Merge tag 'nfs-for-4.15-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[platform/kernel/linux-starfive.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38
39 #include <net/arp.h>
40 #include <net/route.h>
41 #include <net/sock.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45
46 #include "hyperv_net.h"
47
48 #define RING_SIZE_MIN           64
49 #define NETVSC_MIN_TX_SECTIONS  10
50 #define NETVSC_DEFAULT_TX       192     /* ~1M */
51 #define NETVSC_MIN_RX_SECTIONS  10      /* ~64K */
52 #define NETVSC_DEFAULT_RX       10485   /* Max ~16M */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static int ring_size = 128;
58 module_param(ring_size, int, S_IRUGO);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
63                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64                                 NETIF_MSG_TX_ERR;
65
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 static void netvsc_set_multicast_list(struct net_device *net)
71 {
72         struct net_device_context *net_device_ctx = netdev_priv(net);
73         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
74
75         rndis_filter_update(nvdev);
76 }
77
78 static int netvsc_open(struct net_device *net)
79 {
80         struct net_device_context *ndev_ctx = netdev_priv(net);
81         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
82         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
83         struct rndis_device *rdev;
84         int ret = 0;
85
86         netif_carrier_off(net);
87
88         /* Open up the device */
89         ret = rndis_filter_open(nvdev);
90         if (ret != 0) {
91                 netdev_err(net, "unable to open device (ret %d).\n", ret);
92                 return ret;
93         }
94
95         netif_tx_wake_all_queues(net);
96
97         rdev = nvdev->extension;
98
99         if (!rdev->link_state)
100                 netif_carrier_on(net);
101
102         if (vf_netdev) {
103                 /* Setting synthetic device up transparently sets
104                  * slave as up. If open fails, then slave will be
105                  * still be offline (and not used).
106                  */
107                 ret = dev_open(vf_netdev);
108                 if (ret)
109                         netdev_warn(net,
110                                     "unable to open slave: %s: %d\n",
111                                     vf_netdev->name, ret);
112         }
113         return 0;
114 }
115
116 static int netvsc_close(struct net_device *net)
117 {
118         struct net_device_context *net_device_ctx = netdev_priv(net);
119         struct net_device *vf_netdev
120                 = rtnl_dereference(net_device_ctx->vf_netdev);
121         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
122         int ret = 0;
123         u32 aread, i, msec = 10, retry = 0, retry_max = 20;
124         struct vmbus_channel *chn;
125
126         netif_tx_disable(net);
127
128         /* No need to close rndis filter if it is removed already */
129         if (!nvdev)
130                 goto out;
131
132         ret = rndis_filter_close(nvdev);
133         if (ret != 0) {
134                 netdev_err(net, "unable to close device (ret %d).\n", ret);
135                 return ret;
136         }
137
138         /* Ensure pending bytes in ring are read */
139         while (true) {
140                 aread = 0;
141                 for (i = 0; i < nvdev->num_chn; i++) {
142                         chn = nvdev->chan_table[i].channel;
143                         if (!chn)
144                                 continue;
145
146                         aread = hv_get_bytes_to_read(&chn->inbound);
147                         if (aread)
148                                 break;
149
150                         aread = hv_get_bytes_to_read(&chn->outbound);
151                         if (aread)
152                                 break;
153                 }
154
155                 retry++;
156                 if (retry > retry_max || aread == 0)
157                         break;
158
159                 msleep(msec);
160
161                 if (msec < 1000)
162                         msec *= 2;
163         }
164
165         if (aread) {
166                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
167                 ret = -ETIMEDOUT;
168         }
169
170 out:
171         if (vf_netdev)
172                 dev_close(vf_netdev);
173
174         return ret;
175 }
176
177 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
178                            int pkt_type)
179 {
180         struct rndis_packet *rndis_pkt;
181         struct rndis_per_packet_info *ppi;
182
183         rndis_pkt = &msg->msg.pkt;
184         rndis_pkt->data_offset += ppi_size;
185
186         ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
187                 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
188
189         ppi->size = ppi_size;
190         ppi->type = pkt_type;
191         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
192
193         rndis_pkt->per_pkt_info_len += ppi_size;
194
195         return ppi;
196 }
197
198 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
199  * packets. We can use ethtool to change UDP hash level when necessary.
200  */
201 static inline u32 netvsc_get_hash(
202         struct sk_buff *skb,
203         const struct net_device_context *ndc)
204 {
205         struct flow_keys flow;
206         u32 hash, pkt_proto = 0;
207         static u32 hashrnd __read_mostly;
208
209         net_get_random_once(&hashrnd, sizeof(hashrnd));
210
211         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
212                 return 0;
213
214         switch (flow.basic.ip_proto) {
215         case IPPROTO_TCP:
216                 if (flow.basic.n_proto == htons(ETH_P_IP))
217                         pkt_proto = HV_TCP4_L4HASH;
218                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
219                         pkt_proto = HV_TCP6_L4HASH;
220
221                 break;
222
223         case IPPROTO_UDP:
224                 if (flow.basic.n_proto == htons(ETH_P_IP))
225                         pkt_proto = HV_UDP4_L4HASH;
226                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
227                         pkt_proto = HV_UDP6_L4HASH;
228
229                 break;
230         }
231
232         if (pkt_proto & ndc->l4_hash) {
233                 return skb_get_hash(skb);
234         } else {
235                 if (flow.basic.n_proto == htons(ETH_P_IP))
236                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
237                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
238                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
239                 else
240                         hash = 0;
241
242                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
243         }
244
245         return hash;
246 }
247
248 static inline int netvsc_get_tx_queue(struct net_device *ndev,
249                                       struct sk_buff *skb, int old_idx)
250 {
251         const struct net_device_context *ndc = netdev_priv(ndev);
252         struct sock *sk = skb->sk;
253         int q_idx;
254
255         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
256                               (VRSS_SEND_TAB_SIZE - 1)];
257
258         /* If queue index changed record the new value */
259         if (q_idx != old_idx &&
260             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
261                 sk_tx_queue_set(sk, q_idx);
262
263         return q_idx;
264 }
265
266 /*
267  * Select queue for transmit.
268  *
269  * If a valid queue has already been assigned, then use that.
270  * Otherwise compute tx queue based on hash and the send table.
271  *
272  * This is basically similar to default (__netdev_pick_tx) with the added step
273  * of using the host send_table when no other queue has been assigned.
274  *
275  * TODO support XPS - but get_xps_queue not exported
276  */
277 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
278 {
279         int q_idx = sk_tx_queue_get(skb->sk);
280
281         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
282                 /* If forwarding a packet, we use the recorded queue when
283                  * available for better cache locality.
284                  */
285                 if (skb_rx_queue_recorded(skb))
286                         q_idx = skb_get_rx_queue(skb);
287                 else
288                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
289         }
290
291         return q_idx;
292 }
293
294 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
295                                void *accel_priv,
296                                select_queue_fallback_t fallback)
297 {
298         struct net_device_context *ndc = netdev_priv(ndev);
299         struct net_device *vf_netdev;
300         u16 txq;
301
302         rcu_read_lock();
303         vf_netdev = rcu_dereference(ndc->vf_netdev);
304         if (vf_netdev) {
305                 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
306                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
307         } else {
308                 txq = netvsc_pick_tx(ndev, skb);
309         }
310         rcu_read_unlock();
311
312         while (unlikely(txq >= ndev->real_num_tx_queues))
313                 txq -= ndev->real_num_tx_queues;
314
315         return txq;
316 }
317
318 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
319                        struct hv_page_buffer *pb)
320 {
321         int j = 0;
322
323         /* Deal with compund pages by ignoring unused part
324          * of the page.
325          */
326         page += (offset >> PAGE_SHIFT);
327         offset &= ~PAGE_MASK;
328
329         while (len > 0) {
330                 unsigned long bytes;
331
332                 bytes = PAGE_SIZE - offset;
333                 if (bytes > len)
334                         bytes = len;
335                 pb[j].pfn = page_to_pfn(page);
336                 pb[j].offset = offset;
337                 pb[j].len = bytes;
338
339                 offset += bytes;
340                 len -= bytes;
341
342                 if (offset == PAGE_SIZE && len) {
343                         page++;
344                         offset = 0;
345                         j++;
346                 }
347         }
348
349         return j + 1;
350 }
351
352 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
353                            struct hv_netvsc_packet *packet,
354                            struct hv_page_buffer *pb)
355 {
356         u32 slots_used = 0;
357         char *data = skb->data;
358         int frags = skb_shinfo(skb)->nr_frags;
359         int i;
360
361         /* The packet is laid out thus:
362          * 1. hdr: RNDIS header and PPI
363          * 2. skb linear data
364          * 3. skb fragment data
365          */
366         slots_used += fill_pg_buf(virt_to_page(hdr),
367                                   offset_in_page(hdr),
368                                   len, &pb[slots_used]);
369
370         packet->rmsg_size = len;
371         packet->rmsg_pgcnt = slots_used;
372
373         slots_used += fill_pg_buf(virt_to_page(data),
374                                 offset_in_page(data),
375                                 skb_headlen(skb), &pb[slots_used]);
376
377         for (i = 0; i < frags; i++) {
378                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
379
380                 slots_used += fill_pg_buf(skb_frag_page(frag),
381                                         frag->page_offset,
382                                         skb_frag_size(frag), &pb[slots_used]);
383         }
384         return slots_used;
385 }
386
387 static int count_skb_frag_slots(struct sk_buff *skb)
388 {
389         int i, frags = skb_shinfo(skb)->nr_frags;
390         int pages = 0;
391
392         for (i = 0; i < frags; i++) {
393                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
394                 unsigned long size = skb_frag_size(frag);
395                 unsigned long offset = frag->page_offset;
396
397                 /* Skip unused frames from start of page */
398                 offset &= ~PAGE_MASK;
399                 pages += PFN_UP(offset + size);
400         }
401         return pages;
402 }
403
404 static int netvsc_get_slots(struct sk_buff *skb)
405 {
406         char *data = skb->data;
407         unsigned int offset = offset_in_page(data);
408         unsigned int len = skb_headlen(skb);
409         int slots;
410         int frag_slots;
411
412         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
413         frag_slots = count_skb_frag_slots(skb);
414         return slots + frag_slots;
415 }
416
417 static u32 net_checksum_info(struct sk_buff *skb)
418 {
419         if (skb->protocol == htons(ETH_P_IP)) {
420                 struct iphdr *ip = ip_hdr(skb);
421
422                 if (ip->protocol == IPPROTO_TCP)
423                         return TRANSPORT_INFO_IPV4_TCP;
424                 else if (ip->protocol == IPPROTO_UDP)
425                         return TRANSPORT_INFO_IPV4_UDP;
426         } else {
427                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
428
429                 if (ip6->nexthdr == IPPROTO_TCP)
430                         return TRANSPORT_INFO_IPV6_TCP;
431                 else if (ip6->nexthdr == IPPROTO_UDP)
432                         return TRANSPORT_INFO_IPV6_UDP;
433         }
434
435         return TRANSPORT_INFO_NOT_IP;
436 }
437
438 /* Send skb on the slave VF device. */
439 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
440                           struct sk_buff *skb)
441 {
442         struct net_device_context *ndev_ctx = netdev_priv(net);
443         unsigned int len = skb->len;
444         int rc;
445
446         skb->dev = vf_netdev;
447         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
448
449         rc = dev_queue_xmit(skb);
450         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
451                 struct netvsc_vf_pcpu_stats *pcpu_stats
452                         = this_cpu_ptr(ndev_ctx->vf_stats);
453
454                 u64_stats_update_begin(&pcpu_stats->syncp);
455                 pcpu_stats->tx_packets++;
456                 pcpu_stats->tx_bytes += len;
457                 u64_stats_update_end(&pcpu_stats->syncp);
458         } else {
459                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
460         }
461
462         return rc;
463 }
464
465 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
466 {
467         struct net_device_context *net_device_ctx = netdev_priv(net);
468         struct hv_netvsc_packet *packet = NULL;
469         int ret;
470         unsigned int num_data_pgs;
471         struct rndis_message *rndis_msg;
472         struct rndis_packet *rndis_pkt;
473         struct net_device *vf_netdev;
474         u32 rndis_msg_size;
475         struct rndis_per_packet_info *ppi;
476         u32 hash;
477         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
478
479         /* if VF is present and up then redirect packets
480          * already called with rcu_read_lock_bh
481          */
482         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
483         if (vf_netdev && netif_running(vf_netdev) &&
484             !netpoll_tx_running(net))
485                 return netvsc_vf_xmit(net, vf_netdev, skb);
486
487         /* We will atmost need two pages to describe the rndis
488          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
489          * of pages in a single packet. If skb is scattered around
490          * more pages we try linearizing it.
491          */
492
493         num_data_pgs = netvsc_get_slots(skb) + 2;
494
495         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
496                 ++net_device_ctx->eth_stats.tx_scattered;
497
498                 if (skb_linearize(skb))
499                         goto no_memory;
500
501                 num_data_pgs = netvsc_get_slots(skb) + 2;
502                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
503                         ++net_device_ctx->eth_stats.tx_too_big;
504                         goto drop;
505                 }
506         }
507
508         /*
509          * Place the rndis header in the skb head room and
510          * the skb->cb will be used for hv_netvsc_packet
511          * structure.
512          */
513         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
514         if (ret)
515                 goto no_memory;
516
517         /* Use the skb control buffer for building up the packet */
518         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
519                         FIELD_SIZEOF(struct sk_buff, cb));
520         packet = (struct hv_netvsc_packet *)skb->cb;
521
522         packet->q_idx = skb_get_queue_mapping(skb);
523
524         packet->total_data_buflen = skb->len;
525         packet->total_bytes = skb->len;
526         packet->total_packets = 1;
527
528         rndis_msg = (struct rndis_message *)skb->head;
529
530         memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
531
532         /* Add the rndis header */
533         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
534         rndis_msg->msg_len = packet->total_data_buflen;
535         rndis_pkt = &rndis_msg->msg.pkt;
536         rndis_pkt->data_offset = sizeof(struct rndis_packet);
537         rndis_pkt->data_len = packet->total_data_buflen;
538         rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
539
540         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
541
542         hash = skb_get_hash_raw(skb);
543         if (hash != 0 && net->real_num_tx_queues > 1) {
544                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
545                 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
546                                     NBL_HASH_VALUE);
547                 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
548         }
549
550         if (skb_vlan_tag_present(skb)) {
551                 struct ndis_pkt_8021q_info *vlan;
552
553                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
554                 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
555                                     IEEE_8021Q_INFO);
556
557                 vlan = (void *)ppi + ppi->ppi_offset;
558                 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
559                 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
560                                 VLAN_PRIO_SHIFT;
561         }
562
563         if (skb_is_gso(skb)) {
564                 struct ndis_tcp_lso_info *lso_info;
565
566                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
567                 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
568                                     TCP_LARGESEND_PKTINFO);
569
570                 lso_info = (void *)ppi + ppi->ppi_offset;
571
572                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
573                 if (skb->protocol == htons(ETH_P_IP)) {
574                         lso_info->lso_v2_transmit.ip_version =
575                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
576                         ip_hdr(skb)->tot_len = 0;
577                         ip_hdr(skb)->check = 0;
578                         tcp_hdr(skb)->check =
579                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
580                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
581                 } else {
582                         lso_info->lso_v2_transmit.ip_version =
583                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
584                         ipv6_hdr(skb)->payload_len = 0;
585                         tcp_hdr(skb)->check =
586                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
587                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
588                 }
589                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
590                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
591         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
592                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
593                         struct ndis_tcp_ip_checksum_info *csum_info;
594
595                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
596                         ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
597                                             TCPIP_CHKSUM_PKTINFO);
598
599                         csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
600                                                                          ppi->ppi_offset);
601
602                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
603
604                         if (skb->protocol == htons(ETH_P_IP)) {
605                                 csum_info->transmit.is_ipv4 = 1;
606
607                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
608                                         csum_info->transmit.tcp_checksum = 1;
609                                 else
610                                         csum_info->transmit.udp_checksum = 1;
611                         } else {
612                                 csum_info->transmit.is_ipv6 = 1;
613
614                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
615                                         csum_info->transmit.tcp_checksum = 1;
616                                 else
617                                         csum_info->transmit.udp_checksum = 1;
618                         }
619                 } else {
620                         /* Can't do offload of this type of checksum */
621                         if (skb_checksum_help(skb))
622                                 goto drop;
623                 }
624         }
625
626         /* Start filling in the page buffers with the rndis hdr */
627         rndis_msg->msg_len += rndis_msg_size;
628         packet->total_data_buflen = rndis_msg->msg_len;
629         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
630                                                skb, packet, pb);
631
632         /* timestamp packet in software */
633         skb_tx_timestamp(skb);
634
635         ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb);
636         if (likely(ret == 0))
637                 return NETDEV_TX_OK;
638
639         if (ret == -EAGAIN) {
640                 ++net_device_ctx->eth_stats.tx_busy;
641                 return NETDEV_TX_BUSY;
642         }
643
644         if (ret == -ENOSPC)
645                 ++net_device_ctx->eth_stats.tx_no_space;
646
647 drop:
648         dev_kfree_skb_any(skb);
649         net->stats.tx_dropped++;
650
651         return NETDEV_TX_OK;
652
653 no_memory:
654         ++net_device_ctx->eth_stats.tx_no_memory;
655         goto drop;
656 }
657
658 /*
659  * netvsc_linkstatus_callback - Link up/down notification
660  */
661 void netvsc_linkstatus_callback(struct hv_device *device_obj,
662                                 struct rndis_message *resp)
663 {
664         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
665         struct net_device *net;
666         struct net_device_context *ndev_ctx;
667         struct netvsc_reconfig *event;
668         unsigned long flags;
669
670         net = hv_get_drvdata(device_obj);
671
672         if (!net)
673                 return;
674
675         ndev_ctx = netdev_priv(net);
676
677         /* Update the physical link speed when changing to another vSwitch */
678         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
679                 u32 speed;
680
681                 speed = *(u32 *)((void *)indicate
682                                  + indicate->status_buf_offset) / 10000;
683                 ndev_ctx->speed = speed;
684                 return;
685         }
686
687         /* Handle these link change statuses below */
688         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
689             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
690             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
691                 return;
692
693         if (net->reg_state != NETREG_REGISTERED)
694                 return;
695
696         event = kzalloc(sizeof(*event), GFP_ATOMIC);
697         if (!event)
698                 return;
699         event->event = indicate->status;
700
701         spin_lock_irqsave(&ndev_ctx->lock, flags);
702         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
703         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
704
705         schedule_delayed_work(&ndev_ctx->dwork, 0);
706 }
707
708 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
709                                              struct napi_struct *napi,
710                                              const struct ndis_tcp_ip_checksum_info *csum_info,
711                                              const struct ndis_pkt_8021q_info *vlan,
712                                              void *data, u32 buflen)
713 {
714         struct sk_buff *skb;
715
716         skb = napi_alloc_skb(napi, buflen);
717         if (!skb)
718                 return skb;
719
720         /*
721          * Copy to skb. This copy is needed here since the memory pointed by
722          * hv_netvsc_packet cannot be deallocated
723          */
724         skb_put_data(skb, data, buflen);
725
726         skb->protocol = eth_type_trans(skb, net);
727
728         /* skb is already created with CHECKSUM_NONE */
729         skb_checksum_none_assert(skb);
730
731         /*
732          * In Linux, the IP checksum is always checked.
733          * Do L4 checksum offload if enabled and present.
734          */
735         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
736                 if (csum_info->receive.tcp_checksum_succeeded ||
737                     csum_info->receive.udp_checksum_succeeded)
738                         skb->ip_summed = CHECKSUM_UNNECESSARY;
739         }
740
741         if (vlan) {
742                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
743
744                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
745                                        vlan_tci);
746         }
747
748         return skb;
749 }
750
751 /*
752  * netvsc_recv_callback -  Callback when we receive a packet from the
753  * "wire" on the specified device.
754  */
755 int netvsc_recv_callback(struct net_device *net,
756                          struct vmbus_channel *channel,
757                          void  *data, u32 len,
758                          const struct ndis_tcp_ip_checksum_info *csum_info,
759                          const struct ndis_pkt_8021q_info *vlan)
760 {
761         struct net_device_context *net_device_ctx = netdev_priv(net);
762         struct netvsc_device *net_device;
763         u16 q_idx = channel->offermsg.offer.sub_channel_index;
764         struct netvsc_channel *nvchan;
765         struct sk_buff *skb;
766         struct netvsc_stats *rx_stats;
767
768         if (net->reg_state != NETREG_REGISTERED)
769                 return NVSP_STAT_FAIL;
770
771         rcu_read_lock();
772         net_device = rcu_dereference(net_device_ctx->nvdev);
773         if (unlikely(!net_device))
774                 goto drop;
775
776         nvchan = &net_device->chan_table[q_idx];
777
778         /* Allocate a skb - TODO direct I/O to pages? */
779         skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
780                                     csum_info, vlan, data, len);
781         if (unlikely(!skb)) {
782 drop:
783                 ++net->stats.rx_dropped;
784                 rcu_read_unlock();
785                 return NVSP_STAT_FAIL;
786         }
787
788         skb_record_rx_queue(skb, q_idx);
789
790         /*
791          * Even if injecting the packet, record the statistics
792          * on the synthetic device because modifying the VF device
793          * statistics will not work correctly.
794          */
795         rx_stats = &nvchan->rx_stats;
796         u64_stats_update_begin(&rx_stats->syncp);
797         rx_stats->packets++;
798         rx_stats->bytes += len;
799
800         if (skb->pkt_type == PACKET_BROADCAST)
801                 ++rx_stats->broadcast;
802         else if (skb->pkt_type == PACKET_MULTICAST)
803                 ++rx_stats->multicast;
804         u64_stats_update_end(&rx_stats->syncp);
805
806         napi_gro_receive(&nvchan->napi, skb);
807         rcu_read_unlock();
808
809         return 0;
810 }
811
812 static void netvsc_get_drvinfo(struct net_device *net,
813                                struct ethtool_drvinfo *info)
814 {
815         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
816         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
817 }
818
819 static void netvsc_get_channels(struct net_device *net,
820                                 struct ethtool_channels *channel)
821 {
822         struct net_device_context *net_device_ctx = netdev_priv(net);
823         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
824
825         if (nvdev) {
826                 channel->max_combined   = nvdev->max_chn;
827                 channel->combined_count = nvdev->num_chn;
828         }
829 }
830
831 static int netvsc_set_channels(struct net_device *net,
832                                struct ethtool_channels *channels)
833 {
834         struct net_device_context *net_device_ctx = netdev_priv(net);
835         struct hv_device *dev = net_device_ctx->device_ctx;
836         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
837         unsigned int orig, count = channels->combined_count;
838         struct netvsc_device_info device_info;
839         bool was_opened;
840         int ret = 0;
841
842         /* We do not support separate count for rx, tx, or other */
843         if (count == 0 ||
844             channels->rx_count || channels->tx_count || channels->other_count)
845                 return -EINVAL;
846
847         if (!nvdev || nvdev->destroy)
848                 return -ENODEV;
849
850         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
851                 return -EINVAL;
852
853         if (count > nvdev->max_chn)
854                 return -EINVAL;
855
856         orig = nvdev->num_chn;
857         was_opened = rndis_filter_opened(nvdev);
858         if (was_opened)
859                 rndis_filter_close(nvdev);
860
861         memset(&device_info, 0, sizeof(device_info));
862         device_info.num_chn = count;
863         device_info.ring_size = ring_size;
864         device_info.send_sections = nvdev->send_section_cnt;
865         device_info.send_section_size = nvdev->send_section_size;
866         device_info.recv_sections = nvdev->recv_section_cnt;
867         device_info.recv_section_size = nvdev->recv_section_size;
868
869         rndis_filter_device_remove(dev, nvdev);
870
871         nvdev = rndis_filter_device_add(dev, &device_info);
872         if (IS_ERR(nvdev)) {
873                 ret = PTR_ERR(nvdev);
874                 device_info.num_chn = orig;
875                 nvdev = rndis_filter_device_add(dev, &device_info);
876
877                 if (IS_ERR(nvdev)) {
878                         netdev_err(net, "restoring channel setting failed: %ld\n",
879                                    PTR_ERR(nvdev));
880                         return ret;
881                 }
882         }
883
884         if (was_opened)
885                 rndis_filter_open(nvdev);
886
887         /* We may have missed link change notifications */
888         net_device_ctx->last_reconfig = 0;
889         schedule_delayed_work(&net_device_ctx->dwork, 0);
890
891         return ret;
892 }
893
894 static bool
895 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
896 {
897         struct ethtool_link_ksettings diff1 = *cmd;
898         struct ethtool_link_ksettings diff2 = {};
899
900         diff1.base.speed = 0;
901         diff1.base.duplex = 0;
902         /* advertising and cmd are usually set */
903         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
904         diff1.base.cmd = 0;
905         /* We set port to PORT_OTHER */
906         diff2.base.port = PORT_OTHER;
907
908         return !memcmp(&diff1, &diff2, sizeof(diff1));
909 }
910
911 static void netvsc_init_settings(struct net_device *dev)
912 {
913         struct net_device_context *ndc = netdev_priv(dev);
914
915         ndc->l4_hash = HV_DEFAULT_L4HASH;
916
917         ndc->speed = SPEED_UNKNOWN;
918         ndc->duplex = DUPLEX_FULL;
919 }
920
921 static int netvsc_get_link_ksettings(struct net_device *dev,
922                                      struct ethtool_link_ksettings *cmd)
923 {
924         struct net_device_context *ndc = netdev_priv(dev);
925
926         cmd->base.speed = ndc->speed;
927         cmd->base.duplex = ndc->duplex;
928         cmd->base.port = PORT_OTHER;
929
930         return 0;
931 }
932
933 static int netvsc_set_link_ksettings(struct net_device *dev,
934                                      const struct ethtool_link_ksettings *cmd)
935 {
936         struct net_device_context *ndc = netdev_priv(dev);
937         u32 speed;
938
939         speed = cmd->base.speed;
940         if (!ethtool_validate_speed(speed) ||
941             !ethtool_validate_duplex(cmd->base.duplex) ||
942             !netvsc_validate_ethtool_ss_cmd(cmd))
943                 return -EINVAL;
944
945         ndc->speed = speed;
946         ndc->duplex = cmd->base.duplex;
947
948         return 0;
949 }
950
951 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
952 {
953         struct net_device_context *ndevctx = netdev_priv(ndev);
954         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
955         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
956         struct hv_device *hdev = ndevctx->device_ctx;
957         int orig_mtu = ndev->mtu;
958         struct netvsc_device_info device_info;
959         bool was_opened;
960         int ret = 0;
961
962         if (!nvdev || nvdev->destroy)
963                 return -ENODEV;
964
965         /* Change MTU of underlying VF netdev first. */
966         if (vf_netdev) {
967                 ret = dev_set_mtu(vf_netdev, mtu);
968                 if (ret)
969                         return ret;
970         }
971
972         netif_device_detach(ndev);
973         was_opened = rndis_filter_opened(nvdev);
974         if (was_opened)
975                 rndis_filter_close(nvdev);
976
977         memset(&device_info, 0, sizeof(device_info));
978         device_info.ring_size = ring_size;
979         device_info.num_chn = nvdev->num_chn;
980         device_info.send_sections = nvdev->send_section_cnt;
981         device_info.send_section_size = nvdev->send_section_size;
982         device_info.recv_sections = nvdev->recv_section_cnt;
983         device_info.recv_section_size = nvdev->recv_section_size;
984
985         rndis_filter_device_remove(hdev, nvdev);
986
987         ndev->mtu = mtu;
988
989         nvdev = rndis_filter_device_add(hdev, &device_info);
990         if (IS_ERR(nvdev)) {
991                 ret = PTR_ERR(nvdev);
992
993                 /* Attempt rollback to original MTU */
994                 ndev->mtu = orig_mtu;
995                 nvdev = rndis_filter_device_add(hdev, &device_info);
996
997                 if (vf_netdev)
998                         dev_set_mtu(vf_netdev, orig_mtu);
999
1000                 if (IS_ERR(nvdev)) {
1001                         netdev_err(ndev, "restoring mtu failed: %ld\n",
1002                                    PTR_ERR(nvdev));
1003                         return ret;
1004                 }
1005         }
1006
1007         if (was_opened)
1008                 rndis_filter_open(nvdev);
1009
1010         netif_device_attach(ndev);
1011
1012         /* We may have missed link change notifications */
1013         schedule_delayed_work(&ndevctx->dwork, 0);
1014
1015         return ret;
1016 }
1017
1018 static void netvsc_get_vf_stats(struct net_device *net,
1019                                 struct netvsc_vf_pcpu_stats *tot)
1020 {
1021         struct net_device_context *ndev_ctx = netdev_priv(net);
1022         int i;
1023
1024         memset(tot, 0, sizeof(*tot));
1025
1026         for_each_possible_cpu(i) {
1027                 const struct netvsc_vf_pcpu_stats *stats
1028                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1029                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1030                 unsigned int start;
1031
1032                 do {
1033                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1034                         rx_packets = stats->rx_packets;
1035                         tx_packets = stats->tx_packets;
1036                         rx_bytes = stats->rx_bytes;
1037                         tx_bytes = stats->tx_bytes;
1038                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1039
1040                 tot->rx_packets += rx_packets;
1041                 tot->tx_packets += tx_packets;
1042                 tot->rx_bytes   += rx_bytes;
1043                 tot->tx_bytes   += tx_bytes;
1044                 tot->tx_dropped += stats->tx_dropped;
1045         }
1046 }
1047
1048 static void netvsc_get_stats64(struct net_device *net,
1049                                struct rtnl_link_stats64 *t)
1050 {
1051         struct net_device_context *ndev_ctx = netdev_priv(net);
1052         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1053         struct netvsc_vf_pcpu_stats vf_tot;
1054         int i;
1055
1056         if (!nvdev)
1057                 return;
1058
1059         netdev_stats_to_stats64(t, &net->stats);
1060
1061         netvsc_get_vf_stats(net, &vf_tot);
1062         t->rx_packets += vf_tot.rx_packets;
1063         t->tx_packets += vf_tot.tx_packets;
1064         t->rx_bytes   += vf_tot.rx_bytes;
1065         t->tx_bytes   += vf_tot.tx_bytes;
1066         t->tx_dropped += vf_tot.tx_dropped;
1067
1068         for (i = 0; i < nvdev->num_chn; i++) {
1069                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1070                 const struct netvsc_stats *stats;
1071                 u64 packets, bytes, multicast;
1072                 unsigned int start;
1073
1074                 stats = &nvchan->tx_stats;
1075                 do {
1076                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1077                         packets = stats->packets;
1078                         bytes = stats->bytes;
1079                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1080
1081                 t->tx_bytes     += bytes;
1082                 t->tx_packets   += packets;
1083
1084                 stats = &nvchan->rx_stats;
1085                 do {
1086                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1087                         packets = stats->packets;
1088                         bytes = stats->bytes;
1089                         multicast = stats->multicast + stats->broadcast;
1090                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1091
1092                 t->rx_bytes     += bytes;
1093                 t->rx_packets   += packets;
1094                 t->multicast    += multicast;
1095         }
1096 }
1097
1098 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1099 {
1100         struct net_device_context *ndc = netdev_priv(ndev);
1101         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1102         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1103         struct sockaddr *addr = p;
1104         int err;
1105
1106         err = eth_prepare_mac_addr_change(ndev, p);
1107         if (err)
1108                 return err;
1109
1110         if (!nvdev)
1111                 return -ENODEV;
1112
1113         if (vf_netdev) {
1114                 err = dev_set_mac_address(vf_netdev, addr);
1115                 if (err)
1116                         return err;
1117         }
1118
1119         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1120         if (!err) {
1121                 eth_commit_mac_addr_change(ndev, p);
1122         } else if (vf_netdev) {
1123                 /* rollback change on VF */
1124                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1125                 dev_set_mac_address(vf_netdev, addr);
1126         }
1127
1128         return err;
1129 }
1130
1131 static const struct {
1132         char name[ETH_GSTRING_LEN];
1133         u16 offset;
1134 } netvsc_stats[] = {
1135         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1136         { "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1137         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1138         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1139         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1140         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1141         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1142         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1143         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1144 }, vf_stats[] = {
1145         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1146         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1147         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1148         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1149         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1150 };
1151
1152 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1153 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1154
1155 /* 4 statistics per queue (rx/tx packets/bytes) */
1156 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1157
1158 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1159 {
1160         struct net_device_context *ndc = netdev_priv(dev);
1161         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162
1163         if (!nvdev)
1164                 return -ENODEV;
1165
1166         switch (string_set) {
1167         case ETH_SS_STATS:
1168                 return NETVSC_GLOBAL_STATS_LEN
1169                         + NETVSC_VF_STATS_LEN
1170                         + NETVSC_QUEUE_STATS_LEN(nvdev);
1171         default:
1172                 return -EINVAL;
1173         }
1174 }
1175
1176 static void netvsc_get_ethtool_stats(struct net_device *dev,
1177                                      struct ethtool_stats *stats, u64 *data)
1178 {
1179         struct net_device_context *ndc = netdev_priv(dev);
1180         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1181         const void *nds = &ndc->eth_stats;
1182         const struct netvsc_stats *qstats;
1183         struct netvsc_vf_pcpu_stats sum;
1184         unsigned int start;
1185         u64 packets, bytes;
1186         int i, j;
1187
1188         if (!nvdev)
1189                 return;
1190
1191         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1192                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1193
1194         netvsc_get_vf_stats(dev, &sum);
1195         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1196                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1197
1198         for (j = 0; j < nvdev->num_chn; j++) {
1199                 qstats = &nvdev->chan_table[j].tx_stats;
1200
1201                 do {
1202                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1203                         packets = qstats->packets;
1204                         bytes = qstats->bytes;
1205                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1206                 data[i++] = packets;
1207                 data[i++] = bytes;
1208
1209                 qstats = &nvdev->chan_table[j].rx_stats;
1210                 do {
1211                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1212                         packets = qstats->packets;
1213                         bytes = qstats->bytes;
1214                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1215                 data[i++] = packets;
1216                 data[i++] = bytes;
1217         }
1218 }
1219
1220 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1221 {
1222         struct net_device_context *ndc = netdev_priv(dev);
1223         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1224         u8 *p = data;
1225         int i;
1226
1227         if (!nvdev)
1228                 return;
1229
1230         switch (stringset) {
1231         case ETH_SS_STATS:
1232                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1233                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1234                         p += ETH_GSTRING_LEN;
1235                 }
1236
1237                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1238                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1239                         p += ETH_GSTRING_LEN;
1240                 }
1241
1242                 for (i = 0; i < nvdev->num_chn; i++) {
1243                         sprintf(p, "tx_queue_%u_packets", i);
1244                         p += ETH_GSTRING_LEN;
1245                         sprintf(p, "tx_queue_%u_bytes", i);
1246                         p += ETH_GSTRING_LEN;
1247                         sprintf(p, "rx_queue_%u_packets", i);
1248                         p += ETH_GSTRING_LEN;
1249                         sprintf(p, "rx_queue_%u_bytes", i);
1250                         p += ETH_GSTRING_LEN;
1251                 }
1252
1253                 break;
1254         }
1255 }
1256
1257 static int
1258 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1259                          struct ethtool_rxnfc *info)
1260 {
1261         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1262
1263         info->data = RXH_IP_SRC | RXH_IP_DST;
1264
1265         switch (info->flow_type) {
1266         case TCP_V4_FLOW:
1267                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1268                         info->data |= l4_flag;
1269
1270                 break;
1271
1272         case TCP_V6_FLOW:
1273                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1274                         info->data |= l4_flag;
1275
1276                 break;
1277
1278         case UDP_V4_FLOW:
1279                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1280                         info->data |= l4_flag;
1281
1282                 break;
1283
1284         case UDP_V6_FLOW:
1285                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1286                         info->data |= l4_flag;
1287
1288                 break;
1289
1290         case IPV4_FLOW:
1291         case IPV6_FLOW:
1292                 break;
1293         default:
1294                 info->data = 0;
1295                 break;
1296         }
1297
1298         return 0;
1299 }
1300
1301 static int
1302 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1303                  u32 *rules)
1304 {
1305         struct net_device_context *ndc = netdev_priv(dev);
1306         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1307
1308         if (!nvdev)
1309                 return -ENODEV;
1310
1311         switch (info->cmd) {
1312         case ETHTOOL_GRXRINGS:
1313                 info->data = nvdev->num_chn;
1314                 return 0;
1315
1316         case ETHTOOL_GRXFH:
1317                 return netvsc_get_rss_hash_opts(ndc, info);
1318         }
1319         return -EOPNOTSUPP;
1320 }
1321
1322 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1323                                     struct ethtool_rxnfc *info)
1324 {
1325         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1326                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1327                 switch (info->flow_type) {
1328                 case TCP_V4_FLOW:
1329                         ndc->l4_hash |= HV_TCP4_L4HASH;
1330                         break;
1331
1332                 case TCP_V6_FLOW:
1333                         ndc->l4_hash |= HV_TCP6_L4HASH;
1334                         break;
1335
1336                 case UDP_V4_FLOW:
1337                         ndc->l4_hash |= HV_UDP4_L4HASH;
1338                         break;
1339
1340                 case UDP_V6_FLOW:
1341                         ndc->l4_hash |= HV_UDP6_L4HASH;
1342                         break;
1343
1344                 default:
1345                         return -EOPNOTSUPP;
1346                 }
1347
1348                 return 0;
1349         }
1350
1351         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1352                 switch (info->flow_type) {
1353                 case TCP_V4_FLOW:
1354                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1355                         break;
1356
1357                 case TCP_V6_FLOW:
1358                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1359                         break;
1360
1361                 case UDP_V4_FLOW:
1362                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1363                         break;
1364
1365                 case UDP_V6_FLOW:
1366                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1367                         break;
1368
1369                 default:
1370                         return -EOPNOTSUPP;
1371                 }
1372
1373                 return 0;
1374         }
1375
1376         return -EOPNOTSUPP;
1377 }
1378
1379 static int
1380 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1381 {
1382         struct net_device_context *ndc = netdev_priv(ndev);
1383
1384         if (info->cmd == ETHTOOL_SRXFH)
1385                 return netvsc_set_rss_hash_opts(ndc, info);
1386
1387         return -EOPNOTSUPP;
1388 }
1389
1390 #ifdef CONFIG_NET_POLL_CONTROLLER
1391 static void netvsc_poll_controller(struct net_device *dev)
1392 {
1393         struct net_device_context *ndc = netdev_priv(dev);
1394         struct netvsc_device *ndev;
1395         int i;
1396
1397         rcu_read_lock();
1398         ndev = rcu_dereference(ndc->nvdev);
1399         if (ndev) {
1400                 for (i = 0; i < ndev->num_chn; i++) {
1401                         struct netvsc_channel *nvchan = &ndev->chan_table[i];
1402
1403                         napi_schedule(&nvchan->napi);
1404                 }
1405         }
1406         rcu_read_unlock();
1407 }
1408 #endif
1409
1410 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1411 {
1412         return NETVSC_HASH_KEYLEN;
1413 }
1414
1415 static u32 netvsc_rss_indir_size(struct net_device *dev)
1416 {
1417         return ITAB_NUM;
1418 }
1419
1420 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1421                            u8 *hfunc)
1422 {
1423         struct net_device_context *ndc = netdev_priv(dev);
1424         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1425         struct rndis_device *rndis_dev;
1426         int i;
1427
1428         if (!ndev)
1429                 return -ENODEV;
1430
1431         if (hfunc)
1432                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1433
1434         rndis_dev = ndev->extension;
1435         if (indir) {
1436                 for (i = 0; i < ITAB_NUM; i++)
1437                         indir[i] = rndis_dev->rx_table[i];
1438         }
1439
1440         if (key)
1441                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1442
1443         return 0;
1444 }
1445
1446 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1447                            const u8 *key, const u8 hfunc)
1448 {
1449         struct net_device_context *ndc = netdev_priv(dev);
1450         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1451         struct rndis_device *rndis_dev;
1452         int i;
1453
1454         if (!ndev)
1455                 return -ENODEV;
1456
1457         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1458                 return -EOPNOTSUPP;
1459
1460         rndis_dev = ndev->extension;
1461         if (indir) {
1462                 for (i = 0; i < ITAB_NUM; i++)
1463                         if (indir[i] >= ndev->num_chn)
1464                                 return -EINVAL;
1465
1466                 for (i = 0; i < ITAB_NUM; i++)
1467                         rndis_dev->rx_table[i] = indir[i];
1468         }
1469
1470         if (!key) {
1471                 if (!indir)
1472                         return 0;
1473
1474                 key = rndis_dev->rss_key;
1475         }
1476
1477         return rndis_filter_set_rss_param(rndis_dev, key);
1478 }
1479
1480 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1481  * It does have pre-allocated receive area which is divided into sections.
1482  */
1483 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1484                                    struct ethtool_ringparam *ring)
1485 {
1486         u32 max_buf_size;
1487
1488         ring->rx_pending = nvdev->recv_section_cnt;
1489         ring->tx_pending = nvdev->send_section_cnt;
1490
1491         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1492                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1493         else
1494                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1495
1496         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1497         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1498                 / nvdev->send_section_size;
1499 }
1500
1501 static void netvsc_get_ringparam(struct net_device *ndev,
1502                                  struct ethtool_ringparam *ring)
1503 {
1504         struct net_device_context *ndevctx = netdev_priv(ndev);
1505         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1506
1507         if (!nvdev)
1508                 return;
1509
1510         __netvsc_get_ringparam(nvdev, ring);
1511 }
1512
1513 static int netvsc_set_ringparam(struct net_device *ndev,
1514                                 struct ethtool_ringparam *ring)
1515 {
1516         struct net_device_context *ndevctx = netdev_priv(ndev);
1517         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1518         struct hv_device *hdev = ndevctx->device_ctx;
1519         struct netvsc_device_info device_info;
1520         struct ethtool_ringparam orig;
1521         u32 new_tx, new_rx;
1522         bool was_opened;
1523         int ret = 0;
1524
1525         if (!nvdev || nvdev->destroy)
1526                 return -ENODEV;
1527
1528         memset(&orig, 0, sizeof(orig));
1529         __netvsc_get_ringparam(nvdev, &orig);
1530
1531         new_tx = clamp_t(u32, ring->tx_pending,
1532                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1533         new_rx = clamp_t(u32, ring->rx_pending,
1534                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1535
1536         if (new_tx == orig.tx_pending &&
1537             new_rx == orig.rx_pending)
1538                 return 0;        /* no change */
1539
1540         memset(&device_info, 0, sizeof(device_info));
1541         device_info.num_chn = nvdev->num_chn;
1542         device_info.ring_size = ring_size;
1543         device_info.send_sections = new_tx;
1544         device_info.send_section_size = nvdev->send_section_size;
1545         device_info.recv_sections = new_rx;
1546         device_info.recv_section_size = nvdev->recv_section_size;
1547
1548         netif_device_detach(ndev);
1549         was_opened = rndis_filter_opened(nvdev);
1550         if (was_opened)
1551                 rndis_filter_close(nvdev);
1552
1553         rndis_filter_device_remove(hdev, nvdev);
1554
1555         nvdev = rndis_filter_device_add(hdev, &device_info);
1556         if (IS_ERR(nvdev)) {
1557                 ret = PTR_ERR(nvdev);
1558
1559                 device_info.send_sections = orig.tx_pending;
1560                 device_info.recv_sections = orig.rx_pending;
1561                 nvdev = rndis_filter_device_add(hdev, &device_info);
1562                 if (IS_ERR(nvdev)) {
1563                         netdev_err(ndev, "restoring ringparam failed: %ld\n",
1564                                    PTR_ERR(nvdev));
1565                         return ret;
1566                 }
1567         }
1568
1569         if (was_opened)
1570                 rndis_filter_open(nvdev);
1571         netif_device_attach(ndev);
1572
1573         /* We may have missed link change notifications */
1574         ndevctx->last_reconfig = 0;
1575         schedule_delayed_work(&ndevctx->dwork, 0);
1576
1577         return ret;
1578 }
1579
1580 static const struct ethtool_ops ethtool_ops = {
1581         .get_drvinfo    = netvsc_get_drvinfo,
1582         .get_link       = ethtool_op_get_link,
1583         .get_ethtool_stats = netvsc_get_ethtool_stats,
1584         .get_sset_count = netvsc_get_sset_count,
1585         .get_strings    = netvsc_get_strings,
1586         .get_channels   = netvsc_get_channels,
1587         .set_channels   = netvsc_set_channels,
1588         .get_ts_info    = ethtool_op_get_ts_info,
1589         .get_rxnfc      = netvsc_get_rxnfc,
1590         .set_rxnfc      = netvsc_set_rxnfc,
1591         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1592         .get_rxfh_indir_size = netvsc_rss_indir_size,
1593         .get_rxfh       = netvsc_get_rxfh,
1594         .set_rxfh       = netvsc_set_rxfh,
1595         .get_link_ksettings = netvsc_get_link_ksettings,
1596         .set_link_ksettings = netvsc_set_link_ksettings,
1597         .get_ringparam  = netvsc_get_ringparam,
1598         .set_ringparam  = netvsc_set_ringparam,
1599 };
1600
1601 static const struct net_device_ops device_ops = {
1602         .ndo_open =                     netvsc_open,
1603         .ndo_stop =                     netvsc_close,
1604         .ndo_start_xmit =               netvsc_start_xmit,
1605         .ndo_set_rx_mode =              netvsc_set_multicast_list,
1606         .ndo_change_mtu =               netvsc_change_mtu,
1607         .ndo_validate_addr =            eth_validate_addr,
1608         .ndo_set_mac_address =          netvsc_set_mac_addr,
1609         .ndo_select_queue =             netvsc_select_queue,
1610         .ndo_get_stats64 =              netvsc_get_stats64,
1611 #ifdef CONFIG_NET_POLL_CONTROLLER
1612         .ndo_poll_controller =          netvsc_poll_controller,
1613 #endif
1614 };
1615
1616 /*
1617  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1618  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1619  * present send GARP packet to network peers with netif_notify_peers().
1620  */
1621 static void netvsc_link_change(struct work_struct *w)
1622 {
1623         struct net_device_context *ndev_ctx =
1624                 container_of(w, struct net_device_context, dwork.work);
1625         struct hv_device *device_obj = ndev_ctx->device_ctx;
1626         struct net_device *net = hv_get_drvdata(device_obj);
1627         struct netvsc_device *net_device;
1628         struct rndis_device *rdev;
1629         struct netvsc_reconfig *event = NULL;
1630         bool notify = false, reschedule = false;
1631         unsigned long flags, next_reconfig, delay;
1632
1633         /* if changes are happening, comeback later */
1634         if (!rtnl_trylock()) {
1635                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1636                 return;
1637         }
1638
1639         net_device = rtnl_dereference(ndev_ctx->nvdev);
1640         if (!net_device)
1641                 goto out_unlock;
1642
1643         rdev = net_device->extension;
1644
1645         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1646         if (time_is_after_jiffies(next_reconfig)) {
1647                 /* link_watch only sends one notification with current state
1648                  * per second, avoid doing reconfig more frequently. Handle
1649                  * wrap around.
1650                  */
1651                 delay = next_reconfig - jiffies;
1652                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1653                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1654                 goto out_unlock;
1655         }
1656         ndev_ctx->last_reconfig = jiffies;
1657
1658         spin_lock_irqsave(&ndev_ctx->lock, flags);
1659         if (!list_empty(&ndev_ctx->reconfig_events)) {
1660                 event = list_first_entry(&ndev_ctx->reconfig_events,
1661                                          struct netvsc_reconfig, list);
1662                 list_del(&event->list);
1663                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1664         }
1665         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1666
1667         if (!event)
1668                 goto out_unlock;
1669
1670         switch (event->event) {
1671                 /* Only the following events are possible due to the check in
1672                  * netvsc_linkstatus_callback()
1673                  */
1674         case RNDIS_STATUS_MEDIA_CONNECT:
1675                 if (rdev->link_state) {
1676                         rdev->link_state = false;
1677                         netif_carrier_on(net);
1678                         netif_tx_wake_all_queues(net);
1679                 } else {
1680                         notify = true;
1681                 }
1682                 kfree(event);
1683                 break;
1684         case RNDIS_STATUS_MEDIA_DISCONNECT:
1685                 if (!rdev->link_state) {
1686                         rdev->link_state = true;
1687                         netif_carrier_off(net);
1688                         netif_tx_stop_all_queues(net);
1689                 }
1690                 kfree(event);
1691                 break;
1692         case RNDIS_STATUS_NETWORK_CHANGE:
1693                 /* Only makes sense if carrier is present */
1694                 if (!rdev->link_state) {
1695                         rdev->link_state = true;
1696                         netif_carrier_off(net);
1697                         netif_tx_stop_all_queues(net);
1698                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1699                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1700                         list_add(&event->list, &ndev_ctx->reconfig_events);
1701                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1702                         reschedule = true;
1703                 }
1704                 break;
1705         }
1706
1707         rtnl_unlock();
1708
1709         if (notify)
1710                 netdev_notify_peers(net);
1711
1712         /* link_watch only sends one notification with current state per
1713          * second, handle next reconfig event in 2 seconds.
1714          */
1715         if (reschedule)
1716                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1717
1718         return;
1719
1720 out_unlock:
1721         rtnl_unlock();
1722 }
1723
1724 static struct net_device *get_netvsc_bymac(const u8 *mac)
1725 {
1726         struct net_device *dev;
1727
1728         ASSERT_RTNL();
1729
1730         for_each_netdev(&init_net, dev) {
1731                 if (dev->netdev_ops != &device_ops)
1732                         continue;       /* not a netvsc device */
1733
1734                 if (ether_addr_equal(mac, dev->perm_addr))
1735                         return dev;
1736         }
1737
1738         return NULL;
1739 }
1740
1741 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1742 {
1743         struct net_device *dev;
1744
1745         ASSERT_RTNL();
1746
1747         for_each_netdev(&init_net, dev) {
1748                 struct net_device_context *net_device_ctx;
1749
1750                 if (dev->netdev_ops != &device_ops)
1751                         continue;       /* not a netvsc device */
1752
1753                 net_device_ctx = netdev_priv(dev);
1754                 if (!rtnl_dereference(net_device_ctx->nvdev))
1755                         continue;       /* device is removed */
1756
1757                 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1758                         return dev;     /* a match */
1759         }
1760
1761         return NULL;
1762 }
1763
1764 /* Called when VF is injecting data into network stack.
1765  * Change the associated network device from VF to netvsc.
1766  * note: already called with rcu_read_lock
1767  */
1768 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1769 {
1770         struct sk_buff *skb = *pskb;
1771         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1772         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1773         struct netvsc_vf_pcpu_stats *pcpu_stats
1774                  = this_cpu_ptr(ndev_ctx->vf_stats);
1775
1776         skb->dev = ndev;
1777
1778         u64_stats_update_begin(&pcpu_stats->syncp);
1779         pcpu_stats->rx_packets++;
1780         pcpu_stats->rx_bytes += skb->len;
1781         u64_stats_update_end(&pcpu_stats->syncp);
1782
1783         return RX_HANDLER_ANOTHER;
1784 }
1785
1786 static int netvsc_vf_join(struct net_device *vf_netdev,
1787                           struct net_device *ndev)
1788 {
1789         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1790         int ret;
1791
1792         ret = netdev_rx_handler_register(vf_netdev,
1793                                          netvsc_vf_handle_frame, ndev);
1794         if (ret != 0) {
1795                 netdev_err(vf_netdev,
1796                            "can not register netvsc VF receive handler (err = %d)\n",
1797                            ret);
1798                 goto rx_handler_failed;
1799         }
1800
1801         ret = netdev_upper_dev_link(vf_netdev, ndev, NULL);
1802         if (ret != 0) {
1803                 netdev_err(vf_netdev,
1804                            "can not set master device %s (err = %d)\n",
1805                            ndev->name, ret);
1806                 goto upper_link_failed;
1807         }
1808
1809         /* set slave flag before open to prevent IPv6 addrconf */
1810         vf_netdev->flags |= IFF_SLAVE;
1811
1812         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1813
1814         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1815
1816         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1817         return 0;
1818
1819 upper_link_failed:
1820         netdev_rx_handler_unregister(vf_netdev);
1821 rx_handler_failed:
1822         return ret;
1823 }
1824
1825 static void __netvsc_vf_setup(struct net_device *ndev,
1826                               struct net_device *vf_netdev)
1827 {
1828         int ret;
1829
1830         /* Align MTU of VF with master */
1831         ret = dev_set_mtu(vf_netdev, ndev->mtu);
1832         if (ret)
1833                 netdev_warn(vf_netdev,
1834                             "unable to change mtu to %u\n", ndev->mtu);
1835
1836         if (netif_running(ndev)) {
1837                 ret = dev_open(vf_netdev);
1838                 if (ret)
1839                         netdev_warn(vf_netdev,
1840                                     "unable to open: %d\n", ret);
1841         }
1842 }
1843
1844 /* Setup VF as slave of the synthetic device.
1845  * Runs in workqueue to avoid recursion in netlink callbacks.
1846  */
1847 static void netvsc_vf_setup(struct work_struct *w)
1848 {
1849         struct net_device_context *ndev_ctx
1850                 = container_of(w, struct net_device_context, vf_takeover.work);
1851         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1852         struct net_device *vf_netdev;
1853
1854         if (!rtnl_trylock()) {
1855                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1856                 return;
1857         }
1858
1859         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1860         if (vf_netdev)
1861                 __netvsc_vf_setup(ndev, vf_netdev);
1862
1863         rtnl_unlock();
1864 }
1865
1866 static int netvsc_register_vf(struct net_device *vf_netdev)
1867 {
1868         struct net_device *ndev;
1869         struct net_device_context *net_device_ctx;
1870         struct netvsc_device *netvsc_dev;
1871
1872         if (vf_netdev->addr_len != ETH_ALEN)
1873                 return NOTIFY_DONE;
1874
1875         /*
1876          * We will use the MAC address to locate the synthetic interface to
1877          * associate with the VF interface. If we don't find a matching
1878          * synthetic interface, move on.
1879          */
1880         ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1881         if (!ndev)
1882                 return NOTIFY_DONE;
1883
1884         net_device_ctx = netdev_priv(ndev);
1885         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1886         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1887                 return NOTIFY_DONE;
1888
1889         if (netvsc_vf_join(vf_netdev, ndev) != 0)
1890                 return NOTIFY_DONE;
1891
1892         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1893
1894         dev_hold(vf_netdev);
1895         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1896         return NOTIFY_OK;
1897 }
1898
1899 /* VF up/down change detected, schedule to change data path */
1900 static int netvsc_vf_changed(struct net_device *vf_netdev)
1901 {
1902         struct net_device_context *net_device_ctx;
1903         struct netvsc_device *netvsc_dev;
1904         struct net_device *ndev;
1905         bool vf_is_up = netif_running(vf_netdev);
1906
1907         ndev = get_netvsc_byref(vf_netdev);
1908         if (!ndev)
1909                 return NOTIFY_DONE;
1910
1911         net_device_ctx = netdev_priv(ndev);
1912         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1913         if (!netvsc_dev)
1914                 return NOTIFY_DONE;
1915
1916         netvsc_switch_datapath(ndev, vf_is_up);
1917         netdev_info(ndev, "Data path switched %s VF: %s\n",
1918                     vf_is_up ? "to" : "from", vf_netdev->name);
1919
1920         return NOTIFY_OK;
1921 }
1922
1923 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1924 {
1925         struct net_device *ndev;
1926         struct net_device_context *net_device_ctx;
1927
1928         ndev = get_netvsc_byref(vf_netdev);
1929         if (!ndev)
1930                 return NOTIFY_DONE;
1931
1932         net_device_ctx = netdev_priv(ndev);
1933         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1934
1935         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1936
1937         netdev_rx_handler_unregister(vf_netdev);
1938         netdev_upper_dev_unlink(vf_netdev, ndev);
1939         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1940         dev_put(vf_netdev);
1941
1942         return NOTIFY_OK;
1943 }
1944
1945 static int netvsc_probe(struct hv_device *dev,
1946                         const struct hv_vmbus_device_id *dev_id)
1947 {
1948         struct net_device *net = NULL;
1949         struct net_device_context *net_device_ctx;
1950         struct netvsc_device_info device_info;
1951         struct netvsc_device *nvdev;
1952         int ret = -ENOMEM;
1953
1954         net = alloc_etherdev_mq(sizeof(struct net_device_context),
1955                                 VRSS_CHANNEL_MAX);
1956         if (!net)
1957                 goto no_net;
1958
1959         netif_carrier_off(net);
1960
1961         netvsc_init_settings(net);
1962
1963         net_device_ctx = netdev_priv(net);
1964         net_device_ctx->device_ctx = dev;
1965         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1966         if (netif_msg_probe(net_device_ctx))
1967                 netdev_dbg(net, "netvsc msg_enable: %d\n",
1968                            net_device_ctx->msg_enable);
1969
1970         hv_set_drvdata(dev, net);
1971
1972         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1973
1974         spin_lock_init(&net_device_ctx->lock);
1975         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1976         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
1977
1978         net_device_ctx->vf_stats
1979                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
1980         if (!net_device_ctx->vf_stats)
1981                 goto no_stats;
1982
1983         net->netdev_ops = &device_ops;
1984         net->ethtool_ops = &ethtool_ops;
1985         SET_NETDEV_DEV(net, &dev->device);
1986
1987         /* We always need headroom for rndis header */
1988         net->needed_headroom = RNDIS_AND_PPI_SIZE;
1989
1990         /* Initialize the number of queues to be 1, we may change it if more
1991          * channels are offered later.
1992          */
1993         netif_set_real_num_tx_queues(net, 1);
1994         netif_set_real_num_rx_queues(net, 1);
1995
1996         /* Notify the netvsc driver of the new device */
1997         memset(&device_info, 0, sizeof(device_info));
1998         device_info.ring_size = ring_size;
1999         device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2000         device_info.send_sections = NETVSC_DEFAULT_TX;
2001         device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2002         device_info.recv_sections = NETVSC_DEFAULT_RX;
2003         device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2004
2005         nvdev = rndis_filter_device_add(dev, &device_info);
2006         if (IS_ERR(nvdev)) {
2007                 ret = PTR_ERR(nvdev);
2008                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2009                 goto rndis_failed;
2010         }
2011
2012         memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2013
2014         /* hw_features computed in rndis_filter_device_add */
2015         net->features = net->hw_features |
2016                 NETIF_F_HIGHDMA | NETIF_F_SG |
2017                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2018         net->vlan_features = net->features;
2019
2020         netdev_lockdep_set_classes(net);
2021
2022         /* MTU range: 68 - 1500 or 65521 */
2023         net->min_mtu = NETVSC_MTU_MIN;
2024         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2025                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2026         else
2027                 net->max_mtu = ETH_DATA_LEN;
2028
2029         ret = register_netdev(net);
2030         if (ret != 0) {
2031                 pr_err("Unable to register netdev.\n");
2032                 goto register_failed;
2033         }
2034
2035         return ret;
2036
2037 register_failed:
2038         rndis_filter_device_remove(dev, nvdev);
2039 rndis_failed:
2040         free_percpu(net_device_ctx->vf_stats);
2041 no_stats:
2042         hv_set_drvdata(dev, NULL);
2043         free_netdev(net);
2044 no_net:
2045         return ret;
2046 }
2047
2048 static int netvsc_remove(struct hv_device *dev)
2049 {
2050         struct net_device_context *ndev_ctx;
2051         struct net_device *vf_netdev;
2052         struct net_device *net;
2053
2054         net = hv_get_drvdata(dev);
2055         if (net == NULL) {
2056                 dev_err(&dev->device, "No net device to remove\n");
2057                 return 0;
2058         }
2059
2060         ndev_ctx = netdev_priv(net);
2061
2062         netif_device_detach(net);
2063
2064         cancel_delayed_work_sync(&ndev_ctx->dwork);
2065
2066         /*
2067          * Call to the vsc driver to let it know that the device is being
2068          * removed. Also blocks mtu and channel changes.
2069          */
2070         rtnl_lock();
2071         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2072         if (vf_netdev)
2073                 netvsc_unregister_vf(vf_netdev);
2074
2075         unregister_netdevice(net);
2076
2077         rndis_filter_device_remove(dev,
2078                                    rtnl_dereference(ndev_ctx->nvdev));
2079         rtnl_unlock();
2080
2081         hv_set_drvdata(dev, NULL);
2082
2083         free_percpu(ndev_ctx->vf_stats);
2084         free_netdev(net);
2085         return 0;
2086 }
2087
2088 static const struct hv_vmbus_device_id id_table[] = {
2089         /* Network guid */
2090         { HV_NIC_GUID, },
2091         { },
2092 };
2093
2094 MODULE_DEVICE_TABLE(vmbus, id_table);
2095
2096 /* The one and only one */
2097 static struct  hv_driver netvsc_drv = {
2098         .name = KBUILD_MODNAME,
2099         .id_table = id_table,
2100         .probe = netvsc_probe,
2101         .remove = netvsc_remove,
2102 };
2103
2104 /*
2105  * On Hyper-V, every VF interface is matched with a corresponding
2106  * synthetic interface. The synthetic interface is presented first
2107  * to the guest. When the corresponding VF instance is registered,
2108  * we will take care of switching the data path.
2109  */
2110 static int netvsc_netdev_event(struct notifier_block *this,
2111                                unsigned long event, void *ptr)
2112 {
2113         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2114
2115         /* Skip our own events */
2116         if (event_dev->netdev_ops == &device_ops)
2117                 return NOTIFY_DONE;
2118
2119         /* Avoid non-Ethernet type devices */
2120         if (event_dev->type != ARPHRD_ETHER)
2121                 return NOTIFY_DONE;
2122
2123         /* Avoid Vlan dev with same MAC registering as VF */
2124         if (is_vlan_dev(event_dev))
2125                 return NOTIFY_DONE;
2126
2127         /* Avoid Bonding master dev with same MAC registering as VF */
2128         if ((event_dev->priv_flags & IFF_BONDING) &&
2129             (event_dev->flags & IFF_MASTER))
2130                 return NOTIFY_DONE;
2131
2132         switch (event) {
2133         case NETDEV_REGISTER:
2134                 return netvsc_register_vf(event_dev);
2135         case NETDEV_UNREGISTER:
2136                 return netvsc_unregister_vf(event_dev);
2137         case NETDEV_UP:
2138         case NETDEV_DOWN:
2139                 return netvsc_vf_changed(event_dev);
2140         default:
2141                 return NOTIFY_DONE;
2142         }
2143 }
2144
2145 static struct notifier_block netvsc_netdev_notifier = {
2146         .notifier_call = netvsc_netdev_event,
2147 };
2148
2149 static void __exit netvsc_drv_exit(void)
2150 {
2151         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2152         vmbus_driver_unregister(&netvsc_drv);
2153 }
2154
2155 static int __init netvsc_drv_init(void)
2156 {
2157         int ret;
2158
2159         if (ring_size < RING_SIZE_MIN) {
2160                 ring_size = RING_SIZE_MIN;
2161                 pr_info("Increased ring_size to %d (min allowed)\n",
2162                         ring_size);
2163         }
2164         ret = vmbus_driver_register(&netvsc_drv);
2165
2166         if (ret)
2167                 return ret;
2168
2169         register_netdevice_notifier(&netvsc_netdev_notifier);
2170         return 0;
2171 }
2172
2173 MODULE_LICENSE("GPL");
2174 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2175
2176 module_init(netvsc_drv_init);
2177 module_exit(netvsc_drv_exit);