2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8 * SPDX-License-Identifier: GPL-2.0+
17 #include <asm/arch/clock.h>
18 #include <asm/arch/imx-regs.h>
20 #include <asm/errno.h>
21 #include <linux/compiler.h>
23 DECLARE_GLOBAL_DATA_PTR;
26 * Timeout the transfer after 5 mS. This is usually a bit more, since
27 * the code in the tightloops this timeout is used in adds some overhead.
29 #define FEC_XFER_TIMEOUT 5000
32 #error "CONFIG_MII has to be defined!"
35 #ifndef CONFIG_FEC_XCV_TYPE
36 #define CONFIG_FEC_XCV_TYPE MII100
40 * The i.MX28 operates with packets in big endian. We need to swap them before
41 * sending and after receiving.
44 #define CONFIG_FEC_MXC_SWAP_PACKET
47 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
49 /* Check various alignment issues at compile time */
50 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
51 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
54 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
55 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
56 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
62 uint8_t data[1500]; /**< actual data */
63 int length; /**< actual length */
64 int used; /**< buffer in use or not */
65 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
68 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
69 static void swap_packet(uint32_t *packet, int length)
73 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
74 packet[i] = __swab32(packet[i]);
79 * MII-interface related functions
81 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
84 uint32_t reg; /* convenient holder for the PHY register */
85 uint32_t phy; /* convenient holder for the PHY */
90 * reading from any PHY's register is done by properly
91 * programming the FEC's MII data register.
93 writel(FEC_IEVENT_MII, ð->ievent);
94 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
95 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
97 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
98 phy | reg, ð->mii_data);
101 * wait for the related interrupt
103 start = get_timer(0);
104 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
105 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
106 printf("Read MDIO failed...\n");
112 * clear mii interrupt bit
114 writel(FEC_IEVENT_MII, ð->ievent);
117 * it's now safe to read the PHY's register
119 val = (unsigned short)readl(ð->mii_data);
120 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
125 static void fec_mii_setspeed(struct ethernet_regs *eth)
128 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
129 * and do not drop the Preamble.
131 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
133 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
136 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
137 uint8_t regAddr, uint16_t data)
139 uint32_t reg; /* convenient holder for the PHY register */
140 uint32_t phy; /* convenient holder for the PHY */
143 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
144 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
146 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
147 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
150 * wait for the MII interrupt
152 start = get_timer(0);
153 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
154 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
155 printf("Write MDIO failed...\n");
161 * clear MII interrupt bit
163 writel(FEC_IEVENT_MII, ð->ievent);
164 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
170 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
172 return fec_mdio_read(bus->priv, phyAddr, regAddr);
175 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
178 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
181 #ifndef CONFIG_PHYLIB
182 static int miiphy_restart_aneg(struct eth_device *dev)
185 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
186 struct fec_priv *fec = (struct fec_priv *)dev->priv;
187 struct ethernet_regs *eth = fec->bus->priv;
190 * Wake up from sleep if necessary
191 * Reset PHY, then delay 300ns
194 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
196 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
200 * Set the auto-negotiation advertisement register bits
202 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
203 LPA_100FULL | LPA_100HALF | LPA_10FULL |
204 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
205 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
206 BMCR_ANENABLE | BMCR_ANRESTART);
208 if (fec->mii_postcall)
209 ret = fec->mii_postcall(fec->phy_id);
215 static int miiphy_wait_aneg(struct eth_device *dev)
219 struct fec_priv *fec = (struct fec_priv *)dev->priv;
220 struct ethernet_regs *eth = fec->bus->priv;
223 * Wait for AN completion
225 start = get_timer(0);
227 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
228 printf("%s: Autonegotiation timeout\n", dev->name);
232 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
234 printf("%s: Autonegotiation failed. status: %d\n",
238 } while (!(status & BMSR_LSTATUS));
244 static int fec_rx_task_enable(struct fec_priv *fec)
246 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
250 static int fec_rx_task_disable(struct fec_priv *fec)
255 static int fec_tx_task_enable(struct fec_priv *fec)
257 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
261 static int fec_tx_task_disable(struct fec_priv *fec)
267 * Initialize receive task's buffer descriptors
268 * @param[in] fec all we know about the device yet
269 * @param[in] count receive buffer count to be allocated
270 * @param[in] dsize desired size of each receive buffer
271 * @return 0 on success
273 * For this task we need additional memory for the data buffers. And each
274 * data buffer requires some alignment. Thy must be aligned to a specific
277 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
283 * Allocate memory for the buffers. This allocation respects the
286 size = roundup(dsize, ARCH_DMA_MINALIGN);
287 for (i = 0; i < count; i++) {
288 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
290 uint8_t *data = memalign(ARCH_DMA_MINALIGN,
293 printf("%s: error allocating rxbuf %d\n",
297 writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
298 } /* needs allocation */
299 writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
300 writew(0, &fec->rbd_base[i].data_length);
303 /* Mark the last RBD to close the ring. */
304 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
310 for (; i >= 0; i--) {
311 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
312 free((void *)data_ptr);
319 * Initialize transmit task's buffer descriptors
320 * @param[in] fec all we know about the device yet
322 * Transmit buffers are created externally. We only have to init the BDs here.\n
323 * Note: There is a race condition in the hardware. When only one BD is in
324 * use it must be marked with the WRAP bit to use it for every transmitt.
325 * This bit in combination with the READY bit results into double transmit
326 * of each data buffer. It seems the state machine checks READY earlier then
327 * resetting it after the first transfer.
328 * Using two BDs solves this issue.
330 static void fec_tbd_init(struct fec_priv *fec)
332 unsigned addr = (unsigned)fec->tbd_base;
333 unsigned size = roundup(2 * sizeof(struct fec_bd),
335 writew(0x0000, &fec->tbd_base[0].status);
336 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
338 flush_dcache_range(addr, addr+size);
342 * Mark the given read buffer descriptor as free
343 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
344 * @param[in] pRbd buffer descriptor to mark free again
346 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
348 unsigned short flags = FEC_RBD_EMPTY;
350 flags |= FEC_RBD_WRAP;
351 writew(flags, &pRbd->status);
352 writew(0, &pRbd->data_length);
355 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
358 imx_get_mac_from_fuse(dev_id, mac);
359 return !is_valid_ether_addr(mac);
362 static int fec_set_hwaddr(struct eth_device *dev)
364 uchar *mac = dev->enetaddr;
365 struct fec_priv *fec = (struct fec_priv *)dev->priv;
367 writel(0, &fec->eth->iaddr1);
368 writel(0, &fec->eth->iaddr2);
369 writel(0, &fec->eth->gaddr1);
370 writel(0, &fec->eth->gaddr2);
373 * Set physical address
375 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
377 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
383 * Do initial configuration of the FEC registers
385 static void fec_reg_setup(struct fec_priv *fec)
390 * Set interrupt mask register
392 writel(0x00000000, &fec->eth->imask);
395 * Clear FEC-Lite interrupt event register(IEVENT)
397 writel(0xffffffff, &fec->eth->ievent);
401 * Set FEC-Lite receive control register(R_CNTRL):
404 /* Start with frame length = 1518, common for all modes. */
405 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
406 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
407 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
408 if (fec->xcv_type == RGMII)
409 rcntrl |= FEC_RCNTRL_RGMII;
410 else if (fec->xcv_type == RMII)
411 rcntrl |= FEC_RCNTRL_RMII;
413 writel(rcntrl, &fec->eth->r_cntrl);
417 * Start the FEC engine
418 * @param[in] dev Our device to handle
420 static int fec_open(struct eth_device *edev)
422 struct fec_priv *fec = (struct fec_priv *)edev->priv;
427 debug("fec_open: fec_open(dev)\n");
428 /* full-duplex, heartbeat disabled */
429 writel(1 << 2, &fec->eth->x_cntrl);
432 /* Invalidate all descriptors */
433 for (i = 0; i < FEC_RBD_NUM - 1; i++)
434 fec_rbd_clean(0, &fec->rbd_base[i]);
435 fec_rbd_clean(1, &fec->rbd_base[i]);
437 /* Flush the descriptors into RAM */
438 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
440 addr = (uint32_t)fec->rbd_base;
441 flush_dcache_range(addr, addr + size);
443 #ifdef FEC_QUIRK_ENET_MAC
444 /* Enable ENET HW endian SWAP */
445 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
447 /* Enable ENET store and forward mode */
448 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
452 * Enable FEC-Lite controller
454 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
456 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
459 * setup the MII gasket for RMII mode
462 /* disable the gasket */
463 writew(0, &fec->eth->miigsk_enr);
465 /* wait for the gasket to be disabled */
466 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
469 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
470 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
472 /* re-enable the gasket */
473 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
475 /* wait until MII gasket is ready */
477 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
478 if (--max_loops <= 0) {
479 printf("WAIT for MII Gasket ready timed out\n");
487 /* Start up the PHY */
488 int ret = phy_startup(fec->phydev);
491 printf("Could not initialize PHY %s\n",
492 fec->phydev->dev->name);
495 speed = fec->phydev->speed;
498 miiphy_wait_aneg(edev);
499 speed = miiphy_speed(edev->name, fec->phy_id);
500 miiphy_duplex(edev->name, fec->phy_id);
503 #ifdef FEC_QUIRK_ENET_MAC
505 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
506 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
507 if (speed == _1000BASET)
508 ecr |= FEC_ECNTRL_SPEED;
509 else if (speed != _100BASET)
510 rcr |= FEC_RCNTRL_RMII_10T;
511 writel(ecr, &fec->eth->ecntrl);
512 writel(rcr, &fec->eth->r_cntrl);
515 debug("%s:Speed=%i\n", __func__, speed);
518 * Enable SmartDMA receive task
520 fec_rx_task_enable(fec);
526 static int fec_init(struct eth_device *dev, bd_t* bd)
528 struct fec_priv *fec = (struct fec_priv *)dev->priv;
529 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
533 /* Initialize MAC address */
537 * Allocate transmit descriptors, there are two in total. This
538 * allocation respects cache alignment.
540 if (!fec->tbd_base) {
541 size = roundup(2 * sizeof(struct fec_bd),
543 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
544 if (!fec->tbd_base) {
548 memset(fec->tbd_base, 0, size);
553 * Allocate receive descriptors. This allocation respects cache
556 if (!fec->rbd_base) {
557 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
559 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
560 if (!fec->rbd_base) {
564 memset(fec->rbd_base, 0, size);
566 * Initialize RxBD ring
568 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
572 flush_dcache_range((unsigned)fec->rbd_base,
573 (unsigned)fec->rbd_base + size);
578 if (fec->xcv_type != SEVENWIRE)
579 fec_mii_setspeed(fec->bus->priv);
582 * Set Opcode/Pause Duration Register
584 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
585 writel(0x2, &fec->eth->x_wmrk);
587 * Set multicast address filter
589 writel(0x00000000, &fec->eth->gaddr1);
590 writel(0x00000000, &fec->eth->gaddr2);
594 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
597 /* FIFO receive start register */
598 writel(0x520, &fec->eth->r_fstart);
600 /* size and address of each buffer */
601 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
602 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
603 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
605 #ifndef CONFIG_PHYLIB
606 if (fec->xcv_type != SEVENWIRE)
607 miiphy_restart_aneg(dev);
621 * Halt the FEC engine
622 * @param[in] dev Our device to handle
624 static void fec_halt(struct eth_device *dev)
626 struct fec_priv *fec = (struct fec_priv *)dev->priv;
627 int counter = 0xffff;
630 * issue graceful stop command to the FEC transmitter if necessary
632 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
635 debug("eth_halt: wait for stop regs\n");
637 * wait for graceful stop to register
639 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
643 * Disable SmartDMA tasks
645 fec_tx_task_disable(fec);
646 fec_rx_task_disable(fec);
649 * Disable the Ethernet Controller
650 * Note: this will also reset the BD index counter!
652 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
656 debug("eth_halt: done\n");
661 * @param[in] dev Our ethernet device to handle
662 * @param[in] packet Pointer to the data to be transmitted
663 * @param[in] length Data count in bytes
664 * @return 0 on success
666 static int fec_send(struct eth_device *dev, void *packet, int length)
671 int timeout = FEC_XFER_TIMEOUT;
675 * This routine transmits one frame. This routine only accepts
676 * 6-byte Ethernet addresses.
678 struct fec_priv *fec = (struct fec_priv *)dev->priv;
681 * Check for valid length of data.
683 if ((length > 1500) || (length <= 0)) {
684 printf("Payload (%d) too large\n", length);
689 * Setup the transmit buffer. We are always using the first buffer for
690 * transmission, the second will be empty and only used to stop the DMA
691 * engine. We also flush the packet to RAM here to avoid cache trouble.
693 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
694 swap_packet((uint32_t *)packet, length);
697 addr = (uint32_t)packet;
698 end = roundup(addr + length, ARCH_DMA_MINALIGN);
699 addr &= ~(ARCH_DMA_MINALIGN - 1);
700 flush_dcache_range(addr, end);
702 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
703 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
706 * update BD's status now
708 * - is always the last in a chain (means no chain)
709 * - should transmitt the CRC
710 * - might be the last BD in the list, so the address counter should
711 * wrap (-> keep the WRAP flag)
713 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
714 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
715 writew(status, &fec->tbd_base[fec->tbd_index].status);
718 * Flush data cache. This code flushes both TX descriptors to RAM.
719 * After this code, the descriptors will be safely in RAM and we
722 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
723 addr = (uint32_t)fec->tbd_base;
724 flush_dcache_range(addr, addr + size);
727 * Below we read the DMA descriptor's last four bytes back from the
728 * DRAM. This is important in order to make sure that all WRITE
729 * operations on the bus that were triggered by previous cache FLUSH
732 * Otherwise, on MX28, it is possible to observe a corruption of the
733 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
734 * for the bus structure of MX28. The scenario is as follows:
736 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
737 * to DRAM due to flush_dcache_range()
738 * 2) ARM core writes the FEC registers via AHB_ARB2
739 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
741 * Note that 2) does sometimes finish before 1) due to reordering of
742 * WRITE accesses on the AHB bus, therefore triggering 3) before the
743 * DMA descriptor is fully written into DRAM. This results in occasional
744 * corruption of the DMA descriptor.
746 readl(addr + size - 4);
749 * Enable SmartDMA transmit task
751 fec_tx_task_enable(fec);
754 * Wait until frame is sent. On each turn of the wait cycle, we must
755 * invalidate data cache to see what's really in RAM. Also, we need
759 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
766 invalidate_dcache_range(addr, addr + size);
767 if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
770 debug("fec_send: status 0x%x index %d ret %i\n",
771 readw(&fec->tbd_base[fec->tbd_index].status),
772 fec->tbd_index, ret);
773 /* for next transmission use the other buffer */
783 * Pull one frame from the card
784 * @param[in] dev Our ethernet device to handle
785 * @return Length of packet read
787 static int fec_recv(struct eth_device *dev)
789 struct fec_priv *fec = (struct fec_priv *)dev->priv;
790 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
791 unsigned long ievent;
792 int frame_length, len = 0;
795 uint32_t addr, size, end;
797 uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
800 * Check if any critical events have happened
802 ievent = readl(&fec->eth->ievent);
803 writel(ievent, &fec->eth->ievent);
804 debug("fec_recv: ievent 0x%lx\n", ievent);
805 if (ievent & FEC_IEVENT_BABR) {
807 fec_init(dev, fec->bd);
808 printf("some error: 0x%08lx\n", ievent);
811 if (ievent & FEC_IEVENT_HBERR) {
812 /* Heartbeat error */
813 writel(0x00000001 | readl(&fec->eth->x_cntrl),
816 if (ievent & FEC_IEVENT_GRA) {
817 /* Graceful stop complete */
818 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
820 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
822 fec_init(dev, fec->bd);
827 * Read the buffer status. Before the status can be read, the data cache
828 * must be invalidated, because the data in RAM might have been changed
829 * by DMA. The descriptors are properly aligned to cachelines so there's
830 * no need to worry they'd overlap.
832 * WARNING: By invalidating the descriptor here, we also invalidate
833 * the descriptors surrounding this one. Therefore we can NOT change the
834 * contents of this descriptor nor the surrounding ones. The problem is
835 * that in order to mark the descriptor as processed, we need to change
836 * the descriptor. The solution is to mark the whole cache line when all
837 * descriptors in the cache line are processed.
839 addr = (uint32_t)rbd;
840 addr &= ~(ARCH_DMA_MINALIGN - 1);
841 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
842 invalidate_dcache_range(addr, addr + size);
844 bd_status = readw(&rbd->status);
845 debug("fec_recv: status 0x%x\n", bd_status);
847 if (!(bd_status & FEC_RBD_EMPTY)) {
848 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
849 ((readw(&rbd->data_length) - 4) > 14)) {
851 * Get buffer address and size
853 frame = (struct nbuf *)readl(&rbd->data_pointer);
854 frame_length = readw(&rbd->data_length) - 4;
856 * Invalidate data cache over the buffer
858 addr = (uint32_t)frame;
859 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
860 addr &= ~(ARCH_DMA_MINALIGN - 1);
861 invalidate_dcache_range(addr, end);
864 * Fill the buffer and pass it to upper layers
866 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
867 swap_packet((uint32_t *)frame->data, frame_length);
869 memcpy(buff, frame->data, frame_length);
870 NetReceive(buff, frame_length);
873 if (bd_status & FEC_RBD_ERR)
874 printf("error frame: 0x%08lx 0x%08x\n",
875 (ulong)rbd->data_pointer,
880 * Free the current buffer, restart the engine and move forward
881 * to the next buffer. Here we check if the whole cacheline of
882 * descriptors was already processed and if so, we mark it free
885 size = RXDESC_PER_CACHELINE - 1;
886 if ((fec->rbd_index & size) == size) {
887 i = fec->rbd_index - size;
888 addr = (uint32_t)&fec->rbd_base[i];
889 for (; i <= fec->rbd_index ; i++) {
890 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
893 flush_dcache_range(addr,
894 addr + ARCH_DMA_MINALIGN);
897 fec_rx_task_enable(fec);
898 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
900 debug("fec_recv: stop\n");
905 static void fec_set_dev_name(char *dest, int dev_id)
907 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
911 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
912 struct mii_dev *bus, struct phy_device *phydev)
914 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
915 struct mii_dev *bus, int phy_id)
918 struct eth_device *edev;
919 struct fec_priv *fec;
920 unsigned char ethaddr[6];
924 /* create and fill edev struct */
925 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
927 puts("fec_mxc: not enough malloc memory for eth_device\n");
932 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
934 puts("fec_mxc: not enough malloc memory for fec_priv\n");
939 memset(edev, 0, sizeof(*edev));
940 memset(fec, 0, sizeof(*fec));
943 edev->init = fec_init;
944 edev->send = fec_send;
945 edev->recv = fec_recv;
946 edev->halt = fec_halt;
947 edev->write_hwaddr = fec_set_hwaddr;
949 fec->eth = (struct ethernet_regs *)base_addr;
952 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
955 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
956 start = get_timer(0);
957 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
958 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
959 printf("FEC MXC: Timeout reseting chip\n");
966 fec_set_dev_name(edev->name, dev_id);
967 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
969 fec_mii_setspeed(bus->priv);
971 fec->phydev = phydev;
972 phy_connect_dev(phydev, edev);
976 fec->phy_id = phy_id;
980 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
981 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
982 memcpy(edev->enetaddr, ethaddr, 6);
993 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
995 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1001 printf("mdio_alloc failed\n");
1004 bus->read = fec_phy_read;
1005 bus->write = fec_phy_write;
1007 fec_set_dev_name(bus->name, dev_id);
1009 ret = mdio_register(bus);
1011 printf("mdio_register failed\n");
1015 fec_mii_setspeed(eth);
1019 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1022 struct mii_dev *bus = NULL;
1023 #ifdef CONFIG_PHYLIB
1024 struct phy_device *phydev = NULL;
1030 * The i.MX28 has two ethernet interfaces, but they are not equal.
1031 * Only the first one can access the MDIO bus.
1033 base_mii = MXS_ENET0_BASE;
1037 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1038 bus = fec_get_miibus(base_mii, dev_id);
1041 #ifdef CONFIG_PHYLIB
1042 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1047 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1049 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1052 #ifdef CONFIG_PHYLIB
1060 #ifdef CONFIG_FEC_MXC_PHYADDR
1061 int fecmxc_initialize(bd_t *bd)
1063 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1068 #ifndef CONFIG_PHYLIB
1069 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1071 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1072 fec->mii_postcall = cb;