx.ops.check_for_ack(hw)) {
969                 /*
970                  * checking for the ack clears the PFACK bit.  Place
971                  * it back in the v2p_mailbox cache so that anyone
972                  * polling for an ack will not miss it.  Also
973                  * avoid the read below because the code to read
974                  * the mailbox will also clear the ack bit.  This was
975                  * causing lost acks.  Just cache the bit and exit
976                  * the IRQ handler.
977                  */
978                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
979                 goto out;
980         }
981
982         /* Not an ack interrupt, go ahead and read the message */
983         hw->mbx.ops.read(hw, &msg, 1);
984
985         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
986                 mod_timer(&adapter->watchdog_timer,
987                           round_jiffies(jiffies + 1));
988
989 out:
990         return IRQ_HANDLED;
991 }
992
993 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
994 {
995         struct ixgbevf_q_vector *q_vector = data;
996         struct ixgbevf_adapter  *adapter = q_vector->adapter;
997         struct ixgbevf_ring     *tx_ring;
998         int i, r_idx;
999
1000         if (!q_vector->txr_count)
1001                 return IRQ_HANDLED;
1002
1003         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
1004         for (i = 0; i < q_vector->txr_count; i++) {
1005                 tx_ring = &(adapter->tx_ring[r_idx]);
1006                 tx_ring->total_bytes = 0;
1007                 tx_ring->total_packets = 0;
1008                 ixgbevf_clean_tx_irq(adapter, tx_ring);
1009                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1010                                       r_idx + 1);
1011         }
1012
1013         if (adapter->itr_setting & 1)
1014                 ixgbevf_set_itr_msix(q_vector);
1015
1016         return IRQ_HANDLED;
1017 }
1018
1019 /**
1020  * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1021  * @irq: unused
1022  * @data: pointer to our q_vector struct for this interrupt vector
1023  **/
1024 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1025 {
1026         struct ixgbevf_q_vector *q_vector = data;
1027         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1028         struct ixgbe_hw *hw = &adapter->hw;
1029         struct ixgbevf_ring  *rx_ring;
1030         int r_idx;
1031         int i;
1032
1033         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1034         for (i = 0; i < q_vector->rxr_count; i++) {
1035                 rx_ring = &(adapter->rx_ring[r_idx]);
1036                 rx_ring->total_bytes = 0;
1037                 rx_ring->total_packets = 0;
1038                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1039                                       r_idx + 1);
1040         }
1041
1042         if (!q_vector->rxr_count)
1043                 return IRQ_HANDLED;
1044
1045         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1046         rx_ring = &(adapter->rx_ring[r_idx]);
1047         /* disable interrupts on this vector only */
1048         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1049         napi_schedule(&q_vector->napi);
1050
1051
1052         return IRQ_HANDLED;
1053 }
1054
1055 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1056 {
1057         ixgbevf_msix_clean_rx(irq, data);
1058         ixgbevf_msix_clean_tx(irq, data);
1059
1060         return IRQ_HANDLED;
1061 }
1062
1063 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1064                                      int r_idx)
1065 {
1066         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1067
1068         set_bit(r_idx, q_vector->rxr_idx);
1069         q_vector->rxr_count++;
1070         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1071 }
1072
1073 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1074                                      int t_idx)
1075 {
1076         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1077
1078         set_bit(t_idx, q_vector->txr_idx);
1079         q_vector->txr_count++;
1080         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1081 }
1082
1083 /**
1084  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1085  * @adapter: board private structure to initialize
1086  *
1087  * This function maps descriptor rings to the queue-specific vectors
1088  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1089  * one vector per ring/queue, but on a constrained vector budget, we
1090  * group the rings as "efficiently" as possible.  You would add new
1091  * mapping configurations in here.
1092  **/
1093 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1094 {
1095         int q_vectors;
1096         int v_start = 0;
1097         int rxr_idx = 0, txr_idx = 0;
1098         int rxr_remaining = adapter->num_rx_queues;
1099         int txr_remaining = adapter->num_tx_queues;
1100         int i, j;
1101         int rqpv, tqpv;
1102         int err = 0;
1103
1104         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1105
1106         /*
1107          * The ideal configuration...
1108          * We have enough vectors to map one per queue.
1109          */
1110         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1111                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1112                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1113
1114                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1115                         map_vector_to_txq(adapter, v_start, txr_idx);
1116                 goto out;
1117         }
1118
1119         /*
1120          * If we don't have enough vectors for a 1-to-1
1121          * mapping, we'll have to group them so there are
1122          * multiple queues per vector.
1123          */
1124         /* Re-adjusting *qpv takes care of the remainder. */
1125         for (i = v_start; i < q_vectors; i++) {
1126                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1127                 for (j = 0; j < rqpv; j++) {
1128                         map_vector_to_rxq(adapter, i, rxr_idx);
1129                         rxr_idx++;
1130                         rxr_remaining--;
1131                 }
1132         }
1133         for (i = v_start; i < q_vectors; i++) {
1134                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1135                 for (j = 0; j < tqpv; j++) {
1136                         map_vector_to_txq(adapter, i, txr_idx);
1137                         txr_idx++;
1138                         txr_remaining--;
1139                 }
1140         }
1141
1142 out:
1143         return err;
1144 }
1145
1146 /**
1147  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1148  * @adapter: board private structure
1149  *
1150  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1151  * interrupts from the kernel.
1152  **/
1153 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1154 {
1155         struct net_device *netdev = adapter->netdev;
1156         irqreturn_t (*handler)(int, void *);
1157         int i, vector, q_vectors, err;
1158         int ri = 0, ti = 0;
1159
1160         /* Decrement for Other and TCP Timer vectors */
1161         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1162
1163 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1164                                           ? &ixgbevf_msix_clean_many : \
1165                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1166                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1167                           NULL)
1168         for (vector = 0; vector < q_vectors; vector++) {
1169                 handler = SET_HANDLER(adapter->q_vector[vector]);
1170
1171                 if (handler == &ixgbevf_msix_clean_rx) {
1172                         sprintf(adapter->name[vector], "%s-%s-%d",
1173                                 netdev->name, "rx", ri++);
1174                 } else if (handler == &ixgbevf_msix_clean_tx) {
1175                         sprintf(adapter->name[vector], "%s-%s-%d",
1176                                 netdev->name, "tx", ti++);
1177                 } else if (handler == &ixgbevf_msix_clean_many) {
1178                         sprintf(adapter->name[vector], "%s-%s-%d",
1179                                 netdev->name, "TxRx", vector);
1180                 } else {
1181                         /* skip this unused q_vector */
1182                         continue;
1183                 }
1184                 err = request_irq(adapter->msix_entries[vector].vector,
1185                                   handler, 0, adapter->name[vector],
1186                                   adapter->q_vector[vector]);
1187                 if (err) {
1188                         hw_dbg(&adapter->hw,
1189                                "request_irq failed for MSIX interrupt "
1190                                "Error: %d\n", err);
1191                         goto free_queue_irqs;
1192                 }
1193         }
1194
1195         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1196         err = request_irq(adapter->msix_entries[vector].vector,
1197                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1198         if (err) {
1199                 hw_dbg(&adapter->hw,
1200                        "request_irq for msix_mbx failed: %d\n", err);
1201                 goto free_queue_irqs;
1202         }
1203
1204         return 0;
1205
1206 free_queue_irqs:
1207         for (i = vector - 1; i >= 0; i--)
1208                 free_irq(adapter->msix_entries[--vector].vector,
1209                          &(adapter->q_vector[i]));
1210         pci_disable_msix(adapter->pdev);
1211         kfree(adapter->msix_entries);
1212         adapter->msix_entries = NULL;
1213         return err;
1214 }
1215
1216 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1217 {
1218         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1219
1220         for (i = 0; i < q_vectors; i++) {
1221                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1222                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1223                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1224                 q_vector->rxr_count = 0;
1225                 q_vector->txr_count = 0;
1226                 q_vector->eitr = adapter->eitr_param;
1227         }
1228 }
1229
1230 /**
1231  * ixgbevf_request_irq - initialize interrupts
1232  * @adapter: board private structure
1233  *
1234  * Attempts to configure interrupts using the best available
1235  * capabilities of the hardware and kernel.
1236  **/
1237 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1238 {
1239         int err = 0;
1240
1241         err = ixgbevf_request_msix_irqs(adapter);
1242
1243         if (err)
1244                 hw_dbg(&adapter->hw,
1245                        "request_irq failed, Error %d\n", err);
1246
1247         return err;
1248 }
1249
1250 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1251 {
1252         struct net_device *netdev = adapter->netdev;
1253         int i, q_vectors;
1254
1255         q_vectors = adapter->num_msix_vectors;
1256
1257         i = q_vectors - 1;
1258
1259         free_irq(adapter->msix_entries[i].vector, netdev);
1260         i--;
1261
1262         for (; i >= 0; i--) {
1263                 free_irq(adapter->msix_entries[i].vector,
1264                          adapter->q_vector[i]);
1265         }
1266
1267         ixgbevf_reset_q_vectors(adapter);
1268 }
1269
1270 /**
1271  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1272  * @adapter: board private structure
1273  **/
1274 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1275 {
1276         int i;
1277         struct ixgbe_hw *hw = &adapter->hw;
1278
1279         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1280
1281         IXGBE_WRITE_FLUSH(hw);
1282
1283         for (i = 0; i < adapter->num_msix_vectors; i++)
1284                 synchronize_irq(adapter->msix_entries[i].vector);
1285 }
1286
1287 /**
1288  * ixgbevf_irq_enable - Enable default interrupt generation settings
1289  * @adapter: board private structure
1290  **/
1291 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1292                                       bool queues, bool flush)
1293 {
1294         struct ixgbe_hw *hw = &adapter->hw;
1295         u32 mask;
1296         u64 qmask;
1297
1298         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1299         qmask = ~0;
1300
1301         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1302
1303         if (queues)
1304                 ixgbevf_irq_enable_queues(adapter, qmask);
1305
1306         if (flush)
1307                 IXGBE_WRITE_FLUSH(hw);
1308 }
1309
1310 /**
1311  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1312  * @adapter: board private structure
1313  *
1314  * Configure the Tx unit of the MAC after a reset.
1315  **/
1316 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1317 {
1318         u64 tdba;
1319         struct ixgbe_hw *hw = &adapter->hw;
1320         u32 i, j, tdlen, txctrl;
1321
1322         /* Setup the HW Tx Head and Tail descriptor pointers */
1323         for (i = 0; i < adapter->num_tx_queues; i++) {
1324                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1325                 j = ring->reg_idx;
1326                 tdba = ring->dma;
1327                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1328                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1329                                 (tdba & DMA_BIT_MASK(32)));
1330                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1331                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1332                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1333                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1334                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1335                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1336                 /* Disable Tx Head Writeback RO bit, since this hoses
1337                  * bookkeeping if things aren't delivered in order.
1338                  */
1339                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1340                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1341                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1342         }
1343 }
1344
1345 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1346
1347 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1348 {
1349         struct ixgbevf_ring *rx_ring;
1350         struct ixgbe_hw *hw = &adapter->hw;
1351         u32 srrctl;
1352
1353         rx_ring = &adapter->rx_ring[index];
1354
1355         srrctl = IXGBE_SRRCTL_DROP_EN;
1356
1357         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1358                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1359                 /* grow the amount we can receive on large page machines */
1360                 if (bufsz < (PAGE_SIZE / 2))
1361                         bufsz = (PAGE_SIZE / 2);
1362                 /* cap the bufsz at our largest descriptor size */
1363                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1364
1365                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1366                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1367                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1368                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1369                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1370         } else {
1371                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1372
1373                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1374                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1375                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1376                 else
1377                         srrctl |= rx_ring->rx_buf_len >>
1378                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1379         }
1380         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1381 }
1382
1383 /**
1384  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1385  * @adapter: board private structure
1386  *
1387  * Configure the Rx unit of the MAC after a reset.
1388  **/
1389 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1390 {
1391         u64 rdba;
1392         struct ixgbe_hw *hw = &adapter->hw;
1393         struct net_device *netdev = adapter->netdev;
1394         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1395         int i, j;
1396         u32 rdlen;
1397         int rx_buf_len;
1398
1399         /* Decide whether to use packet split mode or not */
1400         if (netdev->mtu > ETH_DATA_LEN) {
1401                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1402                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1403                 else
1404                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1405         } else {
1406                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1407                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1408                 else
1409                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1410         }
1411
1412         /* Set the RX buffer length according to the mode */
1413         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1414                 /* PSRTYPE must be initialized in 82599 */
1415                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1416                         IXGBE_PSRTYPE_UDPHDR |
1417                         IXGBE_PSRTYPE_IPV4HDR |
1418                         IXGBE_PSRTYPE_IPV6HDR |
1419                         IXGBE_PSRTYPE_L2HDR;
1420                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1421                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1422         } else {
1423                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1424                 if (netdev->mtu <= ETH_DATA_LEN)
1425                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1426                 else
1427                         rx_buf_len = ALIGN(max_frame, 1024);
1428         }
1429
1430         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1431         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1432          * the Base and Length of the Rx Descriptor Ring */
1433         for (i = 0; i < adapter->num_rx_queues; i++) {
1434                 rdba = adapter->rx_ring[i].dma;
1435                 j = adapter->rx_ring[i].reg_idx;
1436                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1437                                 (rdba & DMA_BIT_MASK(32)));
1438                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1439                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1440                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1441                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1442                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1443                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1444                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1445
1446                 ixgbevf_configure_srrctl(adapter, j);
1447         }
1448 }
1449
1450 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1451                                      struct vlan_group *grp)
1452 {
1453         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1454         struct ixgbe_hw *hw = &adapter->hw;
1455         int i, j;
1456         u32 ctrl;
1457
1458         adapter->vlgrp = grp;
1459
1460         for (i = 0; i < adapter->num_rx_queues; i++) {
1461                 j = adapter->rx_ring[i].reg_idx;
1462                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1463                 ctrl |= IXGBE_RXDCTL_VME;
1464                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1465         }
1466 }
1467
1468 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1469 {
1470         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1471         struct ixgbe_hw *hw = &adapter->hw;
1472
1473         /* add VID to filter table */
1474         if (hw->mac.ops.set_vfta)
1475                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1476 }
1477
1478 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1479 {
1480         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1481         struct ixgbe_hw *hw = &adapter->hw;
1482
1483         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1484                 ixgbevf_irq_disable(adapter);
1485
1486         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1487
1488         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1489                 ixgbevf_irq_enable(adapter, true, true);
1490
1491         /* remove VID from filter table */
1492         if (hw->mac.ops.set_vfta)
1493                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1494 }
1495
1496 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1497 {
1498         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1499
1500         if (adapter->vlgrp) {
1501                 u16 vid;
1502                 for (vid = 0; vid < VLAN_N_VID; vid++) {
1503                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1504                                 continue;
1505                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1506                 }
1507         }
1508 }
1509
1510 /**
1511  * ixgbevf_set_rx_mode - Multicast set
1512  * @netdev: network interface device structure
1513  *
1514  * The set_rx_method entry point is called whenever the multicast address
1515  * list or the network interface flags are updated.  This routine is
1516  * responsible for configuring the hardware for proper multicast mode.
1517  **/
1518 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1519 {
1520         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1521         struct ixgbe_hw *hw = &adapter->hw;
1522
1523         /* reprogram multicast list */
1524         if (hw->mac.ops.update_mc_addr_list)
1525                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1526 }
1527
1528 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1529 {
1530         int q_idx;
1531         struct ixgbevf_q_vector *q_vector;
1532         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1533
1534         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1535                 struct napi_struct *napi;
1536                 q_vector = adapter->q_vector[q_idx];
1537                 if (!q_vector->rxr_count)
1538                         continue;
1539                 napi = &q_vector->napi;
1540                 if (q_vector->rxr_count > 1)
1541                         napi->poll = &ixgbevf_clean_rxonly_many;
1542
1543                 napi_enable(napi);
1544         }
1545 }
1546
1547 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1548 {
1549         int q_idx;
1550         struct ixgbevf_q_vector *q_vector;
1551         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1552
1553         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1554                 q_vector = adapter->q_vector[q_idx];
1555                 if (!q_vector->rxr_count)
1556                         continue;
1557                 napi_disable(&q_vector->napi);
1558         }
1559 }
1560
1561 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1562 {
1563         struct net_device *netdev = adapter->netdev;
1564         int i;
1565
1566         ixgbevf_set_rx_mode(netdev);
1567
1568         ixgbevf_restore_vlan(adapter);
1569
1570         ixgbevf_configure_tx(adapter);
1571         ixgbevf_configure_rx(adapter);
1572         for (i = 0; i < adapter->num_rx_queues; i++) {
1573                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1574                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1575                 ring->next_to_use = ring->count - 1;
1576                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1577         }
1578 }
1579
1580 #define IXGBE_MAX_RX_DESC_POLL 10
1581 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1582                                                 int rxr)
1583 {
1584         struct ixgbe_hw *hw = &adapter->hw;
1585         int j = adapter->rx_ring[rxr].reg_idx;
1586         int k;
1587
1588         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1589                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1590                         break;
1591                 else
1592                         msleep(1);
1593         }
1594         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1595                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1596                        "not set within the polling period\n", rxr);
1597         }
1598
1599         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1600                                 (adapter->rx_ring[rxr].count - 1));
1601 }
1602
1603 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1604 {
1605         /* Only save pre-reset stats if there are some */
1606         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1607                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1608                         adapter->stats.base_vfgprc;
1609                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1610                         adapter->stats.base_vfgptc;
1611                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1612                         adapter->stats.base_vfgorc;
1613                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1614                         adapter->stats.base_vfgotc;
1615                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1616                         adapter->stats.base_vfmprc;
1617         }
1618 }
1619
1620 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1621 {
1622         struct ixgbe_hw *hw = &adapter->hw;
1623
1624         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1625         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1626         adapter->stats.last_vfgorc |=
1627                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1628         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1629         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1630         adapter->stats.last_vfgotc |=
1631                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1632         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1633
1634         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1635         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1636         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1637         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1638         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1639 }
1640
1641 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1642 {
1643         struct net_device *netdev = adapter->netdev;
1644         struct ixgbe_hw *hw = &adapter->hw;
1645         int i, j = 0;
1646         int num_rx_rings = adapter->num_rx_queues;
1647         u32 txdctl, rxdctl;
1648
1649         for (i = 0; i < adapter->num_tx_queues; i++) {
1650                 j = adapter->tx_ring[i].reg_idx;
1651                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1652                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1653                 txdctl |= (8 << 16);
1654                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1655         }
1656
1657         for (i = 0; i < adapter->num_tx_queues; i++) {
1658                 j = adapter->tx_ring[i].reg_idx;
1659                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1660                 txdctl |= IXGBE_TXDCTL_ENABLE;
1661                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1662         }
1663
1664         for (i = 0; i < num_rx_rings; i++) {
1665                 j = adapter->rx_ring[i].reg_idx;
1666                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1667                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1668                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1669                 ixgbevf_rx_desc_queue_enable(adapter, i);
1670         }
1671
1672         ixgbevf_configure_msix(adapter);
1673
1674         if (hw->mac.ops.set_rar) {
1675                 if (is_valid_ether_addr(hw->mac.addr))
1676                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1677                 else
1678                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1679         }
1680
1681         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1682         ixgbevf_napi_enable_all(adapter);
1683
1684         /* enable transmits */
1685         netif_tx_start_all_queues(netdev);
1686
1687         ixgbevf_save_reset_stats(adapter);
1688         ixgbevf_init_last_counter_stats(adapter);
1689
1690         /* bring the link up in the watchdog, this could race with our first
1691          * link up interrupt but shouldn't be a problem */
1692         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1693         adapter->link_check_timeout = jiffies;
1694         mod_timer(&adapter->watchdog_timer, jiffies);
1695         return 0;
1696 }
1697
1698 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1699 {
1700         int err;
1701         struct ixgbe_hw *hw = &adapter->hw;
1702
1703         ixgbevf_configure(adapter);
1704
1705         err = ixgbevf_up_complete(adapter);
1706
1707         /* clear any pending interrupts, may auto mask */
1708         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1709
1710         ixgbevf_irq_enable(adapter, true, true);
1711
1712         return err;
1713 }
1714
1715 /**
1716  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1717  * @adapter: board private structure
1718  * @rx_ring: ring to free buffers from
1719  **/
1720 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1721                                   struct ixgbevf_ring *rx_ring)
1722 {
1723         struct pci_dev *pdev = adapter->pdev;
1724         unsigned long size;
1725         unsigned int i;
1726
1727         if (!rx_ring->rx_buffer_info)
1728                 return;
1729
1730         /* Free all the Rx ring sk_buffs */
1731         for (i = 0; i < rx_ring->count; i++) {
1732                 struct ixgbevf_rx_buffer *rx_buffer_info;
1733
1734                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1735                 if (rx_buffer_info->dma) {
1736                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1737                                          rx_ring->rx_buf_len,
1738                                          DMA_FROM_DEVICE);
1739                         rx_buffer_info->dma = 0;
1740                 }
1741                 if (rx_buffer_info->skb) {
1742                         struct sk_buff *skb = rx_buffer_info->skb;
1743                         rx_buffer_info->skb = NULL;
1744                         do {
1745                                 struct sk_buff *this = skb;
1746                                 skb = skb->prev;
1747                                 dev_kfree_skb(this);
1748                         } while (skb);
1749                 }
1750                 if (!rx_buffer_info->page)
1751                         continue;
1752                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1753                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1754                 rx_buffer_info->page_dma = 0;
1755                 put_page(rx_buffer_info->page);
1756                 rx_buffer_info->page = NULL;
1757                 rx_buffer_info->page_offset = 0;
1758         }
1759
1760         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1761         memset(rx_ring->rx_buffer_info, 0, size);
1762
1763         /* Zero out the descriptor ring */
1764         memset(rx_ring->desc, 0, rx_ring->size);
1765
1766         rx_ring->next_to_clean = 0;
1767         rx_ring->next_to_use = 0;
1768
1769         if (rx_ring->head)
1770                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1771         if (rx_ring->tail)
1772                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1773 }
1774
1775 /**
1776  * ixgbevf_clean_tx_ring - Free Tx Buffers
1777  * @adapter: board private structure
1778  * @tx_ring: ring to be cleaned
1779  **/
1780 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1781                                   struct ixgbevf_ring *tx_ring)
1782 {
1783         struct ixgbevf_tx_buffer *tx_buffer_info;
1784         unsigned long size;
1785         unsigned int i;
1786
1787         if (!tx_ring->tx_buffer_info)
1788                 return;
1789
1790         /* Free all the Tx ring sk_buffs */
1791
1792         for (i = 0; i < tx_ring->count; i++) {
1793                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1794                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1795         }
1796
1797         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1798         memset(tx_ring->tx_buffer_info, 0, size);
1799
1800         memset(tx_ring->desc, 0, tx_ring->size);
1801
1802         tx_ring->next_to_use = 0;
1803         tx_ring->next_to_clean = 0;
1804
1805         if (tx_ring->head)
1806                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1807         if (tx_ring->tail)
1808                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1809 }
1810
1811 /**
1812  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1813  * @adapter: board private structure
1814  **/
1815 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1816 {
1817         int i;
1818
1819         for (i = 0; i < adapter->num_rx_queues; i++)
1820                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1821 }
1822
1823 /**
1824  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1825  * @adapter: board private structure
1826  **/
1827 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1828 {
1829         int i;
1830
1831         for (i = 0; i < adapter->num_tx_queues; i++)
1832                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1833 }
1834
1835 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1836 {
1837         struct net_device *netdev = adapter->netdev;
1838         struct ixgbe_hw *hw = &adapter->hw;
1839         u32 txdctl;
1840         int i, j;
1841
1842         /* signal that we are down to the interrupt handler */
1843         set_bit(__IXGBEVF_DOWN, &adapter->state);
1844         /* disable receives */
1845
1846         netif_tx_disable(netdev);
1847
1848         msleep(10);
1849
1850         netif_tx_stop_all_queues(netdev);
1851
1852         ixgbevf_irq_disable(adapter);
1853
1854         ixgbevf_napi_disable_all(adapter);
1855
1856         del_timer_sync(&adapter->watchdog_timer);
1857         /* can't call flush scheduled work here because it can deadlock
1858          * if linkwatch_event tries to acquire the rtnl_lock which we are
1859          * holding */
1860         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1861                 msleep(1);
1862
1863         /* disable transmits in the hardware now that interrupts are off */
1864         for (i = 0; i < adapter->num_tx_queues; i++) {
1865                 j = adapter->tx_ring[i].reg_idx;
1866                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1867                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1868                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1869         }
1870
1871         netif_carrier_off(netdev);
1872
1873         if (!pci_channel_offline(adapter->pdev))
1874                 ixgbevf_reset(adapter);
1875
1876         ixgbevf_clean_all_tx_rings(adapter);
1877         ixgbevf_clean_all_rx_rings(adapter);
1878 }
1879
1880 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1881 {
1882         struct ixgbe_hw *hw = &adapter->hw;
1883
1884         WARN_ON(in_interrupt());
1885
1886         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1887                 msleep(1);
1888
1889         /*
1890          * Check if PF is up before re-init.  If not then skip until
1891          * later when the PF is up and ready to service requests from
1892          * the VF via mailbox.  If the VF is up and running then the
1893          * watchdog task will continue to schedule reset tasks until
1894          * the PF is up and running.
1895          */
1896         if (!hw->mac.ops.reset_hw(hw)) {
1897                 ixgbevf_down(adapter);
1898                 ixgbevf_up(adapter);
1899         }
1900
1901         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1902 }
1903
1904 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1905 {
1906         struct ixgbe_hw *hw = &adapter->hw;
1907         struct net_device *netdev = adapter->netdev;
1908
1909         if (hw->mac.ops.reset_hw(hw))
1910                 hw_dbg(hw, "PF still resetting\n");
1911         else
1912                 hw->mac.ops.init_hw(hw);
1913
1914         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1915                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1916                        netdev->addr_len);
1917                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1918                        netdev->addr_len);
1919         }
1920 }
1921
1922 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1923                                          int vectors)
1924 {
1925         int err, vector_threshold;
1926
1927         /* We'll want at least 3 (vector_threshold):
1928          * 1) TxQ[0] Cleanup
1929          * 2) RxQ[0] Cleanup
1930          * 3) Other (Link Status Change, etc.)
1931          */
1932         vector_threshold = MIN_MSIX_COUNT;
1933
1934         /* The more we get, the more we will assign to Tx/Rx Cleanup
1935          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1936          * Right now, we simply care about how many we'll get; we'll
1937          * set them up later while requesting irq's.
1938          */
1939         while (vectors >= vector_threshold) {
1940                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1941                                       vectors);
1942                 if (!err) /* Success in acquiring all requested vectors. */
1943                         break;
1944                 else if (err < 0)
1945                         vectors = 0; /* Nasty failure, quit now */
1946                 else /* err == number of vectors we should try again with */
1947                         vectors = err;
1948         }
1949
1950         if (vectors < vector_threshold) {
1951                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1952                  * This just means we'll go with either a single MSI
1953                  * vector or fall back to legacy interrupts.
1954                  */
1955                 hw_dbg(&adapter->hw,
1956                        "Unable to allocate MSI-X interrupts\n");
1957                 kfree(adapter->msix_entries);
1958                 adapter->msix_entries = NULL;
1959         } else {
1960                 /*
1961                  * Adjust for only the vectors we'll use, which is minimum
1962                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1963                  * vectors we were allocated.
1964                  */
1965                 adapter->num_msix_vectors = vectors;
1966         }
1967 }
1968
1969 /*
1970  * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1971  * @adapter: board private structure to initialize
1972  *
1973  * This is the top level queue allocation routine.  The order here is very
1974  * important, starting with the "most" number of features turned on at once,
1975  * and ending with the smallest set of features.  This way large combinations
1976  * can be allocated if they're turned on, and smaller combinations are the
1977  * fallthrough conditions.
1978  *
1979  **/
1980 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1981 {
1982         /* Start with base case */
1983         adapter->num_rx_queues = 1;
1984         adapter->num_tx_queues = 1;
1985         adapter->num_rx_pools = adapter->num_rx_queues;
1986         adapter->num_rx_queues_per_pool = 1;
1987 }
1988
1989 /**
1990  * ixgbevf_alloc_queues - Allocate memory for all rings
1991  * @adapter: board private structure to initialize
1992  *
1993  * We allocate one ring per queue at run-time since we don't know the
1994  * number of queues at compile-time.  The polling_netdev array is
1995  * intended for Multiqueue, but should work fine with a single queue.
1996  **/
1997 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1998 {
1999         int i;
2000
2001         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
2002                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2003         if (!adapter->tx_ring)
2004                 goto err_tx_ring_allocation;
2005
2006         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2007                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2008         if (!adapter->rx_ring)
2009                 goto err_rx_ring_allocation;
2010
2011         for (i = 0; i < adapter->num_tx_queues; i++) {
2012                 adapter->tx_ring[i].count = adapter->tx_ring_count;
2013                 adapter->tx_ring[i].queue_index = i;
2014                 adapter->tx_ring[i].reg_idx = i;
2015         }
2016
2017         for (i = 0; i < adapter->num_rx_queues; i++) {
2018                 adapter->rx_ring[i].count = adapter->rx_ring_count;
2019                 adapter->rx_ring[i].queue_index = i;
2020                 adapter->rx_ring[i].reg_idx = i;
2021         }
2022
2023         return 0;
2024
2025 err_rx_ring_allocation:
2026         kfree(adapter->tx_ring);
2027 err_tx_ring_allocation:
2028         return -ENOMEM;
2029 }
2030
2031 /**
2032  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2033  * @adapter: board private structure to initialize
2034  *
2035  * Attempt to configure the interrupts using the best available
2036  * capabilities of the hardware and the kernel.
2037  **/
2038 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2039 {
2040         int err = 0;
2041         int vector, v_budget;
2042
2043         /*
2044          * It's easy to be greedy for MSI-X vectors, but it really
2045          * doesn't do us much good if we have a lot more vectors
2046          * than CPU's.  So let's be conservative and only ask for
2047          * (roughly) twice the number of vectors as there are CPU's.
2048          */
2049         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2050                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2051
2052         /* A failure in MSI-X entry allocation isn't fatal, but it does
2053          * mean we disable MSI-X capabilities of the adapter. */
2054         adapter->msix_entries = kcalloc(v_budget,
2055                                         sizeof(struct msix_entry), GFP_KERNEL);
2056         if (!adapter->msix_entries) {
2057                 err = -ENOMEM;
2058                 goto out;
2059         }
2060
2061         for (vector = 0; vector < v_budget; vector++)
2062                 adapter->msix_entries[vector].entry = vector;
2063
2064         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2065
2066 out:
2067         return err;
2068 }
2069
2070 /**
2071  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2072  * @adapter: board private structure to initialize
2073  *
2074  * We allocate one q_vector per queue interrupt.  If allocation fails we
2075  * return -ENOMEM.
2076  **/
2077 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2078 {
2079         int q_idx, num_q_vectors;
2080         struct ixgbevf_q_vector *q_vector;
2081         int napi_vectors;
2082         int (*poll)(struct napi_struct *, int);
2083
2084         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2085         napi_vectors = adapter->num_rx_queues;
2086         poll = &ixgbevf_clean_rxonly;
2087
2088         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2089                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2090                 if (!q_vector)
2091                         goto err_out;
2092                 q_vector->adapter = adapter;
2093                 q_vector->v_idx = q_idx;
2094                 q_vector->eitr = adapter->eitr_param;
2095                 if (q_idx < napi_vectors)
2096                         netif_napi_add(adapter->netdev, &q_vector->napi,
2097                                        (*poll), 64);
2098                 adapter->q_vector[q_idx] = q_vector;
2099         }
2100
2101         return 0;
2102
2103 err_out:
2104         while (q_idx) {
2105                 q_idx--;
2106                 q_vector = adapter->q_vector[q_idx];
2107                 netif_napi_del(&q_vector->napi);
2108                 kfree(q_vector);
2109                 adapter->q_vector[q_idx] = NULL;
2110         }
2111         return -ENOMEM;
2112 }
2113
2114 /**
2115  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2116  * @adapter: board private structure to initialize
2117  *
2118  * This function frees the memory allocated to the q_vectors.  In addition if
2119  * NAPI is enabled it will delete any references to the NAPI struct prior
2120  * to freeing the q_vector.
2121  **/
2122 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2123 {
2124         int q_idx, num_q_vectors;
2125         int napi_vectors;
2126
2127         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2128         napi_vectors = adapter->num_rx_queues;
2129
2130         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2131                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2132
2133                 adapter->q_vector[q_idx] = NULL;
2134                 if (q_idx < napi_vectors)
2135                         netif_napi_del(&q_vector->napi);
2136                 kfree(q_vector);
2137         }
2138 }
2139
2140 /**
2141  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2142  * @adapter: board private structure
2143  *
2144  **/
2145 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2146 {
2147         pci_disable_msix(adapter->pdev);
2148         kfree(adapter->msix_entries);
2149         adapter->msix_entries = NULL;
2150 }
2151
2152 /**
2153  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2154  * @adapter: board private structure to initialize
2155  *
2156  **/
2157 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2158 {
2159         int err;
2160
2161         /* Number of supported queues */
2162         ixgbevf_set_num_queues(adapter);
2163
2164         err = ixgbevf_set_interrupt_capability(adapter);
2165         if (err) {
2166                 hw_dbg(&adapter->hw,
2167                        "Unable to setup interrupt capabilities\n");
2168                 goto err_set_interrupt;
2169         }
2170
2171         err = ixgbevf_alloc_q_vectors(adapter);
2172         if (err) {
2173                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2174                        "vectors\n");
2175                 goto err_alloc_q_vectors;
2176         }
2177
2178         err = ixgbevf_alloc_queues(adapter);
2179         if (err) {
2180                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2181                 goto err_alloc_queues;
2182         }
2183
2184         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2185                "Tx Queue count = %u\n",
2186                (adapter->num_rx_queues > 1) ? "Enabled" :
2187                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2188
2189         set_bit(__IXGBEVF_DOWN, &adapter->state);
2190
2191         return 0;
2192 err_alloc_queues:
2193         ixgbevf_free_q_vectors(adapter);
2194 err_alloc_q_vectors:
2195         ixgbevf_reset_interrupt_capability(adapter);
2196 err_set_interrupt:
2197         return err;
2198 }
2199
2200 /**
2201  * ixgbevf_sw_init - Initialize general software structures
2202  * (struct ixgbevf_adapter)
2203  * @adapter: board private structure to initialize
2204  *
2205  * ixgbevf_sw_init initializes the Adapter private data structure.
2206  * Fields are initialized based on PCI device information and
2207  * OS network device settings (MTU size).
2208  **/
2209 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2210 {
2211         struct ixgbe_hw *hw = &adapter->hw;
2212         struct pci_dev *pdev = adapter->pdev;
2213         int err;
2214
2215         /* PCI config space info */
2216
2217         hw->vendor_id = pdev->vendor;
2218         hw->device_id = pdev->device;
2219         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2220         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2221         hw->subsystem_device_id = pdev->subsystem_device;
2222
2223         hw->mbx.ops.init_params(hw);
2224         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2225         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2226         err = hw->mac.ops.reset_hw(hw);
2227         if (err) {
2228                 dev_info(&pdev->dev,
2229                          "PF still in reset state, assigning new address\n");
2230                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2231         } else {
2232                 err = hw->mac.ops.init_hw(hw);
2233                 if (err) {
2234                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2235                         goto out;
2236                 }
2237         }
2238
2239         /* Enable dynamic interrupt throttling rates */
2240         adapter->eitr_param = 20000;
2241         adapter->itr_setting = 1;
2242
2243         /* set defaults for eitr in MegaBytes */
2244         adapter->eitr_low = 10;
2245         adapter->eitr_high = 20;
2246
2247         /* set default ring sizes */
2248         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2249         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2250
2251         /* enable rx csum by default */
2252         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2253
2254         set_bit(__IXGBEVF_DOWN, &adapter->state);
2255
2256 out:
2257         return err;
2258 }
2259
2260 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2261         {                                                       \
2262                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2263                 if (current_counter < last_counter)             \
2264                         counter += 0x100000000LL;               \
2265                 last_counter = current_counter;                 \
2266                 counter &= 0xFFFFFFFF00000000LL;                \
2267                 counter |= current_counter;                     \
2268         }
2269
2270 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2271         {                                                                \
2272                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2273                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2274                 u64 current_counter = (current_counter_msb << 32) |      \
2275                         current_counter_lsb;                             \
2276                 if (current_counter < last_counter)                      \
2277                         counter += 0x1000000000LL;                       \
2278                 last_counter = current_counter;                          \
2279                 counter &= 0xFFFFFFF000000000LL;                         \
2280                 counter |= current_counter;                              \
2281         }
2282 /**
2283  * ixgbevf_update_stats - Update the board statistics counters.
2284  * @adapter: board private structure
2285  **/
2286 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2287 {
2288         struct ixgbe_hw *hw = &adapter->hw;
2289
2290         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2291                                 adapter->stats.vfgprc);
2292         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2293                                 adapter->stats.vfgptc);
2294         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2295                                 adapter->stats.last_vfgorc,
2296                                 adapter->stats.vfgorc);
2297         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2298                                 adapter->stats.last_vfgotc,
2299                                 adapter->stats.vfgotc);
2300         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2301                                 adapter->stats.vfmprc);
2302
2303         /* Fill out the OS statistics structure */
2304         adapter->netdev->stats.multicast = adapter->stats.vfmprc -
2305                 adapter->stats.base_vfmprc;
2306 }
2307
2308 /**
2309  * ixgbevf_watchdog - Timer Call-back
2310  * @data: pointer to adapter cast into an unsigned long
2311  **/
2312 static void ixgbevf_watchdog(unsigned long data)
2313 {
2314         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2315         struct ixgbe_hw *hw = &adapter->hw;
2316         u64 eics = 0;
2317         int i;
2318
2319         /*
2320          * Do the watchdog outside of interrupt context due to the lovely
2321          * delays that some of the newer hardware requires
2322          */
2323
2324         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2325                 goto watchdog_short_circuit;
2326
2327         /* get one bit for every active tx/rx interrupt vector */
2328         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2329                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2330                 if (qv->rxr_count || qv->txr_count)
2331                         eics |= (1 << i);
2332         }
2333
2334         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2335
2336 watchdog_short_circuit:
2337         schedule_work(&adapter->watchdog_task);
2338 }
2339
2340 /**
2341  * ixgbevf_tx_timeout - Respond to a Tx Hang
2342  * @netdev: network interface device structure
2343  **/
2344 static void ixgbevf_tx_timeout(struct net_device *netdev)
2345 {
2346         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2347
2348         /* Do the reset outside of interrupt context */
2349         schedule_work(&adapter->reset_task);
2350 }
2351
2352 static void ixgbevf_reset_task(struct work_struct *work)
2353 {
2354         struct ixgbevf_adapter *adapter;
2355         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2356
2357         /* If we're already down or resetting, just bail */
2358         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2359             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2360                 return;
2361
2362         adapter->tx_timeout_count++;
2363
2364         ixgbevf_reinit_locked(adapter);
2365 }
2366
2367 /**
2368  * ixgbevf_watchdog_task - worker thread to bring link up
2369  * @work: pointer to work_struct containing our data
2370  **/
2371 static void ixgbevf_watchdog_task(struct work_struct *work)
2372 {
2373         struct ixgbevf_adapter *adapter = container_of(work,
2374                                                        struct ixgbevf_adapter,
2375                                                        watchdog_task);
2376         struct net_device *netdev = adapter->netdev;
2377         struct ixgbe_hw *hw = &adapter->hw;
2378         u32 link_speed = adapter->link_speed;
2379         bool link_up = adapter->link_up;
2380
2381         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2382
2383         /*
2384          * Always check the link on the watchdog because we have
2385          * no LSC interrupt
2386          */
2387         if (hw->mac.ops.check_link) {
2388                 if ((hw->mac.ops.check_link(hw, &link_speed,
2389                                             &link_up, false)) != 0) {
2390                         adapter->link_up = link_up;
2391                         adapter->link_speed = link_speed;
2392                         netif_carrier_off(netdev);
2393                         netif_tx_stop_all_queues(netdev);
2394                         schedule_work(&adapter->reset_task);
2395                         goto pf_has_reset;
2396                 }
2397         } else {
2398                 /* always assume link is up, if no check link
2399                  * function */
2400                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2401                 link_up = true;
2402         }
2403         adapter->link_up = link_up;
2404         adapter->link_speed = link_speed;
2405
2406         if (link_up) {
2407                 if (!netif_carrier_ok(netdev)) {
2408                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2409                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2410                                10 : 1);
2411                         netif_carrier_on(netdev);
2412                         netif_tx_wake_all_queues(netdev);
2413                 } else {
2414                         /* Force detection of hung controller */
2415                         adapter->detect_tx_hung = true;
2416                 }
2417         } else {
2418                 adapter->link_up = false;
2419                 adapter->link_speed = 0;
2420                 if (netif_carrier_ok(netdev)) {
2421                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2422                         netif_carrier_off(netdev);
2423                         netif_tx_stop_all_queues(netdev);
2424                 }
2425         }
2426
2427         ixgbevf_update_stats(adapter);
2428
2429 pf_has_reset:
2430         /* Force detection of hung controller every watchdog period */
2431         adapter->detect_tx_hung = true;
2432
2433         /* Reset the timer */
2434         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2435                 mod_timer(&adapter->watchdog_timer,
2436                           round_jiffies(jiffies + (2 * HZ)));
2437
2438         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2439 }
2440
2441 /**
2442  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2443  * @adapter: board private structure
2444  * @tx_ring: Tx descriptor ring for a specific queue
2445  *
2446  * Free all transmit software resources
2447  **/
2448 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2449                                struct ixgbevf_ring *tx_ring)
2450 {
2451         struct pci_dev *pdev = adapter->pdev;
2452
2453         ixgbevf_clean_tx_ring(adapter, tx_ring);
2454
2455         vfree(tx_ring->tx_buffer_info);
2456         tx_ring->tx_buffer_info = NULL;
2457
2458         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2459                           tx_ring->dma);
2460
2461         tx_ring->desc = NULL;
2462 }
2463
2464 /**
2465  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2466  * @adapter: board private structure
2467  *
2468  * Free all transmit software resources
2469  **/
2470 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2471 {
2472         int i;
2473
2474         for (i = 0; i < adapter->num_tx_queues; i++)
2475                 if (adapter->tx_ring[i].desc)
2476                         ixgbevf_free_tx_resources(adapter,
2477                                                   &adapter->tx_ring[i]);
2478
2479 }
2480
2481 /**
2482  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2483  * @adapter: board private structure
2484  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2485  *
2486  * Return 0 on success, negative on failure
2487  **/
2488 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2489                                struct ixgbevf_ring *tx_ring)
2490 {
2491         struct pci_dev *pdev = adapter->pdev;
2492         int size;
2493
2494         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2495         tx_ring->tx_buffer_info = vzalloc(size);
2496         if (!tx_ring->tx_buffer_info)
2497                 goto err;
2498
2499         /* round up to nearest 4K */
2500         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2501         tx_ring->size = ALIGN(tx_ring->size, 4096);
2502
2503         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2504                                            &tx_ring->dma, GFP_KERNEL);
2505         if (!tx_ring->desc)
2506                 goto err;
2507
2508         tx_ring->next_to_use = 0;
2509         tx_ring->next_to_clean = 0;
2510         tx_ring->work_limit = tx_ring->count;
2511         return 0;
2512
2513 err:
2514         vfree(tx_ring->tx_buffer_info);
2515         tx_ring->tx_buffer_info = NULL;
2516         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2517                "descriptor ring\n");
2518         return -ENOMEM;
2519 }
2520
2521 /**
2522  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2523  * @adapter: board private structure
2524  *
2525  * If this function returns with an error, then it's possible one or
2526  * more of the rings is populated (while the rest are not).  It is the
2527  * callers duty to clean those orphaned rings.
2528  *
2529  * Return 0 on success, negative on failure
2530  **/
2531 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2532 {
2533         int i, err = 0;
2534
2535         for (i = 0; i < adapter->num_tx_queues; i++) {
2536                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2537                 if (!err)
2538                         continue;
2539                 hw_dbg(&adapter->hw,
2540                        "Allocation for Tx Queue %u failed\n", i);
2541                 break;
2542         }
2543
2544         return err;
2545 }
2546
2547 /**
2548  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2549  * @adapter: board private structure
2550  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2551  *
2552  * Returns 0 on success, negative on failure
2553  **/
2554 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2555                                struct ixgbevf_ring *rx_ring)
2556 {
2557         struct pci_dev *pdev = adapter->pdev;
2558         int size;
2559
2560         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2561         rx_ring->rx_buffer_info = vzalloc(size);
2562         if (!rx_ring->rx_buffer_info) {
2563                 hw_dbg(&adapter->hw,
2564                        "Unable to vmalloc buffer memory for "
2565                        "the receive descriptor ring\n");
2566                 goto alloc_failed;
2567         }
2568
2569         /* Round up to nearest 4K */
2570         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2571         rx_ring->size = ALIGN(rx_ring->size, 4096);
2572
2573         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2574                                            &rx_ring->dma, GFP_KERNEL);
2575
2576         if (!rx_ring->desc) {
2577                 hw_dbg(&adapter->hw,
2578                        "Unable to allocate memory for "
2579                        "the receive descriptor ring\n");
2580                 vfree(rx_ring->rx_buffer_info);
2581                 rx_ring->rx_buffer_info = NULL;
2582                 goto alloc_failed;
2583         }
2584
2585         rx_ring->next_to_clean = 0;
2586         rx_ring->next_to_use = 0;
2587
2588         return 0;
2589 alloc_failed:
2590         return -ENOMEM;
2591 }
2592
2593 /**
2594  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2595  * @adapter: board private structure
2596  *
2597  * If this function returns with an error, then it's possible one or
2598  * more of the rings is populated (while the rest are not).  It is the
2599  * callers duty to clean those orphaned rings.
2600  *
2601  * Return 0 on success, negative on failure
2602  **/
2603 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2604 {
2605         int i, err = 0;
2606
2607         for (i = 0; i < adapter->num_rx_queues; i++) {
2608                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2609                 if (!err)
2610                         continue;
2611                 hw_dbg(&adapter->hw,
2612                        "Allocation for Rx Queue %u failed\n", i);
2613                 break;
2614         }
2615         return err;
2616 }
2617
2618 /**
2619  * ixgbevf_free_rx_resources - Free Rx Resources
2620  * @adapter: board private structure
2621  * @rx_ring: ring to clean the resources from
2622  *
2623  * Free all receive software resources
2624  **/
2625 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2626                                struct ixgbevf_ring *rx_ring)
2627 {
2628         struct pci_dev *pdev = adapter->pdev;
2629
2630         ixgbevf_clean_rx_ring(adapter, rx_ring);
2631
2632         vfree(rx_ring->rx_buffer_info);
2633         rx_ring->rx_buffer_info = NULL;
2634
2635         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2636                           rx_ring->dma);
2637
2638         rx_ring->desc = NULL;
2639 }
2640
2641 /**
2642  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2643  * @adapter: board private structure
2644  *
2645  * Free all receive software resources
2646  **/
2647 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2648 {
2649         int i;
2650
2651         for (i = 0; i < adapter->num_rx_queues; i++)
2652                 if (adapter->rx_ring[i].desc)
2653                         ixgbevf_free_rx_resources(adapter,
2654                                                   &adapter->rx_ring[i]);
2655 }
2656
2657 /**
2658  * ixgbevf_open - Called when a network interface is made active
2659  * @netdev: network interface device structure
2660  *
2661  * Returns 0 on success, negative value on failure
2662  *
2663  * The open entry point is called when a network interface is made
2664  * active by the system (IFF_UP).  At this point all resources needed
2665  * for transmit and receive operations are allocated, the interrupt
2666  * handler is registered with the OS, the watchdog timer is started,
2667  * and the stack is notified that the interface is ready.
2668  **/
2669 static int ixgbevf_open(struct net_device *netdev)
2670 {
2671         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2672         struct ixgbe_hw *hw = &adapter->hw;
2673         int err;
2674
2675         /* disallow open during test */
2676         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2677                 return -EBUSY;
2678
2679         if (hw->adapter_stopped) {
2680                 ixgbevf_reset(adapter);
2681                 /* if adapter is still stopped then PF isn't up and
2682                  * the vf can't start. */
2683                 if (hw->adapter_stopped) {
2684                         err = IXGBE_ERR_MBX;
2685                         printk(KERN_ERR "Unable to start - perhaps the PF"
2686                                " Driver isn't up yet\n");
2687                         goto err_setup_reset;
2688                 }
2689         }
2690
2691         /* allocate transmit descriptors */
2692         err = ixgbevf_setup_all_tx_resources(adapter);
2693         if (err)
2694                 goto err_setup_tx;
2695
2696         /* allocate receive descriptors */
2697         err = ixgbevf_setup_all_rx_resources(adapter);
2698         if (err)
2699                 goto err_setup_rx;
2700
2701         ixgbevf_configure(adapter);
2702
2703         /*
2704          * Map the Tx/Rx rings to the vectors we were allotted.
2705          * if request_irq will be called in this function map_rings
2706          * must be called *before* up_complete
2707          */
2708         ixgbevf_map_rings_to_vectors(adapter);
2709
2710         err = ixgbevf_up_complete(adapter);
2711         if (err)
2712                 goto err_up;
2713
2714         /* clear any pending interrupts, may auto mask */
2715         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2716         err = ixgbevf_request_irq(adapter);
2717         if (err)
2718                 goto err_req_irq;
2719
2720         ixgbevf_irq_enable(adapter, true, true);
2721
2722         return 0;
2723
2724 err_req_irq:
2725         ixgbevf_down(adapter);
2726 err_up:
2727         ixgbevf_free_irq(adapter);
2728 err_setup_rx:
2729         ixgbevf_free_all_rx_resources(adapter);
2730 err_setup_tx:
2731         ixgbevf_free_all_tx_resources(adapter);
2732         ixgbevf_reset(adapter);
2733
2734 err_setup_reset:
2735
2736         return err;
2737 }
2738
2739 /**
2740  * ixgbevf_close - Disables a network interface
2741  * @netdev: network interface device structure
2742  *
2743  * Returns 0, this is not allowed to fail
2744  *
2745  * The close entry point is called when an interface is de-activated
2746  * by the OS.  The hardware is still under the drivers control, but
2747  * needs to be disabled.  A global MAC reset is issued to stop the
2748  * hardware, and all transmit and receive resources are freed.
2749  **/
2750 static int ixgbevf_close(struct net_device *netdev)
2751 {
2752         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2753
2754         ixgbevf_down(adapter);
2755         ixgbevf_free_irq(adapter);
2756
2757         ixgbevf_free_all_tx_resources(adapter);
2758         ixgbevf_free_all_rx_resources(adapter);
2759
2760         return 0;
2761 }
2762
2763 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2764                        struct ixgbevf_ring *tx_ring,
2765                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2766 {
2767         struct ixgbe_adv_tx_context_desc *context_desc;
2768         unsigned int i;
2769         int err;
2770         struct ixgbevf_tx_buffer *tx_buffer_info;
2771         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2772         u32 mss_l4len_idx, l4len;
2773
2774         if (skb_is_gso(skb)) {
2775                 if (skb_header_cloned(skb)) {
2776                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2777                         if (err)
2778                                 return err;
2779                 }
2780                 l4len = tcp_hdrlen(skb);
2781                 *hdr_len += l4len;
2782
2783                 if (skb->protocol == htons(ETH_P_IP)) {
2784                         struct iphdr *iph = ip_hdr(skb);
2785                         iph->tot_len = 0;
2786                         iph->check = 0;
2787                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2788                                                                  iph->daddr, 0,
2789                                                                  IPPROTO_TCP,
2790                                                                  0);
2791                         adapter->hw_tso_ctxt++;
2792                 } else if (skb_is_gso_v6(skb)) {
2793                         ipv6_hdr(skb)->payload_len = 0;
2794                         tcp_hdr(skb)->check =
2795                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2796                                              &ipv6_hdr(skb)->daddr,
2797                                              0, IPPROTO_TCP, 0);
2798                         adapter->hw_tso6_ctxt++;
2799                 }
2800
2801                 i = tx_ring->next_to_use;
2802
2803                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2804                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2805
2806                 /* VLAN MACLEN IPLEN */
2807                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2808                         vlan_macip_lens |=
2809                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2810                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2811                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2812                 *hdr_len += skb_network_offset(skb);
2813                 vlan_macip_lens |=
2814                         (skb_transport_header(skb) - skb_network_header(skb));
2815                 *hdr_len +=
2816                         (skb_transport_header(skb) - skb_network_header(skb));
2817                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2818                 context_desc->seqnum_seed = 0;
2819
2820                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2821                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2822                                     IXGBE_ADVTXD_DTYP_CTXT);
2823
2824                 if (skb->protocol == htons(ETH_P_IP))
2825                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2826                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2827                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2828
2829                 /* MSS L4LEN IDX */
2830                 mss_l4len_idx =
2831                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2832                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2833                 /* use index 1 for TSO */
2834                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2835                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2836
2837                 tx_buffer_info->time_stamp = jiffies;
2838                 tx_buffer_info->next_to_watch = i;
2839
2840                 i++;
2841                 if (i == tx_ring->count)
2842                         i = 0;
2843                 tx_ring->next_to_use = i;
2844
2845                 return true;
2846         }
2847
2848         return false;
2849 }
2850
2851 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2852                             struct ixgbevf_ring *tx_ring,
2853                             struct sk_buff *skb, u32 tx_flags)
2854 {
2855         struct ixgbe_adv_tx_context_desc *context_desc;
2856         unsigned int i;
2857         struct ixgbevf_tx_buffer *tx_buffer_info;
2858         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2859
2860         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2861             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2862                 i = tx_ring->next_to_use;
2863                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2864                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2865
2866                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2867                         vlan_macip_lens |= (tx_flags &
2868                                             IXGBE_TX_FLAGS_VLAN_MASK);
2869                 vlan_macip_lens |= (skb_network_offset(skb) <<
2870                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2871                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2872                         vlan_macip_lens |= (skb_transport_header(skb) -
2873                                             skb_network_header(skb));
2874
2875                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2876                 context_desc->seqnum_seed = 0;
2877
2878                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2879                                     IXGBE_ADVTXD_DTYP_CTXT);
2880
2881                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2882                         switch (skb->protocol) {
2883                         case __constant_htons(ETH_P_IP):
2884                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2885                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2886                                         type_tucmd_mlhl |=
2887                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2888                                 break;
2889                         case __constant_htons(ETH_P_IPV6):
2890                                 /* XXX what about other V6 headers?? */
2891                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2892                                         type_tucmd_mlhl |=
2893                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2894                                 break;
2895                         default:
2896                                 if (unlikely(net_ratelimit())) {
2897                                         printk(KERN_WARNING
2898                                                "partial checksum but "
2899                                                "proto=%x!\n",
2900                                                skb->protocol);
2901                                 }
2902                                 break;
2903                         }
2904                 }
2905
2906                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2907                 /* use index zero for tx checksum offload */
2908                 context_desc->mss_l4len_idx = 0;
2909
2910                 tx_buffer_info->time_stamp = jiffies;
2911                 tx_buffer_info->next_to_watch = i;
2912
2913                 adapter->hw_csum_tx_good++;
2914                 i++;
2915                 if (i == tx_ring->count)
2916                         i = 0;
2917                 tx_ring->next_to_use = i;
2918
2919                 return true;
2920         }
2921
2922         return false;
2923 }
2924
2925 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2926                           struct ixgbevf_ring *tx_ring,
2927                           struct sk_buff *skb, u32 tx_flags,
2928                           unsigned int first)
2929 {
2930         struct pci_dev *pdev = adapter->pdev;
2931         struct ixgbevf_tx_buffer *tx_buffer_info;
2932         unsigned int len;
2933         unsigned int total = skb->len;
2934         unsigned int offset = 0, size;
2935         int count = 0;
2936         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2937         unsigned int f;
2938         int i;
2939
2940         i = tx_ring->next_to_use;
2941
2942         len = min(skb_headlen(skb), total);
2943         while (len) {
2944                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2945                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2946
2947                 tx_buffer_info->length = size;
2948                 tx_buffer_info->mapped_as_page = false;
2949                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2950                                                      skb->data + offset,
2951                                                      size, DMA_TO_DEVICE);
2952                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2953                         goto dma_error;
2954                 tx_buffer_info->time_stamp = jiffies;
2955                 tx_buffer_info->next_to_watch = i;
2956
2957                 len -= size;
2958                 total -= size;
2959                 offset += size;
2960                 count++;
2961                 i++;
2962                 if (i == tx_ring->count)
2963                         i = 0;
2964         }
2965
2966         for (f = 0; f < nr_frags; f++) {
2967                 struct skb_frag_struct *frag;
2968
2969                 frag = &skb_shinfo(skb)->frags[f];
2970                 len = min((unsigned int)frag->size, total);
2971                 offset = frag->page_offset;
2972
2973                 while (len) {
2974                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2975                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2976
2977                         tx_buffer_info->length = size;
2978                         tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2979                                                            frag->page,
2980                                                            offset,
2981                                                            size,
2982                                                            DMA_TO_DEVICE);
2983                         tx_buffer_info->mapped_as_page = true;
2984                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2985                                 goto dma_error;
2986                         tx_buffer_info->time_stamp = jiffies;
2987                         tx_buffer_info->next_to_watch = i;
2988
2989                         len -= size;
2990                         total -= size;
2991                         offset += size;
2992                         count++;
2993                         i++;
2994                         if (i == tx_ring->count)
2995                                 i = 0;
2996                 }
2997                 if (total == 0)
2998                         break;
2999         }
3000
3001         if (i == 0)
3002                 i = tx_ring->count - 1;
3003         else
3004                 i = i - 1;
3005         tx_ring->tx_buffer_info[i].skb = skb;
3006         tx_ring->tx_buffer_info[first].next_to_watch = i;
3007
3008         return count;
3009
3010 dma_error:
3011         dev_err(&pdev->dev, "TX DMA map failed\n");
3012
3013         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3014         tx_buffer_info->dma = 0;
3015         tx_buffer_info->time_stamp = 0;
3016         tx_buffer_info->next_to_watch = 0;
3017         count--;
3018
3019         /* clear timestamp and dma mappings for remaining portion of packet */
3020         while (count >= 0) {
3021                 count--;
3022                 i--;
3023                 if (i < 0)
3024                         i += tx_ring->count;
3025                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3026                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3027         }
3028
3029         return count;
3030 }
3031
3032 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3033                              struct ixgbevf_ring *tx_ring, int tx_flags,
3034                              int count, u32 paylen, u8 hdr_len)
3035 {
3036         union ixgbe_adv_tx_desc *tx_desc = NULL;
3037         struct ixgbevf_tx_buffer *tx_buffer_info;
3038         u32 olinfo_status = 0, cmd_type_len = 0;
3039         unsigned int i;
3040
3041         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3042
3043         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3044
3045         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3046
3047         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3048                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3049
3050         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3051                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3052
3053                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3054                         IXGBE_ADVTXD_POPTS_SHIFT;
3055
3056                 /* use index 1 context for tso */
3057                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3058                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3059                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3060                                 IXGBE_ADVTXD_POPTS_SHIFT;
3061
3062         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3063                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3064                         IXGBE_ADVTXD_POPTS_SHIFT;
3065
3066         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3067
3068         i = tx_ring->next_to_use;
3069         while (count--) {
3070                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3071                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3072                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3073                 tx_desc->read.cmd_type_len =
3074                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3075                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3076                 i++;
3077                 if (i == tx_ring->count)
3078                         i = 0;
3079         }
3080
3081         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3082
3083         /*
3084          * Force memory writes to complete before letting h/w
3085          * know there are new descriptors to fetch.  (Only
3086          * applicable for weak-ordered memory model archs,
3087          * such as IA-64).
3088          */
3089         wmb();
3090
3091         tx_ring->next_to_use = i;
3092         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3093 }
3094
3095 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3096                                    struct ixgbevf_ring *tx_ring, int size)
3097 {
3098         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3099
3100         netif_stop_subqueue(netdev, tx_ring->queue_index);
3101         /* Herbert's original patch had:
3102          *  smp_mb__after_netif_stop_queue();
3103          * but since that doesn't exist yet, just open code it. */
3104         smp_mb();
3105
3106         /* We need to check again in a case another CPU has just
3107          * made room available. */
3108         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3109                 return -EBUSY;
3110
3111         /* A reprieve! - use start_queue because it doesn't call schedule */
3112         netif_start_subqueue(netdev, tx_ring->queue_index);
3113         ++adapter->restart_queue;
3114         return 0;
3115 }
3116
3117 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3118                                  struct ixgbevf_ring *tx_ring, int size)
3119 {
3120         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3121                 return 0;
3122         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3123 }
3124
3125 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3126 {
3127         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3128         struct ixgbevf_ring *tx_ring;
3129         unsigned int first;
3130         unsigned int tx_flags = 0;
3131         u8 hdr_len = 0;
3132         int r_idx = 0, tso;
3133         int count = 0;
3134
3135         unsigned int f;
3136
3137         tx_ring = &adapter->tx_ring[r_idx];
3138
3139         if (vlan_tx_tag_present(skb)) {
3140                 tx_flags |= vlan_tx_tag_get(skb);
3141                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3142                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3143         }
3144
3145         /* four things can cause us to need a context descriptor */
3146         if (skb_is_gso(skb) ||
3147             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3148             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3149                 count++;
3150
3151         count += TXD_USE_COUNT(skb_headlen(skb));
3152         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3153                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3154
3155         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3156                 adapter->tx_busy++;
3157                 return NETDEV_TX_BUSY;
3158         }
3159
3160         first = tx_ring->next_to_use;
3161
3162         if (skb->protocol == htons(ETH_P_IP))
3163                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3164         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3165         if (tso < 0) {
3166                 dev_kfree_skb_any(skb);
3167                 return NETDEV_TX_OK;
3168         }
3169
3170         if (tso)
3171                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3172         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3173                  (skb->ip_summed == CHECKSUM_PARTIAL))
3174                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3175
3176         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3177                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3178                          skb->len, hdr_len);
3179
3180         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3181
3182         return NETDEV_TX_OK;
3183 }
3184
3185 /**
3186  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3187  * @netdev: network interface device structure
3188  * @p: pointer to an address structure
3189  *
3190  * Returns 0 on success, negative on failure
3191  **/
3192 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3193 {
3194         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3195         struct ixgbe_hw *hw = &adapter->hw;
3196         struct sockaddr *addr = p;
3197
3198         if (!is_valid_ether_addr(addr->sa_data))
3199                 return -EADDRNOTAVAIL;
3200
3201         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3202         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3203
3204         if (hw->mac.ops.set_rar)
3205                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3206
3207         return 0;
3208 }
3209
3210 /**
3211  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3212  * @netdev: network interface device structure
3213  * @new_mtu: new value for maximum frame size
3214  *
3215  * Returns 0 on success, negative on failure
3216  **/
3217 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3218 {
3219         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3220         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3221
3222         /* MTU < 68 is an error and causes problems on some kernels */
3223         if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3224                 return -EINVAL;
3225
3226         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3227                netdev->mtu, new_mtu);
3228         /* must set new MTU before calling down or up */
3229         netdev->mtu = new_mtu;
3230
3231         if (netif_running(netdev))
3232                 ixgbevf_reinit_locked(adapter);
3233
3234         return 0;
3235 }
3236
3237 static void ixgbevf_shutdown(struct pci_dev *pdev)
3238 {
3239         struct net_device *netdev = pci_get_drvdata(pdev);
3240         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3241
3242         netif_device_detach(netdev);
3243
3244         if (netif_running(netdev)) {
3245                 ixgbevf_down(adapter);
3246                 ixgbevf_free_irq(adapter);
3247                 ixgbevf_free_all_tx_resources(adapter);
3248                 ixgbevf_free_all_rx_resources(adapter);
3249         }
3250
3251 #ifdef CONFIG_PM
3252         pci_save_state(pdev);
3253 #endif
3254
3255         pci_disable_device(pdev);
3256 }
3257
3258 static const struct net_device_ops ixgbe_netdev_ops = {
3259         .ndo_open               = &ixgbevf_open,
3260         .ndo_stop               = &ixgbevf_close,
3261         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3262         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3263         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3264         .ndo_validate_addr      = eth_validate_addr,
3265         .ndo_set_mac_address    = &ixgbevf_set_mac,
3266         .ndo_change_mtu         = &ixgbevf_change_mtu,
3267         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3268         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3269         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3270         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3271 };
3272
3273 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3274 {
3275         struct ixgbevf_adapter *adapter;
3276         adapter = netdev_priv(dev);
3277         dev->netdev_ops = &ixgbe_netdev_ops;
3278         ixgbevf_set_ethtool_ops(dev);
3279         dev->watchdog_timeo = 5 * HZ;
3280 }
3281
3282 /**
3283  * ixgbevf_probe - Device Initialization Routine
3284  * @pdev: PCI device information struct
3285  * @ent: entry in ixgbevf_pci_tbl
3286  *
3287  * Returns 0 on success, negative on failure
3288  *
3289  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3290  * The OS initialization, configuring of the adapter private structure,
3291  * and a hardware reset occur.
3292  **/
3293 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3294                                    const struct pci_device_id *ent)
3295 {
3296         struct net_device *netdev;
3297         struct ixgbevf_adapter *adapter = NULL;
3298         struct ixgbe_hw *hw = NULL;
3299         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3300         static int cards_found;
3301         int err, pci_using_dac;
3302
3303         err = pci_enable_device(pdev);
3304         if (err)
3305                 return err;
3306
3307         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3308             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3309                 pci_using_dac = 1;
3310         } else {
3311                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3312                 if (err) {
3313                         err = dma_set_coherent_mask(&pdev->dev,
3314                                                     DMA_BIT_MASK(32));
3315                         if (err) {
3316                                 dev_err(&pdev->dev, "No usable DMA "
3317                                         "configuration, aborting\n");
3318                                 goto err_dma;
3319                         }
3320                 }
3321                 pci_using_dac = 0;
3322         }
3323
3324         err = pci_request_regions(pdev, ixgbevf_driver_name);
3325         if (err) {
3326                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3327                 goto err_pci_reg;
3328         }
3329
3330         pci_set_master(pdev);
3331
3332 #ifdef HAVE_TX_MQ
3333         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3334                                    MAX_TX_QUEUES);
3335 #else
3336         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3337 #endif
3338         if (!netdev) {
3339                 err = -ENOMEM;
3340                 goto err_alloc_etherdev;
3341         }
3342
3343         SET_NETDEV_DEV(netdev, &pdev->dev);
3344
3345         pci_set_drvdata(pdev, netdev);
3346         adapter = netdev_priv(netdev);
3347
3348         adapter->netdev = netdev;
3349         adapter->pdev = pdev;
3350         hw = &adapter->hw;
3351         hw->back = adapter;
3352         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3353
3354         /*
3355          * call save state here in standalone driver because it relies on
3356          * adapter struct to exist, and needs to call netdev_priv
3357          */
3358         pci_save_state(pdev);
3359
3360         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3361                               pci_resource_len(pdev, 0));
3362         if (!hw->hw_addr) {
3363                 err = -EIO;
3364                 goto err_ioremap;
3365         }
3366
3367         ixgbevf_assign_netdev_ops(netdev);
3368
3369         adapter->bd_number = cards_found;
3370
3371         /* Setup hw api */
3372         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3373         hw->mac.type  = ii->mac;
3374
3375         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3376                sizeof(struct ixgbe_mac_operations));
3377
3378         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3379         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3380         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3381
3382         /* setup the private structure */
3383         err = ixgbevf_sw_init(adapter);
3384
3385         netdev->features = NETIF_F_SG |
3386                            NETIF_F_IP_CSUM |
3387                            NETIF_F_HW_VLAN_TX |
3388                            NETIF_F_HW_VLAN_RX |
3389                            NETIF_F_HW_VLAN_FILTER;
3390
3391         netdev->features |= NETIF_F_IPV6_CSUM;
3392         netdev->features |= NETIF_F_TSO;
3393         netdev->features |= NETIF_F_TSO6;
3394         netdev->features |= NETIF_F_GRO;
3395         netdev->vlan_features |= NETIF_F_TSO;
3396         netdev->vlan_features |= NETIF_F_TSO6;
3397         netdev->vlan_features |= NETIF_F_IP_CSUM;
3398         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3399         netdev->vlan_features |= NETIF_F_SG;
3400
3401         if (pci_using_dac)
3402                 netdev->features |= NETIF_F_HIGHDMA;
3403
3404         /* The HW MAC address was set and/or determined in sw_init */
3405         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3406         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3407
3408         if (!is_valid_ether_addr(netdev->dev_addr)) {
3409                 printk(KERN_ERR "invalid MAC address\n");
3410                 err = -EIO;
3411                 goto err_sw_init;
3412         }
3413
3414         init_timer(&adapter->watchdog_timer);
3415         adapter->watchdog_timer.function = ixgbevf_watchdog;
3416         adapter->watchdog_timer.data = (unsigned long)adapter;
3417
3418         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3419         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3420
3421         err = ixgbevf_init_interrupt_scheme(adapter);
3422         if (err)
3423                 goto err_sw_init;
3424
3425         /* pick up the PCI bus settings for reporting later */
3426         if (hw->mac.ops.get_bus_info)
3427                 hw->mac.ops.get_bus_info(hw);
3428
3429         strcpy(netdev->name, "eth%d");
3430
3431         err = register_netdev(netdev);
3432         if (err)
3433                 goto err_register;
3434
3435         adapter->netdev_registered = true;
3436
3437         netif_carrier_off(netdev);
3438
3439         ixgbevf_init_last_counter_stats(adapter);
3440
3441         /* print the MAC address */
3442         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3443                netdev->dev_addr[0],
3444                netdev->dev_addr[1],
3445                netdev->dev_addr[2],
3446                netdev->dev_addr[3],
3447                netdev->dev_addr[4],
3448                netdev->dev_addr[5]);
3449
3450         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3451
3452         hw_dbg(hw, "LRO is disabled\n");
3453
3454         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3455         cards_found++;
3456         return 0;
3457
3458 err_register:
3459 err_sw_init:
3460         ixgbevf_reset_interrupt_capability(adapter);
3461         iounmap(hw->hw_addr);
3462 err_ioremap:
3463         free_netdev(netdev);
3464 err_alloc_etherdev:
3465         pci_release_regions(pdev);
3466 err_pci_reg:
3467 err_dma:
3468         pci_disable_device(pdev);
3469         return err;
3470 }
3471
3472 /**
3473  * ixgbevf_remove - Device Removal Routine
3474  * @pdev: PCI device information struct
3475  *
3476  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3477  * that it should release a PCI device.  The could be caused by a
3478  * Hot-Plug event, or because the driver is going to be removed from
3479  * memory.
3480  **/
3481 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3482 {
3483         struct net_device *netdev = pci_get_drvdata(pdev);
3484         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3485
3486         set_bit(__IXGBEVF_DOWN, &adapter->state);
3487
3488         del_timer_sync(&adapter->watchdog_timer);
3489
3490         cancel_work_sync(&adapter->reset_task);
3491         cancel_work_sync(&adapter->watchdog_task);
3492
3493         if (adapter->netdev_registered) {
3494                 unregister_netdev(netdev);
3495                 adapter->netdev_registered = false;
3496         }
3497
3498         ixgbevf_reset_interrupt_capability(adapter);
3499
3500         iounmap(adapter->hw.hw_addr);
3501         pci_release_regions(pdev);
3502
3503         hw_dbg(&adapter->hw, "Remove complete\n");
3504
3505         kfree(adapter->tx_ring);
3506         kfree(adapter->rx_ring);
3507
3508         free_netdev(netdev);
3509
3510         pci_disable_device(pdev);
3511 }
3512
3513 static struct pci_driver ixgbevf_driver = {
3514         .name     = ixgbevf_driver_name,
3515         .id_table = ixgbevf_pci_tbl,
3516         .probe    = ixgbevf_probe,
3517         .remove   = __devexit_p(ixgbevf_remove),
3518         .shutdown = ixgbevf_shutdown,
3519 };
3520
3521 /**
3522  * ixgbe_init_module - Driver Registration Routine
3523  *
3524  * ixgbe_init_module is the first routine called when the driver is
3525  * loaded. All it does is register with the PCI subsystem.
3526  **/
3527 static int __init ixgbevf_init_module(void)
3528 {
3529         int ret;
3530         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3531                ixgbevf_driver_version);
3532
3533         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3534
3535         ret = pci_register_driver(&ixgbevf_driver);
3536         return ret;
3537 }
3538
3539 module_init(ixgbevf_init_module);
3540
3541 /**
3542  * ixgbe_exit_module - Driver Exit Cleanup Routine
3543  *
3544  * ixgbe_exit_module is called just before the driver is removed
3545  * from memory.
3546  **/
3547 static void __exit ixgbevf_exit_module(void)
3548 {
3549         pci_unregister_driver(&ixgbevf_driver);
3550 }
3551
3552 #ifdef DEBUG
3553 /**
3554  * ixgbe_get_hw_dev_name - return device name string
3555  * used by hardware layer to print debugging information
3556  **/
3557 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3558 {
3559         struct ixgbevf_adapter *adapter = hw->back;
3560         return adapter->netdev->name;
3561 }
3562
3563 #endif
3564 module_exit(ixgbevf_exit_module);
3565
3566 /* ixgbevf_main.c */