2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
33 #include <asm/errno.h>
35 DECLARE_GLOBAL_DATA_PTR;
38 #error "CONFIG_MII has to be defined!"
41 #ifndef CONFIG_FEC_XCV_TYPE
42 #define CONFIG_FEC_XCV_TYPE MII100
46 * The i.MX28 operates with packets in big endian. We need to swap them before
47 * sending and after receiving.
50 #define CONFIG_FEC_MXC_SWAP_PACKET
53 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
55 /* Check various alignment issues at compile time */
56 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
57 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
60 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
61 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
62 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
68 uint8_t data[1500]; /**< actual data */
69 int length; /**< actual length */
70 int used; /**< buffer in use or not */
71 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
79 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 packet[i] = __swab32(packet[i]);
85 * MII-interface related functions
87 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
90 uint32_t reg; /* convenient holder for the PHY register */
91 uint32_t phy; /* convenient holder for the PHY */
96 * reading from any PHY's register is done by properly
97 * programming the FEC's MII data register.
99 writel(FEC_IEVENT_MII, ð->ievent);
100 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
101 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
103 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
104 phy | reg, ð->mii_data);
107 * wait for the related interrupt
109 start = get_timer(0);
110 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
111 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 printf("Read MDIO failed...\n");
118 * clear mii interrupt bit
120 writel(FEC_IEVENT_MII, ð->ievent);
123 * it's now safe to read the PHY's register
125 val = (unsigned short)readl(ð->mii_data);
126 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
131 static void fec_mii_setspeed(struct fec_priv *fec)
134 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
135 * and do not drop the Preamble.
137 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
138 &fec->eth->mii_speed);
139 debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
142 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
143 uint8_t regAddr, uint16_t data)
145 uint32_t reg; /* convenient holder for the PHY register */
146 uint32_t phy; /* convenient holder for the PHY */
149 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
150 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
152 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
153 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
156 * wait for the MII interrupt
158 start = get_timer(0);
159 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
160 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
161 printf("Write MDIO failed...\n");
167 * clear MII interrupt bit
169 writel(FEC_IEVENT_MII, ð->ievent);
170 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
176 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
178 return fec_mdio_read(bus->priv, phyAddr, regAddr);
181 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
184 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
187 #ifndef CONFIG_PHYLIB
188 static int miiphy_restart_aneg(struct eth_device *dev)
191 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
192 struct fec_priv *fec = (struct fec_priv *)dev->priv;
193 struct ethernet_regs *eth = fec->bus->priv;
196 * Wake up from sleep if necessary
197 * Reset PHY, then delay 300ns
200 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
202 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
206 * Set the auto-negotiation advertisement register bits
208 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
209 LPA_100FULL | LPA_100HALF | LPA_10FULL |
210 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
211 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
212 BMCR_ANENABLE | BMCR_ANRESTART);
214 if (fec->mii_postcall)
215 ret = fec->mii_postcall(fec->phy_id);
221 static int miiphy_wait_aneg(struct eth_device *dev)
225 struct fec_priv *fec = (struct fec_priv *)dev->priv;
226 struct ethernet_regs *eth = fec->bus->priv;
229 * Wait for AN completion
231 start = get_timer(0);
233 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
234 printf("%s: Autonegotiation timeout\n", dev->name);
238 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
240 printf("%s: Autonegotiation failed. status: %d\n",
244 } while (!(status & BMSR_LSTATUS));
250 static int fec_rx_task_enable(struct fec_priv *fec)
252 writel(1 << 24, &fec->eth->r_des_active);
256 static int fec_rx_task_disable(struct fec_priv *fec)
261 static int fec_tx_task_enable(struct fec_priv *fec)
263 writel(1 << 24, &fec->eth->x_des_active);
267 static int fec_tx_task_disable(struct fec_priv *fec)
273 * Initialize receive task's buffer descriptors
274 * @param[in] fec all we know about the device yet
275 * @param[in] count receive buffer count to be allocated
276 * @param[in] dsize desired size of each receive buffer
277 * @return 0 on success
279 * For this task we need additional memory for the data buffers. And each
280 * data buffer requires some alignment. Thy must be aligned to a specific
283 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
289 * Allocate memory for the buffers. This allocation respects the
292 size = roundup(dsize, ARCH_DMA_MINALIGN);
293 for (i = 0; i < count; i++) {
294 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
296 uint8_t *data = memalign(ARCH_DMA_MINALIGN,
299 printf("%s: error allocating rxbuf %d\n",
303 writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
304 } /* needs allocation */
305 writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
306 writew(0, &fec->rbd_base[i].data_length);
309 /* Mark the last RBD to close the ring. */
310 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
316 for (; i >= 0; i--) {
317 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
318 free((void *)data_ptr);
325 * Initialize transmit task's buffer descriptors
326 * @param[in] fec all we know about the device yet
328 * Transmit buffers are created externally. We only have to init the BDs here.\n
329 * Note: There is a race condition in the hardware. When only one BD is in
330 * use it must be marked with the WRAP bit to use it for every transmitt.
331 * This bit in combination with the READY bit results into double transmit
332 * of each data buffer. It seems the state machine checks READY earlier then
333 * resetting it after the first transfer.
334 * Using two BDs solves this issue.
336 static void fec_tbd_init(struct fec_priv *fec)
338 unsigned addr = (unsigned)fec->tbd_base;
339 unsigned size = roundup(2 * sizeof(struct fec_bd),
341 writew(0x0000, &fec->tbd_base[0].status);
342 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
344 flush_dcache_range(addr, addr+size);
348 * Mark the given read buffer descriptor as free
349 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
350 * @param[in] pRbd buffer descriptor to mark free again
352 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
354 unsigned short flags = FEC_RBD_EMPTY;
356 flags |= FEC_RBD_WRAP;
357 writew(flags, &pRbd->status);
358 writew(0, &pRbd->data_length);
361 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
364 imx_get_mac_from_fuse(dev_id, mac);
365 return !is_valid_ether_addr(mac);
368 static int fec_set_hwaddr(struct eth_device *dev)
370 uchar *mac = dev->enetaddr;
371 struct fec_priv *fec = (struct fec_priv *)dev->priv;
373 writel(0, &fec->eth->iaddr1);
374 writel(0, &fec->eth->iaddr2);
375 writel(0, &fec->eth->gaddr1);
376 writel(0, &fec->eth->gaddr2);
379 * Set physical address
381 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
383 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
388 static void fec_eth_phy_config(struct eth_device *dev)
391 struct fec_priv *fec = (struct fec_priv *)dev->priv;
392 struct phy_device *phydev;
394 phydev = phy_connect(fec->bus, fec->phy_id, dev,
395 PHY_INTERFACE_MODE_RGMII);
397 fec->phydev = phydev;
404 * Do initial configuration of the FEC registers
406 static void fec_reg_setup(struct fec_priv *fec)
411 * Set interrupt mask register
413 writel(0x00000000, &fec->eth->imask);
416 * Clear FEC-Lite interrupt event register(IEVENT)
418 writel(0xffffffff, &fec->eth->ievent);
422 * Set FEC-Lite receive control register(R_CNTRL):
425 /* Start with frame length = 1518, common for all modes. */
426 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
427 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
428 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
429 if (fec->xcv_type == RGMII)
430 rcntrl |= FEC_RCNTRL_RGMII;
431 else if (fec->xcv_type == RMII)
432 rcntrl |= FEC_RCNTRL_RMII;
434 writel(rcntrl, &fec->eth->r_cntrl);
438 * Start the FEC engine
439 * @param[in] dev Our device to handle
441 static int fec_open(struct eth_device *edev)
443 struct fec_priv *fec = (struct fec_priv *)edev->priv;
448 debug("fec_open: fec_open(dev)\n");
449 /* full-duplex, heartbeat disabled */
450 writel(1 << 2, &fec->eth->x_cntrl);
453 /* Invalidate all descriptors */
454 for (i = 0; i < FEC_RBD_NUM - 1; i++)
455 fec_rbd_clean(0, &fec->rbd_base[i]);
456 fec_rbd_clean(1, &fec->rbd_base[i]);
458 /* Flush the descriptors into RAM */
459 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
461 addr = (uint32_t)fec->rbd_base;
462 flush_dcache_range(addr, addr + size);
464 #ifdef FEC_QUIRK_ENET_MAC
465 /* Enable ENET HW endian SWAP */
466 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
468 /* Enable ENET store and forward mode */
469 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
473 * Enable FEC-Lite controller
475 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
477 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
480 * setup the MII gasket for RMII mode
483 /* disable the gasket */
484 writew(0, &fec->eth->miigsk_enr);
486 /* wait for the gasket to be disabled */
487 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
490 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
491 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
493 /* re-enable the gasket */
494 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
496 /* wait until MII gasket is ready */
498 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
499 if (--max_loops <= 0) {
500 printf("WAIT for MII Gasket ready timed out\n");
508 fec_eth_phy_config(edev);
510 /* Start up the PHY */
511 int ret = phy_startup(fec->phydev);
514 printf("Could not initialize PHY %s\n",
515 fec->phydev->dev->name);
518 speed = fec->phydev->speed;
523 miiphy_wait_aneg(edev);
524 speed = miiphy_speed(edev->name, fec->phy_id);
525 miiphy_duplex(edev->name, fec->phy_id);
528 #ifdef FEC_QUIRK_ENET_MAC
530 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
531 u32 rcr = (readl(&fec->eth->r_cntrl) &
532 ~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
533 FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
534 if (speed == _1000BASET)
535 ecr |= FEC_ECNTRL_SPEED;
536 else if (speed != _100BASET)
537 rcr |= FEC_RCNTRL_RMII_10T;
538 writel(ecr, &fec->eth->ecntrl);
539 writel(rcr, &fec->eth->r_cntrl);
542 debug("%s:Speed=%i\n", __func__, speed);
545 * Enable SmartDMA receive task
547 fec_rx_task_enable(fec);
553 static int fec_init(struct eth_device *dev, bd_t* bd)
555 struct fec_priv *fec = (struct fec_priv *)dev->priv;
556 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
560 /* Initialize MAC address */
564 * Allocate transmit descriptors, there are two in total. This
565 * allocation respects cache alignment.
567 if (!fec->tbd_base) {
568 size = roundup(2 * sizeof(struct fec_bd),
570 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
571 if (!fec->tbd_base) {
575 memset(fec->tbd_base, 0, size);
577 flush_dcache_range((unsigned)fec->tbd_base, size);
581 * Allocate receive descriptors. This allocation respects cache
584 if (!fec->rbd_base) {
585 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
587 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
588 if (!fec->rbd_base) {
592 memset(fec->rbd_base, 0, size);
594 * Initialize RxBD ring
596 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
600 flush_dcache_range((unsigned)fec->rbd_base,
601 (unsigned)fec->rbd_base + size);
606 if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
607 fec_mii_setspeed(fec);
610 * Set Opcode/Pause Duration Register
612 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
613 writel(0x2, &fec->eth->x_wmrk);
615 * Set multicast address filter
617 writel(0x00000000, &fec->eth->gaddr1);
618 writel(0x00000000, &fec->eth->gaddr2);
622 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
625 /* FIFO receive start register */
626 writel(0x520, &fec->eth->r_fstart);
628 /* size and address of each buffer */
629 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
630 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
631 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
633 #ifndef CONFIG_PHYLIB
634 if (fec->xcv_type != SEVENWIRE)
635 miiphy_restart_aneg(dev);
649 * Halt the FEC engine
650 * @param[in] dev Our device to handle
652 static void fec_halt(struct eth_device *dev)
654 struct fec_priv *fec = (struct fec_priv *)dev->priv;
655 int counter = 0xffff;
658 * issue graceful stop command to the FEC transmitter if necessary
660 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
663 debug("eth_halt: wait for stop regs\n");
665 * wait for graceful stop to register
667 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
671 * Disable SmartDMA tasks
673 fec_tx_task_disable(fec);
674 fec_rx_task_disable(fec);
677 * Disable the Ethernet Controller
678 * Note: this will also reset the BD index counter!
680 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
684 debug("eth_halt: done\n");
689 * @param[in] dev Our ethernet device to handle
690 * @param[in] packet Pointer to the data to be transmitted
691 * @param[in] length Data count in bytes
692 * @return 0 on success
694 static int fec_send(struct eth_device *dev, void *packet, int length)
701 * This routine transmits one frame. This routine only accepts
702 * 6-byte Ethernet addresses.
704 struct fec_priv *fec = (struct fec_priv *)dev->priv;
707 * Check for valid length of data.
709 if ((length > 1500) || (length <= 0)) {
710 printf("Payload (%d) too large\n", length);
715 * Setup the transmit buffer. We are always using the first buffer for
716 * transmission, the second will be empty and only used to stop the DMA
717 * engine. We also flush the packet to RAM here to avoid cache trouble.
719 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
720 swap_packet((uint32_t *)packet, length);
723 addr = (uint32_t)packet;
724 size = roundup(length, ARCH_DMA_MINALIGN);
725 flush_dcache_range(addr, addr + size);
727 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
728 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
731 * update BD's status now
733 * - is always the last in a chain (means no chain)
734 * - should transmitt the CRC
735 * - might be the last BD in the list, so the address counter should
736 * wrap (-> keep the WRAP flag)
738 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
739 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
740 writew(status, &fec->tbd_base[fec->tbd_index].status);
743 * Flush data cache. This code flushes both TX descriptors to RAM.
744 * After this code, the descriptors will be safely in RAM and we
747 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
748 addr = (uint32_t)fec->tbd_base;
749 flush_dcache_range(addr, addr + size);
752 * Enable SmartDMA transmit task
754 fec_tx_task_enable(fec);
757 * Wait until frame is sent. On each turn of the wait cycle, we must
758 * invalidate data cache to see what's really in RAM. Also, we need
761 invalidate_dcache_range(addr, addr + size);
762 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
764 invalidate_dcache_range(addr, addr + size);
767 debug("fec_send: status 0x%x index %d\n",
768 readw(&fec->tbd_base[fec->tbd_index].status),
770 /* for next transmission use the other buffer */
780 * Pull one frame from the card
781 * @param[in] dev Our ethernet device to handle
782 * @return Length of packet read
784 static int fec_recv(struct eth_device *dev)
786 struct fec_priv *fec = (struct fec_priv *)dev->priv;
787 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
788 unsigned long ievent;
789 int frame_length, len = 0;
794 uchar buff[FEC_MAX_PKT_SIZE];
797 * Check if any critical events have happened
799 ievent = readl(&fec->eth->ievent);
800 writel(ievent, &fec->eth->ievent);
801 debug("fec_recv: ievent 0x%lx\n", ievent);
802 if (ievent & FEC_IEVENT_BABR) {
804 fec_init(dev, fec->bd);
805 printf("some error: 0x%08lx\n", ievent);
808 if (ievent & FEC_IEVENT_HBERR) {
809 /* Heartbeat error */
810 writel(0x00000001 | readl(&fec->eth->x_cntrl),
813 if (ievent & FEC_IEVENT_GRA) {
814 /* Graceful stop complete */
815 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
817 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
819 fec_init(dev, fec->bd);
824 * Read the buffer status. Before the status can be read, the data cache
825 * must be invalidated, because the data in RAM might have been changed
826 * by DMA. The descriptors are properly aligned to cachelines so there's
827 * no need to worry they'd overlap.
829 * WARNING: By invalidating the descriptor here, we also invalidate
830 * the descriptors surrounding this one. Therefore we can NOT change the
831 * contents of this descriptor nor the surrounding ones. The problem is
832 * that in order to mark the descriptor as processed, we need to change
833 * the descriptor. The solution is to mark the whole cache line when all
834 * descriptors in the cache line are processed.
836 addr = (uint32_t)rbd;
837 addr &= ~(ARCH_DMA_MINALIGN - 1);
838 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
839 invalidate_dcache_range(addr, addr + size);
841 bd_status = readw(&rbd->status);
842 debug("fec_recv: status 0x%x\n", bd_status);
844 if (!(bd_status & FEC_RBD_EMPTY)) {
845 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
846 ((readw(&rbd->data_length) - 4) > 14)) {
848 * Get buffer address and size
850 frame = (struct nbuf *)readl(&rbd->data_pointer);
851 frame_length = readw(&rbd->data_length) - 4;
853 * Invalidate data cache over the buffer
855 addr = (uint32_t)frame;
856 size = roundup(frame_length, ARCH_DMA_MINALIGN);
857 invalidate_dcache_range(addr, addr + size);
860 * Fill the buffer and pass it to upper layers
862 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
863 swap_packet((uint32_t *)frame->data, frame_length);
865 memcpy(buff, frame->data, frame_length);
866 NetReceive(buff, frame_length);
869 if (bd_status & FEC_RBD_ERR)
870 printf("error frame: 0x%08lx 0x%08x\n",
871 (ulong)rbd->data_pointer,
876 * Free the current buffer, restart the engine and move forward
877 * to the next buffer. Here we check if the whole cacheline of
878 * descriptors was already processed and if so, we mark it free
881 size = RXDESC_PER_CACHELINE - 1;
882 if ((fec->rbd_index & size) == size) {
883 i = fec->rbd_index - size;
884 addr = (uint32_t)&fec->rbd_base[i];
885 for (; i <= fec->rbd_index ; i++) {
886 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
889 flush_dcache_range(addr,
890 addr + ARCH_DMA_MINALIGN);
893 fec_rx_task_enable(fec);
894 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
896 debug("fec_recv: stop\n");
901 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
903 struct eth_device *edev;
904 struct fec_priv *fec;
906 unsigned char ethaddr[6];
910 /* create and fill edev struct */
911 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
913 puts("fec_mxc: not enough malloc memory for eth_device\n");
918 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
920 puts("fec_mxc: not enough malloc memory for fec_priv\n");
925 memset(edev, 0, sizeof(*edev));
926 memset(fec, 0, sizeof(*fec));
929 edev->init = fec_init;
930 edev->send = fec_send;
931 edev->recv = fec_recv;
932 edev->halt = fec_halt;
933 edev->write_hwaddr = fec_set_hwaddr;
935 fec->eth = (struct ethernet_regs *)base_addr;
938 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
941 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
942 start = get_timer(0);
943 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
944 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
945 printf("FEC MXC: Timeout reseting chip\n");
952 fec_mii_setspeed(fec);
955 sprintf(edev->name, "FEC");
958 sprintf(edev->name, "FEC%i", dev_id);
959 fec->dev_id = dev_id;
961 fec->phy_id = phy_id;
965 printf("mdio_alloc failed\n");
969 bus->read = fec_phy_read;
970 bus->write = fec_phy_write;
971 sprintf(bus->name, edev->name);
974 * The i.MX28 has two ethernet interfaces, but they are not equal.
975 * Only the first one can access the MDIO bus.
977 bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
979 bus->priv = fec->eth;
981 ret = mdio_register(bus);
983 printf("mdio_register failed\n");
991 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
992 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
993 memcpy(edev->enetaddr, ethaddr, 6);
996 fec_eth_phy_config(edev);
1007 #ifndef CONFIG_FEC_MXC_MULTI
1008 int fecmxc_initialize(bd_t *bd)
1012 debug("eth_init: fec_probe(bd)\n");
1013 lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1019 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1023 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1024 lout = fec_probe(bd, dev_id, phy_id, addr);
1029 #ifndef CONFIG_PHYLIB
1030 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1032 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1033 fec->mii_postcall = cb;