Merge tag 'linux-kselftest-5.7-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / drivers / net / ipa / ipa_endpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24
25 #define atomic_dec_not_zero(v)  atomic_add_unless((v), -1, 0)
26
27 #define IPA_REPLENISH_BATCH     16
28
29 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
30 #define IPA_RX_BUFFER_SIZE      8192    /* PAGE_SIZE > 4096 wastes a LOT */
31
32 /* The amount of RX buffer space consumed by standard skb overhead */
33 #define IPA_RX_BUFFER_OVERHEAD  (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
34
35 #define IPA_ENDPOINT_STOP_RX_RETRIES            10
36 #define IPA_ENDPOINT_STOP_RX_SIZE               1       /* bytes */
37
38 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX       3
39 #define IPA_AGGR_TIME_LIMIT_DEFAULT             1000    /* microseconds */
40
41 #define ENDPOINT_STOP_DMA_TIMEOUT               15      /* milliseconds */
42
43 /** enum ipa_status_opcode - status element opcode hardware values */
44 enum ipa_status_opcode {
45         IPA_STATUS_OPCODE_PACKET                = 0x01,
46         IPA_STATUS_OPCODE_NEW_FRAG_RULE         = 0x02,
47         IPA_STATUS_OPCODE_DROPPED_PACKET        = 0x04,
48         IPA_STATUS_OPCODE_SUSPENDED_PACKET      = 0x08,
49         IPA_STATUS_OPCODE_LOG                   = 0x10,
50         IPA_STATUS_OPCODE_DCMP                  = 0x20,
51         IPA_STATUS_OPCODE_PACKET_2ND_PASS       = 0x40,
52 };
53
54 /** enum ipa_status_exception - status element exception type */
55 enum ipa_status_exception {
56         /* 0 means no exception */
57         IPA_STATUS_EXCEPTION_DEAGGR             = 0x01,
58         IPA_STATUS_EXCEPTION_IPTYPE             = 0x04,
59         IPA_STATUS_EXCEPTION_PACKET_LENGTH      = 0x08,
60         IPA_STATUS_EXCEPTION_FRAG_RULE_MISS     = 0x10,
61         IPA_STATUS_EXCEPTION_SW_FILT            = 0x20,
62         /* The meaning of the next value depends on whether the IP version */
63         IPA_STATUS_EXCEPTION_NAT                = 0x40,         /* IPv4 */
64         IPA_STATUS_EXCEPTION_IPV6CT             = IPA_STATUS_EXCEPTION_NAT,
65 };
66
67 /* Status element provided by hardware */
68 struct ipa_status {
69         u8 opcode;              /* enum ipa_status_opcode */
70         u8 exception;           /* enum ipa_status_exception */
71         __le16 mask;
72         __le16 pkt_len;
73         u8 endp_src_idx;
74         u8 endp_dst_idx;
75         __le32 metadata;
76         __le32 flags1;
77         __le64 flags2;
78         __le32 flags3;
79         __le32 flags4;
80 };
81
82 /* Field masks for struct ipa_status structure fields */
83
84 #define IPA_STATUS_SRC_IDX_FMASK                GENMASK(4, 0)
85
86 #define IPA_STATUS_DST_IDX_FMASK                GENMASK(4, 0)
87
88 #define IPA_STATUS_FLAGS1_FLT_LOCAL_FMASK       GENMASK(0, 0)
89 #define IPA_STATUS_FLAGS1_FLT_HASH_FMASK        GENMASK(1, 1)
90 #define IPA_STATUS_FLAGS1_FLT_GLOBAL_FMASK      GENMASK(2, 2)
91 #define IPA_STATUS_FLAGS1_FLT_RET_HDR_FMASK     GENMASK(3, 3)
92 #define IPA_STATUS_FLAGS1_FLT_RULE_ID_FMASK     GENMASK(13, 4)
93 #define IPA_STATUS_FLAGS1_RT_LOCAL_FMASK        GENMASK(14, 14)
94 #define IPA_STATUS_FLAGS1_RT_HASH_FMASK         GENMASK(15, 15)
95 #define IPA_STATUS_FLAGS1_UCP_FMASK             GENMASK(16, 16)
96 #define IPA_STATUS_FLAGS1_RT_TBL_IDX_FMASK      GENMASK(21, 17)
97 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK      GENMASK(31, 22)
98
99 #define IPA_STATUS_FLAGS2_NAT_HIT_FMASK         GENMASK_ULL(0, 0)
100 #define IPA_STATUS_FLAGS2_NAT_ENTRY_IDX_FMASK   GENMASK_ULL(13, 1)
101 #define IPA_STATUS_FLAGS2_NAT_TYPE_FMASK        GENMASK_ULL(15, 14)
102 #define IPA_STATUS_FLAGS2_TAG_INFO_FMASK        GENMASK_ULL(63, 16)
103
104 #define IPA_STATUS_FLAGS3_SEQ_NUM_FMASK         GENMASK(7, 0)
105 #define IPA_STATUS_FLAGS3_TOD_CTR_FMASK         GENMASK(31, 8)
106
107 #define IPA_STATUS_FLAGS4_HDR_LOCAL_FMASK       GENMASK(0, 0)
108 #define IPA_STATUS_FLAGS4_HDR_OFFSET_FMASK      GENMASK(10, 1)
109 #define IPA_STATUS_FLAGS4_FRAG_HIT_FMASK        GENMASK(11, 11)
110 #define IPA_STATUS_FLAGS4_FRAG_RULE_FMASK       GENMASK(15, 12)
111 #define IPA_STATUS_FLAGS4_HW_SPECIFIC_FMASK     GENMASK(31, 16)
112
113 #ifdef IPA_VALIDATE
114
115 static void ipa_endpoint_validate_build(void)
116 {
117         /* The aggregation byte limit defines the point at which an
118          * aggregation window will close.  It is programmed into the
119          * IPA hardware as a number of KB.  We don't use "hard byte
120          * limit" aggregation, which means that we need to supply
121          * enough space in a receive buffer to hold a complete MTU
122          * plus normal skb overhead *after* that aggregation byte
123          * limit has been crossed.
124          *
125          * This check just ensures we don't define a receive buffer
126          * size that would exceed what we can represent in the field
127          * that is used to program its size.
128          */
129         BUILD_BUG_ON(IPA_RX_BUFFER_SIZE >
130                      field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K +
131                      IPA_MTU + IPA_RX_BUFFER_OVERHEAD);
132
133         /* I honestly don't know where this requirement comes from.  But
134          * it holds, and if we someday need to loosen the constraint we
135          * can try to track it down.
136          */
137         BUILD_BUG_ON(sizeof(struct ipa_status) % 4);
138 }
139
140 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
141                             const struct ipa_gsi_endpoint_data *all_data,
142                             const struct ipa_gsi_endpoint_data *data)
143 {
144         const struct ipa_gsi_endpoint_data *other_data;
145         struct device *dev = &ipa->pdev->dev;
146         enum ipa_endpoint_name other_name;
147
148         if (ipa_gsi_endpoint_data_empty(data))
149                 return true;
150
151         if (!data->toward_ipa) {
152                 if (data->endpoint.filter_support) {
153                         dev_err(dev, "filtering not supported for "
154                                         "RX endpoint %u\n",
155                                 data->endpoint_id);
156                         return false;
157                 }
158
159                 return true;    /* Nothing more to check for RX */
160         }
161
162         if (data->endpoint.config.status_enable) {
163                 other_name = data->endpoint.config.tx.status_endpoint;
164                 if (other_name >= count) {
165                         dev_err(dev, "status endpoint name %u out of range "
166                                         "for endpoint %u\n",
167                                 other_name, data->endpoint_id);
168                         return false;
169                 }
170
171                 /* Status endpoint must be defined... */
172                 other_data = &all_data[other_name];
173                 if (ipa_gsi_endpoint_data_empty(other_data)) {
174                         dev_err(dev, "DMA endpoint name %u undefined "
175                                         "for endpoint %u\n",
176                                 other_name, data->endpoint_id);
177                         return false;
178                 }
179
180                 /* ...and has to be an RX endpoint... */
181                 if (other_data->toward_ipa) {
182                         dev_err(dev,
183                                 "status endpoint for endpoint %u not RX\n",
184                                 data->endpoint_id);
185                         return false;
186                 }
187
188                 /* ...and if it's to be an AP endpoint... */
189                 if (other_data->ee_id == GSI_EE_AP) {
190                         /* ...make sure it has status enabled. */
191                         if (!other_data->endpoint.config.status_enable) {
192                                 dev_err(dev,
193                                         "status not enabled for endpoint %u\n",
194                                         other_data->endpoint_id);
195                                 return false;
196                         }
197                 }
198         }
199
200         if (data->endpoint.config.dma_mode) {
201                 other_name = data->endpoint.config.dma_endpoint;
202                 if (other_name >= count) {
203                         dev_err(dev, "DMA endpoint name %u out of range "
204                                         "for endpoint %u\n",
205                                 other_name, data->endpoint_id);
206                         return false;
207                 }
208
209                 other_data = &all_data[other_name];
210                 if (ipa_gsi_endpoint_data_empty(other_data)) {
211                         dev_err(dev, "DMA endpoint name %u undefined "
212                                         "for endpoint %u\n",
213                                 other_name, data->endpoint_id);
214                         return false;
215                 }
216         }
217
218         return true;
219 }
220
221 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
222                                     const struct ipa_gsi_endpoint_data *data)
223 {
224         const struct ipa_gsi_endpoint_data *dp = data;
225         struct device *dev = &ipa->pdev->dev;
226         enum ipa_endpoint_name name;
227
228         ipa_endpoint_validate_build();
229
230         if (count > IPA_ENDPOINT_COUNT) {
231                 dev_err(dev, "too many endpoints specified (%u > %u)\n",
232                         count, IPA_ENDPOINT_COUNT);
233                 return false;
234         }
235
236         /* Make sure needed endpoints have defined data */
237         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
238                 dev_err(dev, "command TX endpoint not defined\n");
239                 return false;
240         }
241         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
242                 dev_err(dev, "LAN RX endpoint not defined\n");
243                 return false;
244         }
245         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
246                 dev_err(dev, "AP->modem TX endpoint not defined\n");
247                 return false;
248         }
249         if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
250                 dev_err(dev, "AP<-modem RX endpoint not defined\n");
251                 return false;
252         }
253
254         for (name = 0; name < count; name++, dp++)
255                 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
256                         return false;
257
258         return true;
259 }
260
261 #else /* !IPA_VALIDATE */
262
263 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
264                                     const struct ipa_gsi_endpoint_data *data)
265 {
266         return true;
267 }
268
269 #endif /* !IPA_VALIDATE */
270
271 /* Allocate a transaction to use on a non-command endpoint */
272 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
273                                                   u32 tre_count)
274 {
275         struct gsi *gsi = &endpoint->ipa->gsi;
276         u32 channel_id = endpoint->channel_id;
277         enum dma_data_direction direction;
278
279         direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
280
281         return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
282 }
283
284 /* suspend_delay represents suspend for RX, delay for TX endpoints.
285  * Note that suspend is not supported starting with IPA v4.0.
286  */
287 static int
288 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
289 {
290         u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
291         struct ipa *ipa = endpoint->ipa;
292         u32 mask;
293         u32 val;
294
295         /* assert(ipa->version == IPA_VERSION_3_5_1 */
296         mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
297
298         val = ioread32(ipa->reg_virt + offset);
299         if (suspend_delay == !!(val & mask))
300                 return -EALREADY;       /* Already set to desired state */
301
302         val ^= mask;
303         iowrite32(val, ipa->reg_virt + offset);
304
305         return 0;
306 }
307
308 /* Enable or disable delay or suspend mode on all modem endpoints */
309 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
310 {
311         bool support_suspend;
312         u32 endpoint_id;
313
314         /* DELAY mode doesn't work right on IPA v4.2 */
315         if (ipa->version == IPA_VERSION_4_2)
316                 return;
317
318         /* Only IPA v3.5.1 supports SUSPEND mode on RX endpoints */
319         support_suspend = ipa->version == IPA_VERSION_3_5_1;
320
321         for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
322                 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
323
324                 if (endpoint->ee_id != GSI_EE_MODEM)
325                         continue;
326
327                 /* Set TX delay mode, or for IPA v3.5.1 RX suspend mode */
328                 if (endpoint->toward_ipa || support_suspend)
329                         (void)ipa_endpoint_init_ctrl(endpoint, enable);
330         }
331 }
332
333 /* Reset all modem endpoints to use the default exception endpoint */
334 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
335 {
336         u32 initialized = ipa->initialized;
337         struct gsi_trans *trans;
338         u32 count;
339
340         /* We need one command per modem TX endpoint.  We can get an upper
341          * bound on that by assuming all initialized endpoints are modem->IPA.
342          * That won't happen, and we could be more precise, but this is fine
343          * for now.  We need to end the transactio with a "tag process."
344          */
345         count = hweight32(initialized) + ipa_cmd_tag_process_count();
346         trans = ipa_cmd_trans_alloc(ipa, count);
347         if (!trans) {
348                 dev_err(&ipa->pdev->dev,
349                         "no transaction to reset modem exception endpoints\n");
350                 return -EBUSY;
351         }
352
353         while (initialized) {
354                 u32 endpoint_id = __ffs(initialized);
355                 struct ipa_endpoint *endpoint;
356                 u32 offset;
357
358                 initialized ^= BIT(endpoint_id);
359
360                 /* We only reset modem TX endpoints */
361                 endpoint = &ipa->endpoint[endpoint_id];
362                 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
363                         continue;
364
365                 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
366
367                 /* Value written is 0, and all bits are updated.  That
368                  * means status is disabled on the endpoint, and as a
369                  * result all other fields in the register are ignored.
370                  */
371                 ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
372         }
373
374         ipa_cmd_tag_process_add(trans);
375
376         /* XXX This should have a 1 second timeout */
377         gsi_trans_commit_wait(trans);
378
379         return 0;
380 }
381
382 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
383 {
384         u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
385         u32 val = 0;
386
387         /* FRAG_OFFLOAD_EN is 0 */
388         if (endpoint->data->checksum) {
389                 if (endpoint->toward_ipa) {
390                         u32 checksum_offset;
391
392                         val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
393                                                CS_OFFLOAD_EN_FMASK);
394                         /* Checksum header offset is in 4-byte units */
395                         checksum_offset = sizeof(struct rmnet_map_header);
396                         checksum_offset /= sizeof(u32);
397                         val |= u32_encode_bits(checksum_offset,
398                                                CS_METADATA_HDR_OFFSET_FMASK);
399                 } else {
400                         val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
401                                                CS_OFFLOAD_EN_FMASK);
402                 }
403         } else {
404                 val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
405                                        CS_OFFLOAD_EN_FMASK);
406         }
407         /* CS_GEN_QMB_MASTER_SEL is 0 */
408
409         iowrite32(val, endpoint->ipa->reg_virt + offset);
410 }
411
412 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
413 {
414         u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
415         u32 val = 0;
416
417         if (endpoint->data->qmap) {
418                 size_t header_size = sizeof(struct rmnet_map_header);
419
420                 if (endpoint->toward_ipa && endpoint->data->checksum)
421                         header_size += sizeof(struct rmnet_map_ul_csum_header);
422
423                 val |= u32_encode_bits(header_size, HDR_LEN_FMASK);
424                 /* metadata is the 4 byte rmnet_map header itself */
425                 val |= HDR_OFST_METADATA_VALID_FMASK;
426                 val |= u32_encode_bits(0, HDR_OFST_METADATA_FMASK);
427                 /* HDR_ADDITIONAL_CONST_LEN is 0; (IPA->AP only) */
428                 if (!endpoint->toward_ipa) {
429                         u32 size_offset = offsetof(struct rmnet_map_header,
430                                                    pkt_len);
431
432                         val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
433                         val |= u32_encode_bits(size_offset,
434                                                HDR_OFST_PKT_SIZE_FMASK);
435                 }
436                 /* HDR_A5_MUX is 0 */
437                 /* HDR_LEN_INC_DEAGG_HDR is 0 */
438                 /* HDR_METADATA_REG_VALID is 0; (AP->IPA only) */
439         }
440
441         iowrite32(val, endpoint->ipa->reg_virt + offset);
442 }
443
444 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
445 {
446         u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
447         u32 pad_align = endpoint->data->rx.pad_align;
448         u32 val = 0;
449
450         val |= HDR_ENDIANNESS_FMASK;            /* big endian */
451         val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
452         /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
453         /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
454         /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
455         if (!endpoint->toward_ipa)
456                 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
457
458         iowrite32(val, endpoint->ipa->reg_virt + offset);
459 }
460
461 /**
462  * Generate a metadata mask value that will select only the mux_id
463  * field in an rmnet_map header structure.  The mux_id is at offset
464  * 1 byte from the beginning of the structure, but the metadata
465  * value is treated as a 4-byte unit.  So this mask must be computed
466  * with endianness in mind.  Note that ipa_endpoint_init_hdr_metadata_mask()
467  * will convert this value to the proper byte order.
468  *
469  * Marked __always_inline because this is really computing a
470  * constant value.
471  */
472 static __always_inline __be32 ipa_rmnet_mux_id_metadata_mask(void)
473 {
474         size_t mux_id_offset = offsetof(struct rmnet_map_header, mux_id);
475         u32 mux_id_mask = 0;
476         u8 *bytes;
477
478         bytes = (u8 *)&mux_id_mask;
479         bytes[mux_id_offset] = 0xff;    /* mux_id is 1 byte */
480
481         return cpu_to_be32(mux_id_mask);
482 }
483
484 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
485 {
486         u32 endpoint_id = endpoint->endpoint_id;
487         u32 val = 0;
488         u32 offset;
489
490         offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
491
492         if (!endpoint->toward_ipa && endpoint->data->qmap)
493                 val = ipa_rmnet_mux_id_metadata_mask();
494
495         iowrite32(val, endpoint->ipa->reg_virt + offset);
496 }
497
498 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
499 {
500         u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
501         u32 val;
502
503         if (endpoint->toward_ipa && endpoint->data->dma_mode) {
504                 enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
505                 u32 dma_endpoint_id;
506
507                 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
508
509                 val = u32_encode_bits(IPA_DMA, MODE_FMASK);
510                 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
511         } else {
512                 val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
513         }
514         /* Other bitfields unspecified (and 0) */
515
516         iowrite32(val, endpoint->ipa->reg_virt + offset);
517 }
518
519 /* Compute the aggregation size value to use for a given buffer size */
520 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
521 {
522         /* We don't use "hard byte limit" aggregation, so we define the
523          * aggregation limit such that our buffer has enough space *after*
524          * that limit to receive a full MTU of data, plus overhead.
525          */
526         rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
527
528         return rx_buffer_size / SZ_1K;
529 }
530
531 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
532 {
533         u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
534         u32 val = 0;
535
536         if (endpoint->data->aggregation) {
537                 if (!endpoint->toward_ipa) {
538                         u32 aggr_size = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
539                         u32 limit;
540
541                         val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
542                         val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
543                         val |= u32_encode_bits(aggr_size,
544                                                AGGR_BYTE_LIMIT_FMASK);
545                         limit = IPA_AGGR_TIME_LIMIT_DEFAULT;
546                         val |= u32_encode_bits(limit / IPA_AGGR_GRANULARITY,
547                                                AGGR_TIME_LIMIT_FMASK);
548                         val |= u32_encode_bits(0, AGGR_PKT_LIMIT_FMASK);
549                         if (endpoint->data->rx.aggr_close_eof)
550                                 val |= AGGR_SW_EOF_ACTIVE_FMASK;
551                         /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
552                 } else {
553                         val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
554                                                AGGR_EN_FMASK);
555                         val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
556                         /* other fields ignored */
557                 }
558                 /* AGGR_FORCE_CLOSE is 0 */
559         } else {
560                 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
561                 /* other fields ignored */
562         }
563
564         iowrite32(val, endpoint->ipa->reg_virt + offset);
565 }
566
567 /* A return value of 0 indicates an error */
568 static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds)
569 {
570         u32 scale;
571         u32 base;
572         u32 val;
573
574         if (!microseconds)
575                 return 0;       /* invalid delay */
576
577         /* Timer is represented in units of clock ticks. */
578         if (ipa->version < IPA_VERSION_4_2)
579                 return microseconds;    /* XXX Needs to be computed */
580
581         /* IPA v4.2 represents the tick count as base * scale */
582         scale = 1;                      /* XXX Needs to be computed */
583         if (scale > field_max(SCALE_FMASK))
584                 return 0;               /* scale too big */
585
586         base = DIV_ROUND_CLOSEST(microseconds, scale);
587         if (base > field_max(BASE_VALUE_FMASK))
588                 return 0;               /* microseconds too big */
589
590         val = u32_encode_bits(scale, SCALE_FMASK);
591         val |= u32_encode_bits(base, BASE_VALUE_FMASK);
592
593         return val;
594 }
595
596 static int ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
597                                              u32 microseconds)
598 {
599         u32 endpoint_id = endpoint->endpoint_id;
600         struct ipa *ipa = endpoint->ipa;
601         u32 offset;
602         u32 val;
603
604         /* XXX We'll fix this when the register definition is clear */
605         if (microseconds) {
606                 struct device *dev = &ipa->pdev->dev;
607
608                 dev_err(dev, "endpoint %u non-zero HOLB period (ignoring)\n",
609                         endpoint_id);
610                 microseconds = 0;
611         }
612
613         if (microseconds) {
614                 val = ipa_reg_init_hol_block_timer_val(ipa, microseconds);
615                 if (!val)
616                         return -EINVAL;
617         } else {
618                 val = 0;        /* timeout is immediate */
619         }
620         offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
621         iowrite32(val, ipa->reg_virt + offset);
622
623         return 0;
624 }
625
626 static void
627 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
628 {
629         u32 endpoint_id = endpoint->endpoint_id;
630         u32 offset;
631         u32 val;
632
633         val = u32_encode_bits(enable ? 1 : 0, HOL_BLOCK_EN_FMASK);
634         offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
635         iowrite32(val, endpoint->ipa->reg_virt + offset);
636 }
637
638 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
639 {
640         u32 i;
641
642         for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
643                 struct ipa_endpoint *endpoint = &ipa->endpoint[i];
644
645                 if (endpoint->ee_id != GSI_EE_MODEM)
646                         continue;
647
648                 (void)ipa_endpoint_init_hol_block_timer(endpoint, 0);
649                 ipa_endpoint_init_hol_block_enable(endpoint, true);
650         }
651 }
652
653 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
654 {
655         u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
656         u32 val = 0;
657
658         /* DEAGGR_HDR_LEN is 0 */
659         /* PACKET_OFFSET_VALID is 0 */
660         /* PACKET_OFFSET_LOCATION is ignored (not valid) */
661         /* MAX_PACKET_LEN is 0 (not enforced) */
662
663         iowrite32(val, endpoint->ipa->reg_virt + offset);
664 }
665
666 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
667 {
668         u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
669         u32 seq_type = endpoint->seq_type;
670         u32 val = 0;
671
672         val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK);
673         val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK);
674         /* HPS_REP_SEQ_TYPE is 0 */
675         /* DPS_REP_SEQ_TYPE is 0 */
676
677         iowrite32(val, endpoint->ipa->reg_virt + offset);
678 }
679
680 /**
681  * ipa_endpoint_skb_tx() - Transmit a socket buffer
682  * @endpoint:   Endpoint pointer
683  * @skb:        Socket buffer to send
684  *
685  * Returns:     0 if successful, or a negative error code
686  */
687 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
688 {
689         struct gsi_trans *trans;
690         u32 nr_frags;
691         int ret;
692
693         /* Make sure source endpoint's TLV FIFO has enough entries to
694          * hold the linear portion of the skb and all its fragments.
695          * If not, see if we can linearize it before giving up.
696          */
697         nr_frags = skb_shinfo(skb)->nr_frags;
698         if (1 + nr_frags > endpoint->trans_tre_max) {
699                 if (skb_linearize(skb))
700                         return -E2BIG;
701                 nr_frags = 0;
702         }
703
704         trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
705         if (!trans)
706                 return -EBUSY;
707
708         ret = gsi_trans_skb_add(trans, skb);
709         if (ret)
710                 goto err_trans_free;
711         trans->data = skb;      /* transaction owns skb now */
712
713         gsi_trans_commit(trans, !netdev_xmit_more());
714
715         return 0;
716
717 err_trans_free:
718         gsi_trans_free(trans);
719
720         return -ENOMEM;
721 }
722
723 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
724 {
725         u32 endpoint_id = endpoint->endpoint_id;
726         struct ipa *ipa = endpoint->ipa;
727         u32 val = 0;
728         u32 offset;
729
730         offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
731
732         if (endpoint->data->status_enable) {
733                 val |= STATUS_EN_FMASK;
734                 if (endpoint->toward_ipa) {
735                         enum ipa_endpoint_name name;
736                         u32 status_endpoint_id;
737
738                         name = endpoint->data->tx.status_endpoint;
739                         status_endpoint_id = ipa->name_map[name]->endpoint_id;
740
741                         val |= u32_encode_bits(status_endpoint_id,
742                                                STATUS_ENDP_FMASK);
743                 }
744                 /* STATUS_LOCATION is 0 (status element precedes packet) */
745                 /* The next field is present for IPA v4.0 and above */
746                 /* STATUS_PKT_SUPPRESS_FMASK is 0 */
747         }
748
749         iowrite32(val, ipa->reg_virt + offset);
750 }
751
752 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
753 {
754         struct gsi_trans *trans;
755         bool doorbell = false;
756         struct page *page;
757         u32 offset;
758         u32 len;
759         int ret;
760
761         page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
762         if (!page)
763                 return -ENOMEM;
764
765         trans = ipa_endpoint_trans_alloc(endpoint, 1);
766         if (!trans)
767                 goto err_free_pages;
768
769         /* Offset the buffer to make space for skb headroom */
770         offset = NET_SKB_PAD;
771         len = IPA_RX_BUFFER_SIZE - offset;
772
773         ret = gsi_trans_page_add(trans, page, len, offset);
774         if (ret)
775                 goto err_trans_free;
776         trans->data = page;     /* transaction owns page now */
777
778         if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
779                 doorbell = true;
780                 endpoint->replenish_ready = 0;
781         }
782
783         gsi_trans_commit(trans, doorbell);
784
785         return 0;
786
787 err_trans_free:
788         gsi_trans_free(trans);
789 err_free_pages:
790         __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
791
792         return -ENOMEM;
793 }
794
795 /**
796  * ipa_endpoint_replenish() - Replenish the Rx packets cache.
797  *
798  * Allocate RX packet wrapper structures with maximal socket buffers
799  * for an endpoint.  These are supplied to the hardware, which fills
800  * them with incoming data.
801  */
802 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count)
803 {
804         struct gsi *gsi;
805         u32 backlog;
806
807         if (!endpoint->replenish_enabled) {
808                 if (count)
809                         atomic_add(count, &endpoint->replenish_saved);
810                 return;
811         }
812
813
814         while (atomic_dec_not_zero(&endpoint->replenish_backlog))
815                 if (ipa_endpoint_replenish_one(endpoint))
816                         goto try_again_later;
817         if (count)
818                 atomic_add(count, &endpoint->replenish_backlog);
819
820         return;
821
822 try_again_later:
823         /* The last one didn't succeed, so fix the backlog */
824         backlog = atomic_inc_return(&endpoint->replenish_backlog);
825
826         if (count)
827                 atomic_add(count, &endpoint->replenish_backlog);
828
829         /* Whenever a receive buffer transaction completes we'll try to
830          * replenish again.  It's unlikely, but if we fail to supply even
831          * one buffer, nothing will trigger another replenish attempt.
832          * Receive buffer transactions use one TRE, so schedule work to
833          * try replenishing again if our backlog is *all* available TREs.
834          */
835         gsi = &endpoint->ipa->gsi;
836         if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
837                 schedule_delayed_work(&endpoint->replenish_work,
838                                       msecs_to_jiffies(1));
839 }
840
841 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
842 {
843         struct gsi *gsi = &endpoint->ipa->gsi;
844         u32 max_backlog;
845         u32 saved;
846
847         endpoint->replenish_enabled = true;
848         while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
849                 atomic_add(saved, &endpoint->replenish_backlog);
850
851         /* Start replenishing if hardware currently has no buffers */
852         max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
853         if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
854                 ipa_endpoint_replenish(endpoint, 0);
855 }
856
857 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
858 {
859         u32 backlog;
860
861         endpoint->replenish_enabled = false;
862         while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
863                 atomic_add(backlog, &endpoint->replenish_saved);
864 }
865
866 static void ipa_endpoint_replenish_work(struct work_struct *work)
867 {
868         struct delayed_work *dwork = to_delayed_work(work);
869         struct ipa_endpoint *endpoint;
870
871         endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
872
873         ipa_endpoint_replenish(endpoint, 0);
874 }
875
876 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
877                                   void *data, u32 len, u32 extra)
878 {
879         struct sk_buff *skb;
880
881         skb = __dev_alloc_skb(len, GFP_ATOMIC);
882         if (skb) {
883                 skb_put(skb, len);
884                 memcpy(skb->data, data, len);
885                 skb->truesize += extra;
886         }
887
888         /* Now receive it, or drop it if there's no netdev */
889         if (endpoint->netdev)
890                 ipa_modem_skb_rx(endpoint->netdev, skb);
891         else if (skb)
892                 dev_kfree_skb_any(skb);
893 }
894
895 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
896                                    struct page *page, u32 len)
897 {
898         struct sk_buff *skb;
899
900         /* Nothing to do if there's no netdev */
901         if (!endpoint->netdev)
902                 return false;
903
904         /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
905         skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
906         if (skb) {
907                 /* Reserve the headroom and account for the data */
908                 skb_reserve(skb, NET_SKB_PAD);
909                 skb_put(skb, len);
910         }
911
912         /* Receive the buffer (or record drop if unable to build it) */
913         ipa_modem_skb_rx(endpoint->netdev, skb);
914
915         return skb != NULL;
916 }
917
918 /* The format of a packet status element is the same for several status
919  * types (opcodes).  The NEW_FRAG_RULE, LOG, DCMP (decompression) types
920  * aren't currently supported
921  */
922 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
923 {
924         switch (opcode) {
925         case IPA_STATUS_OPCODE_PACKET:
926         case IPA_STATUS_OPCODE_DROPPED_PACKET:
927         case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
928         case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
929                 return true;
930         default:
931                 return false;
932         }
933 }
934
935 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
936                                      const struct ipa_status *status)
937 {
938         u32 endpoint_id;
939
940         if (!ipa_status_format_packet(status->opcode))
941                 return true;
942         if (!status->pkt_len)
943                 return true;
944         endpoint_id = u32_get_bits(status->endp_dst_idx,
945                                    IPA_STATUS_DST_IDX_FMASK);
946         if (endpoint_id != endpoint->endpoint_id)
947                 return true;
948
949         return false;   /* Don't skip this packet, process it */
950 }
951
952 /* Return whether the status indicates the packet should be dropped */
953 static bool ipa_status_drop_packet(const struct ipa_status *status)
954 {
955         u32 val;
956
957         /* Deaggregation exceptions we drop; others we consume */
958         if (status->exception)
959                 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
960
961         /* Drop the packet if it fails to match a routing rule; otherwise no */
962         val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
963
964         return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
965 }
966
967 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
968                                       struct page *page, u32 total_len)
969 {
970         void *data = page_address(page) + NET_SKB_PAD;
971         u32 unused = IPA_RX_BUFFER_SIZE - total_len;
972         u32 resid = total_len;
973
974         while (resid) {
975                 const struct ipa_status *status = data;
976                 u32 align;
977                 u32 len;
978
979                 if (resid < sizeof(*status)) {
980                         dev_err(&endpoint->ipa->pdev->dev,
981                                 "short message (%u bytes < %zu byte status)\n",
982                                 resid, sizeof(*status));
983                         break;
984                 }
985
986                 /* Skip over status packets that lack packet data */
987                 if (ipa_endpoint_status_skip(endpoint, status)) {
988                         data += sizeof(*status);
989                         resid -= sizeof(*status);
990                         continue;
991                 }
992
993                 /* Compute the amount of buffer space consumed by the
994                  * packet, including the status element.  If the hardware
995                  * is configured to pad packet data to an aligned boundary,
996                  * account for that.  And if checksum offload is is enabled
997                  * a trailer containing computed checksum information will
998                  * be appended.
999                  */
1000                 align = endpoint->data->rx.pad_align ? : 1;
1001                 len = le16_to_cpu(status->pkt_len);
1002                 len = sizeof(*status) + ALIGN(len, align);
1003                 if (endpoint->data->checksum)
1004                         len += sizeof(struct rmnet_map_dl_csum_trailer);
1005
1006                 /* Charge the new packet with a proportional fraction of
1007                  * the unused space in the original receive buffer.
1008                  * XXX Charge a proportion of the *whole* receive buffer?
1009                  */
1010                 if (!ipa_status_drop_packet(status)) {
1011                         u32 extra = unused * len / total_len;
1012                         void *data2 = data + sizeof(*status);
1013                         u32 len2 = le16_to_cpu(status->pkt_len);
1014
1015                         /* Client receives only packet data (no status) */
1016                         ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1017                 }
1018
1019                 /* Consume status and the full packet it describes */
1020                 data += len;
1021                 resid -= len;
1022         }
1023 }
1024
1025 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1026 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1027                                      struct gsi_trans *trans)
1028 {
1029 }
1030
1031 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1032 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1033                                      struct gsi_trans *trans)
1034 {
1035         struct page *page;
1036
1037         ipa_endpoint_replenish(endpoint, 1);
1038
1039         if (trans->cancelled)
1040                 return;
1041
1042         /* Parse or build a socket buffer using the actual received length */
1043         page = trans->data;
1044         if (endpoint->data->status_enable)
1045                 ipa_endpoint_status_parse(endpoint, page, trans->len);
1046         else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1047                 trans->data = NULL;     /* Pages have been consumed */
1048 }
1049
1050 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1051                                  struct gsi_trans *trans)
1052 {
1053         if (endpoint->toward_ipa)
1054                 ipa_endpoint_tx_complete(endpoint, trans);
1055         else
1056                 ipa_endpoint_rx_complete(endpoint, trans);
1057 }
1058
1059 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1060                                 struct gsi_trans *trans)
1061 {
1062         if (endpoint->toward_ipa) {
1063                 struct ipa *ipa = endpoint->ipa;
1064
1065                 /* Nothing to do for command transactions */
1066                 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1067                         struct sk_buff *skb = trans->data;
1068
1069                         if (skb)
1070                                 dev_kfree_skb_any(skb);
1071                 }
1072         } else {
1073                 struct page *page = trans->data;
1074
1075                 if (page)
1076                         __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1077         }
1078 }
1079
1080 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1081 {
1082         u32 val;
1083
1084         /* ROUTE_DIS is 0 */
1085         val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1086         val |= ROUTE_DEF_HDR_TABLE_FMASK;
1087         val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1088         val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1089         val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1090
1091         iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1092 }
1093
1094 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1095 {
1096         ipa_endpoint_default_route_set(ipa, 0);
1097 }
1098
1099 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
1100 {
1101         u32 mask = BIT(endpoint->endpoint_id);
1102         struct ipa *ipa = endpoint->ipa;
1103         u32 offset;
1104         u32 val;
1105
1106         /* assert(mask & ipa->available); */
1107         offset = ipa_reg_state_aggr_active_offset(ipa->version);
1108         val = ioread32(ipa->reg_virt + offset);
1109
1110         return !!(val & mask);
1111 }
1112
1113 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
1114 {
1115         u32 mask = BIT(endpoint->endpoint_id);
1116         struct ipa *ipa = endpoint->ipa;
1117
1118         /* assert(mask & ipa->available); */
1119         iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
1120 }
1121
1122 /**
1123  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1124  * @endpoint:   Endpoint to be reset
1125  *
1126  * If aggregation is active on an RX endpoint when a reset is performed
1127  * on its underlying GSI channel, a special sequence of actions must be
1128  * taken to ensure the IPA pipeline is properly cleared.
1129  *
1130  * @Return:     0 if successful, or a negative error code
1131  */
1132 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1133 {
1134         struct device *dev = &endpoint->ipa->pdev->dev;
1135         struct ipa *ipa = endpoint->ipa;
1136         bool endpoint_suspended = false;
1137         struct gsi *gsi = &ipa->gsi;
1138         dma_addr_t addr;
1139         bool db_enable;
1140         u32 retries;
1141         u32 len = 1;
1142         void *virt;
1143         int ret;
1144
1145         virt = kzalloc(len, GFP_KERNEL);
1146         if (!virt)
1147                 return -ENOMEM;
1148
1149         addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1150         if (dma_mapping_error(dev, addr)) {
1151                 ret = -ENOMEM;
1152                 goto out_kfree;
1153         }
1154
1155         /* Force close aggregation before issuing the reset */
1156         ipa_endpoint_force_close(endpoint);
1157
1158         /* Reset and reconfigure the channel with the doorbell engine
1159          * disabled.  Then poll until we know aggregation is no longer
1160          * active.  We'll re-enable the doorbell (if appropriate) when
1161          * we reset again below.
1162          */
1163         gsi_channel_reset(gsi, endpoint->channel_id, false);
1164
1165         /* Make sure the channel isn't suspended */
1166         if (endpoint->ipa->version == IPA_VERSION_3_5_1)
1167                 if (!ipa_endpoint_init_ctrl(endpoint, false))
1168                         endpoint_suspended = true;
1169
1170         /* Start channel and do a 1 byte read */
1171         ret = gsi_channel_start(gsi, endpoint->channel_id);
1172         if (ret)
1173                 goto out_suspend_again;
1174
1175         ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1176         if (ret)
1177                 goto err_endpoint_stop;
1178
1179         /* Wait for aggregation to be closed on the channel */
1180         retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1181         do {
1182                 if (!ipa_endpoint_aggr_active(endpoint))
1183                         break;
1184                 msleep(1);
1185         } while (retries--);
1186
1187         /* Check one last time */
1188         if (ipa_endpoint_aggr_active(endpoint))
1189                 dev_err(dev, "endpoint %u still active during reset\n",
1190                         endpoint->endpoint_id);
1191
1192         gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1193
1194         ret = ipa_endpoint_stop(endpoint);
1195         if (ret)
1196                 goto out_suspend_again;
1197
1198         /* Finally, reset and reconfigure the channel again (re-enabling the
1199          * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1200          * complete the channel reset sequence.  Finish by suspending the
1201          * channel again (if necessary).
1202          */
1203         db_enable = ipa->version == IPA_VERSION_3_5_1;
1204         gsi_channel_reset(gsi, endpoint->channel_id, db_enable);
1205
1206         msleep(1);
1207
1208         goto out_suspend_again;
1209
1210 err_endpoint_stop:
1211         ipa_endpoint_stop(endpoint);
1212 out_suspend_again:
1213         if (endpoint_suspended)
1214                 (void)ipa_endpoint_init_ctrl(endpoint, true);
1215         dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1216 out_kfree:
1217         kfree(virt);
1218
1219         return ret;
1220 }
1221
1222 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1223 {
1224         u32 channel_id = endpoint->channel_id;
1225         struct ipa *ipa = endpoint->ipa;
1226         bool db_enable;
1227         bool special;
1228         int ret = 0;
1229
1230         /* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1231          * is active, we need to handle things specially to recover.
1232          * All other cases just need to reset the underlying GSI channel.
1233          *
1234          * IPA v3.5.1 enables the doorbell engine.  Newer versions do not.
1235          */
1236         db_enable = ipa->version == IPA_VERSION_3_5_1;
1237         special = !endpoint->toward_ipa && endpoint->data->aggregation;
1238         if (special && ipa_endpoint_aggr_active(endpoint))
1239                 ret = ipa_endpoint_reset_rx_aggr(endpoint);
1240         else
1241                 gsi_channel_reset(&ipa->gsi, channel_id, db_enable);
1242
1243         if (ret)
1244                 dev_err(&ipa->pdev->dev,
1245                         "error %d resetting channel %u for endpoint %u\n",
1246                         ret, endpoint->channel_id, endpoint->endpoint_id);
1247 }
1248
1249 static int ipa_endpoint_stop_rx_dma(struct ipa *ipa)
1250 {
1251         u16 size = IPA_ENDPOINT_STOP_RX_SIZE;
1252         struct gsi_trans *trans;
1253         dma_addr_t addr;
1254         int ret;
1255
1256         trans = ipa_cmd_trans_alloc(ipa, 1);
1257         if (!trans) {
1258                 dev_err(&ipa->pdev->dev,
1259                         "no transaction for RX endpoint STOP workaround\n");
1260                 return -EBUSY;
1261         }
1262
1263         /* Read into the highest part of the zero memory area */
1264         addr = ipa->zero_addr + ipa->zero_size - size;
1265
1266         ipa_cmd_dma_task_32b_addr_add(trans, size, addr, false);
1267
1268         ret = gsi_trans_commit_wait_timeout(trans, ENDPOINT_STOP_DMA_TIMEOUT);
1269         if (ret)
1270                 gsi_trans_free(trans);
1271
1272         return ret;
1273 }
1274
1275 /**
1276  * ipa_endpoint_stop() - Stops a GSI channel in IPA
1277  * @client:     Client whose endpoint should be stopped
1278  *
1279  * This function implements the sequence to stop a GSI channel
1280  * in IPA. This function returns when the channel is is STOP state.
1281  *
1282  * Return value: 0 on success, negative otherwise
1283  */
1284 int ipa_endpoint_stop(struct ipa_endpoint *endpoint)
1285 {
1286         u32 retries = endpoint->toward_ipa ? 0 : IPA_ENDPOINT_STOP_RX_RETRIES;
1287         int ret;
1288
1289         do {
1290                 struct ipa *ipa = endpoint->ipa;
1291                 struct gsi *gsi = &ipa->gsi;
1292
1293                 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1294                 if (ret != -EAGAIN)
1295                         break;
1296
1297                 if (endpoint->toward_ipa)
1298                         continue;
1299
1300                 /* For IPA v3.5.1, send a DMA read task and check again */
1301                 if (ipa->version == IPA_VERSION_3_5_1) {
1302                         ret = ipa_endpoint_stop_rx_dma(ipa);
1303                         if (ret)
1304                                 break;
1305                 }
1306
1307                 msleep(1);
1308         } while (retries--);
1309
1310         return retries ? ret : -EIO;
1311 }
1312
1313 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1314 {
1315         struct device *dev = &endpoint->ipa->pdev->dev;
1316         int ret;
1317
1318         if (endpoint->toward_ipa) {
1319                 bool delay_mode = endpoint->data->tx.delay;
1320
1321                 ret = ipa_endpoint_init_ctrl(endpoint, delay_mode);
1322                 /* Endpoint is expected to not be in delay mode */
1323                 if (!ret != delay_mode) {
1324                         dev_warn(dev,
1325                                 "TX endpoint %u was %sin delay mode\n",
1326                                 endpoint->endpoint_id,
1327                                 delay_mode ? "already " : "");
1328                 }
1329                 ipa_endpoint_init_hdr_ext(endpoint);
1330                 ipa_endpoint_init_aggr(endpoint);
1331                 ipa_endpoint_init_deaggr(endpoint);
1332                 ipa_endpoint_init_seq(endpoint);
1333         } else {
1334                 if (endpoint->ipa->version == IPA_VERSION_3_5_1) {
1335                         if (!ipa_endpoint_init_ctrl(endpoint, false))
1336                                 dev_warn(dev,
1337                                         "RX endpoint %u was suspended\n",
1338                                         endpoint->endpoint_id);
1339                 }
1340                 ipa_endpoint_init_hdr_ext(endpoint);
1341                 ipa_endpoint_init_aggr(endpoint);
1342         }
1343         ipa_endpoint_init_cfg(endpoint);
1344         ipa_endpoint_init_hdr(endpoint);
1345         ipa_endpoint_init_hdr_metadata_mask(endpoint);
1346         ipa_endpoint_init_mode(endpoint);
1347         ipa_endpoint_status(endpoint);
1348 }
1349
1350 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1351 {
1352         struct ipa *ipa = endpoint->ipa;
1353         struct gsi *gsi = &ipa->gsi;
1354         int ret;
1355
1356         ret = gsi_channel_start(gsi, endpoint->channel_id);
1357         if (ret) {
1358                 dev_err(&ipa->pdev->dev,
1359                         "error %d starting %cX channel %u for endpoint %u\n",
1360                         ret, endpoint->toward_ipa ? 'T' : 'R',
1361                         endpoint->channel_id, endpoint->endpoint_id);
1362                 return ret;
1363         }
1364
1365         if (!endpoint->toward_ipa) {
1366                 ipa_interrupt_suspend_enable(ipa->interrupt,
1367                                              endpoint->endpoint_id);
1368                 ipa_endpoint_replenish_enable(endpoint);
1369         }
1370
1371         ipa->enabled |= BIT(endpoint->endpoint_id);
1372
1373         return 0;
1374 }
1375
1376 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1377 {
1378         u32 mask = BIT(endpoint->endpoint_id);
1379         struct ipa *ipa = endpoint->ipa;
1380         int ret;
1381
1382         if (!(endpoint->ipa->enabled & mask))
1383                 return;
1384
1385         endpoint->ipa->enabled ^= mask;
1386
1387         if (!endpoint->toward_ipa) {
1388                 ipa_endpoint_replenish_disable(endpoint);
1389                 ipa_interrupt_suspend_disable(ipa->interrupt,
1390                                               endpoint->endpoint_id);
1391         }
1392
1393         /* Note that if stop fails, the channel's state is not well-defined */
1394         ret = ipa_endpoint_stop(endpoint);
1395         if (ret)
1396                 dev_err(&ipa->pdev->dev,
1397                         "error %d attempting to stop endpoint %u\n", ret,
1398                         endpoint->endpoint_id);
1399 }
1400
1401 /**
1402  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
1403  * @endpoint_id:        Endpoint on which to emulate a suspend
1404  *
1405  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
1406  *  with an open aggregation frame.  This is to work around a hardware
1407  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
1408  *  generated when it should be.
1409  */
1410 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
1411 {
1412         struct ipa *ipa = endpoint->ipa;
1413
1414         /* assert(ipa->version == IPA_VERSION_3_5_1); */
1415
1416         if (!endpoint->data->aggregation)
1417                 return;
1418
1419         /* Nothing to do if the endpoint doesn't have aggregation open */
1420         if (!ipa_endpoint_aggr_active(endpoint))
1421                 return;
1422
1423         /* Force close aggregation */
1424         ipa_endpoint_force_close(endpoint);
1425
1426         ipa_interrupt_simulate_suspend(ipa->interrupt);
1427 }
1428
1429 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1430 {
1431         struct device *dev = &endpoint->ipa->pdev->dev;
1432         struct gsi *gsi = &endpoint->ipa->gsi;
1433         bool stop_channel;
1434         int ret;
1435
1436         if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1437                 return;
1438
1439         if (!endpoint->toward_ipa)
1440                 ipa_endpoint_replenish_disable(endpoint);
1441
1442         /* IPA v3.5.1 doesn't use channel stop for suspend */
1443         stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1444         if (!endpoint->toward_ipa && !stop_channel) {
1445                 /* Due to a hardware bug, a client suspended with an open
1446                  * aggregation frame will not generate a SUSPEND IPA
1447                  * interrupt.  We work around this by force-closing the
1448                  * aggregation frame, then simulating the arrival of such
1449                  * an interrupt.
1450                  */
1451                 WARN_ON(ipa_endpoint_init_ctrl(endpoint, true));
1452                 ipa_endpoint_suspend_aggr(endpoint);
1453         }
1454
1455         ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1456         if (ret)
1457                 dev_err(dev, "error %d suspending channel %u\n", ret,
1458                         endpoint->channel_id);
1459 }
1460
1461 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1462 {
1463         struct device *dev = &endpoint->ipa->pdev->dev;
1464         struct gsi *gsi = &endpoint->ipa->gsi;
1465         bool start_channel;
1466         int ret;
1467
1468         if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1469                 return;
1470
1471         /* IPA v3.5.1 doesn't use channel start for resume */
1472         start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1473         if (!endpoint->toward_ipa && !start_channel)
1474                 WARN_ON(ipa_endpoint_init_ctrl(endpoint, false));
1475
1476         ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1477         if (ret)
1478                 dev_err(dev, "error %d resuming channel %u\n", ret,
1479                         endpoint->channel_id);
1480         else if (!endpoint->toward_ipa)
1481                 ipa_endpoint_replenish_enable(endpoint);
1482 }
1483
1484 void ipa_endpoint_suspend(struct ipa *ipa)
1485 {
1486         if (ipa->modem_netdev)
1487                 ipa_modem_suspend(ipa->modem_netdev);
1488
1489         ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1490         ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1491 }
1492
1493 void ipa_endpoint_resume(struct ipa *ipa)
1494 {
1495         ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1496         ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1497
1498         if (ipa->modem_netdev)
1499                 ipa_modem_resume(ipa->modem_netdev);
1500 }
1501
1502 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1503 {
1504         struct gsi *gsi = &endpoint->ipa->gsi;
1505         u32 channel_id = endpoint->channel_id;
1506
1507         /* Only AP endpoints get set up */
1508         if (endpoint->ee_id != GSI_EE_AP)
1509                 return;
1510
1511         endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1512         if (!endpoint->toward_ipa) {
1513                 /* RX transactions require a single TRE, so the maximum
1514                  * backlog is the same as the maximum outstanding TREs.
1515                  */
1516                 endpoint->replenish_enabled = false;
1517                 atomic_set(&endpoint->replenish_saved,
1518                            gsi_channel_tre_max(gsi, endpoint->channel_id));
1519                 atomic_set(&endpoint->replenish_backlog, 0);
1520                 INIT_DELAYED_WORK(&endpoint->replenish_work,
1521                                   ipa_endpoint_replenish_work);
1522         }
1523
1524         ipa_endpoint_program(endpoint);
1525
1526         endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1527 }
1528
1529 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1530 {
1531         endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1532
1533         if (!endpoint->toward_ipa)
1534                 cancel_delayed_work_sync(&endpoint->replenish_work);
1535
1536         ipa_endpoint_reset(endpoint);
1537 }
1538
1539 void ipa_endpoint_setup(struct ipa *ipa)
1540 {
1541         u32 initialized = ipa->initialized;
1542
1543         ipa->set_up = 0;
1544         while (initialized) {
1545                 u32 endpoint_id = __ffs(initialized);
1546
1547                 initialized ^= BIT(endpoint_id);
1548
1549                 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1550         }
1551 }
1552
1553 void ipa_endpoint_teardown(struct ipa *ipa)
1554 {
1555         u32 set_up = ipa->set_up;
1556
1557         while (set_up) {
1558                 u32 endpoint_id = __fls(set_up);
1559
1560                 set_up ^= BIT(endpoint_id);
1561
1562                 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1563         }
1564         ipa->set_up = 0;
1565 }
1566
1567 int ipa_endpoint_config(struct ipa *ipa)
1568 {
1569         struct device *dev = &ipa->pdev->dev;
1570         u32 initialized;
1571         u32 rx_base;
1572         u32 rx_mask;
1573         u32 tx_mask;
1574         int ret = 0;
1575         u32 max;
1576         u32 val;
1577
1578         /* Find out about the endpoints supplied by the hardware, and ensure
1579          * the highest one doesn't exceed the number we support.
1580          */
1581         val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1582
1583         /* Our RX is an IPA producer */
1584         rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK);
1585         max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK);
1586         if (max > IPA_ENDPOINT_MAX) {
1587                 dev_err(dev, "too many endpoints (%u > %u)\n",
1588                         max, IPA_ENDPOINT_MAX);
1589                 return -EINVAL;
1590         }
1591         rx_mask = GENMASK(max - 1, rx_base);
1592
1593         /* Our TX is an IPA consumer */
1594         max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK);
1595         tx_mask = GENMASK(max - 1, 0);
1596
1597         ipa->available = rx_mask | tx_mask;
1598
1599         /* Check for initialized endpoints not supported by the hardware */
1600         if (ipa->initialized & ~ipa->available) {
1601                 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1602                         ipa->initialized & ~ipa->available);
1603                 ret = -EINVAL;          /* Report other errors too */
1604         }
1605
1606         initialized = ipa->initialized;
1607         while (initialized) {
1608                 u32 endpoint_id = __ffs(initialized);
1609                 struct ipa_endpoint *endpoint;
1610
1611                 initialized ^= BIT(endpoint_id);
1612
1613                 /* Make sure it's pointing in the right direction */
1614                 endpoint = &ipa->endpoint[endpoint_id];
1615                 if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) {
1616                         dev_err(dev, "endpoint id %u wrong direction\n",
1617                                 endpoint_id);
1618                         ret = -EINVAL;
1619                 }
1620         }
1621
1622         return ret;
1623 }
1624
1625 void ipa_endpoint_deconfig(struct ipa *ipa)
1626 {
1627         ipa->available = 0;     /* Nothing more to do */
1628 }
1629
1630 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1631                                   const struct ipa_gsi_endpoint_data *data)
1632 {
1633         struct ipa_endpoint *endpoint;
1634
1635         endpoint = &ipa->endpoint[data->endpoint_id];
1636
1637         if (data->ee_id == GSI_EE_AP)
1638                 ipa->channel_map[data->channel_id] = endpoint;
1639         ipa->name_map[name] = endpoint;
1640
1641         endpoint->ipa = ipa;
1642         endpoint->ee_id = data->ee_id;
1643         endpoint->seq_type = data->endpoint.seq_type;
1644         endpoint->channel_id = data->channel_id;
1645         endpoint->endpoint_id = data->endpoint_id;
1646         endpoint->toward_ipa = data->toward_ipa;
1647         endpoint->data = &data->endpoint.config;
1648
1649         ipa->initialized |= BIT(endpoint->endpoint_id);
1650 }
1651
1652 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1653 {
1654         endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1655
1656         memset(endpoint, 0, sizeof(*endpoint));
1657 }
1658
1659 void ipa_endpoint_exit(struct ipa *ipa)
1660 {
1661         u32 initialized = ipa->initialized;
1662
1663         while (initialized) {
1664                 u32 endpoint_id = __fls(initialized);
1665
1666                 initialized ^= BIT(endpoint_id);
1667
1668                 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1669         }
1670         memset(ipa->name_map, 0, sizeof(ipa->name_map));
1671         memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1672 }
1673
1674 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1675 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1676                       const struct ipa_gsi_endpoint_data *data)
1677 {
1678         enum ipa_endpoint_name name;
1679         u32 filter_map;
1680
1681         if (!ipa_endpoint_data_valid(ipa, count, data))
1682                 return 0;       /* Error */
1683
1684         ipa->initialized = 0;
1685
1686         filter_map = 0;
1687         for (name = 0; name < count; name++, data++) {
1688                 if (ipa_gsi_endpoint_data_empty(data))
1689                         continue;       /* Skip over empty slots */
1690
1691                 ipa_endpoint_init_one(ipa, name, data);
1692
1693                 if (data->endpoint.filter_support)
1694                         filter_map |= BIT(data->endpoint_id);
1695         }
1696
1697         if (!ipa_filter_map_valid(ipa, filter_map))
1698                 goto err_endpoint_exit;
1699
1700         return filter_map;      /* Non-zero bitmask */
1701
1702 err_endpoint_exit:
1703         ipa_endpoint_exit(ipa);
1704
1705         return 0;       /* Error */
1706 }