ixgbevf: Fix name of function in function header comment
[profile/ivi/kernel-x86-ivi.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52         "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.1.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] =
57         "Copyright (c) 2009 - 2010 Intel Corporation.";
58
59 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
60         [board_82599_vf] = &ixgbevf_82599_vf_info,
61         [board_X540_vf]  = &ixgbevf_X540_vf_info,
62 };
63
64 /* ixgbevf_pci_tbl - PCI Device ID Table
65  *
66  * Wildcard entries (PCI_ANY_ID) should come last
67  * Last entry must be all 0s
68  *
69  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
70  *   Class, Class Mask, private data (not used) }
71  */
72 static struct pci_device_id ixgbevf_pci_tbl[] = {
73         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
74         board_82599_vf},
75         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
76         board_X540_vf},
77
78         /* required last entry */
79         {0, }
80 };
81 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
82
83 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
84 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
85 MODULE_LICENSE("GPL");
86 MODULE_VERSION(DRV_VERSION);
87
88 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
89
90 /* forward decls */
91 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
92 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
93                                u32 itr_reg);
94
95 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
96                                            struct ixgbevf_ring *rx_ring,
97                                            u32 val)
98 {
99         /*
100          * Force memory writes to complete before letting h/w
101          * know there are new descriptors to fetch.  (Only
102          * applicable for weak-ordered memory model archs,
103          * such as IA-64).
104          */
105         wmb();
106         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
107 }
108
109 /*
110  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
111  * @adapter: pointer to adapter struct
112  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
113  * @queue: queue to map the corresponding interrupt to
114  * @msix_vector: the vector to map to the corresponding queue
115  *
116  */
117 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
118                              u8 queue, u8 msix_vector)
119 {
120         u32 ivar, index;
121         struct ixgbe_hw *hw = &adapter->hw;
122         if (direction == -1) {
123                 /* other causes */
124                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
125                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
126                 ivar &= ~0xFF;
127                 ivar |= msix_vector;
128                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
129         } else {
130                 /* tx or rx causes */
131                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
132                 index = ((16 * (queue & 1)) + (8 * direction));
133                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
134                 ivar &= ~(0xFF << index);
135                 ivar |= (msix_vector << index);
136                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
137         }
138 }
139
140 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
141                                                struct ixgbevf_tx_buffer
142                                                *tx_buffer_info)
143 {
144         if (tx_buffer_info->dma) {
145                 if (tx_buffer_info->mapped_as_page)
146                         dma_unmap_page(&adapter->pdev->dev,
147                                        tx_buffer_info->dma,
148                                        tx_buffer_info->length,
149                                        DMA_TO_DEVICE);
150                 else
151                         dma_unmap_single(&adapter->pdev->dev,
152                                          tx_buffer_info->dma,
153                                          tx_buffer_info->length,
154                                          DMA_TO_DEVICE);
155                 tx_buffer_info->dma = 0;
156         }
157         if (tx_buffer_info->skb) {
158                 dev_kfree_skb_any(tx_buffer_info->skb);
159                 tx_buffer_info->skb = NULL;
160         }
161         tx_buffer_info->time_stamp = 0;
162         /* tx_buffer_info must be completely set up in the transmit path */
163 }
164
165 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
166                                          struct ixgbevf_ring *tx_ring,
167                                          unsigned int eop)
168 {
169         struct ixgbe_hw *hw = &adapter->hw;
170         u32 head, tail;
171
172         /* Detect a transmit hang in hardware, this serializes the
173          * check with the clearing of time_stamp and movement of eop */
174         head = readl(hw->hw_addr + tx_ring->head);
175         tail = readl(hw->hw_addr + tx_ring->tail);
176         adapter->detect_tx_hung = false;
177         if ((head != tail) &&
178             tx_ring->tx_buffer_info[eop].time_stamp &&
179             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
180                 /* detected Tx unit hang */
181                 union ixgbe_adv_tx_desc *tx_desc;
182                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
183                 printk(KERN_ERR "Detected Tx Unit Hang\n"
184                        "  Tx Queue             <%d>\n"
185                        "  TDH, TDT             <%x>, <%x>\n"
186                        "  next_to_use          <%x>\n"
187                        "  next_to_clean        <%x>\n"
188                        "tx_buffer_info[next_to_clean]\n"
189                        "  time_stamp           <%lx>\n"
190                        "  jiffies              <%lx>\n",
191                        tx_ring->queue_index,
192                        head, tail,
193                        tx_ring->next_to_use, eop,
194                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
195                 return true;
196         }
197
198         return false;
199 }
200
201 #define IXGBE_MAX_TXD_PWR       14
202 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
203
204 /* Tx Descriptors needed, worst case */
205 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
206                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
207 #ifdef MAX_SKB_FRAGS
208 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
209         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
210 #else
211 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
212 #endif
213
214 static void ixgbevf_tx_timeout(struct net_device *netdev);
215
216 /**
217  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
218  * @adapter: board private structure
219  * @tx_ring: tx ring to clean
220  **/
221 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
222                                  struct ixgbevf_ring *tx_ring)
223 {
224         struct net_device *netdev = adapter->netdev;
225         struct ixgbe_hw *hw = &adapter->hw;
226         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
227         struct ixgbevf_tx_buffer *tx_buffer_info;
228         unsigned int i, eop, count = 0;
229         unsigned int total_bytes = 0, total_packets = 0;
230
231         i = tx_ring->next_to_clean;
232         eop = tx_ring->tx_buffer_info[i].next_to_watch;
233         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
234
235         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
236                (count < tx_ring->work_limit)) {
237                 bool cleaned = false;
238                 rmb(); /* read buffer_info after eop_desc */
239                 for ( ; !cleaned; count++) {
240                         struct sk_buff *skb;
241                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
242                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
243                         cleaned = (i == eop);
244                         skb = tx_buffer_info->skb;
245
246                         if (cleaned && skb) {
247                                 unsigned int segs, bytecount;
248
249                                 /* gso_segs is currently only valid for tcp */
250                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
251                                 /* multiply data chunks by size of headers */
252                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
253                                             skb->len;
254                                 total_packets += segs;
255                                 total_bytes += bytecount;
256                         }
257
258                         ixgbevf_unmap_and_free_tx_resource(adapter,
259                                                            tx_buffer_info);
260
261                         tx_desc->wb.status = 0;
262
263                         i++;
264                         if (i == tx_ring->count)
265                                 i = 0;
266                 }
267
268                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
269                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
270         }
271
272         tx_ring->next_to_clean = i;
273
274 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
275         if (unlikely(count && netif_carrier_ok(netdev) &&
276                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
277                 /* Make sure that anybody stopping the queue after this
278                  * sees the new next_to_clean.
279                  */
280                 smp_mb();
281 #ifdef HAVE_TX_MQ
282                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
283                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
284                         netif_wake_subqueue(netdev, tx_ring->queue_index);
285                         ++adapter->restart_queue;
286                 }
287 #else
288                 if (netif_queue_stopped(netdev) &&
289                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
290                         netif_wake_queue(netdev);
291                         ++adapter->restart_queue;
292                 }
293 #endif
294         }
295
296         if (adapter->detect_tx_hung) {
297                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
298                         /* schedule immediate reset if we believe we hung */
299                         printk(KERN_INFO
300                                "tx hang %d detected, resetting adapter\n",
301                                adapter->tx_timeout_count + 1);
302                         ixgbevf_tx_timeout(adapter->netdev);
303                 }
304         }
305
306         /* re-arm the interrupt */
307         if ((count >= tx_ring->work_limit) &&
308             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
309                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
310         }
311
312         tx_ring->total_bytes += total_bytes;
313         tx_ring->total_packets += total_packets;
314
315         netdev->stats.tx_bytes += total_bytes;
316         netdev->stats.tx_packets += total_packets;
317
318         return count < tx_ring->work_limit;
319 }
320
321 /**
322  * ixgbevf_receive_skb - Send a completed packet up the stack
323  * @q_vector: structure containing interrupt and ring information
324  * @skb: packet to send up
325  * @status: hardware indication of status of receive
326  * @rx_ring: rx descriptor ring (for a specific queue) to setup
327  * @rx_desc: rx descriptor
328  **/
329 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
330                                 struct sk_buff *skb, u8 status,
331                                 struct ixgbevf_ring *ring,
332                                 union ixgbe_adv_rx_desc *rx_desc)
333 {
334         struct ixgbevf_adapter *adapter = q_vector->adapter;
335         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
336         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
337         int ret;
338
339         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
340                 if (adapter->vlgrp && is_vlan)
341                         vlan_gro_receive(&q_vector->napi,
342                                          adapter->vlgrp,
343                                          tag, skb);
344                 else
345                         napi_gro_receive(&q_vector->napi, skb);
346         } else {
347                 if (adapter->vlgrp && is_vlan)
348                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
349                 else
350                         ret = netif_rx(skb);
351         }
352 }
353
354 /**
355  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
356  * @adapter: address of board private structure
357  * @status_err: hardware indication of status of receive
358  * @skb: skb currently being received and modified
359  **/
360 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
361                                        u32 status_err, struct sk_buff *skb)
362 {
363         skb_checksum_none_assert(skb);
364
365         /* Rx csum disabled */
366         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
367                 return;
368
369         /* if IP and error */
370         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
371             (status_err & IXGBE_RXDADV_ERR_IPE)) {
372                 adapter->hw_csum_rx_error++;
373                 return;
374         }
375
376         if (!(status_err & IXGBE_RXD_STAT_L4CS))
377                 return;
378
379         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
380                 adapter->hw_csum_rx_error++;
381                 return;
382         }
383
384         /* It must be a TCP or UDP packet with a valid checksum */
385         skb->ip_summed = CHECKSUM_UNNECESSARY;
386         adapter->hw_csum_rx_good++;
387 }
388
389 /**
390  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
391  * @adapter: address of board private structure
392  **/
393 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
394                                      struct ixgbevf_ring *rx_ring,
395                                      int cleaned_count)
396 {
397         struct pci_dev *pdev = adapter->pdev;
398         union ixgbe_adv_rx_desc *rx_desc;
399         struct ixgbevf_rx_buffer *bi;
400         struct sk_buff *skb;
401         unsigned int i;
402         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
403
404         i = rx_ring->next_to_use;
405         bi = &rx_ring->rx_buffer_info[i];
406
407         while (cleaned_count--) {
408                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
409
410                 if (!bi->page_dma &&
411                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
412                         if (!bi->page) {
413                                 bi->page = netdev_alloc_page(adapter->netdev);
414                                 if (!bi->page) {
415                                         adapter->alloc_rx_page_failed++;
416                                         goto no_buffers;
417                                 }
418                                 bi->page_offset = 0;
419                         } else {
420                                 /* use a half page if we're re-using */
421                                 bi->page_offset ^= (PAGE_SIZE / 2);
422                         }
423
424                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
425                                                     bi->page_offset,
426                                                     (PAGE_SIZE / 2),
427                                                     DMA_FROM_DEVICE);
428                 }
429
430                 skb = bi->skb;
431                 if (!skb) {
432                         skb = netdev_alloc_skb(adapter->netdev,
433                                                                bufsz);
434
435                         if (!skb) {
436                                 adapter->alloc_rx_buff_failed++;
437                                 goto no_buffers;
438                         }
439
440                         /*
441                          * Make buffer alignment 2 beyond a 16 byte boundary
442                          * this will result in a 16 byte aligned IP header after
443                          * the 14 byte MAC header is removed
444                          */
445                         skb_reserve(skb, NET_IP_ALIGN);
446
447                         bi->skb = skb;
448                 }
449                 if (!bi->dma) {
450                         bi->dma = dma_map_single(&pdev->dev, skb->data,
451                                                  rx_ring->rx_buf_len,
452                                                  DMA_FROM_DEVICE);
453                 }
454                 /* Refresh the desc even if buffer_addrs didn't change because
455                  * each write-back erases this info. */
456                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
457                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
458                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
459                 } else {
460                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
461                 }
462
463                 i++;
464                 if (i == rx_ring->count)
465                         i = 0;
466                 bi = &rx_ring->rx_buffer_info[i];
467         }
468
469 no_buffers:
470         if (rx_ring->next_to_use != i) {
471                 rx_ring->next_to_use = i;
472                 if (i-- == 0)
473                         i = (rx_ring->count - 1);
474
475                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
476         }
477 }
478
479 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
480                                              u64 qmask)
481 {
482         u32 mask;
483         struct ixgbe_hw *hw = &adapter->hw;
484
485         mask = (qmask & 0xFFFFFFFF);
486         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
487 }
488
489 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
490 {
491         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
492 }
493
494 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
495 {
496         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
497 }
498
499 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
500                                  struct ixgbevf_ring *rx_ring,
501                                  int *work_done, int work_to_do)
502 {
503         struct ixgbevf_adapter *adapter = q_vector->adapter;
504         struct pci_dev *pdev = adapter->pdev;
505         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
506         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
507         struct sk_buff *skb;
508         unsigned int i;
509         u32 len, staterr;
510         u16 hdr_info;
511         bool cleaned = false;
512         int cleaned_count = 0;
513         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
514
515         i = rx_ring->next_to_clean;
516         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
517         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518         rx_buffer_info = &rx_ring->rx_buffer_info[i];
519
520         while (staterr & IXGBE_RXD_STAT_DD) {
521                 u32 upper_len = 0;
522                 if (*work_done >= work_to_do)
523                         break;
524                 (*work_done)++;
525
526                 rmb(); /* read descriptor and rx_buffer_info after status DD */
527                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
528                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
529                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
530                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
531                         if (hdr_info & IXGBE_RXDADV_SPH)
532                                 adapter->rx_hdr_split++;
533                         if (len > IXGBEVF_RX_HDR_SIZE)
534                                 len = IXGBEVF_RX_HDR_SIZE;
535                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
536                 } else {
537                         len = le16_to_cpu(rx_desc->wb.upper.length);
538                 }
539                 cleaned = true;
540                 skb = rx_buffer_info->skb;
541                 prefetch(skb->data - NET_IP_ALIGN);
542                 rx_buffer_info->skb = NULL;
543
544                 if (rx_buffer_info->dma) {
545                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
546                                          rx_ring->rx_buf_len,
547                                          DMA_FROM_DEVICE);
548                         rx_buffer_info->dma = 0;
549                         skb_put(skb, len);
550                 }
551
552                 if (upper_len) {
553                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
554                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
555                         rx_buffer_info->page_dma = 0;
556                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
557                                            rx_buffer_info->page,
558                                            rx_buffer_info->page_offset,
559                                            upper_len);
560
561                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
562                             (page_count(rx_buffer_info->page) != 1))
563                                 rx_buffer_info->page = NULL;
564                         else
565                                 get_page(rx_buffer_info->page);
566
567                         skb->len += upper_len;
568                         skb->data_len += upper_len;
569                         skb->truesize += upper_len;
570                 }
571
572                 i++;
573                 if (i == rx_ring->count)
574                         i = 0;
575
576                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
577                 prefetch(next_rxd);
578                 cleaned_count++;
579
580                 next_buffer = &rx_ring->rx_buffer_info[i];
581
582                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
583                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
584                                 rx_buffer_info->skb = next_buffer->skb;
585                                 rx_buffer_info->dma = next_buffer->dma;
586                                 next_buffer->skb = skb;
587                                 next_buffer->dma = 0;
588                         } else {
589                                 skb->next = next_buffer->skb;
590                                 skb->next->prev = skb;
591                         }
592                         adapter->non_eop_descs++;
593                         goto next_desc;
594                 }
595
596                 /* ERR_MASK will only have valid bits if EOP set */
597                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
598                         dev_kfree_skb_irq(skb);
599                         goto next_desc;
600                 }
601
602                 ixgbevf_rx_checksum(adapter, staterr, skb);
603
604                 /* probably a little skewed due to removing CRC */
605                 total_rx_bytes += skb->len;
606                 total_rx_packets++;
607
608                 /*
609                  * Work around issue of some types of VM to VM loop back
610                  * packets not getting split correctly
611                  */
612                 if (staterr & IXGBE_RXD_STAT_LB) {
613                         u32 header_fixup_len = skb_headlen(skb);
614                         if (header_fixup_len < 14)
615                                 skb_push(skb, header_fixup_len);
616                 }
617                 skb->protocol = eth_type_trans(skb, adapter->netdev);
618
619                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
620
621 next_desc:
622                 rx_desc->wb.upper.status_error = 0;
623
624                 /* return some buffers to hardware, one at a time is too slow */
625                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
626                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
627                                                  cleaned_count);
628                         cleaned_count = 0;
629                 }
630
631                 /* use prefetched values */
632                 rx_desc = next_rxd;
633                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
634
635                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
636         }
637
638         rx_ring->next_to_clean = i;
639         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
640
641         if (cleaned_count)
642                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
643
644         rx_ring->total_packets += total_rx_packets;
645         rx_ring->total_bytes += total_rx_bytes;
646         adapter->netdev->stats.rx_bytes += total_rx_bytes;
647         adapter->netdev->stats.rx_packets += total_rx_packets;
648
649         return cleaned;
650 }
651
652 /**
653  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
654  * @napi: napi struct with our devices info in it
655  * @budget: amount of work driver is allowed to do this pass, in packets
656  *
657  * This function is optimized for cleaning one queue only on a single
658  * q_vector!!!
659  **/
660 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
661 {
662         struct ixgbevf_q_vector *q_vector =
663                 container_of(napi, struct ixgbevf_q_vector, napi);
664         struct ixgbevf_adapter *adapter = q_vector->adapter;
665         struct ixgbevf_ring *rx_ring = NULL;
666         int work_done = 0;
667         long r_idx;
668
669         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
670         rx_ring = &(adapter->rx_ring[r_idx]);
671
672         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
673
674         /* If all Rx work done, exit the polling mode */
675         if (work_done < budget) {
676                 napi_complete(napi);
677                 if (adapter->itr_setting & 1)
678                         ixgbevf_set_itr_msix(q_vector);
679                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
680                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
681         }
682
683         return work_done;
684 }
685
686 /**
687  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
688  * @napi: napi struct with our devices info in it
689  * @budget: amount of work driver is allowed to do this pass, in packets
690  *
691  * This function will clean more than one rx queue associated with a
692  * q_vector.
693  **/
694 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
695 {
696         struct ixgbevf_q_vector *q_vector =
697                 container_of(napi, struct ixgbevf_q_vector, napi);
698         struct ixgbevf_adapter *adapter = q_vector->adapter;
699         struct ixgbevf_ring *rx_ring = NULL;
700         int work_done = 0, i;
701         long r_idx;
702         u64 enable_mask = 0;
703
704         /* attempt to distribute budget to each queue fairly, but don't allow
705          * the budget to go below 1 because we'll exit polling */
706         budget /= (q_vector->rxr_count ?: 1);
707         budget = max(budget, 1);
708         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
709         for (i = 0; i < q_vector->rxr_count; i++) {
710                 rx_ring = &(adapter->rx_ring[r_idx]);
711                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
712                 enable_mask |= rx_ring->v_idx;
713                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
714                                       r_idx + 1);
715         }
716
717 #ifndef HAVE_NETDEV_NAPI_LIST
718         if (!netif_running(adapter->netdev))
719                 work_done = 0;
720
721 #endif
722         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
723         rx_ring = &(adapter->rx_ring[r_idx]);
724
725         /* If all Rx work done, exit the polling mode */
726         if (work_done < budget) {
727                 napi_complete(napi);
728                 if (adapter->itr_setting & 1)
729                         ixgbevf_set_itr_msix(q_vector);
730                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
731                         ixgbevf_irq_enable_queues(adapter, enable_mask);
732         }
733
734         return work_done;
735 }
736
737
738 /**
739  * ixgbevf_configure_msix - Configure MSI-X hardware
740  * @adapter: board private structure
741  *
742  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
743  * interrupts.
744  **/
745 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
746 {
747         struct ixgbevf_q_vector *q_vector;
748         struct ixgbe_hw *hw = &adapter->hw;
749         int i, j, q_vectors, v_idx, r_idx;
750         u32 mask;
751
752         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
753
754         /*
755          * Populate the IVAR table and set the ITR values to the
756          * corresponding register.
757          */
758         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
759                 q_vector = adapter->q_vector[v_idx];
760                 /* XXX for_each_set_bit(...) */
761                 r_idx = find_first_bit(q_vector->rxr_idx,
762                                        adapter->num_rx_queues);
763
764                 for (i = 0; i < q_vector->rxr_count; i++) {
765                         j = adapter->rx_ring[r_idx].reg_idx;
766                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
767                         r_idx = find_next_bit(q_vector->rxr_idx,
768                                               adapter->num_rx_queues,
769                                               r_idx + 1);
770                 }
771                 r_idx = find_first_bit(q_vector->txr_idx,
772                                        adapter->num_tx_queues);
773
774                 for (i = 0; i < q_vector->txr_count; i++) {
775                         j = adapter->tx_ring[r_idx].reg_idx;
776                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
777                         r_idx = find_next_bit(q_vector->txr_idx,
778                                               adapter->num_tx_queues,
779                                               r_idx + 1);
780                 }
781
782                 /* if this is a tx only vector halve the interrupt rate */
783                 if (q_vector->txr_count && !q_vector->rxr_count)
784                         q_vector->eitr = (adapter->eitr_param >> 1);
785                 else if (q_vector->rxr_count)
786                         /* rx only */
787                         q_vector->eitr = adapter->eitr_param;
788
789                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
790         }
791
792         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
793
794         /* set up to autoclear timer, and the vectors */
795         mask = IXGBE_EIMS_ENABLE_MASK;
796         mask &= ~IXGBE_EIMS_OTHER;
797         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
798 }
799
800 enum latency_range {
801         lowest_latency = 0,
802         low_latency = 1,
803         bulk_latency = 2,
804         latency_invalid = 255
805 };
806
807 /**
808  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
809  * @adapter: pointer to adapter
810  * @eitr: eitr setting (ints per sec) to give last timeslice
811  * @itr_setting: current throttle rate in ints/second
812  * @packets: the number of packets during this measurement interval
813  * @bytes: the number of bytes during this measurement interval
814  *
815  *      Stores a new ITR value based on packets and byte
816  *      counts during the last interrupt.  The advantage of per interrupt
817  *      computation is faster updates and more accurate ITR for the current
818  *      traffic pattern.  Constants in this function were computed
819  *      based on theoretical maximum wire speed and thresholds were set based
820  *      on testing data as well as attempting to minimize response time
821  *      while increasing bulk throughput.
822  **/
823 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
824                              u32 eitr, u8 itr_setting,
825                              int packets, int bytes)
826 {
827         unsigned int retval = itr_setting;
828         u32 timepassed_us;
829         u64 bytes_perint;
830
831         if (packets == 0)
832                 goto update_itr_done;
833
834
835         /* simple throttlerate management
836          *    0-20MB/s lowest (100000 ints/s)
837          *   20-100MB/s low   (20000 ints/s)
838          *  100-1249MB/s bulk (8000 ints/s)
839          */
840         /* what was last interrupt timeslice? */
841         timepassed_us = 1000000/eitr;
842         bytes_perint = bytes / timepassed_us; /* bytes/usec */
843
844         switch (itr_setting) {
845         case lowest_latency:
846                 if (bytes_perint > adapter->eitr_low)
847                         retval = low_latency;
848                 break;
849         case low_latency:
850                 if (bytes_perint > adapter->eitr_high)
851                         retval = bulk_latency;
852                 else if (bytes_perint <= adapter->eitr_low)
853                         retval = lowest_latency;
854                 break;
855         case bulk_latency:
856                 if (bytes_perint <= adapter->eitr_high)
857                         retval = low_latency;
858                 break;
859         }
860
861 update_itr_done:
862         return retval;
863 }
864
865 /**
866  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
867  * @adapter: pointer to adapter struct
868  * @v_idx: vector index into q_vector array
869  * @itr_reg: new value to be written in *register* format, not ints/s
870  *
871  * This function is made to be called by ethtool and by the driver
872  * when it needs to update VTEITR registers at runtime.  Hardware
873  * specific quirks/differences are taken care of here.
874  */
875 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
876                                u32 itr_reg)
877 {
878         struct ixgbe_hw *hw = &adapter->hw;
879
880         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
881
882         /*
883          * set the WDIS bit to not clear the timer bits and cause an
884          * immediate assertion of the interrupt
885          */
886         itr_reg |= IXGBE_EITR_CNT_WDIS;
887
888         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
889 }
890
891 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
892 {
893         struct ixgbevf_adapter *adapter = q_vector->adapter;
894         u32 new_itr;
895         u8 current_itr, ret_itr;
896         int i, r_idx, v_idx = q_vector->v_idx;
897         struct ixgbevf_ring *rx_ring, *tx_ring;
898
899         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
900         for (i = 0; i < q_vector->txr_count; i++) {
901                 tx_ring = &(adapter->tx_ring[r_idx]);
902                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
903                                              q_vector->tx_itr,
904                                              tx_ring->total_packets,
905                                              tx_ring->total_bytes);
906                 /* if the result for this queue would decrease interrupt
907                  * rate for this vector then use that result */
908                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
909                                     q_vector->tx_itr - 1 : ret_itr);
910                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
911                                       r_idx + 1);
912         }
913
914         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
915         for (i = 0; i < q_vector->rxr_count; i++) {
916                 rx_ring = &(adapter->rx_ring[r_idx]);
917                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
918                                              q_vector->rx_itr,
919                                              rx_ring->total_packets,
920                                              rx_ring->total_bytes);
921                 /* if the result for this queue would decrease interrupt
922                  * rate for this vector then use that result */
923                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
924                                     q_vector->rx_itr - 1 : ret_itr);
925                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
926                                       r_idx + 1);
927         }
928
929         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
930
931         switch (current_itr) {
932         /* counts and packets in update_itr are dependent on these numbers */
933         case lowest_latency:
934                 new_itr = 100000;
935                 break;
936         case low_latency:
937                 new_itr = 20000; /* aka hwitr = ~200 */
938                 break;
939         case bulk_latency:
940         default:
941                 new_itr = 8000;
942                 break;
943         }
944
945         if (new_itr != q_vector->eitr) {
946                 u32 itr_reg;
947
948                 /* save the algorithm value here, not the smoothed one */
949                 q_vector->eitr = new_itr;
950                 /* do an exponential smoothing */
951                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
952                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
953                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
954         }
955 }
956
957 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
958 {
959         struct net_device *netdev = data;
960         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
961         struct ixgbe_hw *hw = &adapter->hw;
962         u32 eicr;
963         u32 msg;
964
965         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
966         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
967
968         if (!hw->mbx.ops.check_for_ack(hw)) {
969                 /*
970                  * checking for the ack clears the PFACK bit.  Place
971                  * it back in the v2p_mailbox cache so that anyone
972                  * polling for an ack will not miss it.  Also
973                  * avoid the read below because the code to read
974                  * the mailbox will also clear the ack bit.  This was
975                  * causing lost acks.  Just cache the bit and exit
976                  * the IRQ handler.
977                  */
978                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
979                 goto out;
980         }
981
982         /* Not an ack interrupt, go ahead and read the message */
983         hw->mbx.ops.read(hw, &msg, 1);
984
985         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
986                 mod_timer(&adapter->watchdog_timer,
987                           round_jiffies(jiffies + 1));
988
989 out:
990         return IRQ_HANDLED;
991 }
992
993 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
994 {
995         struct ixgbevf_q_vector *q_vector = data;
996         struct ixgbevf_adapter  *adapter = q_vector->adapter;
997         struct ixgbevf_ring     *tx_ring;
998         int i, r_idx;
999
1000         if (!q_vector->txr_count)
1001                 return IRQ_HANDLED;
1002
1003         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
1004         for (i = 0; i < q_vector->txr_count; i++) {
1005                 tx_ring = &(adapter->tx_ring[r_idx]);
1006                 tx_ring->total_bytes = 0;
1007                 tx_ring->total_packets = 0;
1008                 ixgbevf_clean_tx_irq(adapter, tx_ring);
1009                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1010                                       r_idx + 1);
1011         }
1012
1013         if (adapter->itr_setting & 1)
1014                 ixgbevf_set_itr_msix(q_vector);
1015
1016         return IRQ_HANDLED;
1017 }
1018
1019 /**
1020  * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
1021  * @irq: unused
1022  * @data: pointer to our q_vector struct for this interrupt vector
1023  **/
1024 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1025 {
1026         struct ixgbevf_q_vector *q_vector = data;
1027         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1028         struct ixgbe_hw *hw = &adapter->hw;
1029         struct ixgbevf_ring  *rx_ring;
1030         int r_idx;
1031         int i;
1032
1033         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1034         for (i = 0; i < q_vector->rxr_count; i++) {
1035                 rx_ring = &(adapter->rx_ring[r_idx]);
1036                 rx_ring->total_bytes = 0;
1037                 rx_ring->total_packets = 0;
1038                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1039                                       r_idx + 1);
1040         }
1041
1042         if (!q_vector->rxr_count)
1043                 return IRQ_HANDLED;
1044
1045         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1046         rx_ring = &(adapter->rx_ring[r_idx]);
1047         /* disable interrupts on this vector only */
1048         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1049         napi_schedule(&q_vector->napi);
1050
1051
1052         return IRQ_HANDLED;
1053 }
1054
1055 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1056 {
1057         ixgbevf_msix_clean_rx(irq, data);
1058         ixgbevf_msix_clean_tx(irq, data);
1059
1060         return IRQ_HANDLED;
1061 }
1062
1063 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1064                                      int r_idx)
1065 {
1066         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1067
1068         set_bit(r_idx, q_vector->rxr_idx);
1069         q_vector->rxr_count++;
1070         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1071 }
1072
1073 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1074                                      int t_idx)
1075 {
1076         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1077
1078         set_bit(t_idx, q_vector->txr_idx);
1079         q_vector->txr_count++;
1080         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1081 }
1082
1083 /**
1084  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1085  * @adapter: board private structure to initialize
1086  *
1087  * This function maps descriptor rings to the queue-specific vectors
1088  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1089  * one vector per ring/queue, but on a constrained vector budget, we
1090  * group the rings as "efficiently" as possible.  You would add new
1091  * mapping configurations in here.
1092  **/
1093 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1094 {
1095         int q_vectors;
1096         int v_start = 0;
1097         int rxr_idx = 0, txr_idx = 0;
1098         int rxr_remaining = adapter->num_rx_queues;
1099         int txr_remaining = adapter->num_tx_queues;
1100         int i, j;
1101         int rqpv, tqpv;
1102         int err = 0;
1103
1104         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1105
1106         /*
1107          * The ideal configuration...
1108          * We have enough vectors to map one per queue.
1109          */
1110         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1111                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1112                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1113
1114                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1115                         map_vector_to_txq(adapter, v_start, txr_idx);
1116                 goto out;
1117         }
1118
1119         /*
1120          * If we don't have enough vectors for a 1-to-1
1121          * mapping, we'll have to group them so there are
1122          * multiple queues per vector.
1123          */
1124         /* Re-adjusting *qpv takes care of the remainder. */
1125         for (i = v_start; i < q_vectors; i++) {
1126                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1127                 for (j = 0; j < rqpv; j++) {
1128                         map_vector_to_rxq(adapter, i, rxr_idx);
1129                         rxr_idx++;
1130                         rxr_remaining--;
1131                 }
1132         }
1133         for (i = v_start; i < q_vectors; i++) {
1134                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1135                 for (j = 0; j < tqpv; j++) {
1136                         map_vector_to_txq(adapter, i, txr_idx);
1137                         txr_idx++;
1138                         txr_remaining--;
1139                 }
1140         }
1141
1142 out:
1143         return err;
1144 }
1145
1146 /**
1147  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1148  * @adapter: board private structure
1149  *
1150  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1151  * interrupts from the kernel.
1152  **/
1153 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1154 {
1155         struct net_device *netdev = adapter->netdev;
1156         irqreturn_t (*handler)(int, void *);
1157         int i, vector, q_vectors, err;
1158         int ri = 0, ti = 0;
1159
1160         /* Decrement for Other and TCP Timer vectors */
1161         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1162
1163 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1164                                           ? &ixgbevf_msix_clean_many : \
1165                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1166                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1167                           NULL)
1168         for (vector = 0; vector < q_vectors; vector++) {
1169                 handler = SET_HANDLER(adapter->q_vector[vector]);
1170
1171                 if (handler == &ixgbevf_msix_clean_rx) {
1172                         sprintf(adapter->name[vector], "%s-%s-%d",
1173                                 netdev->name, "rx", ri++);
1174                 } else if (handler == &ixgbevf_msix_clean_tx) {
1175                         sprintf(adapter->name[vector], "%s-%s-%d",
1176                                 netdev->name, "tx", ti++);
1177                 } else if (handler == &ixgbevf_msix_clean_many) {
1178                         sprintf(adapter->name[vector], "%s-%s-%d",
1179                                 netdev->name, "TxRx", vector);
1180                 } else {
1181                         /* skip this unused q_vector */
1182                         continue;
1183                 }
1184                 err = request_irq(adapter->msix_entries[vector].vector,
1185                                   handler, 0, adapter->name[vector],
1186                                   adapter->q_vector[vector]);
1187                 if (err) {
1188                         hw_dbg(&adapter->hw,
1189                                "request_irq failed for MSIX interrupt "
1190                                "Error: %d\n", err);
1191                         goto free_queue_irqs;
1192                 }
1193         }
1194
1195         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1196         err = request_irq(adapter->msix_entries[vector].vector,
1197                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1198         if (err) {
1199                 hw_dbg(&adapter->hw,
1200                        "request_irq for msix_mbx failed: %d\n", err);
1201                 goto free_queue_irqs;
1202         }
1203
1204         return 0;
1205
1206 free_queue_irqs:
1207         for (i = vector - 1; i >= 0; i--)
1208                 free_irq(adapter->msix_entries[--vector].vector,
1209                          &(adapter->q_vector[i]));
1210         pci_disable_msix(adapter->pdev);
1211         kfree(adapter->msix_entries);
1212         adapter->msix_entries = NULL;
1213         return err;
1214 }
1215
1216 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1217 {
1218         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1219
1220         for (i = 0; i < q_vectors; i++) {
1221                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1222                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1223                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1224                 q_vector->rxr_count = 0;
1225                 q_vector->txr_count = 0;
1226                 q_vector->eitr = adapter->eitr_param;
1227         }
1228 }
1229
1230 /**
1231  * ixgbevf_request_irq - initialize interrupts
1232  * @adapter: board private structure
1233  *
1234  * Attempts to configure interrupts using the best available
1235  * capabilities of the hardware and kernel.
1236  **/
1237 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1238 {
1239         int err = 0;
1240
1241         err = ixgbevf_request_msix_irqs(adapter);
1242
1243         if (err)
1244                 hw_dbg(&adapter->hw,
1245                        "request_irq failed, Error %d\n", err);
1246
1247         return err;
1248 }
1249
1250 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1251 {
1252         struct net_device *netdev = adapter->netdev;
1253         int i, q_vectors;
1254
1255         q_vectors = adapter->num_msix_vectors;
1256
1257         i = q_vectors - 1;
1258
1259         free_irq(adapter->msix_entries[i].vector, netdev);
1260         i--;
1261
1262         for (; i >= 0; i--) {
1263                 free_irq(adapter->msix_entries[i].vector,
1264                          adapter->q_vector[i]);
1265         }
1266
1267         ixgbevf_reset_q_vectors(adapter);
1268 }
1269
1270 /**
1271  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1272  * @adapter: board private structure
1273  **/
1274 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1275 {
1276         int i;
1277         struct ixgbe_hw *hw = &adapter->hw;
1278
1279         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1280
1281         IXGBE_WRITE_FLUSH(hw);
1282
1283         for (i = 0; i < adapter->num_msix_vectors; i++)
1284                 synchronize_irq(adapter->msix_entries[i].vector);
1285 }
1286
1287 /**
1288  * ixgbevf_irq_enable - Enable default interrupt generation settings
1289  * @adapter: board private structure
1290  **/
1291 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1292                                       bool queues, bool flush)
1293 {
1294         struct ixgbe_hw *hw = &adapter->hw;
1295         u32 mask;
1296         u64 qmask;
1297
1298         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1299         qmask = ~0;
1300
1301         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1302
1303         if (queues)
1304                 ixgbevf_irq_enable_queues(adapter, qmask);
1305
1306         if (flush)
1307                 IXGBE_WRITE_FLUSH(hw);
1308 }
1309
1310 /**
1311  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1312  * @adapter: board private structure
1313  *
1314  * Configure the Tx unit of the MAC after a reset.
1315  **/
1316 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1317 {
1318         u64 tdba;
1319         struct ixgbe_hw *hw = &adapter->hw;
1320         u32 i, j, tdlen, txctrl;
1321
1322         /* Setup the HW Tx Head and Tail descriptor pointers */
1323         for (i = 0; i < adapter->num_tx_queues; i++) {
1324                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1325                 j = ring->reg_idx;
1326                 tdba = ring->dma;
1327                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1328                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1329                                 (tdba & DMA_BIT_MASK(32)));
1330                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1331                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1332                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1333                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1334                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1335                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1336                 /* Disable Tx Head Writeback RO bit, since this hoses
1337                  * bookkeeping if things aren't delivered in order.
1338                  */
1339                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1340                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1341                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1342         }
1343 }
1344
1345 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1346
1347 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1348 {
1349         struct ixgbevf_ring *rx_ring;
1350         struct ixgbe_hw *hw = &adapter->hw;
1351         u32 srrctl;
1352
1353         rx_ring = &adapter->rx_ring[index];
1354
1355         srrctl = IXGBE_SRRCTL_DROP_EN;
1356
1357         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1358                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1359                 /* grow the amount we can receive on large page machines */
1360                 if (bufsz < (PAGE_SIZE / 2))
1361                         bufsz = (PAGE_SIZE / 2);
1362                 /* cap the bufsz at our largest descriptor size */
1363                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1364
1365                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1366                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1367                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1368                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1369                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1370         } else {
1371                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1372
1373                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1374                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1375                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1376                 else
1377                         srrctl |= rx_ring->rx_buf_len >>
1378                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1379         }
1380         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1381 }
1382
1383 /**
1384  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1385  * @adapter: board private structure
1386  *
1387  * Configure the Rx unit of the MAC after a reset.
1388  **/
1389 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1390 {
1391         u64 rdba;
1392         struct ixgbe_hw *hw = &adapter->hw;
1393         struct net_device *netdev = adapter->netdev;
1394         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1395         int i, j;
1396         u32 rdlen;
1397         int rx_buf_len;
1398
1399         /* Decide whether to use packet split mode or not */
1400         if (netdev->mtu > ETH_DATA_LEN) {
1401                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1402                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1403                 else
1404                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1405         } else {
1406                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1407                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1408                 else
1409                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1410         }
1411
1412         /* Set the RX buffer length according to the mode */
1413         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1414                 /* PSRTYPE must be initialized in 82599 */
1415                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1416                         IXGBE_PSRTYPE_UDPHDR |
1417                         IXGBE_PSRTYPE_IPV4HDR |
1418                         IXGBE_PSRTYPE_IPV6HDR |
1419                         IXGBE_PSRTYPE_L2HDR;
1420                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1421                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1422         } else {
1423                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1424                 if (netdev->mtu <= ETH_DATA_LEN)
1425                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1426                 else
1427                         rx_buf_len = ALIGN(max_frame, 1024);
1428         }
1429
1430         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1431         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1432          * the Base and Length of the Rx Descriptor Ring */
1433         for (i = 0; i < adapter->num_rx_queues; i++) {
1434                 rdba = adapter->rx_ring[i].dma;
1435                 j = adapter->rx_ring[i].reg_idx;
1436                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1437                                 (rdba & DMA_BIT_MASK(32)));
1438                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1439                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1440                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1441                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1442                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1443                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1444                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1445
1446                 ixgbevf_configure_srrctl(adapter, j);
1447         }
1448 }
1449
1450 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1451                                      struct vlan_group *grp)
1452 {
1453         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1454         struct ixgbe_hw *hw = &adapter->hw;
1455         int i, j;
1456         u32 ctrl;
1457
1458         adapter->vlgrp = grp;
1459
1460         for (i = 0; i < adapter->num_rx_queues; i++) {
1461                 j = adapter->rx_ring[i].reg_idx;
1462                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1463                 ctrl |= IXGBE_RXDCTL_VME;
1464                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1465         }
1466 }
1467
1468 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1469 {
1470         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1471         struct ixgbe_hw *hw = &adapter->hw;
1472
1473         /* add VID to filter table */
1474         if (hw->mac.ops.set_vfta)
1475                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1476 }
1477
1478 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1479 {
1480         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1481         struct ixgbe_hw *hw = &adapter->hw;
1482
1483         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1484                 ixgbevf_irq_disable(adapter);
1485
1486         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1487
1488         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1489                 ixgbevf_irq_enable(adapter, true, true);
1490
1491         /* remove VID from filter table */
1492         if (hw->mac.ops.set_vfta)
1493                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1494 }
1495
1496 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1497 {
1498         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1499
1500         if (adapter->vlgrp) {
1501                 u16 vid;
1502                 for (vid = 0; vid < VLAN_N_VID; vid++) {
1503                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1504                                 continue;
1505                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1506                 }
1507         }
1508 }
1509
1510 /**
1511  * ixgbevf_set_rx_mode - Multicast set
1512  * @netdev: network interface device structure
1513  *
1514  * The set_rx_method entry point is called whenever the multicast address
1515  * list or the network interface flags are updated.  This routine is
1516  * responsible for configuring the hardware for proper multicast mode.
1517  **/
1518 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1519 {
1520         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1521         struct ixgbe_hw *hw = &adapter->hw;
1522
1523         /* reprogram multicast list */
1524         if (hw->mac.ops.update_mc_addr_list)
1525                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1526 }
1527
1528 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1529 {
1530         int q_idx;
1531         struct ixgbevf_q_vector *q_vector;
1532         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1533
1534         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1535                 struct napi_struct *napi;
1536                 q_vector = adapter->q_vector[q_idx];
1537                 if (!q_vector->rxr_count)
1538                         continue;
1539                 napi = &q_vector->napi;
1540                 if (q_vector->rxr_count > 1)
1541                         napi->poll = &ixgbevf_clean_rxonly_many;
1542
1543                 napi_enable(napi);
1544         }
1545 }
1546
1547 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1548 {
1549         int q_idx;
1550         struct ixgbevf_q_vector *q_vector;
1551         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1552
1553         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1554                 q_vector = adapter->q_vector[q_idx];
1555                 if (!q_vector->rxr_count)
1556                         continue;
1557                 napi_disable(&q_vector->napi);
1558         }
1559 }
1560
1561 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1562 {
1563         struct net_device *netdev = adapter->netdev;
1564         int i;
1565
1566         ixgbevf_set_rx_mode(netdev);
1567
1568         ixgbevf_restore_vlan(adapter);
1569
1570         ixgbevf_configure_tx(adapter);
1571         ixgbevf_configure_rx(adapter);
1572         for (i = 0; i < adapter->num_rx_queues; i++) {
1573                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1574                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1575                 ring->next_to_use = ring->count - 1;
1576                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1577         }
1578 }
1579
1580 #define IXGBE_MAX_RX_DESC_POLL 10
1581 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1582                                                 int rxr)
1583 {
1584         struct ixgbe_hw *hw = &adapter->hw;
1585         int j = adapter->rx_ring[rxr].reg_idx;
1586         int k;
1587
1588         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1589                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1590                         break;
1591                 else
1592                         msleep(1);
1593         }
1594         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1595                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1596                        "not set within the polling period\n", rxr);
1597         }
1598
1599         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1600                                 (adapter->rx_ring[rxr].count - 1));
1601 }
1602
1603 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1604 {
1605         /* Only save pre-reset stats if there are some */
1606         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1607                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1608                         adapter->stats.base_vfgprc;
1609                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1610                         adapter->stats.base_vfgptc;
1611                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1612                         adapter->stats.base_vfgorc;
1613                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1614                         adapter->stats.base_vfgotc;
1615                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1616                         adapter->stats.base_vfmprc;
1617         }
1618 }
1619
1620 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1621 {
1622         struct ixgbe_hw *hw = &adapter->hw;
1623
1624         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1625         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1626         adapter->stats.last_vfgorc |=
1627                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1628         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1629         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1630         adapter->stats.last_vfgotc |=
1631                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1632         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1633
1634         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1635         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1636         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1637         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1638         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1639 }
1640
1641 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1642 {
1643         struct net_device *netdev = adapter->netdev;
1644         struct ixgbe_hw *hw = &adapter->hw;
1645         int i, j = 0;
1646         int num_rx_rings = adapter->num_rx_queues;
1647         u32 txdctl, rxdctl;
1648
1649         for (i = 0; i < adapter->num_tx_queues; i++) {
1650                 j = adapter->tx_ring[i].reg_idx;
1651                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1652                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1653                 txdctl |= (8 << 16);
1654                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1655         }
1656
1657         for (i = 0; i < adapter->num_tx_queues; i++) {
1658                 j = adapter->tx_ring[i].reg_idx;
1659                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1660                 txdctl |= IXGBE_TXDCTL_ENABLE;
1661                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1662         }
1663
1664         for (i = 0; i < num_rx_rings; i++) {
1665                 j = adapter->rx_ring[i].reg_idx;
1666                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1667                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1668                 if (hw->mac.type == ixgbe_mac_X540_vf) {
1669                         rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1670                         rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1671                                    IXGBE_RXDCTL_RLPML_EN);
1672                 }
1673                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1674                 ixgbevf_rx_desc_queue_enable(adapter, i);
1675         }
1676
1677         ixgbevf_configure_msix(adapter);
1678
1679         if (hw->mac.ops.set_rar) {
1680                 if (is_valid_ether_addr(hw->mac.addr))
1681                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1682                 else
1683                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1684         }
1685
1686         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1687         ixgbevf_napi_enable_all(adapter);
1688
1689         /* enable transmits */
1690         netif_tx_start_all_queues(netdev);
1691
1692         ixgbevf_save_reset_stats(adapter);
1693         ixgbevf_init_last_counter_stats(adapter);
1694
1695         /* bring the link up in the watchdog, this could race with our first
1696          * link up interrupt but shouldn't be a problem */
1697         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1698         adapter->link_check_timeout = jiffies;
1699         mod_timer(&adapter->watchdog_timer, jiffies);
1700         return 0;
1701 }
1702
1703 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1704 {
1705         int err;
1706         struct ixgbe_hw *hw = &adapter->hw;
1707
1708         ixgbevf_configure(adapter);
1709
1710         err = ixgbevf_up_complete(adapter);
1711
1712         /* clear any pending interrupts, may auto mask */
1713         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1714
1715         ixgbevf_irq_enable(adapter, true, true);
1716
1717         return err;
1718 }
1719
1720 /**
1721  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1722  * @adapter: board private structure
1723  * @rx_ring: ring to free buffers from
1724  **/
1725 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1726                                   struct ixgbevf_ring *rx_ring)
1727 {
1728         struct pci_dev *pdev = adapter->pdev;
1729         unsigned long size;
1730         unsigned int i;
1731
1732         if (!rx_ring->rx_buffer_info)
1733                 return;
1734
1735         /* Free all the Rx ring sk_buffs */
1736         for (i = 0; i < rx_ring->count; i++) {
1737                 struct ixgbevf_rx_buffer *rx_buffer_info;
1738
1739                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1740                 if (rx_buffer_info->dma) {
1741                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1742                                          rx_ring->rx_buf_len,
1743                                          DMA_FROM_DEVICE);
1744                         rx_buffer_info->dma = 0;
1745                 }
1746                 if (rx_buffer_info->skb) {
1747                         struct sk_buff *skb = rx_buffer_info->skb;
1748                         rx_buffer_info->skb = NULL;
1749                         do {
1750                                 struct sk_buff *this = skb;
1751                                 skb = skb->prev;
1752                                 dev_kfree_skb(this);
1753                         } while (skb);
1754                 }
1755                 if (!rx_buffer_info->page)
1756                         continue;
1757                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1758                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1759                 rx_buffer_info->page_dma = 0;
1760                 put_page(rx_buffer_info->page);
1761                 rx_buffer_info->page = NULL;
1762                 rx_buffer_info->page_offset = 0;
1763         }
1764
1765         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1766         memset(rx_ring->rx_buffer_info, 0, size);
1767
1768         /* Zero out the descriptor ring */
1769         memset(rx_ring->desc, 0, rx_ring->size);
1770
1771         rx_ring->next_to_clean = 0;
1772         rx_ring->next_to_use = 0;
1773
1774         if (rx_ring->head)
1775                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1776         if (rx_ring->tail)
1777                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1778 }
1779
1780 /**
1781  * ixgbevf_clean_tx_ring - Free Tx Buffers
1782  * @adapter: board private structure
1783  * @tx_ring: ring to be cleaned
1784  **/
1785 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1786                                   struct ixgbevf_ring *tx_ring)
1787 {
1788         struct ixgbevf_tx_buffer *tx_buffer_info;
1789         unsigned long size;
1790         unsigned int i;
1791
1792         if (!tx_ring->tx_buffer_info)
1793                 return;
1794
1795         /* Free all the Tx ring sk_buffs */
1796
1797         for (i = 0; i < tx_ring->count; i++) {
1798                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1799                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1800         }
1801
1802         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1803         memset(tx_ring->tx_buffer_info, 0, size);
1804
1805         memset(tx_ring->desc, 0, tx_ring->size);
1806
1807         tx_ring->next_to_use = 0;
1808         tx_ring->next_to_clean = 0;
1809
1810         if (tx_ring->head)
1811                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1812         if (tx_ring->tail)
1813                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1814 }
1815
1816 /**
1817  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1818  * @adapter: board private structure
1819  **/
1820 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1821 {
1822         int i;
1823
1824         for (i = 0; i < adapter->num_rx_queues; i++)
1825                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1826 }
1827
1828 /**
1829  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1830  * @adapter: board private structure
1831  **/
1832 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1833 {
1834         int i;
1835
1836         for (i = 0; i < adapter->num_tx_queues; i++)
1837                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1838 }
1839
1840 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1841 {
1842         struct net_device *netdev = adapter->netdev;
1843         struct ixgbe_hw *hw = &adapter->hw;
1844         u32 txdctl;
1845         int i, j;
1846
1847         /* signal that we are down to the interrupt handler */
1848         set_bit(__IXGBEVF_DOWN, &adapter->state);
1849         /* disable receives */
1850
1851         netif_tx_disable(netdev);
1852
1853         msleep(10);
1854
1855         netif_tx_stop_all_queues(netdev);
1856
1857         ixgbevf_irq_disable(adapter);
1858
1859         ixgbevf_napi_disable_all(adapter);
1860
1861         del_timer_sync(&adapter->watchdog_timer);
1862         /* can't call flush scheduled work here because it can deadlock
1863          * if linkwatch_event tries to acquire the rtnl_lock which we are
1864          * holding */
1865         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1866                 msleep(1);
1867
1868         /* disable transmits in the hardware now that interrupts are off */
1869         for (i = 0; i < adapter->num_tx_queues; i++) {
1870                 j = adapter->tx_ring[i].reg_idx;
1871                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1872                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1873                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1874         }
1875
1876         netif_carrier_off(netdev);
1877
1878         if (!pci_channel_offline(adapter->pdev))
1879                 ixgbevf_reset(adapter);
1880
1881         ixgbevf_clean_all_tx_rings(adapter);
1882         ixgbevf_clean_all_rx_rings(adapter);
1883 }
1884
1885 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1886 {
1887         struct ixgbe_hw *hw = &adapter->hw;
1888
1889         WARN_ON(in_interrupt());
1890
1891         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1892                 msleep(1);
1893
1894         /*
1895          * Check if PF is up before re-init.  If not then skip until
1896          * later when the PF is up and ready to service requests from
1897          * the VF via mailbox.  If the VF is up and running then the
1898          * watchdog task will continue to schedule reset tasks until
1899          * the PF is up and running.
1900          */
1901         if (!hw->mac.ops.reset_hw(hw)) {
1902                 ixgbevf_down(adapter);
1903                 ixgbevf_up(adapter);
1904         }
1905
1906         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1907 }
1908
1909 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1910 {
1911         struct ixgbe_hw *hw = &adapter->hw;
1912         struct net_device *netdev = adapter->netdev;
1913
1914         if (hw->mac.ops.reset_hw(hw))
1915                 hw_dbg(hw, "PF still resetting\n");
1916         else
1917                 hw->mac.ops.init_hw(hw);
1918
1919         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1920                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1921                        netdev->addr_len);
1922                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1923                        netdev->addr_len);
1924         }
1925 }
1926
1927 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1928                                          int vectors)
1929 {
1930         int err, vector_threshold;
1931
1932         /* We'll want at least 3 (vector_threshold):
1933          * 1) TxQ[0] Cleanup
1934          * 2) RxQ[0] Cleanup
1935          * 3) Other (Link Status Change, etc.)
1936          */
1937         vector_threshold = MIN_MSIX_COUNT;
1938
1939         /* The more we get, the more we will assign to Tx/Rx Cleanup
1940          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1941          * Right now, we simply care about how many we'll get; we'll
1942          * set them up later while requesting irq's.
1943          */
1944         while (vectors >= vector_threshold) {
1945                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1946                                       vectors);
1947                 if (!err) /* Success in acquiring all requested vectors. */
1948                         break;
1949                 else if (err < 0)
1950                         vectors = 0; /* Nasty failure, quit now */
1951                 else /* err == number of vectors we should try again with */
1952                         vectors = err;
1953         }
1954
1955         if (vectors < vector_threshold) {
1956                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1957                  * This just means we'll go with either a single MSI
1958                  * vector or fall back to legacy interrupts.
1959                  */
1960                 hw_dbg(&adapter->hw,
1961                        "Unable to allocate MSI-X interrupts\n");
1962                 kfree(adapter->msix_entries);
1963                 adapter->msix_entries = NULL;
1964         } else {
1965                 /*
1966                  * Adjust for only the vectors we'll use, which is minimum
1967                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1968                  * vectors we were allocated.
1969                  */
1970                 adapter->num_msix_vectors = vectors;
1971         }
1972 }
1973
1974 /*
1975  * ixgbevf_set_num_queues: Allocate queues for device, feature dependant
1976  * @adapter: board private structure to initialize
1977  *
1978  * This is the top level queue allocation routine.  The order here is very
1979  * important, starting with the "most" number of features turned on at once,
1980  * and ending with the smallest set of features.  This way large combinations
1981  * can be allocated if they're turned on, and smaller combinations are the
1982  * fallthrough conditions.
1983  *
1984  **/
1985 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1986 {
1987         /* Start with base case */
1988         adapter->num_rx_queues = 1;
1989         adapter->num_tx_queues = 1;
1990         adapter->num_rx_pools = adapter->num_rx_queues;
1991         adapter->num_rx_queues_per_pool = 1;
1992 }
1993
1994 /**
1995  * ixgbevf_alloc_queues - Allocate memory for all rings
1996  * @adapter: board private structure to initialize
1997  *
1998  * We allocate one ring per queue at run-time since we don't know the
1999  * number of queues at compile-time.  The polling_netdev array is
2000  * intended for Multiqueue, but should work fine with a single queue.
2001  **/
2002 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2003 {
2004         int i;
2005
2006         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
2007                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2008         if (!adapter->tx_ring)
2009                 goto err_tx_ring_allocation;
2010
2011         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2012                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2013         if (!adapter->rx_ring)
2014                 goto err_rx_ring_allocation;
2015
2016         for (i = 0; i < adapter->num_tx_queues; i++) {
2017                 adapter->tx_ring[i].count = adapter->tx_ring_count;
2018                 adapter->tx_ring[i].queue_index = i;
2019                 adapter->tx_ring[i].reg_idx = i;
2020         }
2021
2022         for (i = 0; i < adapter->num_rx_queues; i++) {
2023                 adapter->rx_ring[i].count = adapter->rx_ring_count;
2024                 adapter->rx_ring[i].queue_index = i;
2025                 adapter->rx_ring[i].reg_idx = i;
2026         }
2027
2028         return 0;
2029
2030 err_rx_ring_allocation:
2031         kfree(adapter->tx_ring);
2032 err_tx_ring_allocation:
2033         return -ENOMEM;
2034 }
2035
2036 /**
2037  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2038  * @adapter: board private structure to initialize
2039  *
2040  * Attempt to configure the interrupts using the best available
2041  * capabilities of the hardware and the kernel.
2042  **/
2043 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2044 {
2045         int err = 0;
2046         int vector, v_budget;
2047
2048         /*
2049          * It's easy to be greedy for MSI-X vectors, but it really
2050          * doesn't do us much good if we have a lot more vectors
2051          * than CPU's.  So let's be conservative and only ask for
2052          * (roughly) twice the number of vectors as there are CPU's.
2053          */
2054         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2055                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2056
2057         /* A failure in MSI-X entry allocation isn't fatal, but it does
2058          * mean we disable MSI-X capabilities of the adapter. */
2059         adapter->msix_entries = kcalloc(v_budget,
2060                                         sizeof(struct msix_entry), GFP_KERNEL);
2061         if (!adapter->msix_entries) {
2062                 err = -ENOMEM;
2063                 goto out;
2064         }
2065
2066         for (vector = 0; vector < v_budget; vector++)
2067                 adapter->msix_entries[vector].entry = vector;
2068
2069         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2070
2071 out:
2072         return err;
2073 }
2074
2075 /**
2076  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2077  * @adapter: board private structure to initialize
2078  *
2079  * We allocate one q_vector per queue interrupt.  If allocation fails we
2080  * return -ENOMEM.
2081  **/
2082 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2083 {
2084         int q_idx, num_q_vectors;
2085         struct ixgbevf_q_vector *q_vector;
2086         int napi_vectors;
2087         int (*poll)(struct napi_struct *, int);
2088
2089         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2090         napi_vectors = adapter->num_rx_queues;
2091         poll = &ixgbevf_clean_rxonly;
2092
2093         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2094                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2095                 if (!q_vector)
2096                         goto err_out;
2097                 q_vector->adapter = adapter;
2098                 q_vector->v_idx = q_idx;
2099                 q_vector->eitr = adapter->eitr_param;
2100                 if (q_idx < napi_vectors)
2101                         netif_napi_add(adapter->netdev, &q_vector->napi,
2102                                        (*poll), 64);
2103                 adapter->q_vector[q_idx] = q_vector;
2104         }
2105
2106         return 0;
2107
2108 err_out:
2109         while (q_idx) {
2110                 q_idx--;
2111                 q_vector = adapter->q_vector[q_idx];
2112                 netif_napi_del(&q_vector->napi);
2113                 kfree(q_vector);
2114                 adapter->q_vector[q_idx] = NULL;
2115         }
2116         return -ENOMEM;
2117 }
2118
2119 /**
2120  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2121  * @adapter: board private structure to initialize
2122  *
2123  * This function frees the memory allocated to the q_vectors.  In addition if
2124  * NAPI is enabled it will delete any references to the NAPI struct prior
2125  * to freeing the q_vector.
2126  **/
2127 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2128 {
2129         int q_idx, num_q_vectors;
2130         int napi_vectors;
2131
2132         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2133         napi_vectors = adapter->num_rx_queues;
2134
2135         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2136                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2137
2138                 adapter->q_vector[q_idx] = NULL;
2139                 if (q_idx < napi_vectors)
2140                         netif_napi_del(&q_vector->napi);
2141                 kfree(q_vector);
2142         }
2143 }
2144
2145 /**
2146  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2147  * @adapter: board private structure
2148  *
2149  **/
2150 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2151 {
2152         pci_disable_msix(adapter->pdev);
2153         kfree(adapter->msix_entries);
2154         adapter->msix_entries = NULL;
2155 }
2156
2157 /**
2158  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2159  * @adapter: board private structure to initialize
2160  *
2161  **/
2162 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2163 {
2164         int err;
2165
2166         /* Number of supported queues */
2167         ixgbevf_set_num_queues(adapter);
2168
2169         err = ixgbevf_set_interrupt_capability(adapter);
2170         if (err) {
2171                 hw_dbg(&adapter->hw,
2172                        "Unable to setup interrupt capabilities\n");
2173                 goto err_set_interrupt;
2174         }
2175
2176         err = ixgbevf_alloc_q_vectors(adapter);
2177         if (err) {
2178                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2179                        "vectors\n");
2180                 goto err_alloc_q_vectors;
2181         }
2182
2183         err = ixgbevf_alloc_queues(adapter);
2184         if (err) {
2185                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2186                 goto err_alloc_queues;
2187         }
2188
2189         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2190                "Tx Queue count = %u\n",
2191                (adapter->num_rx_queues > 1) ? "Enabled" :
2192                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2193
2194         set_bit(__IXGBEVF_DOWN, &adapter->state);
2195
2196         return 0;
2197 err_alloc_queues:
2198         ixgbevf_free_q_vectors(adapter);
2199 err_alloc_q_vectors:
2200         ixgbevf_reset_interrupt_capability(adapter);
2201 err_set_interrupt:
2202         return err;
2203 }
2204
2205 /**
2206  * ixgbevf_sw_init - Initialize general software structures
2207  * (struct ixgbevf_adapter)
2208  * @adapter: board private structure to initialize
2209  *
2210  * ixgbevf_sw_init initializes the Adapter private data structure.
2211  * Fields are initialized based on PCI device information and
2212  * OS network device settings (MTU size).
2213  **/
2214 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2215 {
2216         struct ixgbe_hw *hw = &adapter->hw;
2217         struct pci_dev *pdev = adapter->pdev;
2218         int err;
2219
2220         /* PCI config space info */
2221
2222         hw->vendor_id = pdev->vendor;
2223         hw->device_id = pdev->device;
2224         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2225         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2226         hw->subsystem_device_id = pdev->subsystem_device;
2227
2228         hw->mbx.ops.init_params(hw);
2229         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2230         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2231         err = hw->mac.ops.reset_hw(hw);
2232         if (err) {
2233                 dev_info(&pdev->dev,
2234                          "PF still in reset state, assigning new address\n");
2235                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2236         } else {
2237                 err = hw->mac.ops.init_hw(hw);
2238                 if (err) {
2239                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2240                         goto out;
2241                 }
2242         }
2243
2244         /* Enable dynamic interrupt throttling rates */
2245         adapter->eitr_param = 20000;
2246         adapter->itr_setting = 1;
2247
2248         /* set defaults for eitr in MegaBytes */
2249         adapter->eitr_low = 10;
2250         adapter->eitr_high = 20;
2251
2252         /* set default ring sizes */
2253         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2254         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2255
2256         /* enable rx csum by default */
2257         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2258
2259         set_bit(__IXGBEVF_DOWN, &adapter->state);
2260
2261 out:
2262         return err;
2263 }
2264
2265 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2266         {                                                       \
2267                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2268                 if (current_counter < last_counter)             \
2269                         counter += 0x100000000LL;               \
2270                 last_counter = current_counter;                 \
2271                 counter &= 0xFFFFFFFF00000000LL;                \
2272                 counter |= current_counter;                     \
2273         }
2274
2275 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2276         {                                                                \
2277                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2278                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2279                 u64 current_counter = (current_counter_msb << 32) |      \
2280                         current_counter_lsb;                             \
2281                 if (current_counter < last_counter)                      \
2282                         counter += 0x1000000000LL;                       \
2283                 last_counter = current_counter;                          \
2284                 counter &= 0xFFFFFFF000000000LL;                         \
2285                 counter |= current_counter;                              \
2286         }
2287 /**
2288  * ixgbevf_update_stats - Update the board statistics counters.
2289  * @adapter: board private structure
2290  **/
2291 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2292 {
2293         struct ixgbe_hw *hw = &adapter->hw;
2294
2295         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2296                                 adapter->stats.vfgprc);
2297         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2298                                 adapter->stats.vfgptc);
2299         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2300                                 adapter->stats.last_vfgorc,
2301                                 adapter->stats.vfgorc);
2302         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2303                                 adapter->stats.last_vfgotc,
2304                                 adapter->stats.vfgotc);
2305         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2306                                 adapter->stats.vfmprc);
2307
2308         /* Fill out the OS statistics structure */
2309         adapter->netdev->stats.multicast = adapter->stats.vfmprc -
2310                 adapter->stats.base_vfmprc;
2311 }
2312
2313 /**
2314  * ixgbevf_watchdog - Timer Call-back
2315  * @data: pointer to adapter cast into an unsigned long
2316  **/
2317 static void ixgbevf_watchdog(unsigned long data)
2318 {
2319         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2320         struct ixgbe_hw *hw = &adapter->hw;
2321         u64 eics = 0;
2322         int i;
2323
2324         /*
2325          * Do the watchdog outside of interrupt context due to the lovely
2326          * delays that some of the newer hardware requires
2327          */
2328
2329         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2330                 goto watchdog_short_circuit;
2331
2332         /* get one bit for every active tx/rx interrupt vector */
2333         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2334                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2335                 if (qv->rxr_count || qv->txr_count)
2336                         eics |= (1 << i);
2337         }
2338
2339         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2340
2341 watchdog_short_circuit:
2342         schedule_work(&adapter->watchdog_task);
2343 }
2344
2345 /**
2346  * ixgbevf_tx_timeout - Respond to a Tx Hang
2347  * @netdev: network interface device structure
2348  **/
2349 static void ixgbevf_tx_timeout(struct net_device *netdev)
2350 {
2351         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2352
2353         /* Do the reset outside of interrupt context */
2354         schedule_work(&adapter->reset_task);
2355 }
2356
2357 static void ixgbevf_reset_task(struct work_struct *work)
2358 {
2359         struct ixgbevf_adapter *adapter;
2360         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2361
2362         /* If we're already down or resetting, just bail */
2363         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2364             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2365                 return;
2366
2367         adapter->tx_timeout_count++;
2368
2369         ixgbevf_reinit_locked(adapter);
2370 }
2371
2372 /**
2373  * ixgbevf_watchdog_task - worker thread to bring link up
2374  * @work: pointer to work_struct containing our data
2375  **/
2376 static void ixgbevf_watchdog_task(struct work_struct *work)
2377 {
2378         struct ixgbevf_adapter *adapter = container_of(work,
2379                                                        struct ixgbevf_adapter,
2380                                                        watchdog_task);
2381         struct net_device *netdev = adapter->netdev;
2382         struct ixgbe_hw *hw = &adapter->hw;
2383         u32 link_speed = adapter->link_speed;
2384         bool link_up = adapter->link_up;
2385
2386         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2387
2388         /*
2389          * Always check the link on the watchdog because we have
2390          * no LSC interrupt
2391          */
2392         if (hw->mac.ops.check_link) {
2393                 if ((hw->mac.ops.check_link(hw, &link_speed,
2394                                             &link_up, false)) != 0) {
2395                         adapter->link_up = link_up;
2396                         adapter->link_speed = link_speed;
2397                         netif_carrier_off(netdev);
2398                         netif_tx_stop_all_queues(netdev);
2399                         schedule_work(&adapter->reset_task);
2400                         goto pf_has_reset;
2401                 }
2402         } else {
2403                 /* always assume link is up, if no check link
2404                  * function */
2405                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2406                 link_up = true;
2407         }
2408         adapter->link_up = link_up;
2409         adapter->link_speed = link_speed;
2410
2411         if (link_up) {
2412                 if (!netif_carrier_ok(netdev)) {
2413                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2414                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2415                                10 : 1);
2416                         netif_carrier_on(netdev);
2417                         netif_tx_wake_all_queues(netdev);
2418                 } else {
2419                         /* Force detection of hung controller */
2420                         adapter->detect_tx_hung = true;
2421                 }
2422         } else {
2423                 adapter->link_up = false;
2424                 adapter->link_speed = 0;
2425                 if (netif_carrier_ok(netdev)) {
2426                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2427                         netif_carrier_off(netdev);
2428                         netif_tx_stop_all_queues(netdev);
2429                 }
2430         }
2431
2432         ixgbevf_update_stats(adapter);
2433
2434 pf_has_reset:
2435         /* Force detection of hung controller every watchdog period */
2436         adapter->detect_tx_hung = true;
2437
2438         /* Reset the timer */
2439         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2440                 mod_timer(&adapter->watchdog_timer,
2441                           round_jiffies(jiffies + (2 * HZ)));
2442
2443         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2444 }
2445
2446 /**
2447  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2448  * @adapter: board private structure
2449  * @tx_ring: Tx descriptor ring for a specific queue
2450  *
2451  * Free all transmit software resources
2452  **/
2453 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2454                                struct ixgbevf_ring *tx_ring)
2455 {
2456         struct pci_dev *pdev = adapter->pdev;
2457
2458         ixgbevf_clean_tx_ring(adapter, tx_ring);
2459
2460         vfree(tx_ring->tx_buffer_info);
2461         tx_ring->tx_buffer_info = NULL;
2462
2463         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2464                           tx_ring->dma);
2465
2466         tx_ring->desc = NULL;
2467 }
2468
2469 /**
2470  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2471  * @adapter: board private structure
2472  *
2473  * Free all transmit software resources
2474  **/
2475 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2476 {
2477         int i;
2478
2479         for (i = 0; i < adapter->num_tx_queues; i++)
2480                 if (adapter->tx_ring[i].desc)
2481                         ixgbevf_free_tx_resources(adapter,
2482                                                   &adapter->tx_ring[i]);
2483
2484 }
2485
2486 /**
2487  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2488  * @adapter: board private structure
2489  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2490  *
2491  * Return 0 on success, negative on failure
2492  **/
2493 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2494                                struct ixgbevf_ring *tx_ring)
2495 {
2496         struct pci_dev *pdev = adapter->pdev;
2497         int size;
2498
2499         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2500         tx_ring->tx_buffer_info = vzalloc(size);
2501         if (!tx_ring->tx_buffer_info)
2502                 goto err;
2503
2504         /* round up to nearest 4K */
2505         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2506         tx_ring->size = ALIGN(tx_ring->size, 4096);
2507
2508         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2509                                            &tx_ring->dma, GFP_KERNEL);
2510         if (!tx_ring->desc)
2511                 goto err;
2512
2513         tx_ring->next_to_use = 0;
2514         tx_ring->next_to_clean = 0;
2515         tx_ring->work_limit = tx_ring->count;
2516         return 0;
2517
2518 err:
2519         vfree(tx_ring->tx_buffer_info);
2520         tx_ring->tx_buffer_info = NULL;
2521         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2522                "descriptor ring\n");
2523         return -ENOMEM;
2524 }
2525
2526 /**
2527  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2528  * @adapter: board private structure
2529  *
2530  * If this function returns with an error, then it's possible one or
2531  * more of the rings is populated (while the rest are not).  It is the
2532  * callers duty to clean those orphaned rings.
2533  *
2534  * Return 0 on success, negative on failure
2535  **/
2536 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2537 {
2538         int i, err = 0;
2539
2540         for (i = 0; i < adapter->num_tx_queues; i++) {
2541                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2542                 if (!err)
2543                         continue;
2544                 hw_dbg(&adapter->hw,
2545                        "Allocation for Tx Queue %u failed\n", i);
2546                 break;
2547         }
2548
2549         return err;
2550 }
2551
2552 /**
2553  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2554  * @adapter: board private structure
2555  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2556  *
2557  * Returns 0 on success, negative on failure
2558  **/
2559 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2560                                struct ixgbevf_ring *rx_ring)
2561 {
2562         struct pci_dev *pdev = adapter->pdev;
2563         int size;
2564
2565         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2566         rx_ring->rx_buffer_info = vzalloc(size);
2567         if (!rx_ring->rx_buffer_info) {
2568                 hw_dbg(&adapter->hw,
2569                        "Unable to vmalloc buffer memory for "
2570                        "the receive descriptor ring\n");
2571                 goto alloc_failed;
2572         }
2573
2574         /* Round up to nearest 4K */
2575         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2576         rx_ring->size = ALIGN(rx_ring->size, 4096);
2577
2578         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2579                                            &rx_ring->dma, GFP_KERNEL);
2580
2581         if (!rx_ring->desc) {
2582                 hw_dbg(&adapter->hw,
2583                        "Unable to allocate memory for "
2584                        "the receive descriptor ring\n");
2585                 vfree(rx_ring->rx_buffer_info);
2586                 rx_ring->rx_buffer_info = NULL;
2587                 goto alloc_failed;
2588         }
2589
2590         rx_ring->next_to_clean = 0;
2591         rx_ring->next_to_use = 0;
2592
2593         return 0;
2594 alloc_failed:
2595         return -ENOMEM;
2596 }
2597
2598 /**
2599  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2600  * @adapter: board private structure
2601  *
2602  * If this function returns with an error, then it's possible one or
2603  * more of the rings is populated (while the rest are not).  It is the
2604  * callers duty to clean those orphaned rings.
2605  *
2606  * Return 0 on success, negative on failure
2607  **/
2608 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2609 {
2610         int i, err = 0;
2611
2612         for (i = 0; i < adapter->num_rx_queues; i++) {
2613                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2614                 if (!err)
2615                         continue;
2616                 hw_dbg(&adapter->hw,
2617                        "Allocation for Rx Queue %u failed\n", i);
2618                 break;
2619         }
2620         return err;
2621 }
2622
2623 /**
2624  * ixgbevf_free_rx_resources - Free Rx Resources
2625  * @adapter: board private structure
2626  * @rx_ring: ring to clean the resources from
2627  *
2628  * Free all receive software resources
2629  **/
2630 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2631                                struct ixgbevf_ring *rx_ring)
2632 {
2633         struct pci_dev *pdev = adapter->pdev;
2634
2635         ixgbevf_clean_rx_ring(adapter, rx_ring);
2636
2637         vfree(rx_ring->rx_buffer_info);
2638         rx_ring->rx_buffer_info = NULL;
2639
2640         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2641                           rx_ring->dma);
2642
2643         rx_ring->desc = NULL;
2644 }
2645
2646 /**
2647  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2648  * @adapter: board private structure
2649  *
2650  * Free all receive software resources
2651  **/
2652 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2653 {
2654         int i;
2655
2656         for (i = 0; i < adapter->num_rx_queues; i++)
2657                 if (adapter->rx_ring[i].desc)
2658                         ixgbevf_free_rx_resources(adapter,
2659                                                   &adapter->rx_ring[i]);
2660 }
2661
2662 /**
2663  * ixgbevf_open - Called when a network interface is made active
2664  * @netdev: network interface device structure
2665  *
2666  * Returns 0 on success, negative value on failure
2667  *
2668  * The open entry point is called when a network interface is made
2669  * active by the system (IFF_UP).  At this point all resources needed
2670  * for transmit and receive operations are allocated, the interrupt
2671  * handler is registered with the OS, the watchdog timer is started,
2672  * and the stack is notified that the interface is ready.
2673  **/
2674 static int ixgbevf_open(struct net_device *netdev)
2675 {
2676         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2677         struct ixgbe_hw *hw = &adapter->hw;
2678         int err;
2679
2680         /* disallow open during test */
2681         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2682                 return -EBUSY;
2683
2684         if (hw->adapter_stopped) {
2685                 ixgbevf_reset(adapter);
2686                 /* if adapter is still stopped then PF isn't up and
2687                  * the vf can't start. */
2688                 if (hw->adapter_stopped) {
2689                         err = IXGBE_ERR_MBX;
2690                         printk(KERN_ERR "Unable to start - perhaps the PF"
2691                                " Driver isn't up yet\n");
2692                         goto err_setup_reset;
2693                 }
2694         }
2695
2696         /* allocate transmit descriptors */
2697         err = ixgbevf_setup_all_tx_resources(adapter);
2698         if (err)
2699                 goto err_setup_tx;
2700
2701         /* allocate receive descriptors */
2702         err = ixgbevf_setup_all_rx_resources(adapter);
2703         if (err)
2704                 goto err_setup_rx;
2705
2706         ixgbevf_configure(adapter);
2707
2708         /*
2709          * Map the Tx/Rx rings to the vectors we were allotted.
2710          * if request_irq will be called in this function map_rings
2711          * must be called *before* up_complete
2712          */
2713         ixgbevf_map_rings_to_vectors(adapter);
2714
2715         err = ixgbevf_up_complete(adapter);
2716         if (err)
2717                 goto err_up;
2718
2719         /* clear any pending interrupts, may auto mask */
2720         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2721         err = ixgbevf_request_irq(adapter);
2722         if (err)
2723                 goto err_req_irq;
2724
2725         ixgbevf_irq_enable(adapter, true, true);
2726
2727         return 0;
2728
2729 err_req_irq:
2730         ixgbevf_down(adapter);
2731 err_up:
2732         ixgbevf_free_irq(adapter);
2733 err_setup_rx:
2734         ixgbevf_free_all_rx_resources(adapter);
2735 err_setup_tx:
2736         ixgbevf_free_all_tx_resources(adapter);
2737         ixgbevf_reset(adapter);
2738
2739 err_setup_reset:
2740
2741         return err;
2742 }
2743
2744 /**
2745  * ixgbevf_close - Disables a network interface
2746  * @netdev: network interface device structure
2747  *
2748  * Returns 0, this is not allowed to fail
2749  *
2750  * The close entry point is called when an interface is de-activated
2751  * by the OS.  The hardware is still under the drivers control, but
2752  * needs to be disabled.  A global MAC reset is issued to stop the
2753  * hardware, and all transmit and receive resources are freed.
2754  **/
2755 static int ixgbevf_close(struct net_device *netdev)
2756 {
2757         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2758
2759         ixgbevf_down(adapter);
2760         ixgbevf_free_irq(adapter);
2761
2762         ixgbevf_free_all_tx_resources(adapter);
2763         ixgbevf_free_all_rx_resources(adapter);
2764
2765         return 0;
2766 }
2767
2768 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2769                        struct ixgbevf_ring *tx_ring,
2770                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2771 {
2772         struct ixgbe_adv_tx_context_desc *context_desc;
2773         unsigned int i;
2774         int err;
2775         struct ixgbevf_tx_buffer *tx_buffer_info;
2776         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2777         u32 mss_l4len_idx, l4len;
2778
2779         if (skb_is_gso(skb)) {
2780                 if (skb_header_cloned(skb)) {
2781                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2782                         if (err)
2783                                 return err;
2784                 }
2785                 l4len = tcp_hdrlen(skb);
2786                 *hdr_len += l4len;
2787
2788                 if (skb->protocol == htons(ETH_P_IP)) {
2789                         struct iphdr *iph = ip_hdr(skb);
2790                         iph->tot_len = 0;
2791                         iph->check = 0;
2792                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2793                                                                  iph->daddr, 0,
2794                                                                  IPPROTO_TCP,
2795                                                                  0);
2796                         adapter->hw_tso_ctxt++;
2797                 } else if (skb_is_gso_v6(skb)) {
2798                         ipv6_hdr(skb)->payload_len = 0;
2799                         tcp_hdr(skb)->check =
2800                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2801                                              &ipv6_hdr(skb)->daddr,
2802                                              0, IPPROTO_TCP, 0);
2803                         adapter->hw_tso6_ctxt++;
2804                 }
2805
2806                 i = tx_ring->next_to_use;
2807
2808                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2809                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2810
2811                 /* VLAN MACLEN IPLEN */
2812                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2813                         vlan_macip_lens |=
2814                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2815                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2816                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2817                 *hdr_len += skb_network_offset(skb);
2818                 vlan_macip_lens |=
2819                         (skb_transport_header(skb) - skb_network_header(skb));
2820                 *hdr_len +=
2821                         (skb_transport_header(skb) - skb_network_header(skb));
2822                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2823                 context_desc->seqnum_seed = 0;
2824
2825                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2826                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2827                                     IXGBE_ADVTXD_DTYP_CTXT);
2828
2829                 if (skb->protocol == htons(ETH_P_IP))
2830                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2831                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2832                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2833
2834                 /* MSS L4LEN IDX */
2835                 mss_l4len_idx =
2836                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2837                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2838                 /* use index 1 for TSO */
2839                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2840                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2841
2842                 tx_buffer_info->time_stamp = jiffies;
2843                 tx_buffer_info->next_to_watch = i;
2844
2845                 i++;
2846                 if (i == tx_ring->count)
2847                         i = 0;
2848                 tx_ring->next_to_use = i;
2849
2850                 return true;
2851         }
2852
2853         return false;
2854 }
2855
2856 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2857                             struct ixgbevf_ring *tx_ring,
2858                             struct sk_buff *skb, u32 tx_flags)
2859 {
2860         struct ixgbe_adv_tx_context_desc *context_desc;
2861         unsigned int i;
2862         struct ixgbevf_tx_buffer *tx_buffer_info;
2863         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2864
2865         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2866             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2867                 i = tx_ring->next_to_use;
2868                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2869                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2870
2871                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2872                         vlan_macip_lens |= (tx_flags &
2873                                             IXGBE_TX_FLAGS_VLAN_MASK);
2874                 vlan_macip_lens |= (skb_network_offset(skb) <<
2875                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2876                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2877                         vlan_macip_lens |= (skb_transport_header(skb) -
2878                                             skb_network_header(skb));
2879
2880                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2881                 context_desc->seqnum_seed = 0;
2882
2883                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2884                                     IXGBE_ADVTXD_DTYP_CTXT);
2885
2886                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2887                         switch (skb->protocol) {
2888                         case __constant_htons(ETH_P_IP):
2889                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2890                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2891                                         type_tucmd_mlhl |=
2892                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2893                                 break;
2894                         case __constant_htons(ETH_P_IPV6):
2895                                 /* XXX what about other V6 headers?? */
2896                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2897                                         type_tucmd_mlhl |=
2898                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2899                                 break;
2900                         default:
2901                                 if (unlikely(net_ratelimit())) {
2902                                         printk(KERN_WARNING
2903                                                "partial checksum but "
2904                                                "proto=%x!\n",
2905                                                skb->protocol);
2906                                 }
2907                                 break;
2908                         }
2909                 }
2910
2911                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2912                 /* use index zero for tx checksum offload */
2913                 context_desc->mss_l4len_idx = 0;
2914
2915                 tx_buffer_info->time_stamp = jiffies;
2916                 tx_buffer_info->next_to_watch = i;
2917
2918                 adapter->hw_csum_tx_good++;
2919                 i++;
2920                 if (i == tx_ring->count)
2921                         i = 0;
2922                 tx_ring->next_to_use = i;
2923
2924                 return true;
2925         }
2926
2927         return false;
2928 }
2929
2930 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2931                           struct ixgbevf_ring *tx_ring,
2932                           struct sk_buff *skb, u32 tx_flags,
2933                           unsigned int first)
2934 {
2935         struct pci_dev *pdev = adapter->pdev;
2936         struct ixgbevf_tx_buffer *tx_buffer_info;
2937         unsigned int len;
2938         unsigned int total = skb->len;
2939         unsigned int offset = 0, size;
2940         int count = 0;
2941         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2942         unsigned int f;
2943         int i;
2944
2945         i = tx_ring->next_to_use;
2946
2947         len = min(skb_headlen(skb), total);
2948         while (len) {
2949                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2950                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2951
2952                 tx_buffer_info->length = size;
2953                 tx_buffer_info->mapped_as_page = false;
2954                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2955                                                      skb->data + offset,
2956                                                      size, DMA_TO_DEVICE);
2957                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2958                         goto dma_error;
2959                 tx_buffer_info->time_stamp = jiffies;
2960                 tx_buffer_info->next_to_watch = i;
2961
2962                 len -= size;
2963                 total -= size;
2964                 offset += size;
2965                 count++;
2966                 i++;
2967                 if (i == tx_ring->count)
2968                         i = 0;
2969         }
2970
2971         for (f = 0; f < nr_frags; f++) {
2972                 struct skb_frag_struct *frag;
2973
2974                 frag = &skb_shinfo(skb)->frags[f];
2975                 len = min((unsigned int)frag->size, total);
2976                 offset = frag->page_offset;
2977
2978                 while (len) {
2979                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2980                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2981
2982                         tx_buffer_info->length = size;
2983                         tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2984                                                            frag->page,
2985                                                            offset,
2986                                                            size,
2987                                                            DMA_TO_DEVICE);
2988                         tx_buffer_info->mapped_as_page = true;
2989                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2990                                 goto dma_error;
2991                         tx_buffer_info->time_stamp = jiffies;
2992                         tx_buffer_info->next_to_watch = i;
2993
2994                         len -= size;
2995                         total -= size;
2996                         offset += size;
2997                         count++;
2998                         i++;
2999                         if (i == tx_ring->count)
3000                                 i = 0;
3001                 }
3002                 if (total == 0)
3003                         break;
3004         }
3005
3006         if (i == 0)
3007                 i = tx_ring->count - 1;
3008         else
3009                 i = i - 1;
3010         tx_ring->tx_buffer_info[i].skb = skb;
3011         tx_ring->tx_buffer_info[first].next_to_watch = i;
3012
3013         return count;
3014
3015 dma_error:
3016         dev_err(&pdev->dev, "TX DMA map failed\n");
3017
3018         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3019         tx_buffer_info->dma = 0;
3020         tx_buffer_info->time_stamp = 0;
3021         tx_buffer_info->next_to_watch = 0;
3022         count--;
3023
3024         /* clear timestamp and dma mappings for remaining portion of packet */
3025         while (count >= 0) {
3026                 count--;
3027                 i--;
3028                 if (i < 0)
3029                         i += tx_ring->count;
3030                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3031                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3032         }
3033
3034         return count;
3035 }
3036
3037 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3038                              struct ixgbevf_ring *tx_ring, int tx_flags,
3039                              int count, u32 paylen, u8 hdr_len)
3040 {
3041         union ixgbe_adv_tx_desc *tx_desc = NULL;
3042         struct ixgbevf_tx_buffer *tx_buffer_info;
3043         u32 olinfo_status = 0, cmd_type_len = 0;
3044         unsigned int i;
3045
3046         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3047
3048         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3049
3050         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3051
3052         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3053                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3054
3055         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3056                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3057
3058                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3059                         IXGBE_ADVTXD_POPTS_SHIFT;
3060
3061                 /* use index 1 context for tso */
3062                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3063                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3064                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3065                                 IXGBE_ADVTXD_POPTS_SHIFT;
3066
3067         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3068                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3069                         IXGBE_ADVTXD_POPTS_SHIFT;
3070
3071         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3072
3073         i = tx_ring->next_to_use;
3074         while (count--) {
3075                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3076                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3077                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3078                 tx_desc->read.cmd_type_len =
3079                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3080                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3081                 i++;
3082                 if (i == tx_ring->count)
3083                         i = 0;
3084         }
3085
3086         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3087
3088         /*
3089          * Force memory writes to complete before letting h/w
3090          * know there are new descriptors to fetch.  (Only
3091          * applicable for weak-ordered memory model archs,
3092          * such as IA-64).
3093          */
3094         wmb();
3095
3096         tx_ring->next_to_use = i;
3097         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3098 }
3099
3100 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3101                                    struct ixgbevf_ring *tx_ring, int size)
3102 {
3103         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3104
3105         netif_stop_subqueue(netdev, tx_ring->queue_index);
3106         /* Herbert's original patch had:
3107          *  smp_mb__after_netif_stop_queue();
3108          * but since that doesn't exist yet, just open code it. */
3109         smp_mb();
3110
3111         /* We need to check again in a case another CPU has just
3112          * made room available. */
3113         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3114                 return -EBUSY;
3115
3116         /* A reprieve! - use start_queue because it doesn't call schedule */
3117         netif_start_subqueue(netdev, tx_ring->queue_index);
3118         ++adapter->restart_queue;
3119         return 0;
3120 }
3121
3122 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3123                                  struct ixgbevf_ring *tx_ring, int size)
3124 {
3125         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3126                 return 0;
3127         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3128 }
3129
3130 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3131 {
3132         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3133         struct ixgbevf_ring *tx_ring;
3134         unsigned int first;
3135         unsigned int tx_flags = 0;
3136         u8 hdr_len = 0;
3137         int r_idx = 0, tso;
3138         int count = 0;
3139
3140         unsigned int f;
3141
3142         tx_ring = &adapter->tx_ring[r_idx];
3143
3144         if (vlan_tx_tag_present(skb)) {
3145                 tx_flags |= vlan_tx_tag_get(skb);
3146                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3147                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3148         }
3149
3150         /* four things can cause us to need a context descriptor */
3151         if (skb_is_gso(skb) ||
3152             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3153             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3154                 count++;
3155
3156         count += TXD_USE_COUNT(skb_headlen(skb));
3157         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3158                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3159
3160         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3161                 adapter->tx_busy++;
3162                 return NETDEV_TX_BUSY;
3163         }
3164
3165         first = tx_ring->next_to_use;
3166
3167         if (skb->protocol == htons(ETH_P_IP))
3168                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3169         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3170         if (tso < 0) {
3171                 dev_kfree_skb_any(skb);
3172                 return NETDEV_TX_OK;
3173         }
3174
3175         if (tso)
3176                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3177         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3178                  (skb->ip_summed == CHECKSUM_PARTIAL))
3179                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3180
3181         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3182                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3183                          skb->len, hdr_len);
3184
3185         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3186
3187         return NETDEV_TX_OK;
3188 }
3189
3190 /**
3191  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3192  * @netdev: network interface device structure
3193  * @p: pointer to an address structure
3194  *
3195  * Returns 0 on success, negative on failure
3196  **/
3197 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3198 {
3199         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3200         struct ixgbe_hw *hw = &adapter->hw;
3201         struct sockaddr *addr = p;
3202
3203         if (!is_valid_ether_addr(addr->sa_data))
3204                 return -EADDRNOTAVAIL;
3205
3206         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3207         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3208
3209         if (hw->mac.ops.set_rar)
3210                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3211
3212         return 0;
3213 }
3214
3215 /**
3216  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3217  * @netdev: network interface device structure
3218  * @new_mtu: new value for maximum frame size
3219  *
3220  * Returns 0 on success, negative on failure
3221  **/
3222 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3223 {
3224         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3225         struct ixgbe_hw *hw = &adapter->hw;
3226         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3227         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3228         u32 msg[2];
3229
3230         if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3231                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3232
3233         /* MTU < 68 is an error and causes problems on some kernels */
3234         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3235                 return -EINVAL;
3236
3237         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3238                netdev->mtu, new_mtu);
3239         /* must set new MTU before calling down or up */
3240         netdev->mtu = new_mtu;
3241
3242         msg[0] = IXGBE_VF_SET_LPE;
3243         msg[1] = max_frame;
3244         hw->mbx.ops.write_posted(hw, msg, 2);
3245
3246         if (netif_running(netdev))
3247                 ixgbevf_reinit_locked(adapter);
3248
3249         return 0;
3250 }
3251
3252 static void ixgbevf_shutdown(struct pci_dev *pdev)
3253 {
3254         struct net_device *netdev = pci_get_drvdata(pdev);
3255         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3256
3257         netif_device_detach(netdev);
3258
3259         if (netif_running(netdev)) {
3260                 ixgbevf_down(adapter);
3261                 ixgbevf_free_irq(adapter);
3262                 ixgbevf_free_all_tx_resources(adapter);
3263                 ixgbevf_free_all_rx_resources(adapter);
3264         }
3265
3266 #ifdef CONFIG_PM
3267         pci_save_state(pdev);
3268 #endif
3269
3270         pci_disable_device(pdev);
3271 }
3272
3273 static const struct net_device_ops ixgbe_netdev_ops = {
3274         .ndo_open               = &ixgbevf_open,
3275         .ndo_stop               = &ixgbevf_close,
3276         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3277         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3278         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3279         .ndo_validate_addr      = eth_validate_addr,
3280         .ndo_set_mac_address    = &ixgbevf_set_mac,
3281         .ndo_change_mtu         = &ixgbevf_change_mtu,
3282         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3283         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3284         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3285         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3286 };
3287
3288 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3289 {
3290         struct ixgbevf_adapter *adapter;
3291         adapter = netdev_priv(dev);
3292         dev->netdev_ops = &ixgbe_netdev_ops;
3293         ixgbevf_set_ethtool_ops(dev);
3294         dev->watchdog_timeo = 5 * HZ;
3295 }
3296
3297 /**
3298  * ixgbevf_probe - Device Initialization Routine
3299  * @pdev: PCI device information struct
3300  * @ent: entry in ixgbevf_pci_tbl
3301  *
3302  * Returns 0 on success, negative on failure
3303  *
3304  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3305  * The OS initialization, configuring of the adapter private structure,
3306  * and a hardware reset occur.
3307  **/
3308 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3309                                    const struct pci_device_id *ent)
3310 {
3311         struct net_device *netdev;
3312         struct ixgbevf_adapter *adapter = NULL;
3313         struct ixgbe_hw *hw = NULL;
3314         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3315         static int cards_found;
3316         int err, pci_using_dac;
3317
3318         err = pci_enable_device(pdev);
3319         if (err)
3320                 return err;
3321
3322         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3323             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3324                 pci_using_dac = 1;
3325         } else {
3326                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3327                 if (err) {
3328                         err = dma_set_coherent_mask(&pdev->dev,
3329                                                     DMA_BIT_MASK(32));
3330                         if (err) {
3331                                 dev_err(&pdev->dev, "No usable DMA "
3332                                         "configuration, aborting\n");
3333                                 goto err_dma;
3334                         }
3335                 }
3336                 pci_using_dac = 0;
3337         }
3338
3339         err = pci_request_regions(pdev, ixgbevf_driver_name);
3340         if (err) {
3341                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3342                 goto err_pci_reg;
3343         }
3344
3345         pci_set_master(pdev);
3346
3347 #ifdef HAVE_TX_MQ
3348         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3349                                    MAX_TX_QUEUES);
3350 #else
3351         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3352 #endif
3353         if (!netdev) {
3354                 err = -ENOMEM;
3355                 goto err_alloc_etherdev;
3356         }
3357
3358         SET_NETDEV_DEV(netdev, &pdev->dev);
3359
3360         pci_set_drvdata(pdev, netdev);
3361         adapter = netdev_priv(netdev);
3362
3363         adapter->netdev = netdev;
3364         adapter->pdev = pdev;
3365         hw = &adapter->hw;
3366         hw->back = adapter;
3367         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3368
3369         /*
3370          * call save state here in standalone driver because it relies on
3371          * adapter struct to exist, and needs to call netdev_priv
3372          */
3373         pci_save_state(pdev);
3374
3375         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3376                               pci_resource_len(pdev, 0));
3377         if (!hw->hw_addr) {
3378                 err = -EIO;
3379                 goto err_ioremap;
3380         }
3381
3382         ixgbevf_assign_netdev_ops(netdev);
3383
3384         adapter->bd_number = cards_found;
3385
3386         /* Setup hw api */
3387         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3388         hw->mac.type  = ii->mac;
3389
3390         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3391                sizeof(struct ixgbe_mac_operations));
3392
3393         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3394         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3395         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3396
3397         /* setup the private structure */
3398         err = ixgbevf_sw_init(adapter);
3399
3400         netdev->features = NETIF_F_SG |
3401                            NETIF_F_IP_CSUM |
3402                            NETIF_F_HW_VLAN_TX |
3403                            NETIF_F_HW_VLAN_RX |
3404                            NETIF_F_HW_VLAN_FILTER;
3405
3406         netdev->features |= NETIF_F_IPV6_CSUM;
3407         netdev->features |= NETIF_F_TSO;
3408         netdev->features |= NETIF_F_TSO6;
3409         netdev->features |= NETIF_F_GRO;
3410         netdev->vlan_features |= NETIF_F_TSO;
3411         netdev->vlan_features |= NETIF_F_TSO6;
3412         netdev->vlan_features |= NETIF_F_IP_CSUM;
3413         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3414         netdev->vlan_features |= NETIF_F_SG;
3415
3416         if (pci_using_dac)
3417                 netdev->features |= NETIF_F_HIGHDMA;
3418
3419         /* The HW MAC address was set and/or determined in sw_init */
3420         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3421         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3422
3423         if (!is_valid_ether_addr(netdev->dev_addr)) {
3424                 printk(KERN_ERR "invalid MAC address\n");
3425                 err = -EIO;
3426                 goto err_sw_init;
3427         }
3428
3429         init_timer(&adapter->watchdog_timer);
3430         adapter->watchdog_timer.function = ixgbevf_watchdog;
3431         adapter->watchdog_timer.data = (unsigned long)adapter;
3432
3433         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3434         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3435
3436         err = ixgbevf_init_interrupt_scheme(adapter);
3437         if (err)
3438                 goto err_sw_init;
3439
3440         /* pick up the PCI bus settings for reporting later */
3441         if (hw->mac.ops.get_bus_info)
3442                 hw->mac.ops.get_bus_info(hw);
3443
3444         strcpy(netdev->name, "eth%d");
3445
3446         err = register_netdev(netdev);
3447         if (err)
3448                 goto err_register;
3449
3450         adapter->netdev_registered = true;
3451
3452         netif_carrier_off(netdev);
3453
3454         ixgbevf_init_last_counter_stats(adapter);
3455
3456         /* print the MAC address */
3457         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3458                netdev->dev_addr[0],
3459                netdev->dev_addr[1],
3460                netdev->dev_addr[2],
3461                netdev->dev_addr[3],
3462                netdev->dev_addr[4],
3463                netdev->dev_addr[5]);
3464
3465         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3466
3467         hw_dbg(hw, "LRO is disabled\n");
3468
3469         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3470         cards_found++;
3471         return 0;
3472
3473 err_register:
3474 err_sw_init:
3475         ixgbevf_reset_interrupt_capability(adapter);
3476         iounmap(hw->hw_addr);
3477 err_ioremap:
3478         free_netdev(netdev);
3479 err_alloc_etherdev:
3480         pci_release_regions(pdev);
3481 err_pci_reg:
3482 err_dma:
3483         pci_disable_device(pdev);
3484         return err;
3485 }
3486
3487 /**
3488  * ixgbevf_remove - Device Removal Routine
3489  * @pdev: PCI device information struct
3490  *
3491  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3492  * that it should release a PCI device.  The could be caused by a
3493  * Hot-Plug event, or because the driver is going to be removed from
3494  * memory.
3495  **/
3496 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3497 {
3498         struct net_device *netdev = pci_get_drvdata(pdev);
3499         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3500
3501         set_bit(__IXGBEVF_DOWN, &adapter->state);
3502
3503         del_timer_sync(&adapter->watchdog_timer);
3504
3505         cancel_work_sync(&adapter->reset_task);
3506         cancel_work_sync(&adapter->watchdog_task);
3507
3508         if (adapter->netdev_registered) {
3509                 unregister_netdev(netdev);
3510                 adapter->netdev_registered = false;
3511         }
3512
3513         ixgbevf_reset_interrupt_capability(adapter);
3514
3515         iounmap(adapter->hw.hw_addr);
3516         pci_release_regions(pdev);
3517
3518         hw_dbg(&adapter->hw, "Remove complete\n");
3519
3520         kfree(adapter->tx_ring);
3521         kfree(adapter->rx_ring);
3522
3523         free_netdev(netdev);
3524
3525         pci_disable_device(pdev);
3526 }
3527
3528 static struct pci_driver ixgbevf_driver = {
3529         .name     = ixgbevf_driver_name,
3530         .id_table = ixgbevf_pci_tbl,
3531         .probe    = ixgbevf_probe,
3532         .remove   = __devexit_p(ixgbevf_remove),
3533         .shutdown = ixgbevf_shutdown,
3534 };
3535
3536 /**
3537  * ixgbevf_init_module - Driver Registration Routine
3538  *
3539  * ixgbevf_init_module is the first routine called when the driver is
3540  * loaded. All it does is register with the PCI subsystem.
3541  **/
3542 static int __init ixgbevf_init_module(void)
3543 {
3544         int ret;
3545         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3546                ixgbevf_driver_version);
3547
3548         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3549
3550         ret = pci_register_driver(&ixgbevf_driver);
3551         return ret;
3552 }
3553
3554 module_init(ixgbevf_init_module);
3555
3556 /**
3557  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3558  *
3559  * ixgbevf_exit_module is called just before the driver is removed
3560  * from memory.
3561  **/
3562 static void __exit ixgbevf_exit_module(void)
3563 {
3564         pci_unregister_driver(&ixgbevf_driver);
3565 }
3566
3567 #ifdef DEBUG
3568 /**
3569  * ixgbevf_get_hw_dev_name - return device name string
3570  * used by hardware layer to print debugging information
3571  **/
3572 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3573 {
3574         struct ixgbevf_adapter *adapter = hw->back;
3575         return adapter->netdev->name;
3576 }
3577
3578 #endif
3579 module_exit(ixgbevf_exit_module);
3580
3581 /* ixgbevf_main.c */