1 // SPDX-License-Identifier: GPL-2.0-or-later
4 The purpose of this driver is to provide a device that allows
5 for sharing of resources:
7 1) qdiscs/policies that are per device as opposed to system wide.
8 ifb allows for a device which can be redirected to thus providing
9 an impression of sharing.
11 2) Allows for queueing incoming traffic for shaping instead of
14 The original concept is based on what is known as the IMQ
15 driver initially written by Martin Devera, later rewritten
16 by Patrick McHardy and then maintained by Andre Correa.
18 You need the tc action mirror or redirect to feed this device
22 Authors: Jamal Hadi Salim (2005)
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <net/pkt_sched.h>
35 #include <net/net_namespace.h>
38 struct ifb_q_private {
39 struct net_device *dev;
40 struct tasklet_struct ifb_tasklet;
43 struct sk_buff_head rq;
46 struct u64_stats_sync rsync;
48 struct u64_stats_sync tsync;
51 struct sk_buff_head tq;
52 } ____cacheline_aligned_in_smp;
54 struct ifb_dev_private {
55 struct ifb_q_private *tx_private;
58 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
59 static int ifb_open(struct net_device *dev);
60 static int ifb_close(struct net_device *dev);
62 static void ifb_ri_tasklet(struct tasklet_struct *t)
64 struct ifb_q_private *txp = from_tasklet(txp, t, ifb_tasklet);
65 struct netdev_queue *txq;
68 txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
69 skb = skb_peek(&txp->tq);
71 if (!__netif_tx_trylock(txq))
73 skb_queue_splice_tail_init(&txp->rq, &txp->tq);
74 __netif_tx_unlock(txq);
77 while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
79 #ifdef CONFIG_NET_CLS_ACT
80 skb->tc_skip_classify = 1;
83 u64_stats_update_begin(&txp->tsync);
85 txp->tx_bytes += skb->len;
86 u64_stats_update_end(&txp->tsync);
89 skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
93 txp->dev->stats.tx_dropped++;
94 if (skb_queue_len(&txp->tq) != 0)
99 skb->skb_iif = txp->dev->ifindex;
101 if (!skb->from_ingress) {
104 skb_pull_rcsum(skb, skb->mac_len);
105 netif_receive_skb(skb);
109 if (__netif_tx_trylock(txq)) {
110 skb = skb_peek(&txp->rq);
112 txp->tasklet_pending = 0;
113 if (netif_tx_queue_stopped(txq))
114 netif_tx_wake_queue(txq);
116 __netif_tx_unlock(txq);
119 __netif_tx_unlock(txq);
122 txp->tasklet_pending = 1;
123 tasklet_schedule(&txp->ifb_tasklet);
128 static void ifb_stats64(struct net_device *dev,
129 struct rtnl_link_stats64 *stats)
131 struct ifb_dev_private *dp = netdev_priv(dev);
132 struct ifb_q_private *txp = dp->tx_private;
137 for (i = 0; i < dev->num_tx_queues; i++,txp++) {
139 start = u64_stats_fetch_begin_irq(&txp->rsync);
140 packets = txp->rx_packets;
141 bytes = txp->rx_bytes;
142 } while (u64_stats_fetch_retry_irq(&txp->rsync, start));
143 stats->rx_packets += packets;
144 stats->rx_bytes += bytes;
147 start = u64_stats_fetch_begin_irq(&txp->tsync);
148 packets = txp->tx_packets;
149 bytes = txp->tx_bytes;
150 } while (u64_stats_fetch_retry_irq(&txp->tsync, start));
151 stats->tx_packets += packets;
152 stats->tx_bytes += bytes;
154 stats->rx_dropped = dev->stats.rx_dropped;
155 stats->tx_dropped = dev->stats.tx_dropped;
158 static int ifb_dev_init(struct net_device *dev)
160 struct ifb_dev_private *dp = netdev_priv(dev);
161 struct ifb_q_private *txp;
164 txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
167 dp->tx_private = txp;
168 for (i = 0; i < dev->num_tx_queues; i++,txp++) {
171 __skb_queue_head_init(&txp->rq);
172 __skb_queue_head_init(&txp->tq);
173 u64_stats_init(&txp->rsync);
174 u64_stats_init(&txp->tsync);
175 tasklet_setup(&txp->ifb_tasklet, ifb_ri_tasklet);
176 netif_tx_start_queue(netdev_get_tx_queue(dev, i));
181 static const struct net_device_ops ifb_netdev_ops = {
182 .ndo_open = ifb_open,
183 .ndo_stop = ifb_close,
184 .ndo_get_stats64 = ifb_stats64,
185 .ndo_start_xmit = ifb_xmit,
186 .ndo_validate_addr = eth_validate_addr,
187 .ndo_init = ifb_dev_init,
190 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST | \
191 NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
192 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | \
193 NETIF_F_HW_VLAN_STAG_TX)
195 static void ifb_dev_free(struct net_device *dev)
197 struct ifb_dev_private *dp = netdev_priv(dev);
198 struct ifb_q_private *txp = dp->tx_private;
201 for (i = 0; i < dev->num_tx_queues; i++,txp++) {
202 tasklet_kill(&txp->ifb_tasklet);
203 __skb_queue_purge(&txp->rq);
204 __skb_queue_purge(&txp->tq);
206 kfree(dp->tx_private);
209 static void ifb_setup(struct net_device *dev)
211 /* Initialize the device structure. */
212 dev->netdev_ops = &ifb_netdev_ops;
214 /* Fill in device structure with ethernet-generic values. */
216 dev->tx_queue_len = TX_Q_LIMIT;
218 dev->features |= IFB_FEATURES;
219 dev->hw_features |= dev->features;
220 dev->hw_enc_features |= dev->features;
221 dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
222 NETIF_F_HW_VLAN_STAG_TX);
224 dev->flags |= IFF_NOARP;
225 dev->flags &= ~IFF_MULTICAST;
226 dev->priv_flags &= ~IFF_TX_SKB_SHARING;
228 eth_hw_addr_random(dev);
229 dev->needs_free_netdev = true;
230 dev->priv_destructor = ifb_dev_free;
236 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
238 struct ifb_dev_private *dp = netdev_priv(dev);
239 struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
241 u64_stats_update_begin(&txp->rsync);
243 txp->rx_bytes += skb->len;
244 u64_stats_update_end(&txp->rsync);
246 if (!skb->redirected || !skb->skb_iif) {
248 dev->stats.rx_dropped++;
252 if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
253 netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
255 __skb_queue_tail(&txp->rq, skb);
256 if (!txp->tasklet_pending) {
257 txp->tasklet_pending = 1;
258 tasklet_schedule(&txp->ifb_tasklet);
264 static int ifb_close(struct net_device *dev)
266 netif_tx_stop_all_queues(dev);
270 static int ifb_open(struct net_device *dev)
272 netif_tx_start_all_queues(dev);
276 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[],
277 struct netlink_ext_ack *extack)
279 if (tb[IFLA_ADDRESS]) {
280 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
282 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
283 return -EADDRNOTAVAIL;
288 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
290 .priv_size = sizeof(struct ifb_dev_private),
292 .validate = ifb_validate,
295 /* Number of ifb devices to be set up by this module.
296 * Note that these legacy devices have one queue.
297 * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
299 static int numifbs = 2;
300 module_param(numifbs, int, 0);
301 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
303 static int __init ifb_init_one(int index)
305 struct net_device *dev_ifb;
308 dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
309 NET_NAME_UNKNOWN, ifb_setup);
314 dev_ifb->rtnl_link_ops = &ifb_link_ops;
315 err = register_netdevice(dev_ifb);
322 free_netdev(dev_ifb);
326 static int __init ifb_init_module(void)
330 down_write(&pernet_ops_rwsem);
332 err = __rtnl_link_register(&ifb_link_ops);
336 for (i = 0; i < numifbs && !err; i++) {
337 err = ifb_init_one(i);
341 __rtnl_link_unregister(&ifb_link_ops);
345 up_write(&pernet_ops_rwsem);
350 static void __exit ifb_cleanup_module(void)
352 rtnl_link_unregister(&ifb_link_ops);
355 module_init(ifb_init_module);
356 module_exit(ifb_cleanup_module);
357 MODULE_LICENSE("GPL");
358 MODULE_AUTHOR("Jamal Hadi Salim");
359 MODULE_ALIAS_RTNL_LINK("ifb");