Merge branch 'ib/5.17-cros-ec-keyb' into next
[platform/kernel/linux-starfive.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN   64
41
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44
45 static unsigned int ring_size __ro_after_init = 128;
46 module_param(ring_size, uint, 0444);
47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48 unsigned int netvsc_ring_bytes __ro_after_init;
49
50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53                                 NETIF_MSG_TX_ERR;
54
55 static int debug = -1;
56 module_param(debug, int, 0444);
57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59 static LIST_HEAD(netvsc_dev_list);
60
61 static void netvsc_change_rx_flags(struct net_device *net, int change)
62 {
63         struct net_device_context *ndev_ctx = netdev_priv(net);
64         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
65         int inc;
66
67         if (!vf_netdev)
68                 return;
69
70         if (change & IFF_PROMISC) {
71                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72                 dev_set_promiscuity(vf_netdev, inc);
73         }
74
75         if (change & IFF_ALLMULTI) {
76                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77                 dev_set_allmulti(vf_netdev, inc);
78         }
79 }
80
81 static void netvsc_set_rx_mode(struct net_device *net)
82 {
83         struct net_device_context *ndev_ctx = netdev_priv(net);
84         struct net_device *vf_netdev;
85         struct netvsc_device *nvdev;
86
87         rcu_read_lock();
88         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
89         if (vf_netdev) {
90                 dev_uc_sync(vf_netdev, net);
91                 dev_mc_sync(vf_netdev, net);
92         }
93
94         nvdev = rcu_dereference(ndev_ctx->nvdev);
95         if (nvdev)
96                 rndis_filter_update(nvdev);
97         rcu_read_unlock();
98 }
99
100 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101                              struct net_device *ndev)
102 {
103         nvscdev->tx_disable = false;
104         virt_wmb(); /* ensure queue wake up mechanism is on */
105
106         netif_tx_wake_all_queues(ndev);
107 }
108
109 static int netvsc_open(struct net_device *net)
110 {
111         struct net_device_context *ndev_ctx = netdev_priv(net);
112         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114         struct rndis_device *rdev;
115         int ret = 0;
116
117         netif_carrier_off(net);
118
119         /* Open up the device */
120         ret = rndis_filter_open(nvdev);
121         if (ret != 0) {
122                 netdev_err(net, "unable to open device (ret %d).\n", ret);
123                 return ret;
124         }
125
126         rdev = nvdev->extension;
127         if (!rdev->link_state) {
128                 netif_carrier_on(net);
129                 netvsc_tx_enable(nvdev, net);
130         }
131
132         if (vf_netdev) {
133                 /* Setting synthetic device up transparently sets
134                  * slave as up. If open fails, then slave will be
135                  * still be offline (and not used).
136                  */
137                 ret = dev_open(vf_netdev, NULL);
138                 if (ret)
139                         netdev_warn(net,
140                                     "unable to open slave: %s: %d\n",
141                                     vf_netdev->name, ret);
142         }
143         return 0;
144 }
145
146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147 {
148         unsigned int retry = 0;
149         int i;
150
151         /* Ensure pending bytes in ring are read */
152         for (;;) {
153                 u32 aread = 0;
154
155                 for (i = 0; i < nvdev->num_chn; i++) {
156                         struct vmbus_channel *chn
157                                 = nvdev->chan_table[i].channel;
158
159                         if (!chn)
160                                 continue;
161
162                         /* make sure receive not running now */
163                         napi_synchronize(&nvdev->chan_table[i].napi);
164
165                         aread = hv_get_bytes_to_read(&chn->inbound);
166                         if (aread)
167                                 break;
168
169                         aread = hv_get_bytes_to_read(&chn->outbound);
170                         if (aread)
171                                 break;
172                 }
173
174                 if (aread == 0)
175                         return 0;
176
177                 if (++retry > RETRY_MAX)
178                         return -ETIMEDOUT;
179
180                 usleep_range(RETRY_US_LO, RETRY_US_HI);
181         }
182 }
183
184 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185                               struct net_device *ndev)
186 {
187         if (nvscdev) {
188                 nvscdev->tx_disable = true;
189                 virt_wmb(); /* ensure txq will not wake up after stop */
190         }
191
192         netif_tx_disable(ndev);
193 }
194
195 static int netvsc_close(struct net_device *net)
196 {
197         struct net_device_context *net_device_ctx = netdev_priv(net);
198         struct net_device *vf_netdev
199                 = rtnl_dereference(net_device_ctx->vf_netdev);
200         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
201         int ret;
202
203         netvsc_tx_disable(nvdev, net);
204
205         /* No need to close rndis filter if it is removed already */
206         if (!nvdev)
207                 return 0;
208
209         ret = rndis_filter_close(nvdev);
210         if (ret != 0) {
211                 netdev_err(net, "unable to close device (ret %d).\n", ret);
212                 return ret;
213         }
214
215         ret = netvsc_wait_until_empty(nvdev);
216         if (ret)
217                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
218
219         if (vf_netdev)
220                 dev_close(vf_netdev);
221
222         return ret;
223 }
224
225 static inline void *init_ppi_data(struct rndis_message *msg,
226                                   u32 ppi_size, u32 pkt_type)
227 {
228         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229         struct rndis_per_packet_info *ppi;
230
231         rndis_pkt->data_offset += ppi_size;
232         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233                 + rndis_pkt->per_pkt_info_len;
234
235         ppi->size = ppi_size;
236         ppi->type = pkt_type;
237         ppi->internal = 0;
238         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
239
240         rndis_pkt->per_pkt_info_len += ppi_size;
241
242         return ppi + 1;
243 }
244
245 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
246  * packets. We can use ethtool to change UDP hash level when necessary.
247  */
248 static inline u32 netvsc_get_hash(
249         struct sk_buff *skb,
250         const struct net_device_context *ndc)
251 {
252         struct flow_keys flow;
253         u32 hash, pkt_proto = 0;
254         static u32 hashrnd __read_mostly;
255
256         net_get_random_once(&hashrnd, sizeof(hashrnd));
257
258         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
259                 return 0;
260
261         switch (flow.basic.ip_proto) {
262         case IPPROTO_TCP:
263                 if (flow.basic.n_proto == htons(ETH_P_IP))
264                         pkt_proto = HV_TCP4_L4HASH;
265                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266                         pkt_proto = HV_TCP6_L4HASH;
267
268                 break;
269
270         case IPPROTO_UDP:
271                 if (flow.basic.n_proto == htons(ETH_P_IP))
272                         pkt_proto = HV_UDP4_L4HASH;
273                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
274                         pkt_proto = HV_UDP6_L4HASH;
275
276                 break;
277         }
278
279         if (pkt_proto & ndc->l4_hash) {
280                 return skb_get_hash(skb);
281         } else {
282                 if (flow.basic.n_proto == htons(ETH_P_IP))
283                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
284                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
285                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
286                 else
287                         return 0;
288
289                 __skb_set_sw_hash(skb, hash, false);
290         }
291
292         return hash;
293 }
294
295 static inline int netvsc_get_tx_queue(struct net_device *ndev,
296                                       struct sk_buff *skb, int old_idx)
297 {
298         const struct net_device_context *ndc = netdev_priv(ndev);
299         struct sock *sk = skb->sk;
300         int q_idx;
301
302         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
303                               (VRSS_SEND_TAB_SIZE - 1)];
304
305         /* If queue index changed record the new value */
306         if (q_idx != old_idx &&
307             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
308                 sk_tx_queue_set(sk, q_idx);
309
310         return q_idx;
311 }
312
313 /*
314  * Select queue for transmit.
315  *
316  * If a valid queue has already been assigned, then use that.
317  * Otherwise compute tx queue based on hash and the send table.
318  *
319  * This is basically similar to default (netdev_pick_tx) with the added step
320  * of using the host send_table when no other queue has been assigned.
321  *
322  * TODO support XPS - but get_xps_queue not exported
323  */
324 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
325 {
326         int q_idx = sk_tx_queue_get(skb->sk);
327
328         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
329                 /* If forwarding a packet, we use the recorded queue when
330                  * available for better cache locality.
331                  */
332                 if (skb_rx_queue_recorded(skb))
333                         q_idx = skb_get_rx_queue(skb);
334                 else
335                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
336         }
337
338         return q_idx;
339 }
340
341 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
342                                struct net_device *sb_dev)
343 {
344         struct net_device_context *ndc = netdev_priv(ndev);
345         struct net_device *vf_netdev;
346         u16 txq;
347
348         rcu_read_lock();
349         vf_netdev = rcu_dereference(ndc->vf_netdev);
350         if (vf_netdev) {
351                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
352
353                 if (vf_ops->ndo_select_queue)
354                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
355                 else
356                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
357
358                 /* Record the queue selected by VF so that it can be
359                  * used for common case where VF has more queues than
360                  * the synthetic device.
361                  */
362                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
363         } else {
364                 txq = netvsc_pick_tx(ndev, skb);
365         }
366         rcu_read_unlock();
367
368         while (txq >= ndev->real_num_tx_queues)
369                 txq -= ndev->real_num_tx_queues;
370
371         return txq;
372 }
373
374 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
375                        struct hv_page_buffer *pb)
376 {
377         int j = 0;
378
379         hvpfn += offset >> HV_HYP_PAGE_SHIFT;
380         offset = offset & ~HV_HYP_PAGE_MASK;
381
382         while (len > 0) {
383                 unsigned long bytes;
384
385                 bytes = HV_HYP_PAGE_SIZE - offset;
386                 if (bytes > len)
387                         bytes = len;
388                 pb[j].pfn = hvpfn;
389                 pb[j].offset = offset;
390                 pb[j].len = bytes;
391
392                 offset += bytes;
393                 len -= bytes;
394
395                 if (offset == HV_HYP_PAGE_SIZE && len) {
396                         hvpfn++;
397                         offset = 0;
398                         j++;
399                 }
400         }
401
402         return j + 1;
403 }
404
405 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
406                            struct hv_netvsc_packet *packet,
407                            struct hv_page_buffer *pb)
408 {
409         u32 slots_used = 0;
410         char *data = skb->data;
411         int frags = skb_shinfo(skb)->nr_frags;
412         int i;
413
414         /* The packet is laid out thus:
415          * 1. hdr: RNDIS header and PPI
416          * 2. skb linear data
417          * 3. skb fragment data
418          */
419         slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
420                                   offset_in_hvpage(hdr),
421                                   len,
422                                   &pb[slots_used]);
423
424         packet->rmsg_size = len;
425         packet->rmsg_pgcnt = slots_used;
426
427         slots_used += fill_pg_buf(virt_to_hvpfn(data),
428                                   offset_in_hvpage(data),
429                                   skb_headlen(skb),
430                                   &pb[slots_used]);
431
432         for (i = 0; i < frags; i++) {
433                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
434
435                 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
436                                           skb_frag_off(frag),
437                                           skb_frag_size(frag),
438                                           &pb[slots_used]);
439         }
440         return slots_used;
441 }
442
443 static int count_skb_frag_slots(struct sk_buff *skb)
444 {
445         int i, frags = skb_shinfo(skb)->nr_frags;
446         int pages = 0;
447
448         for (i = 0; i < frags; i++) {
449                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
450                 unsigned long size = skb_frag_size(frag);
451                 unsigned long offset = skb_frag_off(frag);
452
453                 /* Skip unused frames from start of page */
454                 offset &= ~HV_HYP_PAGE_MASK;
455                 pages += HVPFN_UP(offset + size);
456         }
457         return pages;
458 }
459
460 static int netvsc_get_slots(struct sk_buff *skb)
461 {
462         char *data = skb->data;
463         unsigned int offset = offset_in_hvpage(data);
464         unsigned int len = skb_headlen(skb);
465         int slots;
466         int frag_slots;
467
468         slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
469         frag_slots = count_skb_frag_slots(skb);
470         return slots + frag_slots;
471 }
472
473 static u32 net_checksum_info(struct sk_buff *skb)
474 {
475         if (skb->protocol == htons(ETH_P_IP)) {
476                 struct iphdr *ip = ip_hdr(skb);
477
478                 if (ip->protocol == IPPROTO_TCP)
479                         return TRANSPORT_INFO_IPV4_TCP;
480                 else if (ip->protocol == IPPROTO_UDP)
481                         return TRANSPORT_INFO_IPV4_UDP;
482         } else {
483                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
484
485                 if (ip6->nexthdr == IPPROTO_TCP)
486                         return TRANSPORT_INFO_IPV6_TCP;
487                 else if (ip6->nexthdr == IPPROTO_UDP)
488                         return TRANSPORT_INFO_IPV6_UDP;
489         }
490
491         return TRANSPORT_INFO_NOT_IP;
492 }
493
494 /* Send skb on the slave VF device. */
495 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
496                           struct sk_buff *skb)
497 {
498         struct net_device_context *ndev_ctx = netdev_priv(net);
499         unsigned int len = skb->len;
500         int rc;
501
502         skb->dev = vf_netdev;
503         skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
504
505         rc = dev_queue_xmit(skb);
506         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
507                 struct netvsc_vf_pcpu_stats *pcpu_stats
508                         = this_cpu_ptr(ndev_ctx->vf_stats);
509
510                 u64_stats_update_begin(&pcpu_stats->syncp);
511                 pcpu_stats->tx_packets++;
512                 pcpu_stats->tx_bytes += len;
513                 u64_stats_update_end(&pcpu_stats->syncp);
514         } else {
515                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
516         }
517
518         return rc;
519 }
520
521 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
522 {
523         struct net_device_context *net_device_ctx = netdev_priv(net);
524         struct hv_netvsc_packet *packet = NULL;
525         int ret;
526         unsigned int num_data_pgs;
527         struct rndis_message *rndis_msg;
528         struct net_device *vf_netdev;
529         u32 rndis_msg_size;
530         u32 hash;
531         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
532
533         /* If VF is present and up then redirect packets to it.
534          * Skip the VF if it is marked down or has no carrier.
535          * If netpoll is in uses, then VF can not be used either.
536          */
537         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538         if (vf_netdev && netif_running(vf_netdev) &&
539             netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
540             net_device_ctx->data_path_is_vf)
541                 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543         /* We will atmost need two pages to describe the rndis
544          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545          * of pages in a single packet. If skb is scattered around
546          * more pages we try linearizing it.
547          */
548
549         num_data_pgs = netvsc_get_slots(skb) + 2;
550
551         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552                 ++net_device_ctx->eth_stats.tx_scattered;
553
554                 if (skb_linearize(skb))
555                         goto no_memory;
556
557                 num_data_pgs = netvsc_get_slots(skb) + 2;
558                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559                         ++net_device_ctx->eth_stats.tx_too_big;
560                         goto drop;
561                 }
562         }
563
564         /*
565          * Place the rndis header in the skb head room and
566          * the skb->cb will be used for hv_netvsc_packet
567          * structure.
568          */
569         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570         if (ret)
571                 goto no_memory;
572
573         /* Use the skb control buffer for building up the packet */
574         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575                         sizeof_field(struct sk_buff, cb));
576         packet = (struct hv_netvsc_packet *)skb->cb;
577
578         packet->q_idx = skb_get_queue_mapping(skb);
579
580         packet->total_data_buflen = skb->len;
581         packet->total_bytes = skb->len;
582         packet->total_packets = 1;
583
584         rndis_msg = (struct rndis_message *)skb->head;
585
586         /* Add the rndis header */
587         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588         rndis_msg->msg_len = packet->total_data_buflen;
589
590         rndis_msg->msg.pkt = (struct rndis_packet) {
591                 .data_offset = sizeof(struct rndis_packet),
592                 .data_len = packet->total_data_buflen,
593                 .per_pkt_info_offset = sizeof(struct rndis_packet),
594         };
595
596         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598         hash = skb_get_hash_raw(skb);
599         if (hash != 0 && net->real_num_tx_queues > 1) {
600                 u32 *hash_info;
601
602                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
604                                           NBL_HASH_VALUE);
605                 *hash_info = hash;
606         }
607
608         /* When using AF_PACKET we need to drop VLAN header from
609          * the frame and update the SKB to allow the HOST OS
610          * to transmit the 802.1Q packet
611          */
612         if (skb->protocol == htons(ETH_P_8021Q)) {
613                 u16 vlan_tci;
614
615                 skb_reset_mac_header(skb);
616                 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
617                         if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
618                                 ++net_device_ctx->eth_stats.vlan_error;
619                                 goto drop;
620                         }
621
622                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
623                         /* Update the NDIS header pkt lengths */
624                         packet->total_data_buflen -= VLAN_HLEN;
625                         packet->total_bytes -= VLAN_HLEN;
626                         rndis_msg->msg_len = packet->total_data_buflen;
627                         rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
628                 }
629         }
630
631         if (skb_vlan_tag_present(skb)) {
632                 struct ndis_pkt_8021q_info *vlan;
633
634                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
635                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
636                                      IEEE_8021Q_INFO);
637
638                 vlan->value = 0;
639                 vlan->vlanid = skb_vlan_tag_get_id(skb);
640                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
641                 vlan->pri = skb_vlan_tag_get_prio(skb);
642         }
643
644         if (skb_is_gso(skb)) {
645                 struct ndis_tcp_lso_info *lso_info;
646
647                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
648                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
649                                          TCP_LARGESEND_PKTINFO);
650
651                 lso_info->value = 0;
652                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
653                 if (skb->protocol == htons(ETH_P_IP)) {
654                         lso_info->lso_v2_transmit.ip_version =
655                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
656                         ip_hdr(skb)->tot_len = 0;
657                         ip_hdr(skb)->check = 0;
658                         tcp_hdr(skb)->check =
659                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
660                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
661                 } else {
662                         lso_info->lso_v2_transmit.ip_version =
663                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
664                         tcp_v6_gso_csum_prep(skb);
665                 }
666                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
667                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
668         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
669                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
670                         struct ndis_tcp_ip_checksum_info *csum_info;
671
672                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
673                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
674                                                   TCPIP_CHKSUM_PKTINFO);
675
676                         csum_info->value = 0;
677                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
678
679                         if (skb->protocol == htons(ETH_P_IP)) {
680                                 csum_info->transmit.is_ipv4 = 1;
681
682                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
683                                         csum_info->transmit.tcp_checksum = 1;
684                                 else
685                                         csum_info->transmit.udp_checksum = 1;
686                         } else {
687                                 csum_info->transmit.is_ipv6 = 1;
688
689                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
690                                         csum_info->transmit.tcp_checksum = 1;
691                                 else
692                                         csum_info->transmit.udp_checksum = 1;
693                         }
694                 } else {
695                         /* Can't do offload of this type of checksum */
696                         if (skb_checksum_help(skb))
697                                 goto drop;
698                 }
699         }
700
701         /* Start filling in the page buffers with the rndis hdr */
702         rndis_msg->msg_len += rndis_msg_size;
703         packet->total_data_buflen = rndis_msg->msg_len;
704         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
705                                                skb, packet, pb);
706
707         /* timestamp packet in software */
708         skb_tx_timestamp(skb);
709
710         ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
711         if (likely(ret == 0))
712                 return NETDEV_TX_OK;
713
714         if (ret == -EAGAIN) {
715                 ++net_device_ctx->eth_stats.tx_busy;
716                 return NETDEV_TX_BUSY;
717         }
718
719         if (ret == -ENOSPC)
720                 ++net_device_ctx->eth_stats.tx_no_space;
721
722 drop:
723         dev_kfree_skb_any(skb);
724         net->stats.tx_dropped++;
725
726         return NETDEV_TX_OK;
727
728 no_memory:
729         ++net_device_ctx->eth_stats.tx_no_memory;
730         goto drop;
731 }
732
733 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
734                                      struct net_device *ndev)
735 {
736         return netvsc_xmit(skb, ndev, false);
737 }
738
739 /*
740  * netvsc_linkstatus_callback - Link up/down notification
741  */
742 void netvsc_linkstatus_callback(struct net_device *net,
743                                 struct rndis_message *resp,
744                                 void *data, u32 data_buflen)
745 {
746         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747         struct net_device_context *ndev_ctx = netdev_priv(net);
748         struct netvsc_reconfig *event;
749         unsigned long flags;
750
751         /* Ensure the packet is big enough to access its fields */
752         if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753                 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754                            resp->msg_len);
755                 return;
756         }
757
758         /* Copy the RNDIS indicate status into nvchan->recv_buf */
759         memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
760
761         /* Update the physical link speed when changing to another vSwitch */
762         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
763                 u32 speed;
764
765                 /* Validate status_buf_offset and status_buflen.
766                  *
767                  * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
768                  * for the status buffer field in resp->msg_len; perform the validation
769                  * using data_buflen (>= resp->msg_len).
770                  */
771                 if (indicate->status_buflen < sizeof(speed) ||
772                     indicate->status_buf_offset < sizeof(*indicate) ||
773                     data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
774                     data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
775                                 < indicate->status_buflen) {
776                         netdev_err(net, "invalid rndis_indicate_status packet\n");
777                         return;
778                 }
779
780                 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
781                 ndev_ctx->speed = speed;
782                 return;
783         }
784
785         /* Handle these link change statuses below */
786         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
787             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
788             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
789                 return;
790
791         if (net->reg_state != NETREG_REGISTERED)
792                 return;
793
794         event = kzalloc(sizeof(*event), GFP_ATOMIC);
795         if (!event)
796                 return;
797         event->event = indicate->status;
798
799         spin_lock_irqsave(&ndev_ctx->lock, flags);
800         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
801         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
802
803         schedule_delayed_work(&ndev_ctx->dwork, 0);
804 }
805
806 /* This function should only be called after skb_record_rx_queue() */
807 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
808 {
809         int rc;
810
811         skb->queue_mapping = skb_get_rx_queue(skb);
812         __skb_push(skb, ETH_HLEN);
813
814         rc = netvsc_xmit(skb, ndev, true);
815
816         if (dev_xmit_complete(rc))
817                 return;
818
819         dev_kfree_skb_any(skb);
820         ndev->stats.tx_dropped++;
821 }
822
823 static void netvsc_comp_ipcsum(struct sk_buff *skb)
824 {
825         struct iphdr *iph = (struct iphdr *)skb->data;
826
827         iph->check = 0;
828         iph->check = ip_fast_csum(iph, iph->ihl);
829 }
830
831 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
832                                              struct netvsc_channel *nvchan,
833                                              struct xdp_buff *xdp)
834 {
835         struct napi_struct *napi = &nvchan->napi;
836         const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
837         const struct ndis_tcp_ip_checksum_info *csum_info =
838                                                 &nvchan->rsc.csum_info;
839         const u32 *hash_info = &nvchan->rsc.hash_info;
840         u8 ppi_flags = nvchan->rsc.ppi_flags;
841         struct sk_buff *skb;
842         void *xbuf = xdp->data_hard_start;
843         int i;
844
845         if (xbuf) {
846                 unsigned int hdroom = xdp->data - xdp->data_hard_start;
847                 unsigned int xlen = xdp->data_end - xdp->data;
848                 unsigned int frag_size = xdp->frame_sz;
849
850                 skb = build_skb(xbuf, frag_size);
851
852                 if (!skb) {
853                         __free_page(virt_to_page(xbuf));
854                         return NULL;
855                 }
856
857                 skb_reserve(skb, hdroom);
858                 skb_put(skb, xlen);
859                 skb->dev = napi->dev;
860         } else {
861                 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
862
863                 if (!skb)
864                         return NULL;
865
866                 /* Copy to skb. This copy is needed here since the memory
867                  * pointed by hv_netvsc_packet cannot be deallocated.
868                  */
869                 for (i = 0; i < nvchan->rsc.cnt; i++)
870                         skb_put_data(skb, nvchan->rsc.data[i],
871                                      nvchan->rsc.len[i]);
872         }
873
874         skb->protocol = eth_type_trans(skb, net);
875
876         /* skb is already created with CHECKSUM_NONE */
877         skb_checksum_none_assert(skb);
878
879         /* Incoming packets may have IP header checksum verified by the host.
880          * They may not have IP header checksum computed after coalescing.
881          * We compute it here if the flags are set, because on Linux, the IP
882          * checksum is always checked.
883          */
884         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
885             csum_info->receive.ip_checksum_succeeded &&
886             skb->protocol == htons(ETH_P_IP)) {
887                 /* Check that there is enough space to hold the IP header. */
888                 if (skb_headlen(skb) < sizeof(struct iphdr)) {
889                         kfree_skb(skb);
890                         return NULL;
891                 }
892                 netvsc_comp_ipcsum(skb);
893         }
894
895         /* Do L4 checksum offload if enabled and present. */
896         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
897                 if (csum_info->receive.tcp_checksum_succeeded ||
898                     csum_info->receive.udp_checksum_succeeded)
899                         skb->ip_summed = CHECKSUM_UNNECESSARY;
900         }
901
902         if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
903                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
904
905         if (ppi_flags & NVSC_RSC_VLAN) {
906                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
907                         (vlan->cfi ? VLAN_CFI_MASK : 0);
908
909                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
910                                        vlan_tci);
911         }
912
913         return skb;
914 }
915
916 /*
917  * netvsc_recv_callback -  Callback when we receive a packet from the
918  * "wire" on the specified device.
919  */
920 int netvsc_recv_callback(struct net_device *net,
921                          struct netvsc_device *net_device,
922                          struct netvsc_channel *nvchan)
923 {
924         struct net_device_context *net_device_ctx = netdev_priv(net);
925         struct vmbus_channel *channel = nvchan->channel;
926         u16 q_idx = channel->offermsg.offer.sub_channel_index;
927         struct sk_buff *skb;
928         struct netvsc_stats *rx_stats = &nvchan->rx_stats;
929         struct xdp_buff xdp;
930         u32 act;
931
932         if (net->reg_state != NETREG_REGISTERED)
933                 return NVSP_STAT_FAIL;
934
935         act = netvsc_run_xdp(net, nvchan, &xdp);
936
937         if (act != XDP_PASS && act != XDP_TX) {
938                 u64_stats_update_begin(&rx_stats->syncp);
939                 rx_stats->xdp_drop++;
940                 u64_stats_update_end(&rx_stats->syncp);
941
942                 return NVSP_STAT_SUCCESS; /* consumed by XDP */
943         }
944
945         /* Allocate a skb - TODO direct I/O to pages? */
946         skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
947
948         if (unlikely(!skb)) {
949                 ++net_device_ctx->eth_stats.rx_no_memory;
950                 return NVSP_STAT_FAIL;
951         }
952
953         skb_record_rx_queue(skb, q_idx);
954
955         /*
956          * Even if injecting the packet, record the statistics
957          * on the synthetic device because modifying the VF device
958          * statistics will not work correctly.
959          */
960         u64_stats_update_begin(&rx_stats->syncp);
961         rx_stats->packets++;
962         rx_stats->bytes += nvchan->rsc.pktlen;
963
964         if (skb->pkt_type == PACKET_BROADCAST)
965                 ++rx_stats->broadcast;
966         else if (skb->pkt_type == PACKET_MULTICAST)
967                 ++rx_stats->multicast;
968         u64_stats_update_end(&rx_stats->syncp);
969
970         if (act == XDP_TX) {
971                 netvsc_xdp_xmit(skb, net);
972                 return NVSP_STAT_SUCCESS;
973         }
974
975         napi_gro_receive(&nvchan->napi, skb);
976         return NVSP_STAT_SUCCESS;
977 }
978
979 static void netvsc_get_drvinfo(struct net_device *net,
980                                struct ethtool_drvinfo *info)
981 {
982         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
983         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
984 }
985
986 static void netvsc_get_channels(struct net_device *net,
987                                 struct ethtool_channels *channel)
988 {
989         struct net_device_context *net_device_ctx = netdev_priv(net);
990         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
991
992         if (nvdev) {
993                 channel->max_combined   = nvdev->max_chn;
994                 channel->combined_count = nvdev->num_chn;
995         }
996 }
997
998 /* Alloc struct netvsc_device_info, and initialize it from either existing
999  * struct netvsc_device, or from default values.
1000  */
1001 static
1002 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1003 {
1004         struct netvsc_device_info *dev_info;
1005         struct bpf_prog *prog;
1006
1007         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1008
1009         if (!dev_info)
1010                 return NULL;
1011
1012         if (nvdev) {
1013                 ASSERT_RTNL();
1014
1015                 dev_info->num_chn = nvdev->num_chn;
1016                 dev_info->send_sections = nvdev->send_section_cnt;
1017                 dev_info->send_section_size = nvdev->send_section_size;
1018                 dev_info->recv_sections = nvdev->recv_section_cnt;
1019                 dev_info->recv_section_size = nvdev->recv_section_size;
1020
1021                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1022                        NETVSC_HASH_KEYLEN);
1023
1024                 prog = netvsc_xdp_get(nvdev);
1025                 if (prog) {
1026                         bpf_prog_inc(prog);
1027                         dev_info->bprog = prog;
1028                 }
1029         } else {
1030                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1031                 dev_info->send_sections = NETVSC_DEFAULT_TX;
1032                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1033                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1034                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1035         }
1036
1037         return dev_info;
1038 }
1039
1040 /* Free struct netvsc_device_info */
1041 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1042 {
1043         if (dev_info->bprog) {
1044                 ASSERT_RTNL();
1045                 bpf_prog_put(dev_info->bprog);
1046         }
1047
1048         kfree(dev_info);
1049 }
1050
1051 static int netvsc_detach(struct net_device *ndev,
1052                          struct netvsc_device *nvdev)
1053 {
1054         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055         struct hv_device *hdev = ndev_ctx->device_ctx;
1056         int ret;
1057
1058         /* Don't try continuing to try and setup sub channels */
1059         if (cancel_work_sync(&nvdev->subchan_work))
1060                 nvdev->num_chn = 1;
1061
1062         netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1063
1064         /* If device was up (receiving) then shutdown */
1065         if (netif_running(ndev)) {
1066                 netvsc_tx_disable(nvdev, ndev);
1067
1068                 ret = rndis_filter_close(nvdev);
1069                 if (ret) {
1070                         netdev_err(ndev,
1071                                    "unable to close device (ret %d).\n", ret);
1072                         return ret;
1073                 }
1074
1075                 ret = netvsc_wait_until_empty(nvdev);
1076                 if (ret) {
1077                         netdev_err(ndev,
1078                                    "Ring buffer not empty after closing rndis\n");
1079                         return ret;
1080                 }
1081         }
1082
1083         netif_device_detach(ndev);
1084
1085         rndis_filter_device_remove(hdev, nvdev);
1086
1087         return 0;
1088 }
1089
1090 static int netvsc_attach(struct net_device *ndev,
1091                          struct netvsc_device_info *dev_info)
1092 {
1093         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1094         struct hv_device *hdev = ndev_ctx->device_ctx;
1095         struct netvsc_device *nvdev;
1096         struct rndis_device *rdev;
1097         struct bpf_prog *prog;
1098         int ret = 0;
1099
1100         nvdev = rndis_filter_device_add(hdev, dev_info);
1101         if (IS_ERR(nvdev))
1102                 return PTR_ERR(nvdev);
1103
1104         if (nvdev->num_chn > 1) {
1105                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1106
1107                 /* if unavailable, just proceed with one queue */
1108                 if (ret) {
1109                         nvdev->max_chn = 1;
1110                         nvdev->num_chn = 1;
1111                 }
1112         }
1113
1114         prog = dev_info->bprog;
1115         if (prog) {
1116                 bpf_prog_inc(prog);
1117                 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1118                 if (ret) {
1119                         bpf_prog_put(prog);
1120                         goto err1;
1121                 }
1122         }
1123
1124         /* In any case device is now ready */
1125         nvdev->tx_disable = false;
1126         netif_device_attach(ndev);
1127
1128         /* Note: enable and attach happen when sub-channels setup */
1129         netif_carrier_off(ndev);
1130
1131         if (netif_running(ndev)) {
1132                 ret = rndis_filter_open(nvdev);
1133                 if (ret)
1134                         goto err2;
1135
1136                 rdev = nvdev->extension;
1137                 if (!rdev->link_state)
1138                         netif_carrier_on(ndev);
1139         }
1140
1141         return 0;
1142
1143 err2:
1144         netif_device_detach(ndev);
1145
1146 err1:
1147         rndis_filter_device_remove(hdev, nvdev);
1148
1149         return ret;
1150 }
1151
1152 static int netvsc_set_channels(struct net_device *net,
1153                                struct ethtool_channels *channels)
1154 {
1155         struct net_device_context *net_device_ctx = netdev_priv(net);
1156         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1157         unsigned int orig, count = channels->combined_count;
1158         struct netvsc_device_info *device_info;
1159         int ret;
1160
1161         /* We do not support separate count for rx, tx, or other */
1162         if (count == 0 ||
1163             channels->rx_count || channels->tx_count || channels->other_count)
1164                 return -EINVAL;
1165
1166         if (!nvdev || nvdev->destroy)
1167                 return -ENODEV;
1168
1169         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1170                 return -EINVAL;
1171
1172         if (count > nvdev->max_chn)
1173                 return -EINVAL;
1174
1175         orig = nvdev->num_chn;
1176
1177         device_info = netvsc_devinfo_get(nvdev);
1178
1179         if (!device_info)
1180                 return -ENOMEM;
1181
1182         device_info->num_chn = count;
1183
1184         ret = netvsc_detach(net, nvdev);
1185         if (ret)
1186                 goto out;
1187
1188         ret = netvsc_attach(net, device_info);
1189         if (ret) {
1190                 device_info->num_chn = orig;
1191                 if (netvsc_attach(net, device_info))
1192                         netdev_err(net, "restoring channel setting failed\n");
1193         }
1194
1195 out:
1196         netvsc_devinfo_put(device_info);
1197         return ret;
1198 }
1199
1200 static void netvsc_init_settings(struct net_device *dev)
1201 {
1202         struct net_device_context *ndc = netdev_priv(dev);
1203
1204         ndc->l4_hash = HV_DEFAULT_L4HASH;
1205
1206         ndc->speed = SPEED_UNKNOWN;
1207         ndc->duplex = DUPLEX_FULL;
1208
1209         dev->features = NETIF_F_LRO;
1210 }
1211
1212 static int netvsc_get_link_ksettings(struct net_device *dev,
1213                                      struct ethtool_link_ksettings *cmd)
1214 {
1215         struct net_device_context *ndc = netdev_priv(dev);
1216         struct net_device *vf_netdev;
1217
1218         vf_netdev = rtnl_dereference(ndc->vf_netdev);
1219
1220         if (vf_netdev)
1221                 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1222
1223         cmd->base.speed = ndc->speed;
1224         cmd->base.duplex = ndc->duplex;
1225         cmd->base.port = PORT_OTHER;
1226
1227         return 0;
1228 }
1229
1230 static int netvsc_set_link_ksettings(struct net_device *dev,
1231                                      const struct ethtool_link_ksettings *cmd)
1232 {
1233         struct net_device_context *ndc = netdev_priv(dev);
1234         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1235
1236         if (vf_netdev) {
1237                 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1238                         return -EOPNOTSUPP;
1239
1240                 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1241                                                                   cmd);
1242         }
1243
1244         return ethtool_virtdev_set_link_ksettings(dev, cmd,
1245                                                   &ndc->speed, &ndc->duplex);
1246 }
1247
1248 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1249 {
1250         struct net_device_context *ndevctx = netdev_priv(ndev);
1251         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1252         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1253         int orig_mtu = ndev->mtu;
1254         struct netvsc_device_info *device_info;
1255         int ret = 0;
1256
1257         if (!nvdev || nvdev->destroy)
1258                 return -ENODEV;
1259
1260         device_info = netvsc_devinfo_get(nvdev);
1261
1262         if (!device_info)
1263                 return -ENOMEM;
1264
1265         /* Change MTU of underlying VF netdev first. */
1266         if (vf_netdev) {
1267                 ret = dev_set_mtu(vf_netdev, mtu);
1268                 if (ret)
1269                         goto out;
1270         }
1271
1272         ret = netvsc_detach(ndev, nvdev);
1273         if (ret)
1274                 goto rollback_vf;
1275
1276         ndev->mtu = mtu;
1277
1278         ret = netvsc_attach(ndev, device_info);
1279         if (!ret)
1280                 goto out;
1281
1282         /* Attempt rollback to original MTU */
1283         ndev->mtu = orig_mtu;
1284
1285         if (netvsc_attach(ndev, device_info))
1286                 netdev_err(ndev, "restoring mtu failed\n");
1287 rollback_vf:
1288         if (vf_netdev)
1289                 dev_set_mtu(vf_netdev, orig_mtu);
1290
1291 out:
1292         netvsc_devinfo_put(device_info);
1293         return ret;
1294 }
1295
1296 static void netvsc_get_vf_stats(struct net_device *net,
1297                                 struct netvsc_vf_pcpu_stats *tot)
1298 {
1299         struct net_device_context *ndev_ctx = netdev_priv(net);
1300         int i;
1301
1302         memset(tot, 0, sizeof(*tot));
1303
1304         for_each_possible_cpu(i) {
1305                 const struct netvsc_vf_pcpu_stats *stats
1306                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1307                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1308                 unsigned int start;
1309
1310                 do {
1311                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1312                         rx_packets = stats->rx_packets;
1313                         tx_packets = stats->tx_packets;
1314                         rx_bytes = stats->rx_bytes;
1315                         tx_bytes = stats->tx_bytes;
1316                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1317
1318                 tot->rx_packets += rx_packets;
1319                 tot->tx_packets += tx_packets;
1320                 tot->rx_bytes   += rx_bytes;
1321                 tot->tx_bytes   += tx_bytes;
1322                 tot->tx_dropped += stats->tx_dropped;
1323         }
1324 }
1325
1326 static void netvsc_get_pcpu_stats(struct net_device *net,
1327                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1328 {
1329         struct net_device_context *ndev_ctx = netdev_priv(net);
1330         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1331         int i;
1332
1333         /* fetch percpu stats of vf */
1334         for_each_possible_cpu(i) {
1335                 const struct netvsc_vf_pcpu_stats *stats =
1336                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1337                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1338                 unsigned int start;
1339
1340                 do {
1341                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1342                         this_tot->vf_rx_packets = stats->rx_packets;
1343                         this_tot->vf_tx_packets = stats->tx_packets;
1344                         this_tot->vf_rx_bytes = stats->rx_bytes;
1345                         this_tot->vf_tx_bytes = stats->tx_bytes;
1346                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1347                 this_tot->rx_packets = this_tot->vf_rx_packets;
1348                 this_tot->tx_packets = this_tot->vf_tx_packets;
1349                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1350                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1351         }
1352
1353         /* fetch percpu stats of netvsc */
1354         for (i = 0; i < nvdev->num_chn; i++) {
1355                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1356                 const struct netvsc_stats *stats;
1357                 struct netvsc_ethtool_pcpu_stats *this_tot =
1358                         &pcpu_tot[nvchan->channel->target_cpu];
1359                 u64 packets, bytes;
1360                 unsigned int start;
1361
1362                 stats = &nvchan->tx_stats;
1363                 do {
1364                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1365                         packets = stats->packets;
1366                         bytes = stats->bytes;
1367                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1368
1369                 this_tot->tx_bytes      += bytes;
1370                 this_tot->tx_packets    += packets;
1371
1372                 stats = &nvchan->rx_stats;
1373                 do {
1374                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1375                         packets = stats->packets;
1376                         bytes = stats->bytes;
1377                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1378
1379                 this_tot->rx_bytes      += bytes;
1380                 this_tot->rx_packets    += packets;
1381         }
1382 }
1383
1384 static void netvsc_get_stats64(struct net_device *net,
1385                                struct rtnl_link_stats64 *t)
1386 {
1387         struct net_device_context *ndev_ctx = netdev_priv(net);
1388         struct netvsc_device *nvdev;
1389         struct netvsc_vf_pcpu_stats vf_tot;
1390         int i;
1391
1392         rcu_read_lock();
1393
1394         nvdev = rcu_dereference(ndev_ctx->nvdev);
1395         if (!nvdev)
1396                 goto out;
1397
1398         netdev_stats_to_stats64(t, &net->stats);
1399
1400         netvsc_get_vf_stats(net, &vf_tot);
1401         t->rx_packets += vf_tot.rx_packets;
1402         t->tx_packets += vf_tot.tx_packets;
1403         t->rx_bytes   += vf_tot.rx_bytes;
1404         t->tx_bytes   += vf_tot.tx_bytes;
1405         t->tx_dropped += vf_tot.tx_dropped;
1406
1407         for (i = 0; i < nvdev->num_chn; i++) {
1408                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1409                 const struct netvsc_stats *stats;
1410                 u64 packets, bytes, multicast;
1411                 unsigned int start;
1412
1413                 stats = &nvchan->tx_stats;
1414                 do {
1415                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1416                         packets = stats->packets;
1417                         bytes = stats->bytes;
1418                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1419
1420                 t->tx_bytes     += bytes;
1421                 t->tx_packets   += packets;
1422
1423                 stats = &nvchan->rx_stats;
1424                 do {
1425                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1426                         packets = stats->packets;
1427                         bytes = stats->bytes;
1428                         multicast = stats->multicast + stats->broadcast;
1429                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1430
1431                 t->rx_bytes     += bytes;
1432                 t->rx_packets   += packets;
1433                 t->multicast    += multicast;
1434         }
1435 out:
1436         rcu_read_unlock();
1437 }
1438
1439 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1440 {
1441         struct net_device_context *ndc = netdev_priv(ndev);
1442         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1443         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1444         struct sockaddr *addr = p;
1445         int err;
1446
1447         err = eth_prepare_mac_addr_change(ndev, p);
1448         if (err)
1449                 return err;
1450
1451         if (!nvdev)
1452                 return -ENODEV;
1453
1454         if (vf_netdev) {
1455                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1456                 if (err)
1457                         return err;
1458         }
1459
1460         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1461         if (!err) {
1462                 eth_commit_mac_addr_change(ndev, p);
1463         } else if (vf_netdev) {
1464                 /* rollback change on VF */
1465                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1466                 dev_set_mac_address(vf_netdev, addr, NULL);
1467         }
1468
1469         return err;
1470 }
1471
1472 static const struct {
1473         char name[ETH_GSTRING_LEN];
1474         u16 offset;
1475 } netvsc_stats[] = {
1476         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1477         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1478         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1479         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1480         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1481         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1482         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1483         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1484         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1485         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1486         { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1487 }, pcpu_stats[] = {
1488         { "cpu%u_rx_packets",
1489                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1490         { "cpu%u_rx_bytes",
1491                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1492         { "cpu%u_tx_packets",
1493                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1494         { "cpu%u_tx_bytes",
1495                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1496         { "cpu%u_vf_rx_packets",
1497                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1498         { "cpu%u_vf_rx_bytes",
1499                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1500         { "cpu%u_vf_tx_packets",
1501                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1502         { "cpu%u_vf_tx_bytes",
1503                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1504 }, vf_stats[] = {
1505         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1506         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1507         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1508         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1509         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1510 };
1511
1512 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1513 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1514
1515 /* statistics per queue (rx/tx packets/bytes) */
1516 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1517
1518 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1519 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1520
1521 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1522 {
1523         struct net_device_context *ndc = netdev_priv(dev);
1524         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1525
1526         if (!nvdev)
1527                 return -ENODEV;
1528
1529         switch (string_set) {
1530         case ETH_SS_STATS:
1531                 return NETVSC_GLOBAL_STATS_LEN
1532                         + NETVSC_VF_STATS_LEN
1533                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1534                         + NETVSC_PCPU_STATS_LEN;
1535         default:
1536                 return -EINVAL;
1537         }
1538 }
1539
1540 static void netvsc_get_ethtool_stats(struct net_device *dev,
1541                                      struct ethtool_stats *stats, u64 *data)
1542 {
1543         struct net_device_context *ndc = netdev_priv(dev);
1544         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1545         const void *nds = &ndc->eth_stats;
1546         const struct netvsc_stats *qstats;
1547         struct netvsc_vf_pcpu_stats sum;
1548         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1549         unsigned int start;
1550         u64 packets, bytes;
1551         u64 xdp_drop;
1552         int i, j, cpu;
1553
1554         if (!nvdev)
1555                 return;
1556
1557         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1558                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1559
1560         netvsc_get_vf_stats(dev, &sum);
1561         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1562                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1563
1564         for (j = 0; j < nvdev->num_chn; j++) {
1565                 qstats = &nvdev->chan_table[j].tx_stats;
1566
1567                 do {
1568                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1569                         packets = qstats->packets;
1570                         bytes = qstats->bytes;
1571                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1572                 data[i++] = packets;
1573                 data[i++] = bytes;
1574
1575                 qstats = &nvdev->chan_table[j].rx_stats;
1576                 do {
1577                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1578                         packets = qstats->packets;
1579                         bytes = qstats->bytes;
1580                         xdp_drop = qstats->xdp_drop;
1581                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1582                 data[i++] = packets;
1583                 data[i++] = bytes;
1584                 data[i++] = xdp_drop;
1585         }
1586
1587         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1588                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1589                                   GFP_KERNEL);
1590         if (!pcpu_sum)
1591                 return;
1592
1593         netvsc_get_pcpu_stats(dev, pcpu_sum);
1594         for_each_present_cpu(cpu) {
1595                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1596
1597                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1598                         data[i++] = *(u64 *)((void *)this_sum
1599                                              + pcpu_stats[j].offset);
1600         }
1601         kvfree(pcpu_sum);
1602 }
1603
1604 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1605 {
1606         struct net_device_context *ndc = netdev_priv(dev);
1607         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1608         u8 *p = data;
1609         int i, cpu;
1610
1611         if (!nvdev)
1612                 return;
1613
1614         switch (stringset) {
1615         case ETH_SS_STATS:
1616                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1617                         ethtool_sprintf(&p, netvsc_stats[i].name);
1618
1619                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1620                         ethtool_sprintf(&p, vf_stats[i].name);
1621
1622                 for (i = 0; i < nvdev->num_chn; i++) {
1623                         ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1624                         ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1625                         ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1626                         ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1627                         ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1628                 }
1629
1630                 for_each_present_cpu(cpu) {
1631                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1632                                 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1633                 }
1634
1635                 break;
1636         }
1637 }
1638
1639 static int
1640 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1641                          struct ethtool_rxnfc *info)
1642 {
1643         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1644
1645         info->data = RXH_IP_SRC | RXH_IP_DST;
1646
1647         switch (info->flow_type) {
1648         case TCP_V4_FLOW:
1649                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1650                         info->data |= l4_flag;
1651
1652                 break;
1653
1654         case TCP_V6_FLOW:
1655                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1656                         info->data |= l4_flag;
1657
1658                 break;
1659
1660         case UDP_V4_FLOW:
1661                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1662                         info->data |= l4_flag;
1663
1664                 break;
1665
1666         case UDP_V6_FLOW:
1667                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1668                         info->data |= l4_flag;
1669
1670                 break;
1671
1672         case IPV4_FLOW:
1673         case IPV6_FLOW:
1674                 break;
1675         default:
1676                 info->data = 0;
1677                 break;
1678         }
1679
1680         return 0;
1681 }
1682
1683 static int
1684 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1685                  u32 *rules)
1686 {
1687         struct net_device_context *ndc = netdev_priv(dev);
1688         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1689
1690         if (!nvdev)
1691                 return -ENODEV;
1692
1693         switch (info->cmd) {
1694         case ETHTOOL_GRXRINGS:
1695                 info->data = nvdev->num_chn;
1696                 return 0;
1697
1698         case ETHTOOL_GRXFH:
1699                 return netvsc_get_rss_hash_opts(ndc, info);
1700         }
1701         return -EOPNOTSUPP;
1702 }
1703
1704 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1705                                     struct ethtool_rxnfc *info)
1706 {
1707         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1708                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1709                 switch (info->flow_type) {
1710                 case TCP_V4_FLOW:
1711                         ndc->l4_hash |= HV_TCP4_L4HASH;
1712                         break;
1713
1714                 case TCP_V6_FLOW:
1715                         ndc->l4_hash |= HV_TCP6_L4HASH;
1716                         break;
1717
1718                 case UDP_V4_FLOW:
1719                         ndc->l4_hash |= HV_UDP4_L4HASH;
1720                         break;
1721
1722                 case UDP_V6_FLOW:
1723                         ndc->l4_hash |= HV_UDP6_L4HASH;
1724                         break;
1725
1726                 default:
1727                         return -EOPNOTSUPP;
1728                 }
1729
1730                 return 0;
1731         }
1732
1733         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1734                 switch (info->flow_type) {
1735                 case TCP_V4_FLOW:
1736                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1737                         break;
1738
1739                 case TCP_V6_FLOW:
1740                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1741                         break;
1742
1743                 case UDP_V4_FLOW:
1744                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1745                         break;
1746
1747                 case UDP_V6_FLOW:
1748                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1749                         break;
1750
1751                 default:
1752                         return -EOPNOTSUPP;
1753                 }
1754
1755                 return 0;
1756         }
1757
1758         return -EOPNOTSUPP;
1759 }
1760
1761 static int
1762 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1763 {
1764         struct net_device_context *ndc = netdev_priv(ndev);
1765
1766         if (info->cmd == ETHTOOL_SRXFH)
1767                 return netvsc_set_rss_hash_opts(ndc, info);
1768
1769         return -EOPNOTSUPP;
1770 }
1771
1772 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1773 {
1774         return NETVSC_HASH_KEYLEN;
1775 }
1776
1777 static u32 netvsc_rss_indir_size(struct net_device *dev)
1778 {
1779         return ITAB_NUM;
1780 }
1781
1782 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1783                            u8 *hfunc)
1784 {
1785         struct net_device_context *ndc = netdev_priv(dev);
1786         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1787         struct rndis_device *rndis_dev;
1788         int i;
1789
1790         if (!ndev)
1791                 return -ENODEV;
1792
1793         if (hfunc)
1794                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1795
1796         rndis_dev = ndev->extension;
1797         if (indir) {
1798                 for (i = 0; i < ITAB_NUM; i++)
1799                         indir[i] = ndc->rx_table[i];
1800         }
1801
1802         if (key)
1803                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1804
1805         return 0;
1806 }
1807
1808 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1809                            const u8 *key, const u8 hfunc)
1810 {
1811         struct net_device_context *ndc = netdev_priv(dev);
1812         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1813         struct rndis_device *rndis_dev;
1814         int i;
1815
1816         if (!ndev)
1817                 return -ENODEV;
1818
1819         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1820                 return -EOPNOTSUPP;
1821
1822         rndis_dev = ndev->extension;
1823         if (indir) {
1824                 for (i = 0; i < ITAB_NUM; i++)
1825                         if (indir[i] >= ndev->num_chn)
1826                                 return -EINVAL;
1827
1828                 for (i = 0; i < ITAB_NUM; i++)
1829                         ndc->rx_table[i] = indir[i];
1830         }
1831
1832         if (!key) {
1833                 if (!indir)
1834                         return 0;
1835
1836                 key = rndis_dev->rss_key;
1837         }
1838
1839         return rndis_filter_set_rss_param(rndis_dev, key);
1840 }
1841
1842 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1843  * It does have pre-allocated receive area which is divided into sections.
1844  */
1845 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1846                                    struct ethtool_ringparam *ring)
1847 {
1848         u32 max_buf_size;
1849
1850         ring->rx_pending = nvdev->recv_section_cnt;
1851         ring->tx_pending = nvdev->send_section_cnt;
1852
1853         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1854                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1855         else
1856                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1857
1858         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1859         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1860                 / nvdev->send_section_size;
1861 }
1862
1863 static void netvsc_get_ringparam(struct net_device *ndev,
1864                                  struct ethtool_ringparam *ring,
1865                                  struct kernel_ethtool_ringparam *kernel_ring,
1866                                  struct netlink_ext_ack *extack)
1867 {
1868         struct net_device_context *ndevctx = netdev_priv(ndev);
1869         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1870
1871         if (!nvdev)
1872                 return;
1873
1874         __netvsc_get_ringparam(nvdev, ring);
1875 }
1876
1877 static int netvsc_set_ringparam(struct net_device *ndev,
1878                                 struct ethtool_ringparam *ring,
1879                                 struct kernel_ethtool_ringparam *kernel_ring,
1880                                 struct netlink_ext_ack *extack)
1881 {
1882         struct net_device_context *ndevctx = netdev_priv(ndev);
1883         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1884         struct netvsc_device_info *device_info;
1885         struct ethtool_ringparam orig;
1886         u32 new_tx, new_rx;
1887         int ret = 0;
1888
1889         if (!nvdev || nvdev->destroy)
1890                 return -ENODEV;
1891
1892         memset(&orig, 0, sizeof(orig));
1893         __netvsc_get_ringparam(nvdev, &orig);
1894
1895         new_tx = clamp_t(u32, ring->tx_pending,
1896                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1897         new_rx = clamp_t(u32, ring->rx_pending,
1898                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1899
1900         if (new_tx == orig.tx_pending &&
1901             new_rx == orig.rx_pending)
1902                 return 0;        /* no change */
1903
1904         device_info = netvsc_devinfo_get(nvdev);
1905
1906         if (!device_info)
1907                 return -ENOMEM;
1908
1909         device_info->send_sections = new_tx;
1910         device_info->recv_sections = new_rx;
1911
1912         ret = netvsc_detach(ndev, nvdev);
1913         if (ret)
1914                 goto out;
1915
1916         ret = netvsc_attach(ndev, device_info);
1917         if (ret) {
1918                 device_info->send_sections = orig.tx_pending;
1919                 device_info->recv_sections = orig.rx_pending;
1920
1921                 if (netvsc_attach(ndev, device_info))
1922                         netdev_err(ndev, "restoring ringparam failed");
1923         }
1924
1925 out:
1926         netvsc_devinfo_put(device_info);
1927         return ret;
1928 }
1929
1930 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1931                                              netdev_features_t features)
1932 {
1933         struct net_device_context *ndevctx = netdev_priv(ndev);
1934         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1935
1936         if (!nvdev || nvdev->destroy)
1937                 return features;
1938
1939         if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1940                 features ^= NETIF_F_LRO;
1941                 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1942         }
1943
1944         return features;
1945 }
1946
1947 static int netvsc_set_features(struct net_device *ndev,
1948                                netdev_features_t features)
1949 {
1950         netdev_features_t change = features ^ ndev->features;
1951         struct net_device_context *ndevctx = netdev_priv(ndev);
1952         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1953         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1954         struct ndis_offload_params offloads;
1955         int ret = 0;
1956
1957         if (!nvdev || nvdev->destroy)
1958                 return -ENODEV;
1959
1960         if (!(change & NETIF_F_LRO))
1961                 goto syncvf;
1962
1963         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1964
1965         if (features & NETIF_F_LRO) {
1966                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1967                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1968         } else {
1969                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1970                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1971         }
1972
1973         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1974
1975         if (ret) {
1976                 features ^= NETIF_F_LRO;
1977                 ndev->features = features;
1978         }
1979
1980 syncvf:
1981         if (!vf_netdev)
1982                 return ret;
1983
1984         vf_netdev->wanted_features = features;
1985         netdev_update_features(vf_netdev);
1986
1987         return ret;
1988 }
1989
1990 static int netvsc_get_regs_len(struct net_device *netdev)
1991 {
1992         return VRSS_SEND_TAB_SIZE * sizeof(u32);
1993 }
1994
1995 static void netvsc_get_regs(struct net_device *netdev,
1996                             struct ethtool_regs *regs, void *p)
1997 {
1998         struct net_device_context *ndc = netdev_priv(netdev);
1999         u32 *regs_buff = p;
2000
2001         /* increase the version, if buffer format is changed. */
2002         regs->version = 1;
2003
2004         memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
2005 }
2006
2007 static u32 netvsc_get_msglevel(struct net_device *ndev)
2008 {
2009         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2010
2011         return ndev_ctx->msg_enable;
2012 }
2013
2014 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2015 {
2016         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2017
2018         ndev_ctx->msg_enable = val;
2019 }
2020
2021 static const struct ethtool_ops ethtool_ops = {
2022         .get_drvinfo    = netvsc_get_drvinfo,
2023         .get_regs_len   = netvsc_get_regs_len,
2024         .get_regs       = netvsc_get_regs,
2025         .get_msglevel   = netvsc_get_msglevel,
2026         .set_msglevel   = netvsc_set_msglevel,
2027         .get_link       = ethtool_op_get_link,
2028         .get_ethtool_stats = netvsc_get_ethtool_stats,
2029         .get_sset_count = netvsc_get_sset_count,
2030         .get_strings    = netvsc_get_strings,
2031         .get_channels   = netvsc_get_channels,
2032         .set_channels   = netvsc_set_channels,
2033         .get_ts_info    = ethtool_op_get_ts_info,
2034         .get_rxnfc      = netvsc_get_rxnfc,
2035         .set_rxnfc      = netvsc_set_rxnfc,
2036         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2037         .get_rxfh_indir_size = netvsc_rss_indir_size,
2038         .get_rxfh       = netvsc_get_rxfh,
2039         .set_rxfh       = netvsc_set_rxfh,
2040         .get_link_ksettings = netvsc_get_link_ksettings,
2041         .set_link_ksettings = netvsc_set_link_ksettings,
2042         .get_ringparam  = netvsc_get_ringparam,
2043         .set_ringparam  = netvsc_set_ringparam,
2044 };
2045
2046 static const struct net_device_ops device_ops = {
2047         .ndo_open =                     netvsc_open,
2048         .ndo_stop =                     netvsc_close,
2049         .ndo_start_xmit =               netvsc_start_xmit,
2050         .ndo_change_rx_flags =          netvsc_change_rx_flags,
2051         .ndo_set_rx_mode =              netvsc_set_rx_mode,
2052         .ndo_fix_features =             netvsc_fix_features,
2053         .ndo_set_features =             netvsc_set_features,
2054         .ndo_change_mtu =               netvsc_change_mtu,
2055         .ndo_validate_addr =            eth_validate_addr,
2056         .ndo_set_mac_address =          netvsc_set_mac_addr,
2057         .ndo_select_queue =             netvsc_select_queue,
2058         .ndo_get_stats64 =              netvsc_get_stats64,
2059         .ndo_bpf =                      netvsc_bpf,
2060 };
2061
2062 /*
2063  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2064  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2065  * present send GARP packet to network peers with netif_notify_peers().
2066  */
2067 static void netvsc_link_change(struct work_struct *w)
2068 {
2069         struct net_device_context *ndev_ctx =
2070                 container_of(w, struct net_device_context, dwork.work);
2071         struct hv_device *device_obj = ndev_ctx->device_ctx;
2072         struct net_device *net = hv_get_drvdata(device_obj);
2073         unsigned long flags, next_reconfig, delay;
2074         struct netvsc_reconfig *event = NULL;
2075         struct netvsc_device *net_device;
2076         struct rndis_device *rdev;
2077         bool reschedule = false;
2078
2079         /* if changes are happening, comeback later */
2080         if (!rtnl_trylock()) {
2081                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2082                 return;
2083         }
2084
2085         net_device = rtnl_dereference(ndev_ctx->nvdev);
2086         if (!net_device)
2087                 goto out_unlock;
2088
2089         rdev = net_device->extension;
2090
2091         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2092         if (time_is_after_jiffies(next_reconfig)) {
2093                 /* link_watch only sends one notification with current state
2094                  * per second, avoid doing reconfig more frequently. Handle
2095                  * wrap around.
2096                  */
2097                 delay = next_reconfig - jiffies;
2098                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2099                 schedule_delayed_work(&ndev_ctx->dwork, delay);
2100                 goto out_unlock;
2101         }
2102         ndev_ctx->last_reconfig = jiffies;
2103
2104         spin_lock_irqsave(&ndev_ctx->lock, flags);
2105         if (!list_empty(&ndev_ctx->reconfig_events)) {
2106                 event = list_first_entry(&ndev_ctx->reconfig_events,
2107                                          struct netvsc_reconfig, list);
2108                 list_del(&event->list);
2109                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2110         }
2111         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2112
2113         if (!event)
2114                 goto out_unlock;
2115
2116         switch (event->event) {
2117                 /* Only the following events are possible due to the check in
2118                  * netvsc_linkstatus_callback()
2119                  */
2120         case RNDIS_STATUS_MEDIA_CONNECT:
2121                 if (rdev->link_state) {
2122                         rdev->link_state = false;
2123                         netif_carrier_on(net);
2124                         netvsc_tx_enable(net_device, net);
2125                 } else {
2126                         __netdev_notify_peers(net);
2127                 }
2128                 kfree(event);
2129                 break;
2130         case RNDIS_STATUS_MEDIA_DISCONNECT:
2131                 if (!rdev->link_state) {
2132                         rdev->link_state = true;
2133                         netif_carrier_off(net);
2134                         netvsc_tx_disable(net_device, net);
2135                 }
2136                 kfree(event);
2137                 break;
2138         case RNDIS_STATUS_NETWORK_CHANGE:
2139                 /* Only makes sense if carrier is present */
2140                 if (!rdev->link_state) {
2141                         rdev->link_state = true;
2142                         netif_carrier_off(net);
2143                         netvsc_tx_disable(net_device, net);
2144                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
2145                         spin_lock_irqsave(&ndev_ctx->lock, flags);
2146                         list_add(&event->list, &ndev_ctx->reconfig_events);
2147                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2148                         reschedule = true;
2149                 }
2150                 break;
2151         }
2152
2153         rtnl_unlock();
2154
2155         /* link_watch only sends one notification with current state per
2156          * second, handle next reconfig event in 2 seconds.
2157          */
2158         if (reschedule)
2159                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2160
2161         return;
2162
2163 out_unlock:
2164         rtnl_unlock();
2165 }
2166
2167 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2168 {
2169         struct net_device_context *net_device_ctx;
2170         struct net_device *dev;
2171
2172         dev = netdev_master_upper_dev_get(vf_netdev);
2173         if (!dev || dev->netdev_ops != &device_ops)
2174                 return NULL;    /* not a netvsc device */
2175
2176         net_device_ctx = netdev_priv(dev);
2177         if (!rtnl_dereference(net_device_ctx->nvdev))
2178                 return NULL;    /* device is removed */
2179
2180         return dev;
2181 }
2182
2183 /* Called when VF is injecting data into network stack.
2184  * Change the associated network device from VF to netvsc.
2185  * note: already called with rcu_read_lock
2186  */
2187 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2188 {
2189         struct sk_buff *skb = *pskb;
2190         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2191         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2192         struct netvsc_vf_pcpu_stats *pcpu_stats
2193                  = this_cpu_ptr(ndev_ctx->vf_stats);
2194
2195         skb = skb_share_check(skb, GFP_ATOMIC);
2196         if (unlikely(!skb))
2197                 return RX_HANDLER_CONSUMED;
2198
2199         *pskb = skb;
2200
2201         skb->dev = ndev;
2202
2203         u64_stats_update_begin(&pcpu_stats->syncp);
2204         pcpu_stats->rx_packets++;
2205         pcpu_stats->rx_bytes += skb->len;
2206         u64_stats_update_end(&pcpu_stats->syncp);
2207
2208         return RX_HANDLER_ANOTHER;
2209 }
2210
2211 static int netvsc_vf_join(struct net_device *vf_netdev,
2212                           struct net_device *ndev)
2213 {
2214         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2215         int ret;
2216
2217         ret = netdev_rx_handler_register(vf_netdev,
2218                                          netvsc_vf_handle_frame, ndev);
2219         if (ret != 0) {
2220                 netdev_err(vf_netdev,
2221                            "can not register netvsc VF receive handler (err = %d)\n",
2222                            ret);
2223                 goto rx_handler_failed;
2224         }
2225
2226         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2227                                            NULL, NULL, NULL);
2228         if (ret != 0) {
2229                 netdev_err(vf_netdev,
2230                            "can not set master device %s (err = %d)\n",
2231                            ndev->name, ret);
2232                 goto upper_link_failed;
2233         }
2234
2235         /* set slave flag before open to prevent IPv6 addrconf */
2236         vf_netdev->flags |= IFF_SLAVE;
2237
2238         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2239
2240         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2241
2242         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2243         return 0;
2244
2245 upper_link_failed:
2246         netdev_rx_handler_unregister(vf_netdev);
2247 rx_handler_failed:
2248         return ret;
2249 }
2250
2251 static void __netvsc_vf_setup(struct net_device *ndev,
2252                               struct net_device *vf_netdev)
2253 {
2254         int ret;
2255
2256         /* Align MTU of VF with master */
2257         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2258         if (ret)
2259                 netdev_warn(vf_netdev,
2260                             "unable to change mtu to %u\n", ndev->mtu);
2261
2262         /* set multicast etc flags on VF */
2263         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2264
2265         /* sync address list from ndev to VF */
2266         netif_addr_lock_bh(ndev);
2267         dev_uc_sync(vf_netdev, ndev);
2268         dev_mc_sync(vf_netdev, ndev);
2269         netif_addr_unlock_bh(ndev);
2270
2271         if (netif_running(ndev)) {
2272                 ret = dev_open(vf_netdev, NULL);
2273                 if (ret)
2274                         netdev_warn(vf_netdev,
2275                                     "unable to open: %d\n", ret);
2276         }
2277 }
2278
2279 /* Setup VF as slave of the synthetic device.
2280  * Runs in workqueue to avoid recursion in netlink callbacks.
2281  */
2282 static void netvsc_vf_setup(struct work_struct *w)
2283 {
2284         struct net_device_context *ndev_ctx
2285                 = container_of(w, struct net_device_context, vf_takeover.work);
2286         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2287         struct net_device *vf_netdev;
2288
2289         if (!rtnl_trylock()) {
2290                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2291                 return;
2292         }
2293
2294         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2295         if (vf_netdev)
2296                 __netvsc_vf_setup(ndev, vf_netdev);
2297
2298         rtnl_unlock();
2299 }
2300
2301 /* Find netvsc by VF serial number.
2302  * The PCI hyperv controller records the serial number as the slot kobj name.
2303  */
2304 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2305 {
2306         struct device *parent = vf_netdev->dev.parent;
2307         struct net_device_context *ndev_ctx;
2308         struct net_device *ndev;
2309         struct pci_dev *pdev;
2310         u32 serial;
2311
2312         if (!parent || !dev_is_pci(parent))
2313                 return NULL; /* not a PCI device */
2314
2315         pdev = to_pci_dev(parent);
2316         if (!pdev->slot) {
2317                 netdev_notice(vf_netdev, "no PCI slot information\n");
2318                 return NULL;
2319         }
2320
2321         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2322                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2323                               pci_slot_name(pdev->slot));
2324                 return NULL;
2325         }
2326
2327         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2328                 if (!ndev_ctx->vf_alloc)
2329                         continue;
2330
2331                 if (ndev_ctx->vf_serial != serial)
2332                         continue;
2333
2334                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2335                 if (ndev->addr_len != vf_netdev->addr_len ||
2336                     memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2337                            ndev->addr_len) != 0)
2338                         continue;
2339
2340                 return ndev;
2341
2342         }
2343
2344         netdev_notice(vf_netdev,
2345                       "no netdev found for vf serial:%u\n", serial);
2346         return NULL;
2347 }
2348
2349 static int netvsc_register_vf(struct net_device *vf_netdev)
2350 {
2351         struct net_device_context *net_device_ctx;
2352         struct netvsc_device *netvsc_dev;
2353         struct bpf_prog *prog;
2354         struct net_device *ndev;
2355         int ret;
2356
2357         if (vf_netdev->addr_len != ETH_ALEN)
2358                 return NOTIFY_DONE;
2359
2360         ndev = get_netvsc_byslot(vf_netdev);
2361         if (!ndev)
2362                 return NOTIFY_DONE;
2363
2364         net_device_ctx = netdev_priv(ndev);
2365         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2366         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2367                 return NOTIFY_DONE;
2368
2369         /* if synthetic interface is a different namespace,
2370          * then move the VF to that namespace; join will be
2371          * done again in that context.
2372          */
2373         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2374                 ret = dev_change_net_namespace(vf_netdev,
2375                                                dev_net(ndev), "eth%d");
2376                 if (ret)
2377                         netdev_err(vf_netdev,
2378                                    "could not move to same namespace as %s: %d\n",
2379                                    ndev->name, ret);
2380                 else
2381                         netdev_info(vf_netdev,
2382                                     "VF moved to namespace with: %s\n",
2383                                     ndev->name);
2384                 return NOTIFY_DONE;
2385         }
2386
2387         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2388
2389         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2390                 return NOTIFY_DONE;
2391
2392         dev_hold(vf_netdev);
2393         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2394
2395         if (ndev->needed_headroom < vf_netdev->needed_headroom)
2396                 ndev->needed_headroom = vf_netdev->needed_headroom;
2397
2398         vf_netdev->wanted_features = ndev->features;
2399         netdev_update_features(vf_netdev);
2400
2401         prog = netvsc_xdp_get(netvsc_dev);
2402         netvsc_vf_setxdp(vf_netdev, prog);
2403
2404         return NOTIFY_OK;
2405 }
2406
2407 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2408  *
2409  * Typically a UP or DOWN event is followed by a CHANGE event, so
2410  * net_device_ctx->data_path_is_vf is used to cache the current data path
2411  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2412  * message.
2413  *
2414  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2415  * interface, there is only the CHANGE event and no UP or DOWN event.
2416  */
2417 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2418 {
2419         struct net_device_context *net_device_ctx;
2420         struct netvsc_device *netvsc_dev;
2421         struct net_device *ndev;
2422         bool vf_is_up = false;
2423         int ret;
2424
2425         if (event != NETDEV_GOING_DOWN)
2426                 vf_is_up = netif_running(vf_netdev);
2427
2428         ndev = get_netvsc_byref(vf_netdev);
2429         if (!ndev)
2430                 return NOTIFY_DONE;
2431
2432         net_device_ctx = netdev_priv(ndev);
2433         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2434         if (!netvsc_dev)
2435                 return NOTIFY_DONE;
2436
2437         if (net_device_ctx->data_path_is_vf == vf_is_up)
2438                 return NOTIFY_OK;
2439
2440         ret = netvsc_switch_datapath(ndev, vf_is_up);
2441
2442         if (ret) {
2443                 netdev_err(ndev,
2444                            "Data path failed to switch %s VF: %s, err: %d\n",
2445                            vf_is_up ? "to" : "from", vf_netdev->name, ret);
2446                 return NOTIFY_DONE;
2447         } else {
2448                 netdev_info(ndev, "Data path switched %s VF: %s\n",
2449                             vf_is_up ? "to" : "from", vf_netdev->name);
2450         }
2451
2452         return NOTIFY_OK;
2453 }
2454
2455 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2456 {
2457         struct net_device *ndev;
2458         struct net_device_context *net_device_ctx;
2459
2460         ndev = get_netvsc_byref(vf_netdev);
2461         if (!ndev)
2462                 return NOTIFY_DONE;
2463
2464         net_device_ctx = netdev_priv(ndev);
2465         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2466
2467         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2468
2469         netvsc_vf_setxdp(vf_netdev, NULL);
2470
2471         netdev_rx_handler_unregister(vf_netdev);
2472         netdev_upper_dev_unlink(vf_netdev, ndev);
2473         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2474         dev_put(vf_netdev);
2475
2476         ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2477
2478         return NOTIFY_OK;
2479 }
2480
2481 static int netvsc_probe(struct hv_device *dev,
2482                         const struct hv_vmbus_device_id *dev_id)
2483 {
2484         struct net_device *net = NULL;
2485         struct net_device_context *net_device_ctx;
2486         struct netvsc_device_info *device_info = NULL;
2487         struct netvsc_device *nvdev;
2488         int ret = -ENOMEM;
2489
2490         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2491                                 VRSS_CHANNEL_MAX);
2492         if (!net)
2493                 goto no_net;
2494
2495         netif_carrier_off(net);
2496
2497         netvsc_init_settings(net);
2498
2499         net_device_ctx = netdev_priv(net);
2500         net_device_ctx->device_ctx = dev;
2501         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2502         if (netif_msg_probe(net_device_ctx))
2503                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2504                            net_device_ctx->msg_enable);
2505
2506         hv_set_drvdata(dev, net);
2507
2508         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2509
2510         spin_lock_init(&net_device_ctx->lock);
2511         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2512         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2513
2514         net_device_ctx->vf_stats
2515                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2516         if (!net_device_ctx->vf_stats)
2517                 goto no_stats;
2518
2519         net->netdev_ops = &device_ops;
2520         net->ethtool_ops = &ethtool_ops;
2521         SET_NETDEV_DEV(net, &dev->device);
2522         dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2523
2524         /* We always need headroom for rndis header */
2525         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2526
2527         /* Initialize the number of queues to be 1, we may change it if more
2528          * channels are offered later.
2529          */
2530         netif_set_real_num_tx_queues(net, 1);
2531         netif_set_real_num_rx_queues(net, 1);
2532
2533         /* Notify the netvsc driver of the new device */
2534         device_info = netvsc_devinfo_get(NULL);
2535
2536         if (!device_info) {
2537                 ret = -ENOMEM;
2538                 goto devinfo_failed;
2539         }
2540
2541         nvdev = rndis_filter_device_add(dev, device_info);
2542         if (IS_ERR(nvdev)) {
2543                 ret = PTR_ERR(nvdev);
2544                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2545                 goto rndis_failed;
2546         }
2547
2548         eth_hw_addr_set(net, device_info->mac_adr);
2549
2550         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2551          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2552          * all subchannels to show up, but that may not happen because
2553          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2554          * -> ... -> device_add() -> ... -> __device_attach() can't get
2555          * the device lock, so all the subchannels can't be processed --
2556          * finally netvsc_subchan_work() hangs forever.
2557          */
2558         rtnl_lock();
2559
2560         if (nvdev->num_chn > 1)
2561                 schedule_work(&nvdev->subchan_work);
2562
2563         /* hw_features computed in rndis_netdev_set_hwcaps() */
2564         net->features = net->hw_features |
2565                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2566                 NETIF_F_HW_VLAN_CTAG_RX;
2567         net->vlan_features = net->features;
2568
2569         netdev_lockdep_set_classes(net);
2570
2571         /* MTU range: 68 - 1500 or 65521 */
2572         net->min_mtu = NETVSC_MTU_MIN;
2573         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2574                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2575         else
2576                 net->max_mtu = ETH_DATA_LEN;
2577
2578         nvdev->tx_disable = false;
2579
2580         ret = register_netdevice(net);
2581         if (ret != 0) {
2582                 pr_err("Unable to register netdev.\n");
2583                 goto register_failed;
2584         }
2585
2586         list_add(&net_device_ctx->list, &netvsc_dev_list);
2587         rtnl_unlock();
2588
2589         netvsc_devinfo_put(device_info);
2590         return 0;
2591
2592 register_failed:
2593         rtnl_unlock();
2594         rndis_filter_device_remove(dev, nvdev);
2595 rndis_failed:
2596         netvsc_devinfo_put(device_info);
2597 devinfo_failed:
2598         free_percpu(net_device_ctx->vf_stats);
2599 no_stats:
2600         hv_set_drvdata(dev, NULL);
2601         free_netdev(net);
2602 no_net:
2603         return ret;
2604 }
2605
2606 static int netvsc_remove(struct hv_device *dev)
2607 {
2608         struct net_device_context *ndev_ctx;
2609         struct net_device *vf_netdev, *net;
2610         struct netvsc_device *nvdev;
2611
2612         net = hv_get_drvdata(dev);
2613         if (net == NULL) {
2614                 dev_err(&dev->device, "No net device to remove\n");
2615                 return 0;
2616         }
2617
2618         ndev_ctx = netdev_priv(net);
2619
2620         cancel_delayed_work_sync(&ndev_ctx->dwork);
2621
2622         rtnl_lock();
2623         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2624         if (nvdev) {
2625                 cancel_work_sync(&nvdev->subchan_work);
2626                 netvsc_xdp_set(net, NULL, NULL, nvdev);
2627         }
2628
2629         /*
2630          * Call to the vsc driver to let it know that the device is being
2631          * removed. Also blocks mtu and channel changes.
2632          */
2633         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2634         if (vf_netdev)
2635                 netvsc_unregister_vf(vf_netdev);
2636
2637         if (nvdev)
2638                 rndis_filter_device_remove(dev, nvdev);
2639
2640         unregister_netdevice(net);
2641         list_del(&ndev_ctx->list);
2642
2643         rtnl_unlock();
2644
2645         hv_set_drvdata(dev, NULL);
2646
2647         free_percpu(ndev_ctx->vf_stats);
2648         free_netdev(net);
2649         return 0;
2650 }
2651
2652 static int netvsc_suspend(struct hv_device *dev)
2653 {
2654         struct net_device_context *ndev_ctx;
2655         struct netvsc_device *nvdev;
2656         struct net_device *net;
2657         int ret;
2658
2659         net = hv_get_drvdata(dev);
2660
2661         ndev_ctx = netdev_priv(net);
2662         cancel_delayed_work_sync(&ndev_ctx->dwork);
2663
2664         rtnl_lock();
2665
2666         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2667         if (nvdev == NULL) {
2668                 ret = -ENODEV;
2669                 goto out;
2670         }
2671
2672         /* Save the current config info */
2673         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2674
2675         ret = netvsc_detach(net, nvdev);
2676 out:
2677         rtnl_unlock();
2678
2679         return ret;
2680 }
2681
2682 static int netvsc_resume(struct hv_device *dev)
2683 {
2684         struct net_device *net = hv_get_drvdata(dev);
2685         struct net_device_context *net_device_ctx;
2686         struct netvsc_device_info *device_info;
2687         int ret;
2688
2689         rtnl_lock();
2690
2691         net_device_ctx = netdev_priv(net);
2692
2693         /* Reset the data path to the netvsc NIC before re-opening the vmbus
2694          * channel. Later netvsc_netdev_event() will switch the data path to
2695          * the VF upon the UP or CHANGE event.
2696          */
2697         net_device_ctx->data_path_is_vf = false;
2698         device_info = net_device_ctx->saved_netvsc_dev_info;
2699
2700         ret = netvsc_attach(net, device_info);
2701
2702         netvsc_devinfo_put(device_info);
2703         net_device_ctx->saved_netvsc_dev_info = NULL;
2704
2705         rtnl_unlock();
2706
2707         return ret;
2708 }
2709 static const struct hv_vmbus_device_id id_table[] = {
2710         /* Network guid */
2711         { HV_NIC_GUID, },
2712         { },
2713 };
2714
2715 MODULE_DEVICE_TABLE(vmbus, id_table);
2716
2717 /* The one and only one */
2718 static struct  hv_driver netvsc_drv = {
2719         .name = KBUILD_MODNAME,
2720         .id_table = id_table,
2721         .probe = netvsc_probe,
2722         .remove = netvsc_remove,
2723         .suspend = netvsc_suspend,
2724         .resume = netvsc_resume,
2725         .driver = {
2726                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2727         },
2728 };
2729
2730 /*
2731  * On Hyper-V, every VF interface is matched with a corresponding
2732  * synthetic interface. The synthetic interface is presented first
2733  * to the guest. When the corresponding VF instance is registered,
2734  * we will take care of switching the data path.
2735  */
2736 static int netvsc_netdev_event(struct notifier_block *this,
2737                                unsigned long event, void *ptr)
2738 {
2739         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2740
2741         /* Skip our own events */
2742         if (event_dev->netdev_ops == &device_ops)
2743                 return NOTIFY_DONE;
2744
2745         /* Avoid non-Ethernet type devices */
2746         if (event_dev->type != ARPHRD_ETHER)
2747                 return NOTIFY_DONE;
2748
2749         /* Avoid Vlan dev with same MAC registering as VF */
2750         if (is_vlan_dev(event_dev))
2751                 return NOTIFY_DONE;
2752
2753         /* Avoid Bonding master dev with same MAC registering as VF */
2754         if (netif_is_bond_master(event_dev))
2755                 return NOTIFY_DONE;
2756
2757         switch (event) {
2758         case NETDEV_REGISTER:
2759                 return netvsc_register_vf(event_dev);
2760         case NETDEV_UNREGISTER:
2761                 return netvsc_unregister_vf(event_dev);
2762         case NETDEV_UP:
2763         case NETDEV_DOWN:
2764         case NETDEV_CHANGE:
2765         case NETDEV_GOING_DOWN:
2766                 return netvsc_vf_changed(event_dev, event);
2767         default:
2768                 return NOTIFY_DONE;
2769         }
2770 }
2771
2772 static struct notifier_block netvsc_netdev_notifier = {
2773         .notifier_call = netvsc_netdev_event,
2774 };
2775
2776 static void __exit netvsc_drv_exit(void)
2777 {
2778         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2779         vmbus_driver_unregister(&netvsc_drv);
2780 }
2781
2782 static int __init netvsc_drv_init(void)
2783 {
2784         int ret;
2785
2786         if (ring_size < RING_SIZE_MIN) {
2787                 ring_size = RING_SIZE_MIN;
2788                 pr_info("Increased ring_size to %u (min allowed)\n",
2789                         ring_size);
2790         }
2791         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2792
2793         ret = vmbus_driver_register(&netvsc_drv);
2794         if (ret)
2795                 return ret;
2796
2797         register_netdevice_notifier(&netvsc_netdev_notifier);
2798         return 0;
2799 }
2800
2801 MODULE_LICENSE("GPL");
2802 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2803
2804 module_init(netvsc_drv_init);
2805 module_exit(netvsc_drv_exit);