1 // SPDX-License-Identifier: GPL-2.0
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2020 Linaro Ltd.
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/refcount.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-direction.h>
15 #include "gsi_private.h"
16 #include "gsi_trans.h"
22 * DOC: GSI Transactions
24 * A GSI transaction abstracts the behavior of a GSI channel by representing
25 * everything about a related group of IPA commands in a single structure.
26 * (A "command" in this sense is either a data transfer or an IPA immediate
27 * command.) Most details of interaction with the GSI hardware are managed
28 * by the GSI transaction core, allowing users to simply describe commands
29 * to be performed. When a transaction has completed a callback function
30 * (dependent on the type of endpoint associated with the channel) allows
31 * cleanup of resources associated with the transaction.
33 * To perform a command (or set of them), a user of the GSI transaction
34 * interface allocates a transaction, indicating the number of TREs required
35 * (one per command). If sufficient TREs are available, they are reserved
36 * for use in the transaction and the allocation succeeds. This way
37 * exhaustion of the available TREs in a channel ring is detected
38 * as early as possible. All resources required to complete a transaction
39 * are allocated at transaction allocation time.
41 * Commands performed as part of a transaction are represented in an array
42 * of Linux scatterlist structures. This array is allocated with the
43 * transaction, and its entries are initialized using standard scatterlist
44 * functions (such as sg_set_buf() or skb_to_sgvec()).
46 * Once a transaction's scatterlist structures have been initialized, the
47 * transaction is committed. The caller is responsible for mapping buffers
48 * for DMA if necessary, and this should be done *before* allocating
49 * the transaction. Between a successful allocation and commit of a
50 * transaction no errors should occur.
52 * Committing transfers ownership of the entire transaction to the GSI
53 * transaction core. The GSI transaction code formats the content of
54 * the scatterlist array into the channel ring buffer and informs the
55 * hardware that new TREs are available to process.
57 * The last TRE in each transaction is marked to interrupt the AP when the
58 * GSI hardware has completed it. Because transfers described by TREs are
59 * performed strictly in order, signaling the completion of just the last
60 * TRE in the transaction is sufficient to indicate the full transaction
63 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
64 * GSI code into the IPA layer, allowing it to perform any final cleanup
65 * required before the transaction is freed.
68 /* Hardware values representing a transfer element type */
71 GSI_RE_IMMD_CMD = 0x3,
74 /* An entry in a channel ring */
76 __le64 addr; /* DMA address */
77 __le16 len_opcode; /* length in bytes or enum IPA_CMD_* */
79 __le32 flags; /* TRE_FLAGS_* */
82 /* gsi_tre->flags mask values (in CPU byte order) */
83 #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0)
84 #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9)
85 #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10)
86 #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16)
88 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
94 if (!size || size % 8)
96 if (count < max_alloc)
100 #endif /* IPA_VALIDATE */
102 /* By allocating a few extra entries in our pool (one less
103 * than the maximum number that will be requested in a
104 * single allocation), we can always satisfy requests without
105 * ever worrying about straddling the end of the pool array.
106 * If there aren't enough entries starting at the free index,
107 * we just allocate free entries from the beginning of the pool.
109 virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
114 /* If the allocator gave us any extra memory, use it */
115 pool->count = ksize(pool->base) / size;
117 pool->max_alloc = max_alloc;
119 pool->addr = 0; /* Only used for DMA pools */
124 void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
127 memset(pool, 0, sizeof(*pool));
130 /* Allocate the requested number of (zeroed) entries from the pool */
131 /* Home-grown DMA pool. This way we can preallocate and use the tre_count
132 * to guarantee allocations will succeed. Even though we specify max_alloc
133 * (and it can be more than one), we only allow allocation of a single
134 * element from a DMA pool.
136 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
137 size_t size, u32 count, u32 max_alloc)
144 if (!size || size % 8)
146 if (count < max_alloc)
150 #endif /* IPA_VALIDATE */
152 /* Don't let allocations cross a power-of-two boundary */
153 size = __roundup_pow_of_two(size);
154 total_size = (count + max_alloc - 1) * size;
156 /* The allocator will give us a power-of-2 number of pages. But we
157 * can't guarantee that, so request it. That way we won't waste any
158 * memory that would be available beyond the required space.
160 total_size = get_order(total_size) << PAGE_SHIFT;
162 virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
167 pool->count = total_size / size;
170 pool->max_alloc = max_alloc;
176 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
178 dma_free_coherent(dev, pool->size, pool->base, pool->addr);
179 memset(pool, 0, sizeof(*pool));
182 /* Return the byte offset of the next free entry in the pool */
183 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
187 /* assert(count > 0); */
188 /* assert(count <= pool->max_alloc); */
190 /* Allocate from beginning if wrap would occur */
191 if (count > pool->count - pool->free)
194 offset = pool->free * pool->size;
196 memset(pool->base + offset, 0, count * pool->size);
201 /* Allocate a contiguous block of zeroed entries from a pool */
202 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
204 return pool->base + gsi_trans_pool_alloc_common(pool, count);
207 /* Allocate a single zeroed entry from a DMA pool */
208 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
210 u32 offset = gsi_trans_pool_alloc_common(pool, 1);
212 *addr = pool->addr + offset;
214 return pool->base + offset;
217 /* Return the pool element that immediately follows the one given.
218 * This only works done if elements are allocated one at a time.
220 void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element)
222 void *end = pool->base + pool->count * pool->size;
224 /* assert(element >= pool->base); */
225 /* assert(element < end); */
226 /* assert(pool->max_alloc == 1); */
227 element += pool->size;
229 return element < end ? element : pool->base;
232 /* Map a given ring entry index to the transaction associated with it */
233 static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index,
234 struct gsi_trans *trans)
236 /* Note: index *must* be used modulo the ring count here */
237 channel->trans_info.map[index % channel->tre_ring.count] = trans;
240 /* Return the transaction mapped to a given ring entry */
242 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
244 /* Note: index *must* be used modulo the ring count here */
245 return channel->trans_info.map[index % channel->tre_ring.count];
248 /* Return the oldest completed transaction for a channel (or null) */
249 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
251 return list_first_entry_or_null(&channel->trans_info.complete,
252 struct gsi_trans, links);
255 /* Move a transaction from the allocated list to the pending list */
256 static void gsi_trans_move_pending(struct gsi_trans *trans)
258 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
259 struct gsi_trans_info *trans_info = &channel->trans_info;
261 spin_lock_bh(&trans_info->spinlock);
263 list_move_tail(&trans->links, &trans_info->pending);
265 spin_unlock_bh(&trans_info->spinlock);
268 /* Move a transaction and all of its predecessors from the pending list
269 * to the completed list.
271 void gsi_trans_move_complete(struct gsi_trans *trans)
273 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
274 struct gsi_trans_info *trans_info = &channel->trans_info;
275 struct list_head list;
277 spin_lock_bh(&trans_info->spinlock);
279 /* Move this transaction and all predecessors to completed list */
280 list_cut_position(&list, &trans_info->pending, &trans->links);
281 list_splice_tail(&list, &trans_info->complete);
283 spin_unlock_bh(&trans_info->spinlock);
286 /* Move a transaction from the completed list to the polled list */
287 void gsi_trans_move_polled(struct gsi_trans *trans)
289 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
290 struct gsi_trans_info *trans_info = &channel->trans_info;
292 spin_lock_bh(&trans_info->spinlock);
294 list_move_tail(&trans->links, &trans_info->polled);
296 spin_unlock_bh(&trans_info->spinlock);
299 /* Reserve some number of TREs on a channel. Returns true if successful */
301 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
303 int avail = atomic_read(&trans_info->tre_avail);
307 new = avail - (int)tre_count;
308 if (unlikely(new < 0))
310 } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
315 /* Release previously-reserved TRE entries to a channel */
317 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
319 atomic_add(tre_count, &trans_info->tre_avail);
322 /* Allocate a GSI transaction on a channel */
323 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
325 enum dma_data_direction direction)
327 struct gsi_channel *channel = &gsi->channel[channel_id];
328 struct gsi_trans_info *trans_info;
329 struct gsi_trans *trans;
331 /* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */
333 trans_info = &channel->trans_info;
335 /* We reserve the TREs now, but consume them at commit time.
336 * If there aren't enough available, we're done.
338 if (!gsi_trans_tre_reserve(trans_info, tre_count))
341 /* Allocate and initialize non-zero fields in the the transaction */
342 trans = gsi_trans_pool_alloc(&trans_info->pool, 1);
344 trans->channel_id = channel_id;
345 trans->tre_count = tre_count;
346 init_completion(&trans->completion);
348 /* Allocate the scatterlist and (if requested) info entries. */
349 trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
350 sg_init_marker(trans->sgl, tre_count);
352 trans->direction = direction;
354 spin_lock_bh(&trans_info->spinlock);
356 list_add_tail(&trans->links, &trans_info->alloc);
358 spin_unlock_bh(&trans_info->spinlock);
360 refcount_set(&trans->refcount, 1);
365 /* Free a previously-allocated transaction (used only in case of error) */
366 void gsi_trans_free(struct gsi_trans *trans)
368 struct gsi_trans_info *trans_info;
370 if (!refcount_dec_and_test(&trans->refcount))
373 trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
375 spin_lock_bh(&trans_info->spinlock);
377 list_del(&trans->links);
379 spin_unlock_bh(&trans_info->spinlock);
381 ipa_gsi_trans_release(trans);
383 /* Releasing the reserved TREs implicitly frees the sgl[] and
384 * (if present) info[] arrays, plus the transaction itself.
386 gsi_trans_tre_release(trans_info, trans->tre_count);
389 /* Add an immediate command to a transaction */
390 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
391 dma_addr_t addr, enum dma_data_direction direction,
392 enum ipa_cmd_opcode opcode)
394 struct ipa_cmd_info *info;
395 u32 which = trans->used++;
396 struct scatterlist *sg;
398 /* assert(which < trans->tre_count); */
400 /* Set the page information for the buffer. We also need to fill in
401 * the DMA address and length for the buffer (something dma_map_sg()
404 sg = &trans->sgl[which];
406 sg_set_buf(sg, buf, size);
407 sg_dma_address(sg) = addr;
408 sg_dma_len(sg) = sg->length;
410 info = &trans->info[which];
411 info->opcode = opcode;
412 info->direction = direction;
415 /* Add a page transfer to a transaction. It will fill the only TRE. */
416 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
419 struct scatterlist *sg = &trans->sgl[0];
422 /* assert(trans->tre_count == 1); */
423 /* assert(!trans->used); */
425 sg_set_page(sg, page, size, offset);
426 ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
430 trans->used++; /* Transaction now owns the (DMA mapped) page */
435 /* Add an SKB transfer to a transaction. No other TREs will be used. */
436 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
438 struct scatterlist *sg = &trans->sgl[0];
442 /* assert(trans->tre_count == 1); */
443 /* assert(!trans->used); */
445 /* skb->len will not be 0 (checked early) */
446 ret = skb_to_sgvec(skb, sg, 0, skb->len);
451 ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction);
455 trans->used += used; /* Transaction now owns the (DMA mapped) skb */
460 /* Compute the length/opcode value to use for a TRE */
461 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
463 return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
464 : cpu_to_le16((u16)opcode);
467 /* Compute the flags value to use for a given TRE */
468 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
470 enum gsi_tre_type tre_type;
473 tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
474 tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
476 /* Last TRE contains interrupt flags */
478 /* All transactions end in a transfer completion interrupt */
479 tre_flags |= TRE_FLAGS_IEOT_FMASK;
480 /* Don't interrupt when outbound commands are acknowledged */
482 tre_flags |= TRE_FLAGS_BEI_FMASK;
483 } else { /* All others indicate there's more to come */
484 tre_flags |= TRE_FLAGS_CHAIN_FMASK;
487 return cpu_to_le32(tre_flags);
490 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
491 u32 len, bool last_tre, bool bei,
492 enum ipa_cmd_opcode opcode)
496 tre.addr = cpu_to_le64(addr);
497 tre.len_opcode = gsi_tre_len_opcode(opcode, len);
499 tre.flags = gsi_tre_flags(last_tre, bei, opcode);
501 /* ARM64 can write 16 bytes as a unit with a single instruction.
502 * Doing the assignment this way is an attempt to make that happen.
508 * __gsi_trans_commit() - Common GSI transaction commit code
509 * @trans: Transaction to commit
510 * @ring_db: Whether to tell the hardware about these queued transfers
512 * Formats channel ring TRE entries based on the content of the scatterlist.
513 * Maps a transaction pointer to the last ring entry used for the transaction,
514 * so it can be recovered when it completes. Moves the transaction to the
515 * pending list. Finally, updates the channel ring pointer and optionally
516 * rings the doorbell.
518 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
520 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
521 struct gsi_ring *ring = &channel->tre_ring;
522 enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
523 bool bei = channel->toward_ipa;
524 struct ipa_cmd_info *info;
525 struct gsi_tre *dest_tre;
526 struct scatterlist *sg;
531 /* assert(trans->used > 0); */
533 /* Consume the entries. If we cross the end of the ring while
534 * filling them we'll switch to the beginning to finish.
535 * If there is no info array we're doing a simple data
536 * transfer request, whose opcode is IPA_CMD_NONE.
538 info = trans->info ? &trans->info[0] : NULL;
539 avail = ring->count - ring->index % ring->count;
540 dest_tre = gsi_ring_virt(ring, ring->index);
541 for_each_sg(trans->sgl, sg, trans->used, i) {
542 bool last_tre = i == trans->used - 1;
543 dma_addr_t addr = sg_dma_address(sg);
544 u32 len = sg_dma_len(sg);
548 dest_tre = gsi_ring_virt(ring, 0);
550 opcode = info++->opcode;
552 gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
555 ring->index += trans->used;
557 if (channel->toward_ipa) {
558 /* We record TX bytes when they are sent */
559 trans->len = byte_count;
560 trans->trans_count = channel->trans_count;
561 trans->byte_count = channel->byte_count;
562 channel->trans_count++;
563 channel->byte_count += byte_count;
566 /* Associate the last TRE with the transaction */
567 gsi_channel_trans_map(channel, ring->index - 1, trans);
569 gsi_trans_move_pending(trans);
571 /* Ring doorbell if requested, or if all TREs are allocated */
572 if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
573 /* Report what we're handing off to hardware for TX channels */
574 if (channel->toward_ipa)
575 gsi_channel_tx_queued(channel);
576 gsi_channel_doorbell(channel);
580 /* Commit a GSI transaction */
581 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
584 __gsi_trans_commit(trans, ring_db);
586 gsi_trans_free(trans);
589 /* Commit a GSI transaction and wait for it to complete */
590 void gsi_trans_commit_wait(struct gsi_trans *trans)
595 refcount_inc(&trans->refcount);
597 __gsi_trans_commit(trans, true);
599 wait_for_completion(&trans->completion);
602 gsi_trans_free(trans);
605 /* Commit a GSI transaction and wait for it to complete, with timeout */
606 int gsi_trans_commit_wait_timeout(struct gsi_trans *trans,
607 unsigned long timeout)
609 unsigned long timeout_jiffies = msecs_to_jiffies(timeout);
610 unsigned long remaining = 1; /* In case of empty transaction */
615 refcount_inc(&trans->refcount);
617 __gsi_trans_commit(trans, true);
619 remaining = wait_for_completion_timeout(&trans->completion,
622 gsi_trans_free(trans);
624 return remaining ? 0 : -ETIMEDOUT;
627 /* Process the completion of a transaction; called while polling */
628 void gsi_trans_complete(struct gsi_trans *trans)
630 /* If the entire SGL was mapped when added, unmap it now */
631 if (trans->direction != DMA_NONE)
632 dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used,
635 ipa_gsi_trans_complete(trans);
637 complete(&trans->completion);
639 gsi_trans_free(trans);
642 /* Cancel a channel's pending transactions */
643 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
645 struct gsi_trans_info *trans_info = &channel->trans_info;
646 struct gsi_trans *trans;
649 /* channel->gsi->mutex is held by caller */
650 spin_lock_bh(&trans_info->spinlock);
652 cancelled = !list_empty(&trans_info->pending);
653 list_for_each_entry(trans, &trans_info->pending, links)
654 trans->cancelled = true;
656 list_splice_tail_init(&trans_info->pending, &trans_info->complete);
658 spin_unlock_bh(&trans_info->spinlock);
660 /* Schedule NAPI polling to complete the cancelled transactions */
662 napi_schedule(&channel->napi);
665 /* Issue a command to read a single byte from a channel */
666 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
668 struct gsi_channel *channel = &gsi->channel[channel_id];
669 struct gsi_ring *ring = &channel->tre_ring;
670 struct gsi_trans_info *trans_info;
671 struct gsi_tre *dest_tre;
673 trans_info = &channel->trans_info;
675 /* First reserve the TRE, if possible */
676 if (!gsi_trans_tre_reserve(trans_info, 1))
679 /* Now fill the the reserved TRE and tell the hardware */
681 dest_tre = gsi_ring_virt(ring, ring->index);
682 gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
685 gsi_channel_doorbell(channel);
690 /* Mark a gsi_trans_read_byte() request done */
691 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
693 struct gsi_channel *channel = &gsi->channel[channel_id];
695 gsi_trans_tre_release(&channel->trans_info, 1);
698 /* Initialize a channel's GSI transaction info */
699 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
701 struct gsi_channel *channel = &gsi->channel[channel_id];
702 struct gsi_trans_info *trans_info;
706 /* Ensure the size of a channel element is what's expected */
707 BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
709 /* The map array is used to determine what transaction is associated
710 * with a TRE that the hardware reports has completed. We need one
713 trans_info = &channel->trans_info;
714 trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map),
716 if (!trans_info->map)
719 /* We can't use more TREs than there are available in the ring.
720 * This limits the number of transactions that can be oustanding.
721 * Worst case is one TRE per transaction (but we actually limit
722 * it to something a little less than that). We allocate resources
723 * for transactions (including transaction structures) based on
724 * this maximum number.
726 tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
728 /* Transactions are allocated one at a time. */
729 ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans),
734 /* A transaction uses a scatterlist array to represent the data
735 * transfers implemented by the transaction. Each scatterlist
736 * element is used to fill a single TRE when the transaction is
737 * committed. So we need as many scatterlist elements as the
738 * maximum number of TREs that can be outstanding.
740 * All TREs in a transaction must fit within the channel's TLV FIFO.
741 * A transaction on a channel can allocate as many TREs as that but
744 ret = gsi_trans_pool_init(&trans_info->sg_pool,
745 sizeof(struct scatterlist),
746 tre_max, channel->tlv_count);
748 goto err_trans_pool_exit;
750 /* Finally, the tre_avail field is what ultimately limits the number
751 * of outstanding transactions and their resources. A transaction
752 * allocation succeeds only if the TREs available are sufficient for
753 * what the transaction might need. Transaction resource pools are
754 * sized based on the maximum number of outstanding TREs, so there
755 * will always be resources available if there are TREs available.
757 atomic_set(&trans_info->tre_avail, tre_max);
759 spin_lock_init(&trans_info->spinlock);
760 INIT_LIST_HEAD(&trans_info->alloc);
761 INIT_LIST_HEAD(&trans_info->pending);
762 INIT_LIST_HEAD(&trans_info->complete);
763 INIT_LIST_HEAD(&trans_info->polled);
768 gsi_trans_pool_exit(&trans_info->pool);
770 kfree(trans_info->map);
772 dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
778 /* Inverse of gsi_channel_trans_init() */
779 void gsi_channel_trans_exit(struct gsi_channel *channel)
781 struct gsi_trans_info *trans_info = &channel->trans_info;
783 gsi_trans_pool_exit(&trans_info->sg_pool);
784 gsi_trans_pool_exit(&trans_info->pool);
785 kfree(trans_info->map);