2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
33 #include <asm/errno.h>
35 DECLARE_GLOBAL_DATA_PTR;
38 #error "CONFIG_MII has to be defined!"
44 uint8_t data[1500]; /**< actual data */
45 int length; /**< actual length */
46 int used; /**< buffer in use or not */
47 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
50 struct fec_priv gfec = {
51 .eth = (struct ethernet_regs *)IMX_FEC_BASE,
63 * MII-interface related functions
65 static int fec_miiphy_read(char *dev, uint8_t phyAddr, uint8_t regAddr,
68 struct eth_device *edev = eth_get_dev_by_name(dev);
69 struct fec_priv *fec = (struct fec_priv *)edev->priv;
71 uint32_t reg; /* convenient holder for the PHY register */
72 uint32_t phy; /* convenient holder for the PHY */
76 * reading from any PHY's register is done by properly
77 * programming the FEC's MII data register.
79 writel(FEC_IEVENT_MII, &fec->eth->ievent);
80 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
81 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
83 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
84 phy | reg, &fec->eth->mii_data);
87 * wait for the related interrupt
89 start = get_timer_masked();
90 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
91 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
92 printf("Read MDIO failed...\n");
98 * clear mii interrupt bit
100 writel(FEC_IEVENT_MII, &fec->eth->ievent);
103 * it's now safe to read the PHY's register
105 *retVal = readl(&fec->eth->mii_data);
106 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
111 static int fec_miiphy_write(char *dev, uint8_t phyAddr, uint8_t regAddr,
114 struct eth_device *edev = eth_get_dev_by_name(dev);
115 struct fec_priv *fec = (struct fec_priv *)edev->priv;
117 uint32_t reg; /* convenient holder for the PHY register */
118 uint32_t phy; /* convenient holder for the PHY */
121 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
122 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
124 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
125 FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
128 * wait for the MII interrupt
130 start = get_timer_masked();
131 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
132 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
133 printf("Write MDIO failed...\n");
139 * clear MII interrupt bit
141 writel(FEC_IEVENT_MII, &fec->eth->ievent);
142 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
148 static int miiphy_restart_aneg(struct eth_device *dev)
151 * Wake up from sleep if necessary
152 * Reset PHY, then delay 300ns
154 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_MIPGSR, 0x00FF);
155 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
160 * Set the auto-negotiation advertisement register bits
162 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_ANAR,
163 PHY_ANLPAR_TXFD | PHY_ANLPAR_TX | PHY_ANLPAR_10FD |
164 PHY_ANLPAR_10 | PHY_ANLPAR_PSB_802_3);
165 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
166 PHY_BMCR_AUTON | PHY_BMCR_RST_NEG);
171 static int miiphy_wait_aneg(struct eth_device *dev)
177 * Wait for AN completion
179 start = get_timer_masked();
181 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
182 printf("%s: Autonegotiation timeout\n", dev->name);
186 if (miiphy_read(dev->name, CONFIG_FEC_MXC_PHYADDR,
187 PHY_BMSR, &status)) {
188 printf("%s: Autonegotiation failed. status: 0x%04x\n",
192 } while (!(status & PHY_BMSR_LS));
196 static int fec_rx_task_enable(struct fec_priv *fec)
198 writel(1 << 24, &fec->eth->r_des_active);
202 static int fec_rx_task_disable(struct fec_priv *fec)
207 static int fec_tx_task_enable(struct fec_priv *fec)
209 writel(1 << 24, &fec->eth->x_des_active);
213 static int fec_tx_task_disable(struct fec_priv *fec)
219 * Initialize receive task's buffer descriptors
220 * @param[in] fec all we know about the device yet
221 * @param[in] count receive buffer count to be allocated
222 * @param[in] size size of each receive buffer
223 * @return 0 on success
225 * For this task we need additional memory for the data buffers. And each
226 * data buffer requires some alignment. Thy must be aligned to a specific
227 * boundary each (DB_DATA_ALIGNMENT).
229 static int fec_rbd_init(struct fec_priv *fec, int count, int size)
234 /* reserve data memory and consider alignment */
235 if (fec->rdb_ptr == NULL)
236 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
237 p = (uint32_t)fec->rdb_ptr;
239 puts("fec_imx27: not enough malloc memory!\n");
242 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
243 p += DB_DATA_ALIGNMENT-1;
244 p &= ~(DB_DATA_ALIGNMENT-1);
246 for (ix = 0; ix < count; ix++) {
247 writel(p, &fec->rbd_base[ix].data_pointer);
249 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
250 writew(0, &fec->rbd_base[ix].data_length);
253 * mark the last RBD to close the ring
255 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
262 * Initialize transmit task's buffer descriptors
263 * @param[in] fec all we know about the device yet
265 * Transmit buffers are created externally. We only have to init the BDs here.\n
266 * Note: There is a race condition in the hardware. When only one BD is in
267 * use it must be marked with the WRAP bit to use it for every transmitt.
268 * This bit in combination with the READY bit results into double transmit
269 * of each data buffer. It seems the state machine checks READY earlier then
270 * resetting it after the first transfer.
271 * Using two BDs solves this issue.
273 static void fec_tbd_init(struct fec_priv *fec)
275 writew(0x0000, &fec->tbd_base[0].status);
276 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
281 * Mark the given read buffer descriptor as free
282 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
283 * @param[in] pRbd buffer descriptor to mark free again
285 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
288 * Reset buffer descriptor as empty
291 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
293 writew(FEC_RBD_EMPTY, &pRbd->status);
297 writew(0, &pRbd->data_length);
300 static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
302 struct iim_regs *iim = (struct iim_regs *)IMX_IIM_BASE;
305 for (i = 0; i < 6; i++)
306 mac[6-1-i] = readl(&iim->iim_bank_area0[IIM0_MAC + i]);
308 return is_valid_ether_addr(mac);
311 static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
313 struct fec_priv *fec = (struct fec_priv *)dev->priv;
315 writel(0, &fec->eth->iaddr1);
316 writel(0, &fec->eth->iaddr2);
317 writel(0, &fec->eth->gaddr1);
318 writel(0, &fec->eth->gaddr2);
321 * Set physical address
323 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
325 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
331 * Start the FEC engine
332 * @param[in] dev Our device to handle
334 static int fec_open(struct eth_device *edev)
336 struct fec_priv *fec = (struct fec_priv *)edev->priv;
338 debug("fec_open: fec_open(dev)\n");
339 /* full-duplex, heartbeat disabled */
340 writel(1 << 2, &fec->eth->x_cntrl);
344 * Enable FEC-Lite controller
346 writel(FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl);
348 miiphy_wait_aneg(edev);
349 miiphy_speed(edev->name, CONFIG_FEC_MXC_PHYADDR);
350 miiphy_duplex(edev->name, CONFIG_FEC_MXC_PHYADDR);
353 * Enable SmartDMA receive task
355 fec_rx_task_enable(fec);
361 static int fec_init(struct eth_device *dev, bd_t* bd)
364 struct fec_priv *fec = (struct fec_priv *)dev->priv;
367 * reserve memory for both buffer descriptor chains at once
368 * Datasheet forces the startaddress of each chain is 16 byte
371 if (fec->base_ptr == NULL)
372 fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
373 sizeof(struct fec_bd) + DB_ALIGNMENT);
374 base = (uint32_t)fec->base_ptr;
376 puts("fec_imx27: not enough malloc memory!\n");
379 memset((void *)base, 0, (2 + FEC_RBD_NUM) *
380 sizeof(struct fec_bd) + DB_ALIGNMENT);
381 base += (DB_ALIGNMENT-1);
382 base &= ~(DB_ALIGNMENT-1);
384 fec->rbd_base = (struct fec_bd *)base;
386 base += FEC_RBD_NUM * sizeof(struct fec_bd);
388 fec->tbd_base = (struct fec_bd *)base;
391 * Set interrupt mask register
393 writel(0x00000000, &fec->eth->imask);
396 * Clear FEC-Lite interrupt event register(IEVENT)
398 writel(0xffffffff, &fec->eth->ievent);
402 * Set FEC-Lite receive control register(R_CNTRL):
404 if (fec->xcv_type == SEVENWIRE) {
406 * Frame length=1518; 7-wire mode
408 writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */
411 * Frame length=1518; MII mode;
413 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
415 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
416 * and do not drop the Preamble.
418 writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
419 &fec->eth->mii_speed);
420 debug("fec_init: mii_speed %#lx\n",
421 (((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
424 * Set Opcode/Pause Duration Register
426 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
427 writel(0x2, &fec->eth->x_wmrk);
429 * Set multicast address filter
431 writel(0x00000000, &fec->eth->gaddr1);
432 writel(0x00000000, &fec->eth->gaddr2);
436 long *mib_ptr = (long *)(IMX_FEC_BASE + 0x200);
437 while (mib_ptr <= (long *)(IMX_FEC_BASE + 0x2FC))
440 /* FIFO receive start register */
441 writel(0x520, &fec->eth->r_fstart);
443 /* size and address of each buffer */
444 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
445 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
446 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
449 * Initialize RxBD/TxBD rings
451 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
458 if (fec->xcv_type != SEVENWIRE)
459 miiphy_restart_aneg(dev);
466 * Halt the FEC engine
467 * @param[in] dev Our device to handle
469 static void fec_halt(struct eth_device *dev)
471 struct fec_priv *fec = &gfec;
472 int counter = 0xffff;
475 * issue graceful stop command to the FEC transmitter if necessary
477 writel(FEC_ECNTRL_RESET | readl(&fec->eth->x_cntrl),
480 debug("eth_halt: wait for stop regs\n");
482 * wait for graceful stop to register
484 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
485 ; /* FIXME ensure time */
488 * Disable SmartDMA tasks
490 fec_tx_task_disable(fec);
491 fec_rx_task_disable(fec);
494 * Disable the Ethernet Controller
495 * Note: this will also reset the BD index counter!
497 writel(0, &fec->eth->ecntrl);
500 debug("eth_halt: done\n");
505 * @param[in] dev Our ethernet device to handle
506 * @param[in] packet Pointer to the data to be transmitted
507 * @param[in] length Data count in bytes
508 * @return 0 on success
510 static int fec_send(struct eth_device *dev, volatile void* packet, int length)
515 * This routine transmits one frame. This routine only accepts
516 * 6-byte Ethernet addresses.
518 struct fec_priv *fec = (struct fec_priv *)dev->priv;
521 * Check for valid length of data.
523 if ((length > 1500) || (length <= 0)) {
524 printf("Payload (%d) to large!\n", length);
529 * Setup the transmit buffer
530 * Note: We are always using the first buffer for transmission,
531 * the second will be empty and only used to stop the DMA engine
533 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
534 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
536 * update BD's status now
538 * - is always the last in a chain (means no chain)
539 * - should transmitt the CRC
540 * - might be the last BD in the list, so the address counter should
541 * wrap (-> keep the WRAP flag)
543 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
544 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
545 writew(status, &fec->tbd_base[fec->tbd_index].status);
548 * Enable SmartDMA transmit task
550 fec_tx_task_enable(fec);
553 * wait until frame is sent .
555 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
558 debug("fec_send: status 0x%x index %d\n",
559 readw(&fec->tbd_base[fec->tbd_index].status),
561 /* for next transmission use the other buffer */
571 * Pull one frame from the card
572 * @param[in] dev Our ethernet device to handle
573 * @return Length of packet read
575 static int fec_recv(struct eth_device *dev)
577 struct fec_priv *fec = (struct fec_priv *)dev->priv;
578 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
579 unsigned long ievent;
580 int frame_length, len = 0;
583 uchar buff[FEC_MAX_PKT_SIZE];
586 * Check if any critical events have happened
588 ievent = readl(&fec->eth->ievent);
589 writel(ievent, &fec->eth->ievent);
590 debug("fec_recv: ievent 0x%x\n", ievent);
591 if (ievent & FEC_IEVENT_BABR) {
593 fec_init(dev, fec->bd);
594 printf("some error: 0x%08lx\n", ievent);
597 if (ievent & FEC_IEVENT_HBERR) {
598 /* Heartbeat error */
599 writel(0x00000001 | readl(&fec->eth->x_cntrl),
602 if (ievent & FEC_IEVENT_GRA) {
603 /* Graceful stop complete */
604 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
606 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
608 fec_init(dev, fec->bd);
613 * ensure reading the right buffer status
615 bd_status = readw(&rbd->status);
616 debug("fec_recv: status 0x%x\n", bd_status);
618 if (!(bd_status & FEC_RBD_EMPTY)) {
619 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
620 ((readw(&rbd->data_length) - 4) > 14)) {
622 * Get buffer address and size
624 frame = (struct nbuf *)readl(&rbd->data_pointer);
625 frame_length = readw(&rbd->data_length) - 4;
627 * Fill the buffer and pass it to upper layers
629 memcpy(buff, frame->data, frame_length);
630 NetReceive(buff, frame_length);
633 if (bd_status & FEC_RBD_ERR)
634 printf("error frame: 0x%08lx 0x%08x\n",
635 (ulong)rbd->data_pointer,
639 * free the current buffer, restart the engine
640 * and move forward to the next buffer
642 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
643 fec_rx_task_enable(fec);
644 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
646 debug("fec_recv: stop\n");
651 static int fec_probe(bd_t *bd)
653 struct pll_regs *pll = (struct pll_regs *)IMX_PLL_BASE;
654 struct eth_device *edev;
655 struct fec_priv *fec = &gfec;
656 unsigned char ethaddr_str[20];
657 unsigned char ethaddr[6];
658 char *tmp = getenv("ethaddr");
661 /* enable FEC clock */
662 writel(readl(&pll->pccr1) | PCCR1_HCLK_FEC, &pll->pccr1);
663 writel(readl(&pll->pccr0) | PCCR0_FEC_EN, &pll->pccr0);
665 /* create and fill edev struct */
666 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
668 puts("fec_imx27: not enough malloc memory!\n");
672 edev->init = fec_init;
673 edev->send = fec_send;
674 edev->recv = fec_recv;
675 edev->halt = fec_halt;
677 fec->eth = (struct ethernet_regs *)IMX_FEC_BASE;
680 fec->xcv_type = MII100;
683 writel(FEC_ECNTRL_RESET, &fec->eth->ecntrl);
684 while (readl(&fec->eth->ecntrl) & 1)
688 * Set interrupt mask register
690 writel(0x00000000, &fec->eth->imask);
693 * Clear FEC-Lite interrupt event register(IEVENT)
695 writel(0xffffffff, &fec->eth->ievent);
698 * Set FEC-Lite receive control register(R_CNTRL):
701 * Frame length=1518; MII mode;
703 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
705 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
706 * and do not drop the Preamble.
708 writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
709 &fec->eth->mii_speed);
710 debug("fec_init: mii_speed %#lx\n",
711 (((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
713 sprintf(edev->name, "FEC_MXC");
715 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
719 if ((NULL != tmp) && (12 <= strlen(tmp))) {
721 /* convert MAC from string to int */
722 for (i = 0; i < 6; i++) {
723 ethaddr[i] = tmp ? simple_strtoul(tmp, &end, 16) : 0;
725 tmp = (*end) ? end + 1 : end;
727 } else if (fec_get_hwaddr(edev, ethaddr) == 0) {
728 printf("got MAC address from EEPROM: %pM\n", ethaddr);
729 setenv("ethaddr", (char *)ethaddr_str);
731 memcpy(edev->enetaddr, ethaddr, 6);
732 fec_set_hwaddr(edev, ethaddr);
737 int fecmxc_initialize(bd_t *bd)
741 debug("eth_init: fec_probe(bd)\n");
742 lout = fec_probe(bd);